1
|
Zhang Y, Wang L. Advances in basic biology of alfalfa ( Medicago sativa L.): a comprehensive overview. HORTICULTURE RESEARCH 2025; 12:uhaf081. [PMID: 40343348 PMCID: PMC12058308 DOI: 10.1093/hr/uhaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Alfalfa (Medicago sativa L.), a perennial legume forage, has been broadly cultivated owing to a variety of favorable characteristics, including comprehensive ecological adaptability, superior nutritive value and palatability, and nitrogen fixation capacity. The productivity traits of alfalfa, specifically its biomass yield and forage quality, are significantly influenced by a series of determinants, including internal developmental factors and external environmental cues. However, the regulatory mechanisms underlying the fundamental biological problems of alfalfa remain elusive. Here, we conducted a comprehensive review focusing on the genomics of alfalfa, advancements in gene-editing technologies, and the identification of genes that control pivotal agronomic characteristics, including biomass formation, nutritional quality, flowering time, and resistance to various stresses. Moreover, a molecular design roadmap for the 'ideal alfalfa' has been proposed and the potential of pangenomes, self-incompatibility mechanisms, de novo domestication, and intelligent breeding strategies to enhance alfalfa's yield, quality, and resilience were further discussed. This review will provide comprehensive information on the basic biology of alfalfa and offer new insights for the cultivation of ideal alfalfa.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Science, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, No.20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Lei Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Science, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- China National Botanical Garden, No.20 Nanxincun, Xiangshan, Beijing 100093, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Huairou District, Beijing 101408, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, No. 8 Zhihui Road, Dongying 257300, China
| |
Collapse
|
2
|
Tao W, Qiu L, Zheng J, Jiang L, Xu Q, Xu S, Song S, Fan Z, Zheng Q, Wu Q, Han J, Li R, Wang J, Cui Y, Huang X, Zheng C, Zhang H, Huang R, Ouyang X. A gap-free and haplotype-resolved genome of an early-season indica variety provides insights into rice thermotolerance and grain quality. J Genet Genomics 2025:S1673-8527(25)00129-8. [PMID: 40339740 DOI: 10.1016/j.jgg.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Affiliation(s)
- Wenjing Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Leilei Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jingsheng Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Liangrong Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiwen Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shaowei Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shiting Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhibiao Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qixin Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qinqin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Rui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jingxian Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuchao Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changlin Zheng
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350018, China.
| | - Hai Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Rathore RS, Jiang W, Sedeek K, Mahfouz M. Harnessing neo-domestication of wild pigmented rice for enhanced nutrition and sustainable agriculture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:108. [PMID: 40317300 PMCID: PMC12049317 DOI: 10.1007/s00122-025-04896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
Advances in precision gene editing have enabled the rapid domestication of wild crop relatives, a process known as neo-domestication. During domestication, breeding rice for maximum productivity under optimal growth conditions reduced genetic diversity, eliminating variants for stress tolerance and grain nutrients. Wild rice varieties have rich genetic diversity, including variants for disease resistance, stress tolerance, and grain nutritional quality. For example, the grain of pigmented wild rice has abundant antioxidants (anthocyanins, proanthocyanidins, and flavonoids), but low yield, poor plant architecture, and long life cycle limit its cultivation. In this review, we address the neo-domestication of wild pigmented rice, focusing on recent progress, CRISPR-Cas editing toolboxes, selection of key candidate genes for domestication, identifying species with superior potential via generating genomic and multi-omics resources, efficient crop transformation methods and highlight strategies for the promotion and application pigmented rice. We also address critical outstanding questions and potential solutions to enable efficient neo-domestication of wild pigmented rice and thus enhance food security and nutrition.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Liu S, Cheng H, Zhang Y, He M, Zuo D, Wang Q, Lv L, Lin Z, Liu J, Song G. Cotton transposon-related variome reveals roles of transposon-related variations in modern cotton cultivation. J Adv Res 2025; 71:17-28. [PMID: 38810909 DOI: 10.1016/j.jare.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Transposon plays a vital role in cotton genome evolution, contributing to the expansion and divergence of genomes within the Gossypium genus. However, knowledge of transposon activity in modern cotton cultivation is limited. OBJECTIVES In this study, we aimed to construct transposon-related variome within Gossypium genus and reveal role of transposon-related variations during cotton cultivation. In addition, we try to identify valuable transposon-related variations for cotton breeding. METHODS We utilized graphical genome construction to build up the graphical transposon-related variome. Based on the graphical variome, we integrated t-test, eQTL analysis and Mendelian Randomization (MR) to identify valuable transposon activities and elite genes. In addition, a convolutional neural network (CNN) model was constructed to evaluate epigenomic effects of transposon-related variations. RESULTS We identified 35,980 transposon activities among 10 cotton genomes, and the diversity of genomic and epigenomic features was observed among 21 transposon categories. The graphical cotton transposon-related variome was constructed, and 9,614 transposon-related variations with plasticity in the modern cotton cohort were used for eQTL, phenotypic t-test and Mendelian Randomization. 128 genes were identified as gene resources improving fiber length and strength simultaneously. 4 genes were selected from 128 genes to construct the elite gene panel whose utility has been validated in a natural cotton cohort and 2 accessions with phenotypic divergence. Based on the eQTL analysis results, we identified transposon-related variations involved in cotton's environmental adaption and human domestication, providing evidence of their role in cotton's adaption-domestication cooperation. CONCLUSIONS The cotton transposon-related variome revealed the role of transposon-related variations in modern cotton cultivation, providing genomic resources for cotton molecular breeding.
Collapse
Affiliation(s)
- Shang Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hailiang Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, Zhengzhou University, Zhengzhou 450001, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Man He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhongxv Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ji Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Guoli Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Xiao Y, Li M, Wang J. Epigenetic modification brings new opportunities for gene capture by transposable elements in allopolyploid Brassica napus. HORTICULTURE RESEARCH 2025; 12:uhaf028. [PMID: 40224332 PMCID: PMC11986588 DOI: 10.1093/hr/uhaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 04/15/2025]
Abstract
Polyploids are widespread in plants and are important drivers for evolution and biodiversity. Allopolyploidy activates transposable elements (TEs) and causes genomic shock. Plant genomes can regulate gene expression by changing the epigenetic modification of TEs, but the mechanism for TEs to capture genes remains to be explored. Helitron TEs used the 'peel-and-paste' mechanism to achieve gene capture. We identified 3156 capture events and 326 donor genes of Helitron TEs in Brassica napus (AnAnCnCn). The donor genes captured by TEs were related to the number, length, and location of their exons. The gene-capturing TEs carrying donor gene fragments were evenly distributed on the genome, and more than half of them were involved in the construction of pseudogenes, becoming the reserve force for polyploid evolution. Gene fragment copies enhanced information storage, providing opportunities for gene mutation and the formation of new genes. Simultaneously, the siRNAs targeting TEs may act on the donor genes due to siRNA crosstalk, and the gene methylation levels increased and the expression levels decreased. The genome sought a balance between sacrificing donor gene expression and silencing TEs, allowing TEs to hide in the genome. In addition, epigenetic modifications may temporarily relax the control of gene capture during allopolyploidization. Our study identified and characterized gene capture events in B. napus, analyzed the effects of DNA methylation and siRNA on gene capture events, and explored the regulation mechanism of gene expression by TE epigenetic modification during allopolyploidization, which will contribute to understanding the formation and evolution mechanism of allopolyploidy.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
He F, Chen S, Zhang Y, Chai K, Zhang Q, Kong W, Qu S, Chen L, Zhang F, Li M, Wang X, Lv H, Zhang T, He X, Li X, Li Y, Li X, Jiang X, Xu M, Sod B, Kang J, Zhang X, Long R, Yang Q. Pan-genomic analysis highlights genes associated with agronomic traits and enhances genomics-assisted breeding in alfalfa. Nat Genet 2025:10.1038/s41588-025-02164-8. [PMID: 40269327 DOI: 10.1038/s41588-025-02164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
Alfalfa (Medicago sativa L.), a globally important forage crop, is valued for its high nutritional quality and nitrogen-fixing capacity. Here, we present a high-quality pan-genome constructed from 24 diverse alfalfa accessions, encompassing a wide range of genetic backgrounds. This comprehensive analysis identified 433,765 structural variations and characterized 54,002 pan-gene families, highlighting the pivotal role of genomic diversity in alfalfa domestication and adaptation. Key structural variations associated with salt tolerance and quality traits were discovered, with functional analysis implicating genes such as MsMAP65 and MsGA3ox1. Notably, overexpression of MsGA3ox1 led to a reduced stem-leaf ratio and enhanced forage quality. The integration of genomic selection and marker-assisted breeding strategies improved genomic estimated breeding values across multiple traits, offering valuable genomic resources for advancing alfalfa breeding. These findings provide insights into the genetic basis of important agronomic traits and establish a solid foundation for future crop improvement.
Collapse
Affiliation(s)
- Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Chen
- National Key Laboratory for Tropical Crop Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yangyang Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Chai
- National Key Laboratory for Tropical Crop Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Weilong Kong
- National Key Laboratory for Tropical Crop Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shenyang Qu
- National Key Laboratory for Tropical Crop Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huigang Lv
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xiaofan He
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xiao Li
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yajing Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueqian Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bilig Sod
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Wang J, Liu S, Pu J, Li J, He C, Zhang L, Zhou X, Xu D, Zhou L, Guo Y, Zhang Y, Wang Y, Yang B, Wang P, Deng X, Sun C. Comprehensive Analysis of Ghd7 Variations Using Pan-Genomics and Prime Editing in Rice. Genes (Basel) 2025; 16:462. [PMID: 40282422 PMCID: PMC12027456 DOI: 10.3390/genes16040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The Ghd7 gene in rice plays a crucial role in determining heading date, plant height, and grain yield. However, the variations in Ghd7 and their functional implications across different rice accessions are not fully understood. Based on the release of a large amount of rice genome data in recent years, we investigated Ghd7 through pan-genome analysis of 372 diverse rice varieties and figured out the structural variations (SVs) in the Ghd7 locus. However, due to the high cost of pan-genomes, most genomes are based on next-generation sequencing (NGS) data now. Therefore, we developed a method for identifying SVs using NGS data and Polymerase Chain Reaction (PCR) based on the results of pan-genome analysis and identified 977 accessions carrying such SVs of Ghd7. Furthermore, we identified 46 single-nucleotide polymorphisms (SNPs) and one insertion-deletion (InDel) in the coding region of Ghd7. They are classified into 49 haplotypes. Notably, a splice-site mutation in haplotype H6 causes aberrant mRNA splicing. Using prime editing (PE) technology, we successfully restored the functional of Ghd7 in Yixiang 1B (YX1B), delaying the heading date by approximately 16 days. This modification synchronized the heading date between YX1B and the restorer line Yahui 2115 (YH2115R), enhancing the hybrid rice seed production efficiency. In conclusion, our findings highlight the potential of integrating pan-genomics and precision gene editing to accelerate crop improvement and enhance agronomic traits.
Collapse
Affiliation(s)
- Jiarui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Shihang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Jisong Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Jun Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Changcai He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Lanjing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Xu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Dongyu Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Luyao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Yuting Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Yuxiu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Yang Wang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615000, China;
| | - Bin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (S.L.); (J.P.); (J.L.); (C.H.); (L.Z.); (X.Z.); (D.X.); (L.Z.); (Y.G.); (Y.Z.); (B.Y.); (P.W.)
| |
Collapse
|
8
|
Guo D, Li Y, Lu H, Zhao Y, Kurata N, Wei X, Wang A, Wang Y, Zhan Q, Fan D, Zhou C, Lu Y, Tian Q, Weng Q, Feng Q, Huang T, Zhang L, Gu Z, Wang C, Wang Z, Wang Z, Huang X, Zhao Q, Han B. A pangenome reference of wild and cultivated rice. Nature 2025:10.1038/s41586-025-08883-6. [PMID: 40240605 DOI: 10.1038/s41586-025-08883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Oryza rufipogon, the wild progenitor of Asian cultivated rice Oryza sativa, is an important resource for rice breeding1. Here we present a wild-cultivated rice pangenome based on 145 chromosome-level assemblies, comprising 129 genetically diverse O. rufipogon accessions and 16 diverse varieties of O. sativa. This pangenome contains 3.87 Gb of sequences that are absent from the O. sativa ssp. japonica cv. Nipponbare reference genome. We captured alternate assemblies that include heterozygous information missing in the primary assemblies, and identified a total of 69,531 pan-genes, with 28,907 core genes and 13,728 wild-rice-specific genes. We observed a higher abundance and a significantly greater diversity of resistance-gene analogues in wild rice than in cultivars. Our analysis indicates that two cultivated subpopulations, intro-indica and basmati, were generated through gene flows among cultivars in South Asia. We also provide strong evidence to support the theory that the initial domestication of all Asian cultivated rice occurred only once. Furthermore, we captured 855,122 differentiated single-nucleotide polymorphisms and 13,853 differentiated presence-absence variations between indica and japonica, which could be traced to the divergence of their respective ancestors and the existence of a larger genetic bottleneck in japonica. This study provides reference resources for enhancing rice breeding, and enriches our understanding of the origins and domestication process of rice.
Collapse
Affiliation(s)
- Dongling Guo
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hengyun Lu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nori Kurata
- Plant Genetics Laboratory and Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ahong Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Zhan
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Danlin Fan
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Zhou
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiqi Lu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qilin Tian
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qijun Weng
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhoulin Gu
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zixuan Wang
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
He Q, Xiao Y, Li T, Wang Y, Wang Y, Wang Y, Li W, Liu N, Gong Z, Du H. High-quality genome of allotetraploid Avena barbata provides insights into the origin and evolution of B subgenome in Avena. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40226959 DOI: 10.1111/jipb.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025]
Abstract
Avena barbata, a wild oat species within the genus Avena, is a widely used model for studying plant ecological adaptation due to its strong environmental adaptability and disease resistance, serving as a valuable genetic resource for oat improvement. Here, we phased the high-quality chromosome-level genome assembly of A. barbata (6.88 Gb, contig N50 = 53.74 Mb) into A (3.57 Gb with 47,687 genes) and B (3.31 Gb with 46,029 genes) subgenomes. Comparative genomics and phylogenomic analyses clarified the evolutionary relationships and trajectories of A, B, C and D subgenomes in Avena. We inferred that the A subgenome donor of A. barbata was Avena hirtula, while the B subgenome donor was probably an extinct diploid species closely related to Avena wiestii. Genome evolution analysis revealed the dynamic transposable element (TE) content and subgenome divergence, as well as extensive structure variations across A, B, C, and D subgenomes in Avena. Population genetic analysis of 211 A. barbata accessions from distinct ecotypes identified several candidate genes related to environmental adaptability and drought resistance. Our study provides a comprehensive genetic resource for exploring the genetic basis underlying the strong environmental adaptability of A. barbata and the molecular identification of important agronomic traits for oat breeding.
Collapse
Affiliation(s)
- Qiang He
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071000, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Tao Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Yaru Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Yitao Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Wei Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071000, China
| | - Ningkun Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071000, China
| | - Zhizhong Gong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071000, China
| |
Collapse
|
10
|
Ma X, Wang H, Yan S, Zhou C, Zhou K, Zhang Q, Li M, Yang Y, Li D, Song P, Tang C, Geng L, Sun J, Ji Z, Sun X, Zhou Y, Zhou P, Cui D, Han B, Jing X, He Q, Fang W, Han L. Large-scale genomic and phenomic analyses of modern cultivars empower future rice breeding design. MOLECULAR PLANT 2025; 18:651-668. [PMID: 40083159 DOI: 10.1016/j.molp.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Modern cultivated rice plays a pivotal role in global food security. China accounts for nearly 30% of the world's rice production and has developed numerous cultivated varieties over the past decades that are well adapted to diverse growing regions. However, the genomic bases underlying the phenotypes of these modern cultivars remain poorly characterized, limiting the exploitation of this vast resource for breeding specialized, regionally adapted cultivars. In this study, we constructed a comprehensive genetic variation map of modern rice using resequencing datasets from 6044 representative cultivars from five major rice-growing regions in China. Our genomic and phenotypic analyses of this diversity panel revealed regional preferences for specific genomic backgrounds and traits, such as heading date, biotic/abiotic stress resistance, and grain shape, which are crucial for adaptation to local conditions and consumer preferences. We identified 3131 quantitative trait loci associated with 53 phenotypes across 212 datasets under various environmental conditions through genome-wide association studies. Notably, we cloned and functionally verified a novel gene related to grain length, OsGL3.6. By integrating multiple datasets, we developed RiceAtlas, a versatile multi-scale toolkit for rice breeding design. We successfully utilized the RiceAtlas breeding design function to rapidly improve the grain shape of the Suigeng4 cultivar. These valuable resources enhance our understanding of the adaptability and breeding requirements of modern rice and can facilitate advances in future rice-breeding initiatives.
Collapse
Affiliation(s)
- Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shen Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanqing Zhou
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Kunneng Zhou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Qiang Zhang
- Jilin Provincial Laboratory of Crop Germplasm Resources, Rice Research Institute, Jilin Academy of Agricultural Sciences, Changchun 136100, China
| | - Maomao Li
- Jiangxi Research Center of Crop Germplasm Resources, National Engineering Laboratory for Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yaolong Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Peng Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuifeng Tang
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 620205, China
| | - Leiyue Geng
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan 063300, China
| | - Jianchang Sun
- Institute of Crop Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China
| | - Zhiyuan Ji
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianjun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongli Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peng Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Cui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jing
- Smartgenomics Technology Institute, Tianjin 301700, China.
| | - Qiang He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wei Fang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Longzhi Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Zhu X, Yang R, Liang Q, Yu Y, Wang T, Meng L, Wang P, Wang S, Li X, Yang Q, Guo H, Sui Q, Wang Q, Du H, Chen Q, Liang Z, Wu X, Zeng Q, Huang B. Graph-based pangenome provides insights into structural variations and genetic basis of metabolic traits in potato. MOLECULAR PLANT 2025; 18:590-602. [PMID: 39871478 DOI: 10.1016/j.molp.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Potato is the world's most important nongrain crop. In this study, to assess genetic diversity within the Petota section, 29 genomes from Petota and Etuberosum sections were newly de novo assembled and 248 accessions of wild potatoes, landraces, and modern cultivars were re-sequenced at >25× depth. Subsequently, a graph-based pangenome was constructed using DM8.1 as the backbone, integrating194,330 nonredundant structural variants. To characterize the metabolome of tubers and illuminate the genomic basis of metabolic traits, LC-MS/MS was employed to obtain the metabolome of 157 accessions, and 9,321 structural variants (SVs) were detected to be significantly associated with 1,258 distinct metabolites via PAV (presence and absence variations)-based metabolomics-GWAS analysis, including metabolites of flavonoids, phenolic acids, and phospholipids. To facilitate the utilization of pangenome resources, a comprehensive platform, the Potato Pangenome Database (PPDB), was developed. Our study provides a comprehensive genomic resource for dissecting the genomic basis of agronomic and metabolic traits in potato, which will accelerate functional genomics studies and genetic improvements in potato.
Collapse
Affiliation(s)
- Xiaoling Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Qiqi Liang
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuye Yu
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Li Meng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Ping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Shaoyang Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Xianping Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Qiongfen Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qijun Sui
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Qiang Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewei Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Qian Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China
| | - Binquan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650540, China; Southwest United Graduate School, Kunming 650500, China.
| |
Collapse
|
12
|
Wei S, Chougule K, Olson A, Lu Z, Tello-Ruiz MK, Kumar V, Kumari S, Zhang L, Olson A, Kim C, Gladman N, Ware D. GrameneOryza: a comprehensive resource for Oryza genomes, genetic variation, and functional data. Database (Oxford) 2025; 2025:baaf021. [PMID: 40214100 PMCID: PMC11986821 DOI: 10.1093/database/baaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/29/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Rice is a vital staple crop, sustaining over half of the global population, and is a key model for genetic research. To support the growing need for comprehensive and accessible rice genomic data, GrameneOryza (https://oryza.gramene.org) was developed as an online resource adhering to FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data management. It distinguishes itself through its comprehensive multispecies focus, encompassing a wide variety of Oryza genomes and related species, and its integration with FAIR principles to ensure data accessibility and usability. It offers a community curated selection of high-quality Oryza genomes, genetic variation, gene function, and trait data. The latest release, version 8, includes 28 Oryza genomes, covering wild rice and domesticated cultivars. These genomes, along with Leersia perrieri and seven additional outgroup species, form the basis for 38 K protein-coding gene family trees, essential for identifying orthologs, paralogs, and developing pan-gene sets. GrameneOryza's genetic variation data features 66 million single-nucleotide variants (SNVs) anchored to the Os-Nipponbare-Reference-IRGSP-1.0 genome, derived from various studies, including the Rice Genome 3 K (RG3K) project. The RG3K sequence reads were also mapped to seven additional platinum-quality Asian rice genomes, resulting in 19 million SNVs for each genome, significantly expanding the coverage of genetic variation beyond the Nipponbare reference. Of the 66 million SNVs on IRGSP-1.0, 27 million acquired standardized reference SNP cluster identifiers (rsIDs) from the European Variation Archive release v5. Additionally, 1200 distinct phenotypes provide a comprehensive overview of quantitative trait loci (QTL) features. The newly introduced Oryza CLIMtools portal offers insights into environmental impacts on genome adaptation. The platform's integrated search interface, along with a BLAST server and curation tools, facilitates user access to genomic, phylogenetic, gene function, and QTL data, supporting broad research applications. Database URL: https://oryza.gramene.org.
Collapse
Affiliation(s)
- Sharon Wei
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Andrew Olson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Marcela K Tello-Ruiz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Audra Olson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Catherine Kim
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
| | - Nick Gladman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
- USDA ARS NEA, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, 538 Tower Road, Ithaca, NY 14853-2901, United States
| | - Doreen Ware
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, United States
- USDA ARS NEA, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, 538 Tower Road, Ithaca, NY 14853-2901, United States
| |
Collapse
|
13
|
Cheng H, Kong L, Zhu K, Zhao H, Li X, Zhang Y, Ning W, Jiang M, Song B, Cheng S. Structural variation-based and gene-based pangenome construction reveals untapped diversity of hexaploid wheat. J Genet Genomics 2025:S1673-8527(25)00088-8. [PMID: 40189201 DOI: 10.1016/j.jgg.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Increasing number of structural variations (SVs) have been identified as causative mutations for diverse agronomic traits. However, the systematic exploration of SVs quantity, distribution, and contribution in wheat was lacking. Here, we report high-quality gene-based and SV-based pangenomes comprising 22 hexaploid wheat assemblies showing a wide range of chromosome size, gene number, and TE component, which indicates their representativeness of wheat genetic diversity. Pan-gene analyses uncover 140,261 distinct gene families, of which only 23.2 % are shared in all accessions. Moreover, we build a ∼16.15 Gb graph pangenome containing 695,897 bubbles, intersecting 5132 genes and 230,307 cis-regulatory regions. Pairwise genome comparisons identify ∼1,978,221 non-redundant SVs and 497 SV hotspots. Notably, the density of bubbles as well as SVs show remarkable aggregation in centromeres, which probably play an important role in chromosome plasticity and stability. As for functional SVs exploration, we identify 2769 SVs with absolute relative frequency differences exceeding 0.7 between spring and winter growth habit groups. Additionally, several reported functional genes in wheat display complex structural graphs, for example, PPD-A1, VRT-A2, and TaNAAT2-A. These findings deepen our understanding of wheat genetic diversity, providing valuable graphical pangenome and variation resources to improve the efficiency of genome-wide association mapping in wheat.
Collapse
Affiliation(s)
- Hong Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China; College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lingpeng Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China
| | - Kun Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, No. 379 Mingli Road (North Section), Zhengzhou, Henan 450046, China
| | - Hang Zhao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China
| | - Yanwen Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China
| | - Mei Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518100, China.
| |
Collapse
|
14
|
Jiang M, Qian Q, Lu M, Chen M, Fan Z, Shang Y, Bu C, Du Z, Song S, Zeng J, Xiao J. PlantPan: A comprehensive multi-species plant pan-genome database. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70144. [PMID: 40219973 DOI: 10.1111/tpj.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
The pan-genome represents the complete genomic diversity of specific species, serving as a valuable resource for studying species evolution, crop domestication, and guiding crop breeding and improvement. While there are several single-species-specific plant pan-genome databases, the availability of multi-species pan-genome databases is limited. Additionally, variations in methods and data types used for plant pan-genome analysis across different databases hinder the comparison and integration of pan-genome information from various projects at multi-species or single-species levels. To tackle this challenge, we introduce PlantPan, a comprehensive database housing the results of pan-genome analysis for 195 genomes from 11 plant species. PlantPan aims to provide extensive information, including gene-centric and sequence-centric pan-genome information, graph-based pan-genome, pan-genome openness profiles, gene functions and its variation characteristics, homologous genes, and gene clusters across different species. Statistically, PlantPan incorporates 9 163 011 genes, 694 191 gene clusters, 526 973 370 genome variations, and 1 616 089 non-redundant genome variation groups at the species level, 33 455,098 genome synteny, and 177 827 non-redundant genome synteny groups at the species level. Regarding functional genes, PlantPan contains 5 222 720 genes related to transcription factors, 395 247 literature-reported resistance genes, 455 748 predicted microbial/disease resistance genes, and 1 612 112 genes related to molecular pathways. In summary, PlantPan is a vital platform for advancing the application of pan-genomes in molecular breeding for crops and evolutionary research for plants.
Collapse
Affiliation(s)
- Meiye Jiang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiheng Qian
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Lu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meili Chen
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunfei Shang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congfan Bu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - ZhengLin Du
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuhui Song
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyao Zeng
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Wang Z, Fan Y, Sun J, Ma S, Wang Z, Li J, Liu K, Xiong Z, Li C, Wang D, Zhang H, Hua J, Bao Y. Pan-analysis of intra- and inter-species diversity reveals a group of highly variable immune receptor genes in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70163. [PMID: 40245288 DOI: 10.1111/tpj.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Plant immune receptors and their natural variations play a central role in combating disease-causing pathogens. These immune receptors include intracellular nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) and cell-surface pattern recognition receptors (PRRs) that can be further classified as receptor-like proteins (RLPs) and receptor-like kinases (RLKs). Although the NLRome has been characterized, the repertoire and extent of diversity of PRRome remain undetermined in rice. In this study, we examined the diversity of immune receptor genes using high-quality genomes of 309 rice accessions from 8 species within the genus Oryza. A total of 376 310 immune receptor genes were identified, including 149 592 NLR-coding genes and 226 718 PRR coding genes. Shannon entropy analysis revealed a set of immune receptors that display significant intra-species and inter-species diversity in rice. In general, RLPs are more variable than RLKs, while NLRs and LRR-RLPs are more variable than LRR-RLKs. Additionally, NLR and PRR genes exhibit contrasting shoot/root expression patterns, with NLRs generally skewed towards root expression. Furthermore, we found that the size of the LRR-RLK gene families correlates with local annual precipitation, suggesting a stronger selection pressure on LRR-RLK genes in rice accessions grown under wet conditions than dry conditions. In sum, this pan-genomic analysis not only reveals the extensive diversity of the immune receptor repertoires in rice but also provides potential target genes for improving disease resistance in rice.
Collapse
Affiliation(s)
- Zhixue Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunxin Fan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiazhen Sun
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyu Ma
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengwei Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kunquan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziwei Xiong
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changqing Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongyuan Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongsheng Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14850, USA
| | - Yongmei Bao
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Huang Y, Sahu SK, Liu X. Deciphering recent transposition patterns in plants through comparison of 811 genome assemblies. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1121-1132. [PMID: 39791953 PMCID: PMC11933835 DOI: 10.1111/pbi.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations. Using 811 high-quality genomes, we detected 13 844 553 TE-induced structural variants (TE-SVs), providing unprecedented resolution in delineating recent TE activities. Our integrative analysis revealed a mutual evolutionary relationship between TEs and host genomes. On one hand, host genes and ncRNAs are involved in the transposition process, as evidenced by their colocalization and coactivation with TEs, and may play a role in chromatin regulation. On the other hand, TEs drive genetic innovation by promoting the duplication of host genes and inserting into regulatory regions. Moreover, genes influenced by active TEs are linked to plant growth, nutrient absorption, storage metabolism and environmental adaptation, aiding in crop domestication and adaptation. This TE dynamics atlas not only reveals evolutionary and functional features linked to transposition activity but also highlights the role of TEs in crop domestication and adaptation, paving the way for future exploration of TE-mediated genome evolution and crop improvement strategies.
Collapse
Affiliation(s)
- Yan Huang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
- BGI Research BeijingBGI ResearchBeijingChina
| | - Sunil Kumar Sahu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
| | - Xin Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Agricultural GenomicsBGI ResearchShenzhenChina
- BGI Research BeijingBGI ResearchBeijingChina
| |
Collapse
|
17
|
Morales-Díaz N, Sushko S, Campos-Dominguez L, Kopalli V, Golicz AA, Castanera R, Casacuberta JM. Tandem LTR-retrotransposon structures are common and highly polymorphic in plant genomes. Mob DNA 2025; 16:10. [PMID: 40075446 PMCID: PMC11899658 DOI: 10.1186/s13100-025-00347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND LTR-retrotransposons (LTR-RT) are a major component of plant genomes and important drivers of genome evolution. Most LTR-RT copies in plant genomes are defective elements found as truncated copies, nested insertions or as part of more complex structures. The recent availability of highly contiguous plant genome assemblies based on long-read sequences now allows to perform detailed characterization of these complex structures and to evaluate their importance for plant genome evolution. RESULTS The detailed analysis of two rice loci containing complex LTR-RT structures showed that they consist of tandem arrays of LTR copies sharing internal LTRs. Our analyses suggests that these LTR-RT tandems are the result of a single insertion and not of the recombination of two independent LTR-RT elements. Our results also suggest that gypsy elements may be more prone to form these structures. We show that these structures are highly polymorphic in rice and therefore have the potential to generate genetic variability. We have developed a computational pipeline (IDENTAM) that scans genome sequences and identifies tandem LTR-RT candidates. Using this tool, we have detected 266 tandems in a pangenome built from the genomes of 76 accessions of cultivated and wild rice, showing that tandem LTR-RT structures are frequent and highly polymorphic in rice. Running IDENTAM in the Arabidopsis, almond and cotton genomes showed that LTR-RT tandems are frequent in plant genomes of different size, complexity and ploidy level. The complexity of differentiating intra-element variations at the nucleotide level among haplotypes is very high, and we found that graph-based pangenomic methodologies are appropriate to resolve these structures. CONCLUSIONS Our results show that LTR-RT elements can form tandem arrays. These structures are relatively abundant and highly polymorphic in rice and are widespread in the plant kingdom. Future studies will contribute to understanding how these structures originate and whether the variability that they generate has a functional impact.
Collapse
Affiliation(s)
- Noemia Morales-Díaz
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Svitlana Sushko
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Lucía Campos-Dominguez
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Agnieszka A Golicz
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Raúl Castanera
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- IRTA, Genomics and Biotechnology, Edifici CRAG, Campus UAB, Bellaterra, Catalonia, 08193, Spain.
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics, CRAG (CSIC- IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
18
|
Ma S, Niu J, Si Y, Zheng S, Lu Y, Tian S, Shi X, Chen Z, Sun C, Qin Z, Liu X, Wu H, Gu M, Cui M, Lu Q, Zhou W, He W, Zhang C, He F, Ling HQ. A comprehensive map of DNA-segment copy number variation in 491 genomes of common wheat uncovers genes associated with multiple agronomic traits. PLANT COMMUNICATIONS 2025; 6:101226. [PMID: 39702968 PMCID: PMC11956092 DOI: 10.1016/j.xplc.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
DNA-segment copy number variations (DSCNVs), such as deletions and duplications, are important sources of genomic structural variation. However, the types and sizes of DSCNVs, as well as their genome-wide distribution and potential functions, are poorly understood in wheat. Here, we identified 198 985 DSCNVs by investigating 491 genomes of common wheat and found that they account for 20% of the entire genome. Interestingly, approximately 38% of genes are linked to DSCNVs. The number of DSCNVs within each accession ranges from 47 366 to 96 342, and their total sizes vary from 421.3 to 1267.9 Mb. We found that 957 and 1304 DSCNVs have been favored by breeders in China and the United States, respectively. By conducting DSCNV-based genome-wide association studies for the principal components of plant developmental and yield-component traits, we identified 34 loci as directly or indirectly involved in controlling the formation of multiple traits. Notably, a newly discovered DSCNV covering TaFT-D1 is significantly associated with flowering time and other agronomic traits. Overall, our findings highlight the potential of DSCNVs to drive fundamental discoveries in plant science. The comprehensive DSCNV map and the DSCNV-associated genes will also facilitate future research efforts to improve wheat yield, quality, and adaptation.
Collapse
Affiliation(s)
- Shengwei Ma
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Jianqing Niu
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Yaoqi Si
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shusong Zheng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaru Lu
- Department of Life Science, Tangshan Normal University, Tangshan, Hebei 063000, China
| | - Shuiquan Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zedong Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Cong Sun
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China; Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China
| | - Ziyi Qin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Xiaolin Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huilan Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengjun Gu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Cui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiao Lu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjuan Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | - Fei He
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing 100101, China.
| | - Hong-Qing Ling
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Seed Industry Laboratory, Sanya, Hainan 572024, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Sun WX, Chang XY, Chen Y, Zhao Q, Zhang YM. The integration of quantile regression with 3VmrMLM identifies more QTNs and QTN-by-environment interactions using SNP- and haplotype-based markers. PLANT COMMUNICATIONS 2025; 6:101196. [PMID: 39580620 PMCID: PMC11956104 DOI: 10.1016/j.xplc.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Current methods used in genome-wide association studies frequently lack power owing to their inability to detect heterogeneous associations and rare and multiallelic variants. To address these issues, quantile regression is integrated with a three (compressed) variance component multi-locus random-SNP-effect mixed linear model (3VmrMLM) to propose q3VmrMLM for detecting heterogeneous quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs), and then design haplotype-based q3VmrMLM (q3VmrMLM-Hap) for identifying multiallelic haplotypes and rare variants. In Monte Carlo simulation studies, q3VmrMLM had higher power than 3VmrMLM, sequence kernel association test (SKAT), and integrated quantile rank test (iQRAT). In a re-analysis of 10 traits in 1439 rice hybrids, 261 known genes were identified only by q3VmrMLM and q3VmrMLM-Hap, whereas 175 known genes were detected by both the new and existing methods. Of all the significant QTNs with known genes, q3VmrMLM (179: 140 variance heterogeneity and 157 quantile effect heterogeneity) found more heterogeneous QTNs than 3VmrMLM (123), SKAT (27), and iQRAT (29); q3VmrMLM-Hap (121) mapped more low-frequency (<0.05) QTNs than q3VmrMLM (51), 3VmrMLM (43), SKAT (11), and iQRAT (12); and q3VmrMLM-Hap (12), q3VmrMLM (16), and 3VmrMLM (12) had similar power in identifying gene-by-environment interactions. All significant and suggested QTNs achieved the highest predictive accuracy (r = 0.9045). In conclusion, this study describes a new and complementary approach to mining genes and unraveling the genetic architecture of complex traits in crops.
Collapse
Affiliation(s)
- Wen-Xian Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Yu Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Zhang L, Liu Y, Huang Y, Zhang Y, Fu Y, Xiao Y, Chen S, Zhang K, Cheng F. Solanaceae pan-genomes reveal extensive fractionation and functional innovation of duplicated genes. PLANT COMMUNICATIONS 2025; 6:101231. [PMID: 39719828 PMCID: PMC11956106 DOI: 10.1016/j.xplc.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/24/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
The Solanaceae family contains many agriculturally important crops, including tomato, potato, pepper, and tobacco, as well as other species with potential for agricultural development, such as the orphan crops groundcherry, wolfberry, and pepino. Research progress varies greatly among these species, with model crops like tomato being far ahead. This disparity limits the broader agricultural application of other Solanaceae species. In this study, we constructed an interspecies pan-genome for the Solanaceae family and identified various gene retention patterns. Our findings reveal that the activity of specific transposable elements is closely associated with gene fractionation and transposition. The pan-genome was further resolved at the level of T subgenomes, which were generated by Solanaceae-specific paleo-hexaploidization (T event). We demonstrate substantial gene fractionation (loss) and divergence events following ancient duplications. For example, all class A and E flower model genes in Solanaceae originated from two tandemly duplicated genes, which expanded through the γ and T events before fractionating into 10 genes in tomato, each acquiring distinct functions critical for fruit development. Based on these results, we developed the Solanaceae Pan-Genome Database (SolPGD, http://www.bioinformaticslab.cn/SolPGD), which integrates datasets from both inter- and intra-species pan-genomes of Solanaceae. These findings and resources will facilitate future studies of solanaceous species, including orphan crops.
Collapse
Affiliation(s)
- Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhang Liu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yile Huang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yiyue Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Fu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ya Xiao
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China; Biotechnology Research Center, Xiangxi Academy of Agricultural Sciences, Hunan 416000, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
21
|
Pedrozo R, Osakina A, Huang Y, Nicolli CP, Wang L, Jia Y. Status on Genetic Resistance to Rice Blast Disease in the Post-Genomic Era. PLANTS (BASEL, SWITZERLAND) 2025; 14:807. [PMID: 40094775 PMCID: PMC11901910 DOI: 10.3390/plants14050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production, necessitating the development of resistant cultivars through genetic improvement. Breakthroughs in rice genomics, including the complete genome sequencing of japonica and indica subspecies and the availability of various sequence-based molecular markers, have greatly advanced the genetic analysis of blast resistance. To date, approximately 122 blast-resistance genes have been identified, with 39 of these genes cloned and molecularly characterized. The application of these findings in marker-assisted selection (MAS) has significantly improved rice breeding, allowing for the efficient integration of multiple resistance genes into elite cultivars, enhancing both the durability and spectrum of resistance. Pangenomic studies, along with AI-driven tools like AlphaFold2, RoseTTAFold, and AlphaFold3, have further accelerated the identification and functional characterization of resistance genes, expediting the breeding process. Future rice blast disease management will depend on leveraging these advanced genomic and computational technologies. Emphasis should be placed on enhancing computational tools for the large-scale screening of resistance genes and utilizing gene editing technologies such as CRISPR-Cas9 for functional validation and targeted resistance enhancement and deployment. These approaches will be crucial for advancing rice blast resistance, ensuring food security, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Rodrigo Pedrozo
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Aron Osakina
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yixiao Huang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Camila Primieri Nicolli
- Entomology and Plant Pathology Department, University of Arkansas, Rice Research and Extension Center (RREC), Stuttgart, AR 72160, USA;
| | - Li Wang
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| | - Yulin Jia
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA; (R.P.); (A.O.); (Y.H.); (L.W.)
| |
Collapse
|
22
|
Feng H, Du Q, Jiang Y, Jia Y, He T, Wang Y, Chapman B, Yu J, Zhang H, Gu M, Jiang M, Gao S, Zhang X, Song Y, Garg V, Varshney RK, Wei J, Li C, Zhang X, Li R. Hordeum I genome unlocks adaptive evolution and genetic potential for crop improvement. NATURE PLANTS 2025; 11:438-452. [PMID: 40087544 PMCID: PMC11928320 DOI: 10.1038/s41477-025-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/11/2025] [Indexed: 03/17/2025]
Abstract
Crop wild relatives (CWRs) are invaluable for crop improvement. Among these, Hordeum I-genome species exhibit exceptional tolerance to alkali and salt stresses. Here we present a chromosome-scale genome assembly of Hordeum brevisubulatum (II, 2n = 2x =14) and genome resequencing of 38 diploid germplasms spanning 7 I-genome species. We reveal that the adaptive evolution of the H. brevisubulatum genome is shaped by structural variations, some of which may contribute to its adaptation to high alkali and salt environments. Evolutionary duplication of the stress sensor-responder module CaBP-NRT2 and the horizontally transferred fungal gene Fhb7 were identified as novel alkaline-saline tolerance mechanisms. We also demonstrate the potential of the Hordeum I genome in crop breeding through the newly synthesized hexaploid Tritordeum (AABBII) with enhanced alkaline-saline tolerance. Our study fills critical gaps in Hordeum genomics and CWR research, advancing introgression of CWR resources into current crops for sustainable agriculture.
Collapse
Affiliation(s)
- Hao Feng
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qingwei Du
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ying Jiang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong Jia
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Tianhua He
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Yibin Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Brett Chapman
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Jiaxin Yu
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haiwen Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mengxue Gu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mengwei Jiang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xinjie Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yameng Song
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Rajeev K Varshney
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jianhua Wei
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Chengdao Li
- Western Crop Genetic Alliance/the State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia.
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Ruifen Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
23
|
Li Y, Zhang B, Zhang S, Wong CE, Liang Q, Pang S, Wu Y, Zhao M, Yu H. Pangeneric genome analyses reveal the evolution and diversity of the orchid genus Dendrobium. NATURE PLANTS 2025; 11:421-437. [PMID: 39794493 DOI: 10.1038/s41477-024-01902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
Orchids constitute one of the most diverse families of angiosperms, yet their genome evolution and diversity remain unclear. Here we construct and analyse chromosome-scale de novo assembled genomes of 17 representative accessions spanning 12 sections in Dendrobium, one of the largest orchid genera. These accessions represent a broad spectrum of phenotypes, lineages and geographical distributions. We first construct haplotype-resolved genomes for a Dendrobium hybrid and uncover haplotypic variations and allelic imbalance in the heterozygous genome, demonstrating the significance of diverse ancestry. At Dendrobium genus-wide scale, we further elucidate phylogenetic relationships, evolutionary dynamics, entire gene repertoire, and the mechanisms of preserving ancient genetic variants and rapid recent genome evolution for habitat adaption. We also showcase distinctive evolutionary trajectories in MADS-box and PEBP families over 28 Ma. These results considerably contribute to unearthing the mystery of orchid origin, evolution and diversification, laying the foundation for efficient use of genetic diversity in breeding.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Bin Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chui Eng Wong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Qiqi Liang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Yujin Wu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Ming Zhao
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Kirbis A, Rahmatpour N, Dong S, Yu J, Waser L, Huang H, van Gessel N, Waller M, Reski R, Lang D, Rensing SA, Temsch EM, Wegrzyn JL, Goffinet B, Liu Y, Szövényi P. Comparative analysis using a chromosome-scale genome assembly for Funaria hygrometrica suggests greater collinearity in mosses than in seed plants. Commun Biol 2025; 8:330. [PMID: 40021761 PMCID: PMC11871058 DOI: 10.1038/s42003-025-07749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Mosses, the largest lineage of seed-free plants, have smaller and less variable genome sizes than flowering plants. Nevertheless, whether this difference results from divergent genome dynamics is poorly known. Here, we use newly generated chromosome-scale genome assemblies for Funaria hygrometrica and comparative analysis with other moss and seed plant genomes to investigate moss genome dynamics. Although some aspects of moss genome dynamics are seed plant-like, such as the mechanism of genome size change and de novo gain/loss of genes, moss genomes retain higher synteny, and collinearity over evolutionary time than seed plant genomes. Furthermore, transposable elements and genes are more evenly distributed along chromosomes in mosses than in seed plants, a feature shared with other sequenced seed-free plant genomes. Overall, our findings support the hypothesis that large-scale genome structure and dynamics of mosses and seed plants differ. In particular, our data suggest a lower rate of gene order reshuffling along chromosomes in mosses compared to seed plants. We speculate that such lower rate of structural genomic variation and unique chromosome structure in mosses may contribute to their relatively smaller and less variable genome sizes.
Collapse
Affiliation(s)
- Alexander Kirbis
- Department of Systematic and Evoutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, LFW, Universitätsstrasse 2, Zürich, Switzerland
| | - Nasim Rahmatpour
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jin Yu
- Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, Shenzhen, China
| | - Lucas Waser
- Department of Systematic and Evoutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, LFW, Universitätsstrasse 2, Zürich, Switzerland
| | - Huaxing Huang
- Department of Systematic and Evoutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, LFW, Universitätsstrasse 2, Zürich, Switzerland
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Manuel Waller
- Department of Systematic and Evoutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, LFW, Universitätsstrasse 2, Zürich, Switzerland
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Daniel Lang
- Bundeswehr Institute of Microbiology, Microbial Genomics and Bioforensics, Munich, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Faculty of Chemistry and Pharmacy and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, Shenzhen, China
| | - Péter Szövényi
- Department of Systematic and Evoutionary Botany, University of Zurich, Zurich, Switzerland.
- Zurich-Basel Plant Science Center, LFW, Universitätsstrasse 2, Zürich, Switzerland.
| |
Collapse
|
25
|
Catlin NS, Agha HI, Platts AE, Munasinghe M, Hirsch CN, Josephs EB. Structural Variants Contribute to Phenotypic Variation in Maize. Mol Ecol 2025:e17662. [PMID: 39945381 DOI: 10.1111/mec.17662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 02/19/2025]
Abstract
Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.
Collapse
Affiliation(s)
- Nathan S Catlin
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Husain I Agha
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Adrian E Platts
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
He W, Li X, Qian Q, Shang L. The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. PLANT COMMUNICATIONS 2025; 6:101230. [PMID: 39722458 PMCID: PMC11897476 DOI: 10.1016/j.xplc.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
By integrating genomes from different accessions, pangenomes provide a more comprehensive and reference-bias-free representation of genetic information within a population compared to a single reference genome. With the rapid accumulation of genomic sequencing data and the expanding scope of plant research, plant pangenomics has gradually evolved from single-species to multi-species studies. This shift has given rise to the concept of a super-pangenome that covers all genomic sequences within a genus-level taxonomic group. By incorporating both cultivated and wild species, the super-pangenome has greatly enhanced the resolution of research in various areas such as plant genetic diversity, evolution, domestication, and molecular breeding. In this review, we present a comprehensive overview of the plant super-pangenome, emphasizing its development requirements, construction strategies, potential applications, and notable achievements. We also highlight the distinctive advantages and promising prospects of super-pangenomes while addressing current challenges and future directions.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - XiaoXia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
27
|
He G, Liu C, Wang M. Perspectives and opportunities in forensic human, animal, and plant integrative genomics in the Pangenome era. Forensic Sci Int 2025; 367:112370. [PMID: 39813779 DOI: 10.1016/j.forsciint.2025.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The Human Pangenome Reference Consortium, the Chinese Pangenome Consortium, and other plant and animal pangenome projects have announced the completion of pilot work aimed at constructing high-quality, haplotype-resolved reference graph genomes representative of global ethno-linguistically different populations or different plant and animal species. These graph-based, gapless pangenome references, which are enriched in terms of genomic diversity, completeness, and contiguity, have the potential for enhancing long-read sequencing (LRS)-based genomic research, as well as improving mappability and variant genotyping on traditional short-read sequencing platforms. We comprehensively discuss the advancements in pangenome-based genomic integrative genomic discoveries across forensic-related species (humans, animals, and plants) and summarize their applications in variant identification and forensic genomics, epigenetics, transcriptomics, and microbiome research. Recent developments in multiplexed array sequencing have introduced a highly efficient and programmable technique to overcome the limitations of short forensic marker lengths in LRS platforms. This technique enables the concatenation of short RNA transcripts and DNA fragments into LRS-optimal molecules for sequencing, assembly, and genotyping. The integration of new pangenome reference coordinates and corresponding computational algorithms will benefit forensic integrative genomics by facilitating new marker identification, accurate genotyping, high-resolution panel development, and the updating of statistical algorithms. This review highlights the necessity of integrating LRS-based platforms, pangenome-based study designs, and graph-based pangenome references in short-read mapping and LRS-based innovations to achieve precision forensic science.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China; Center for Archaeological Science, Sichuan University, Chengdu 610000, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China.
| |
Collapse
|
28
|
Zhang K, Yu H, Zhang L, Cao Y, Li X, Mei Y, Wang X, Zhang Z, Li T, Jin Y, Fan W, Guan C, Wang Y, Zhou D, Chen S, Wu H, Wang L, Cheng F. Transposon proliferation drives genome architecture and regulatory evolution in wild and domesticated peppers. NATURE PLANTS 2025; 11:359-375. [PMID: 39875669 DOI: 10.1038/s41477-025-01905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species. We reconstructed the ancestral karyotype and inferred the evolutionary trajectory of peppers. The expanded and variable genome sizes were attributed to differential transposable element accumulations, which shaped 3D chromatin architecture and introduced mutations associated with traits such as fruit orientation and colour. Using a chromatin accessibility atlas of Capsicum, we highlight the influence of transposable elements on regulatory element evolution. Furthermore, by constructing a haploblock map of 124 pepper core germplasms, we uncover frequent introgressions that facilitate the formation of sweet blocky pepper and the acquisition of important traits such as resistance to pepper mild mottle virus. These findings on the genomic and functional evolution of Capsicum will benefit pepper breeding.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailong Yu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yacong Cao
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yajie Mei
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenghai Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyao Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Jin
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyuan Fan
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Congcong Guan
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yihan Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daiyuan Zhou
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huamao Wu
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lihao Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
29
|
Yu X, Qu M, Wu P, Zhou M, Lai E, Liu H, Guo S, Li S, Yao X, Gao L. Super pan-genome reveals extensive genomic variations associated with phenotypic divergence in Actinidia. MOLECULAR HORTICULTURE 2025; 5:4. [PMID: 39849617 PMCID: PMC11758757 DOI: 10.1186/s43897-024-00123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/24/2024] [Indexed: 01/25/2025]
Abstract
Kiwifruit is an economically and nutritionally important horticultural fruit crop worldwide. The genomic data of several kiwifruit species have been released, providing an unprecedented opportunity for pan-genome analysis to comprehensively investigate the inter- and intra-species genetic diversity and facilitate utilization for kiwifruit breeding. Here, we generated a kiwifruit super pan-genome using 15 high-quality assemblies of eight Actinidia species. For gene-based pan-genome, a total of 61,465 gene families were identified, and the softcore and dispensable genes were enriched in biological processes like response to endogenous stimulus, response to hormone and cell wall organization or biogenesis. Then, structural variations (SVs) against A. chinensis 'Donghong' were identified and then used to construct a graph-based genome. Further population-scale SVs based on resequencing data from 112 individuals of 20 species revealed extensive SVs which probably contributed to the phenotypic diversity among the Actinidia species. SV hotspot regions were found contributed to environmental adaptation. Furthermore, we systematically identified resistance gene analogs (RGAs) in the 15 assemblies and generated a pan-RGA dataset to reveal the diversity of genes potentially involved in disease resistance in Actinidia. The pan-genomic data obtained here is useful for evolutionary and functional genomic studies in Actinidia, and facilitates breeding design.
Collapse
Affiliation(s)
- Xiaofen Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Minghao Qu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Miao Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enhui Lai
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Bioinformatics Center, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Sumin Guo
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaohong Yao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
30
|
Lou H, Li S, Shi Z, Zou Y, Zhang Y, Huang X, Yang D, Yang Y, Li Z, Xu C. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell 2025; 188:530-549.e20. [PMID: 39674177 DOI: 10.1016/j.cell.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024]
Abstract
A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%-13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (CWINs) in elite rice and tomato cultivars. HSE insertion endows CWINs with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties. Up to 41% of heat-induced grain losses were rescued in rice. Beyond a prime-editing system for tweaking gene expression by efficiently delivering bespoke changes into crop genomes, we demonstrate broad and robust utility for targeted knockin of cis-regulatory elements to optimize source-sink relations and boost crop climate resilience.
Collapse
Affiliation(s)
- Huanchang Lou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihang Shi
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yupan Zou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueqin Zhang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaozhen Huang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dandan Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoyao Li
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Du H, Zhuo Y, Lu S, Li W, Zhou L, Sun F, Liu G, Liu JF. Pangenome Reveals Gene Content Variations and Structural Variants Contributing to Pig Characteristics. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae081. [PMID: 39535885 PMCID: PMC12017589 DOI: 10.1093/gpbjnl/qzae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Pigs are one of the most essential sources of high-quality proteins in human diets. Structural variants (SVs) are a major source of genetic variants associated with diverse traits and evolutionary events. However, the current linear reference genome of pigs restricts the accurate presentation of position information for SVs. In this study, we generated a pangenome of pigs and a genome variation map of 599 deeply sequenced genomes across Eurasia. Additionally, we established a section-wide gene repertoire, revealing that core genes are more evolutionarily conserved than variable genes. Furthermore, we identified 546,137 SVs, their enrichment regions, and relationships with genomic features and found significant divergence across Eurasian pigs. More importantly, the pangenome-detected SVs could complement heritability estimates and genome-wide association studies based only on single nucleotide polymorphisms. Among the SVs shaped by selection, we identified an insertion in the promoter region of the TBX19 gene, which may be related to the development, growth, and timidity traits of Asian pigs and may affect the gene expression. The constructed pig pangenome and the identified SVs in this study provide rich resources for future functional genomic research on pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanying Li
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feizhou Sun
- National Animal Husbandry Service, Beijing 100125, China
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100125, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Liu JN, Yan L, Chai Z, Liang Q, Dong Y, Wang C, Li X, Li C, Mu Y, Gong A, Yang J, Li J, Yang KQ, Wu D, Fang H. Pan-genome analyses of 11 Fraxinus species provide insights into salt adaptation in ash trees. PLANT COMMUNICATIONS 2025; 6:101137. [PMID: 39308021 PMCID: PMC11783884 DOI: 10.1016/j.xplc.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Ash trees (Fraxinus) exhibit rich genetic diversity and wide adaptation to various ecological environments, and several species are highly salt tolerant. Dissecting the genomic basis of salt adaptation in Fraxinus is vital for its resistance breeding. Here, we present 11 high-quality chromosome-level genome assemblies for Fraxinus species, which reveal two unequal subgenome compositions and two recent whole-genome triplication events in their evolutionary history. A Fraxinus pan-genome was constructed on the basis of structural variations and revealed that presence-absence variations (PAVs) of transmembrane transport genes have likely contributed to salt adaptation in Fraxinus. Through whole-genome resequencing of an F1 population from an interspecies cross of F. velutina 'Lula 3' (salt tolerant) with F. pennsylvanica 'Lula 5' (salt sensitive), we mapped salt-tolerance PAV-based quantitative trait loci (QTLs) and pinpointed two PAV-QTLs and candidate genes associated with Fraxinus salt tolerance. Mechanistically, FvbHLH85 enhances salt tolerance by mediating reactive oxygen species and Na+/K+ homeostasis, whereas FvSWEET5 enhances salt tolerance by mediating osmotic homeostasis. Collectively, these findings provide valuable genomic resources for Fraxinus salt-resistance breeding and the research community.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Andi Gong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jinfeng Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jiaxiao Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China.
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
33
|
Chen W, Xie Q, Fu J, Li S, Shi Y, Lu J, Zhang Y, Zhao Y, Ma R, Li B, Zhang B, Grierson D, Yu M, Fei Z, Chen K. Graph pangenome reveals the regulation of malate content in blood-fleshed peach by NAC transcription factors. Genome Biol 2025; 26:7. [PMID: 39789611 PMCID: PMC11721062 DOI: 10.1186/s13059-024-03470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Fruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches. RESULTS Here, we report a peach graph-based pangenome constructed from sixteen individual genome assemblies, capturing abundant structural variations and 82.3 Mb of sequences absent in the reference genome. Pangenome analysis reveals a long terminal repeat retrotransposon insertion in the promoter of the NAC transcription factor (TF) PpBL in blood-fleshed peaches, which enhances PpBL expression. Genome-wide association study identifies a significant association between PpBL and malate content. Silencing PpBL in peach fruit and ectopic overexpression of PpBL in tomatoes confirm that PpBL is a positive regulator of malate accumulation. Furthermore, we demonstrate that PpBL works synergistically with another NAC TF, PpNAC1, to activate the transcription of the aluminum-activated malate transporter PpALMT4, leading to increased malate content. CONCLUSIONS These findings, along with previous research showing that PpBL and PpNAC1 also regulate anthocyanin accumulation, explain the red coloration and sour taste in blood-fleshed peach fruits.
Collapse
Affiliation(s)
- Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Qi Xie
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jia Fu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Jiao Lu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yingjie Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baijun Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE125RD, UK
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, 14853, USA.
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, 14853, USA.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Hamilton J, Li C, Buell CR. The rice genome annotation project: an updated database for mining the rice genome. Nucleic Acids Res 2025; 53:D1614-D1622. [PMID: 39558187 PMCID: PMC11701632 DOI: 10.1093/nar/gkae1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Abstract
Rice (Oryza sativa L.) is a major cereal crop that provides calories across the world. With a small genome, rice has been used extensively as a model for genetic and genomic studies in the Poaceae. Since the release of the first rice genome sequence in 2002, an improved reference genome assembly, multiple whole genome assemblies, extensive gene expression profiles, and resequencing data from over 3000 rice accessions have been generated. To facilitate access to the rice genome for plant biologists, we updated the Rice Genome Annotation Project database (RGAP; https://rice.uga.edu) with new datasets including 16 whole genome rice assemblies and sequence variants generated from multiple rice pan-genome projects including the 3000 Rice Genomes Project. We updated gene expression abundance data with 80 RNA-sequencing datasets and to facilitate gene function discovery, performed gene coexpression resulting in 39 coexpression modules that capture highly connected sets of co-regulated genes. To facilitate comparative genome analyses, 32 335 syntelogs were identified between the Nipponbare reference genome and other rice genomes and 19 371 syntelogs were identified between Nipponbare and four other Poaceae genomes. Infrastructure improvements to the RGAP database include an upgraded genome browser and data access portals, enhanced website security and increased performance of the website.
Collapse
Affiliation(s)
- John P Hamilton
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Chenxin Li
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - C Robin Buell
- Department of Crop & Soil Sciences, University of Georgia, Athens, GA 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA 30602, USA
- The Plant Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
35
|
Secomandi S, Gallo GR, Rossi R, Rodríguez Fernandes C, Jarvis ED, Bonisoli-Alquati A, Gianfranceschi L, Formenti G. Pangenome graphs and their applications in biodiversity genomics. Nat Genet 2025; 57:13-26. [PMID: 39779953 DOI: 10.1038/s41588-024-02029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Complete datasets of genetic variants are key to biodiversity genomic studies. Long-read sequencing technologies allow the routine assembly of highly contiguous, haplotype-resolved reference genomes. However, even when complete, reference genomes from a single individual may bias downstream analyses and fail to adequately represent genetic diversity within a population or species. Pangenome graphs assembled from aligned collections of high-quality genomes can overcome representation bias by integrating sequence information from multiple genomes from the same population, species or genus into a single reference. Here, we review the available tools and data structures to build, visualize and manipulate pangenome graphs while providing practical examples and discussing their applications in biodiversity and conservation genomics across the tree of life.
Collapse
Affiliation(s)
- Simona Secomandi
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
| | | | - Riccardo Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Carlos Rodríguez Fernandes
- Centre for Ecology, Evolution and Environmental Changes (CE3C) and CHANGE, Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Psicologia, Universidade de Lisboa, Lisboa, Portugal
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, the Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, New York, NY, USA
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, USA
| | | | | |
Collapse
|
36
|
Jiao C, Xie X, Hao C, Chen L, Xie Y, Garg V, Zhao L, Wang Z, Zhang Y, Li T, Fu J, Chitikineni A, Hou J, Liu H, Dwivedi G, Liu X, Jia J, Mao L, Wang X, Appels R, Varshney RK, Guo W, Zhang X. Pan-genome bridges wheat structural variations with habitat and breeding. Nature 2025; 637:384-393. [PMID: 39604736 DOI: 10.1038/s41586-024-08277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts1,2. Here we report chromosome-level genome assemblies of 17 wheat cultivars that chronicle the breeding history of China. Comparative genomic analysis uncovered a wealth of structural rearrangements, identifying 249,976 structural variations with 49.03% (122,567) longer than 5 kb. Cultivars developed in 1980s displayed significant accumulations of structural variations, a pattern linked to the extensive incorporation of European and American varieties into breeding programmes of that era. We further proved that structural variations in the centromere-proximal regions are associated with a reduction of crossover events. We showed that common wheat evolved from spring to winter types via mutations and duplications of the VRN-A1 gene as an adaptation strategy to a changing environment. We confirmed shifts in wheat cultivars linked to dietary preferences, migration and cultural integration in Northwest China. We identified large presence or absence variations of pSc200 tandem repeats on the 1RS terminal, suggesting its own rapid evolution in the wheat genome. The high-quality genome assemblies of 17 representatives developed and their good complementarity to the 10+ pan-genomes offer a robust platform for future genomics-assisted breeding in wheat.
Collapse
Affiliation(s)
- Chengzhi Jiao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Yuxin Xie
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vanika Garg
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Li Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yuqi Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Annapurna Chitikineni
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research, the University of Western Australia, Murdoch, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Rudi Appels
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, La Trobe University, Bundoora, Victoria, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
37
|
Yan T, Kuang L, Gao F, Chen J, Li L, Wu D. Differentiation of genome-wide DNA methylation between japonica and indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17218. [PMID: 39887541 DOI: 10.1111/tpj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
Rice (Oryza sativa L.) subspecies japonica and indica show distinct morphological and genetic differentiation. However, the differences in the genome-wide DNA methylation and its effects on gene expression and metabolic levels between japonica and indica rice remain unclear. In this study, we investigated the genome-wide DNA methylation, transcriptomes and metabolomes of 12 representative japonica and indica rice accessions, to reveal the differentiation between rice subspecies. We detected 83 327 differentially methylated regions (DMRs) and 14 903 DMR-associated genes between two subspecies. Indica rice showed significantly lower levels of the CG, CHG, and CHH methylation compared with japonica rice. Subsequently, we identified 5596 differentially expressed genes between the two subspecies, predominantly enriched in pathways related to carbohydrate and amino acid metabolism. By integrating DNA methylation with transcriptomic data, a significant correlation was established between methylation patterns and the expression level of key agronomic genes in rice. Furthermore, multi-omics analyses reveal that carbohydrate metabolism pathways, especially the tricarboxylic acid (TCA) cycle metabolites, are remarkable differentiation between rice subspecies. These results provide a foundation for future studies in rice domestication and genetic improvement.
Collapse
Affiliation(s)
- Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| |
Collapse
|
38
|
Zhou X, Li J, Chen L, Guo M, Liang R, Pan Y. The genomic pattern of insertion/deletion variations during rice improvement. BMC Genomics 2024; 25:1263. [PMID: 39741238 DOI: 10.1186/s12864-024-11178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited. RESULTS In this study, we extracted INDELs from resequencing data of 148 rice improved varieties. We identified 938,585 INDELs and found that as the length of the variation increases, the number of variations decreases, with 89.0% of INDELs being 2-10 bp. The highest number of INDELs was found on chromosome 1, while the least was on chromosome 10. INDELs were unevenly distributed across the genome, generating a total of 33 hotspot regions. 47.0% of INDELs were located within 2 kb upstream and downstream of genes. Using phenotypic data from five agronomic traits (heading date, flag leaf length, flag leaf width, panicle number, and plant height) along with INDEL data to perform genome-wide association study (GWAS), we identified 6,331 significant loci involving 157 cloned genes. Haplotype analysis of candidate genes revealed INDELs affecting important functional genes, such as OsMED25 and OsRRMh related to heading date, and MOC2 related to plant height. CONCLUSIONS Our work analyzed the variation patterns of INDELs in rice improvement and identified INDELs associated with agronomic traits. These results will provide valuable genetic and material resources for the genetic improvement of rice.
Collapse
Affiliation(s)
- Xia Zhou
- Urban Construction School, Beijing City University, Beijing, 101300, China
| | - Jilong Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Lei Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Minjie Guo
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Renmin Liang
- Hechi Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Hechi, 546306, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
39
|
Du ZZ, He JB, Jiao WB. SynDiv: An efficient tool for chromosome collinearity-based population genomics analyses. PLANT COMMUNICATIONS 2024; 5:101071. [PMID: 39182168 PMCID: PMC11671753 DOI: 10.1016/j.xplc.2024.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Ze-Zhen Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Bao He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
40
|
Zhang J, Che J, Ouyang Y. Engineering rice genomes towards green super rice. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102664. [PMID: 39591902 DOI: 10.1016/j.pbi.2024.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Rice, cultivated for millennia across diverse geographical regions, has witnessed tremendous advancements in recent decades, epitomized by the emergence of Green Super Rice. These efforts aim to address challenges such as climate change, pest and disease threats, and sustainable agriculture. Driven by the advent of multiomics big data, breakthroughs in genomic tools and resources, hybrid rice breeding techniques, and the extensive utilization of green genes, rice genomes are undergoing delicate modifications to produce varieties with high yield, superior quality, enhanced nutrient efficiency, and resilience to pests and environmental stresses, leading to the development of green agriculture in China. Additionally, the utilization of wild relatives and the promotion of genomic breeding approaches have further enriched our understanding of rice improvement. In the future, international efforts to develop next-generation green rice varieties remain both challenging and imperative for the whole community.
Collapse
Affiliation(s)
- Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Che
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
41
|
He Q, Li W, Miao Y, Wang Y, Liu N, Liu J, Li T, Xiao Y, Zhang H, Wang Y, Liang H, Yun Y, Wang S, Sun Q, Wang H, Gong Z, Du H. The near-complete genome assembly of hexaploid wild oat reveals its genome evolution and divergence with cultivated oats. NATURE PLANTS 2024; 10:2062-2078. [PMID: 39627369 DOI: 10.1038/s41477-024-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Avena sterilis, the ancestral species of cultivated oats, is a valuable genetic resource for oat improvement. Here we generated a near-complete 10.99 Gb A. sterilis genome and a high-quality 10.89 Gb cultivated oat genome. Genome evolution analysis revealed the centromeres dynamic and structural variations landscape associated with domestication between wild and cultivated oats. Population genetic analysis of 117 wild and cultivated oat accessions worldwide detected many candidate genes associated with important agronomic traits for oat domestication and improvement. Remarkably, a large fragment duplication from chromosomes 4A to 4D harbouring many agronomically important genes was detected during oat domestication and was fixed in almost all cultivated oats from around the world. The genes in the duplication region from 4A showed significantly higher expression levels and lower methylation levels than the orthologous genes located on 4D in A. sterilis. This study provides valuable resources for evolutionary and functional genomics and genetic improvement of oat.
Collapse
Affiliation(s)
- Qiang He
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Wei Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yuqing Miao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Ningkun Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Jianan Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Tao Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yao Xiao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hongyu Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yaru Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hanfei Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yange Yun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shuhui Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Qingbin Sun
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhizhong Gong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Huilong Du
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China.
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China.
| |
Collapse
|
42
|
Nikhil S, Mohideen HS, Sella RN. Unveiling the Genomic Symphony: Identification Cultivar-Specific Genes and Enhanced Insights on Sweet Sorghum Genomes Through Comprehensive superTranscriptomic Analysis. J Mol Evol 2024; 92:720-743. [PMID: 39261311 DOI: 10.1007/s00239-024-10198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a multipurpose crop grown for food, fodder, and bioenergy production. Its cultivated varieties, along with their wild counterparts, contribute to the core genetic pool. Despite the availability of several re-sequenced sorghum genomes, a variable portion of sorghum genomes is not reported during reference genome assembly and annotation. The present analysis used 223 publicly available RNA-seq datasets from seven sweet sorghum cultivars to construct superTranscriptome. This approach yielded 45,864 Representative Transcript Assemblies (RTAs) that showcased intriguing Presence/Absence Variation (PAV) across 15 published sorghum genomes. We found 301 superTranscripts were exclusive to sweet sorghum, including 58 de novo genes encoded core and linker histones, zinc finger domains, glucosyl transferases, cellulose synthase, etc. The superTranscriptome added 2,802 new protein-coding genes to the Sweet Sorghum Reference Genome (SSRG), of which 559 code for different transcription factors (TFs). Our analysis revealed that MULE-like transposases were abundant in the sweet sorghum genome and could play a hidden role in the evolution of sweet sorghum. We observed large deletions in the D locus and terminal deletions in four other NAC encoding loci in the SSRG compared to its wild progenitor (353) suggesting non-functional NAC genes contributed to trait development in sweet sorghum. Moreover, superTranscript-based methods for Differential Exon Usage (DEU) and Differential Gene Expression (DGE) analyses were more accurate than those based on the SSRG. This study demonstrates that the superTranscriptome can enhance our understanding of fundamental sorghum mechanisms, improve genome annotations, and potentially even replace the reference genome.
Collapse
Affiliation(s)
- Shinde Nikhil
- Membrane Protein Interaction Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Habeeb Shaikh Mohideen
- Entomoinformatics Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Raja Natesan Sella
- Membrane Protein Interaction Lab, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
43
|
Peng Y, Mao K, Zhang Z, Ping J, Jin M, Liu X, Wu C, Zhao C, Wang P, Duan X, Yu S, Li Z, Liu J, Li H, Yesaya A, Chen L, Wang H, Wilson K, Xiao Y. Landscape of structural variants reveals insights for local adaptations in the Asian corn borer. Cell Rep 2024; 43:114928. [PMID: 39504240 DOI: 10.1016/j.celrep.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Capturing the genetic diversity of different wild populations is crucial for unraveling the mechanisms of adaptation and establishing links between genome evolution and local adaptation. The Asian corn borer (ACB) moth has undergone natural selection during its adaptative evolution. However, structural variants (SVs), which play significant roles in these adaptation processes, have not been previously identified. Here, we constructed a multi-assembly graph pan-genome to highlight the importance of SVs in local adaptation. Our analysis revealed that the graph pan-genome contained 176.60 Mb (∼37.33%) of unique sequences. Subsequently, we performed an analysis of expression quantitative trait loci (QTLs) to explore the impact of SVs on gene expression regulation. Notably, through QTL mapping analysis, we identified the FTZ-F1 gene as a potential candidate gene associated with the traits of larval development rate. In sum, we explored the impact of SVs on the local adaptation of pests, therefore facilitating accelerated pest management strategies.
Collapse
Affiliation(s)
- Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaikai Mao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuting Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junfen Ping
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinye Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chongjun Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xueqing Duan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Songmiao Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhimin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jimin Liu
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| | - Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Alexander Yesaya
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
44
|
Long W, He Q, Wang Y, Wang Y, Wang J, Yuan Z, Wang M, Chen W, Luo L, Luo L, Xu W, Li Y, Li W, Yan L, Cai Y, Du H, Xie H. Genome evolution and diversity of wild and cultivated rice species. Nat Commun 2024; 15:9994. [PMID: 39557856 PMCID: PMC11574199 DOI: 10.1038/s41467-024-54427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Wild species of crops serve as a valuable germplasm resource for breeding of modern cultivars. Rice (Oryza sativa L.) is a vital global staple food. However, research on genome evolution and diversity of wild rice species remains limited. Here, we present nearly complete genomes of 13 representative wild rice species. By integrating with four previously published genomes for pangenome analysis, a total of 101,723 gene families are identified across the genus, including 9834 (9.67%) core gene families. Additionally, 63,881 gene families absent in cultivated rice species but present in wild rice species are discovered. Extensive structural rearrangements, sub-genomes exchanges, widespread allelic variations, and regulatory sequence variations are observed in wild rice species. Interestingly, expanded but less diverse disease resistance genes in the genomes of cultivated rice, likely due to the loss of some resistance genes and the fixing and amplification of genes encoding resistance genes to specific diseases during domestication and artificial selection. This study not only reveals natural variations valuable for gene-level studies and breeding selection but also enhances our understanding on rice evolution and domestication.
Collapse
Affiliation(s)
- Weixiong Long
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yitao Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Jie Wang
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhengqing Yuan
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Meijia Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Wei Chen
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lihua Luo
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Laiyang Luo
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Weibiao Xu
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yonghui Li
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Longan Yan
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yaohui Cai
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China.
| | - Hongwei Xie
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| |
Collapse
|
45
|
Liu F, Ma XB, Han B, Wang B, Xu JP, Cao B, Ling ZL, He MQ, Zhu XY, Zhao RL. Pan-genome analysis reveals genomic variations during enoki mushroom domestication, with emphasis on genetic signatures of cap color and stipe length. J Adv Res 2024:S2090-1232(24)00497-1. [PMID: 39510377 DOI: 10.1016/j.jare.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/12/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION The domestication of edible mushrooms, including Flammulina filiformis, offers valuable insights into the genetic changes driven by artificial selection. Understanding these changes is crucial for uncovering the mechanisms behind genome evolution in domesticated mushrooms. OBJECTIVES This study aims to investigate the population structure, genetic diversity, and domestication-related genomic changes in F. filiformis. By comparing the genome sequences of 199 wild and cultivated strains, we aim to elucidate the impact of domestication on F. filiformis. METHODS We performed de novo genome assembly and gene-based pan-genome analysis on the 199 strains, which included both wild and cultivated strains. We also conducted genome-wide association studies (GWAS) using presence-absence variation (PAV) and SNP data, combined with RNA sequencing, to identify genes associated with domestication traits, such as cap color and stipe length. Gene functional confirmation was achieved through genetic transformation experiments. RESULTS Our analysis grouped the strains into four distinct populations, which correlated with varying intensities of artificial selection. The three cultivated populations exhibited smaller genome sizes, fewer genes, lower genetic variation, reduced gene expression diversity, and lower heterozygosity compared to the wild population. The analysis revealed the loss of genes related to the beta-lactam antibiotic catabolic process and specific MAPK pathway genes during domestication, rendering domesticated strains more susceptible to diseases. Four genes closely associated with cap color and stipe length were identified, but genetic transformation experiments confirmed the functional relevance of only two (FfB and FfD) identified through PAV-based GWAS. CONCLUSION This study uncovered significant genomic variations between cultivated and wild F. filiformis populations, including the loss of pathogen resistance genes during domestication. We also identified key genes linked to cap color and stipe length, demonstrating for the first time the important role of PAV variation in mushroom domestication. These insights provide a foundation for future mushroom breeding and evolutionary research.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Bin Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Jian-Ping Xu
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Lin Ling
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mao-Qiang He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Yu Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
46
|
Cong J, Zhang S, Zhang Q, Yu X, Huang J, Wei X, Huang X, Qiu J, Zhou X. Conserved features and diversity attributes of chimeric RNAs across accessions in four plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3151-3163. [PMID: 39087631 PMCID: PMC11500992 DOI: 10.1111/pbi.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
As a non-collinear expression form of genetic information, chimeric RNAs increase the complexity of transcriptome in diverse organisms. Although chimeric RNAs have been identified in plants, few common features have been revealed. Here, we systemically explored the landscape of chimeric RNAs across multi-accession and multi-tissue using pan-genome and transcriptome data of four plants: rice, maize, soybean, and Arabidopsis. Among the four species, conserved characteristics of breakpoints and parental genes were discovered. In each species, chimeric RNAs displayed a high level of diversity among accessions, and the clustering of accessions using chimeric events was generally concordant with clustering based on genomic variants, implying a general relationship between genetic variations and chimeric RNAs. Through mass spectrometry, we confirmed a fusion protein OsNDC1-OsGID1L2 and observed its subcellular localization, which differed from the original proteins. Phenotypic cues in transgenic rice suggest the potential functions of OsNDC1-OsGID1L2. Moreover, an intriguing chimeric event Os01g0216500-Os01g0216900, generated by a large deletion in basmati rice, also exists in another accession without the deletion, demonstrating its convergence in evolution. Our results illuminate the characteristics and hint at the evolutionary implications of plant chimeric RNAs, which serve as a supplement to genetic variations, thus expanding our understanding of genetic diversity.
Collapse
Affiliation(s)
- Jia Cong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Sinan Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
- CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiting Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jiazhi Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| |
Collapse
|
47
|
Li J, Liu Z, You C, Qi Z, You J, Grover CE, Long Y, Huang X, Lu S, Wang Y, Zhang S, Wang Y, Bai R, Zhang M, Jin S, Nie X, Wendel JF, Zhang X, Wang M. Convergence and divergence of diploid and tetraploid cotton genomes. Nat Genet 2024; 56:2562-2573. [PMID: 39472693 DOI: 10.1038/s41588-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/10/2024]
Abstract
Polyploidy is an important driving force in speciation and evolution; however, the genomic basis for parallel selection of a particular trait between polyploids and ancestral diploids remains unexplored. Here we construct graph-based pan-genomes for diploid (A2) and allotetraploid (AD1) cotton species, enabled by an assembly of 50 genomes of genetically diverse accessions. We delineate a mosaic genome map of tetraploid cultivars that illustrates genomic contributions from semi-wild forms into modern cultivars. Pan-genome comparisons identify syntenic and hyper-divergent regions of continued variation between diploid and tetraploid cottons, and suggest an ongoing process of sequence evolution potentially linked to the contrasting genome size change in two subgenomes. We highlight 43% of genetic regulatory relationships for gene expression in diploid encompassing sequence divergence after polyploidy, and specifically characterize six underexplored convergent genetic loci contributing to parallel selection of fiber quality. This study offers a framework for pan-genomic dissection of genetic regulatory components underlying parallel selection of desirable traits in organisms.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuejin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sainan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yawen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhe Bai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengke Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
48
|
Yu H, Wang S, Wang L, Wu W, Xu W, Wu S, Li X, Xu W, Huang Z, Lin Y, Wang H. Pan-genomic characterization and structural variant analysis reveal insights into spore development and species diversity in Ganoderma. Microb Genom 2024; 10:001328. [PMID: 39565084 PMCID: PMC11897173 DOI: 10.1099/mgen.0.001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Understanding the genomic diversity and functional implications of Ganoderma species is crucial for elucidating their evolutionary history and biotechnological potential. Here, we present the first pan-genomic analysis of Ganoderma spp., combining five newly sequenced genomes with ten publicly available genomes. Our comprehensive comparative study unveiled a rich genomic landscape, identifying core genes shared among all Ganoderma strains and species-specific gene sets. Additionally, we identified structural variants impacting the expression of key genes, including insights into the MSH4 gene involved in DNA repair and recombination processes, which exhibits a 440 bp insertion in the promoter region and a leucine-to-serine mutation in the gene body, potentially increasing spore production in the S3 strain. Overall, our study provides valuable insights into the genomic architecture and functional diversity of Ganoderma, paving the way for further research on its evolutionary dynamics, biotechnological applications and pharmaceutical potential.
Collapse
Affiliation(s)
- Hang Yu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
| | - Shasha Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Lina Wang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Weixin Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wei Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Shuisheng Wu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Xiaoyan Li
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Wen Xu
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Zehao Huang
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Yu Lin
- Innovation and Transformation Center of Science and Technology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, PR China
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi 530005, PR China
- Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
49
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Cheng F, Wang X, Qian W. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3102-3117. [PMID: 39095952 PMCID: PMC11501001 DOI: 10.1111/pbi.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Structural variations (SVs) are major genetic variants that can be involved in the origin, adaptation and domestication of species. However, the identification and characterization of SVs in Spinacia species are rare due to the lack of a pan-genome. Here, we report eight chromosome-scale assemblies of cultivated spinach and its two wild species. After integration with five existing assemblies, we constructed a comprehensive Spinacia pan-genome and identified 193 661 pan-SVs, which were genotyped in 452 Spinacia accessions. Our pan-SVs enabled genome-wide association study identified signals associated with sex and clarified the evolutionary direction of spinach. Most sex-linked SVs (86%) were biased to occur on the Y chromosome during the evolution of the sex-linked region, resulting in reduced Y-linked gene expression. The frequency of pan-SVs among Spinacia accessions further illustrated the contribution of these SVs to domestication, such as bolting time and seed dormancy. Furthermore, compared with SNPs, pan-SVs act as efficient variants in genomic selection (GS) because of their ability to capture missing heritability information and higher prediction accuracy. Overall, this study provides a valuable resource for spinach genomics and highlights the potential utility of pan-SV in crop improvement and breeding programmes.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Helong Zhang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jian Wu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng Cheng
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wei Qian
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
- Zhongyuan Research Center, Chinese Academy of Agricultural SciencesXinxiangChina
| |
Collapse
|
50
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|