1
|
Hirose T, Fujiwara N, Ninomiya K, Yamamoto T, Nakagawa S, Yamazaki T. Architectural RNAs: blueprints for functional membraneless organelle assembly. Trends Genet 2025:S0168-9525(25)00127-1. [PMID: 40514312 DOI: 10.1016/j.tig.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/21/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025]
Abstract
Among the pervasive transcripts from eukaryotic genomes, a novel subset, referred to as architectural RNAs (arcRNAs), has an essential role in assembling membraneless organelles (MLOs). These arcRNAs sequester specific RNA-binding proteins (RBPs) and promote phase separation through multivalent interactions. NEAT1_2, an archetypal arcRNA, serves as a blueprint for paraspeckle architecture, characterized by a shell-and-core micelle-like configuration and immiscibility with other MLOs, relying on the cooperative contributions of distinct modular RNA domains. arcRNAs regulate gene expression through three of MLO action modes (crucible, sponge, and hub), guided by the functional blueprints embedded in arcRNA sequences. Advanced high-throughput analyses have identified thousands of arcRNA candidates, underscoring their potential in organizing transient intracellular compartments and driving dynamic cellular processes.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Suita 565-0871, Japan.
| | - Naoko Fujiwara
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Kensuke Ninomiya
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| |
Collapse
|
2
|
Qiu J, Sun M, Qin Z, Liu M, Zhang W. Silencing of LncRNA XIST Suppressed Tumor Growth and Metastasis in Papillary Thyroid Carcinoma by Modulating miR-204/FN1 Axis. ACS OMEGA 2025; 10:19643-19654. [PMID: 40415854 PMCID: PMC12096252 DOI: 10.1021/acsomega.5c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/27/2025]
Abstract
Papillary thyroid carcinoma (PTC) is a prevalent endocrine malignancy with a high incidence rate of regional lymph node metastasis. Dysregulation of lncRNA XIST has been observed in various malignancies. This study aims to elucidate the molecular mechanism of lncRNA XIST in PTC metastasis. Quantitative real-time PCR assays were conducted to detect the expression levels of XIST, FN1, and miR-204-5p in PTC tissues. Meanwhile, loss-of-function assays were employed to evaluate the oncogenic roles of XIST in PTC cell lines. Our results revealed significant overexpression of XIST and FN1 in PTC tissues and cell lines, accompanied by decreased levels of miR-204-5p (p < 0.05). Knockdown of XIST or FN1 inhibited cellular proliferation, metastasis, and invasion in PTC cells, upregulated E-cadherin, and downregulated N-cadherin and Vimentin. Furthermore, we demonstrated that XIST regulates FN1 expression by competitively binding to miR-204-5p. MiRNA inhibitor rescue assays confirmed the pivotal role of the XIST/miR-204/FN1 axis in PTC metastasis and invasion. Our study underscores the oncogenic role of XIST in PTC by acting as a sponge for miR-204, regulating FN1 expression. These findings hold promise for advancing our understanding of thyroid cancer and developing potential therapeutic and diagnostic targets for PTC.
Collapse
Affiliation(s)
- Jie Qiu
- Department
of Otolaryngology, The Affiliated Hospital
of Qingdao University, Qingdao266003, China
| | - Maolin Sun
- Department
of Otolaryngology, Huangdao District Traditional
Chinese Medicine Hospital, Qingdao City, Qingdao266003, China
| | - Zuorong Qin
- Department
of Otolaryngology, The Affiliated Hospital
of Qingdao University, Qingdao266003, China
| | - Mingbo Liu
- Department
of Otolaryngology, Hainan Hospital of PLA
General Hospital, Sanya572000, China
| | - Wenwei Zhang
- Department
of Radiology, The Affiliated Hospital of
Qingdao University, Qingdao266003, China
| |
Collapse
|
3
|
Raposo AC, Caldas P, Jeremias J, Arez M, Cazaux Mateus F, Barbosa P, Sousa-Luís R, Água F, Oxley D, Mupo A, Eckersley-Maslin M, Casanova M, Grosso AR, da Rocha ST. Gene reactivation upon erosion of X chromosome inactivation in female hiPSCs is predictable yet variable and persists through differentiation. Stem Cell Reports 2025; 20:102472. [PMID: 40185090 DOI: 10.1016/j.stemcr.2025.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Female human induced pluripotent stem cells frequently undergo X-chromosome inactivation (XCI) erosion, marked by X-inactive specific transcript (XIST) RNA loss and partial reactivation of the inactive X (Xi). This overlooked phenomenon limits our understanding of its impact on stem cell applications. Here, we show that XCI erosion is frequent and heterogeneous, leading to the reactivation of several X-linked genes. These are primarily located on the short arm of the X chromosome, particularly near escape genes and within H3K27me3-enriched domains, with reactivation linked to reduced promoter DNA methylation. Interestingly, escape genes further increase their expression from Xi upon XCI erosion, highlighting the critical role of XIST in their dosage regulation. Importantly, global (hydroxy)methylation levels and imprinted regions remain unaffected, and analysis of trilineage commitment and cardiomyocyte formation reveals that XCI erosion persists across differentiation. These findings underscore the need for greater awareness of the implications of XCI erosion for stem cell research and clinical applications.
Collapse
Affiliation(s)
- Ana Cláudia Raposo
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Caldas
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Jeremias
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Arez
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Francisca Cazaux Mateus
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Barbosa
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Rui Sousa-Luís
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Frederico Água
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | - Annalisa Mupo
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Altos Labs, Cambridge, UK
| | - Melanie Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Miguel Casanova
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Grosso
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
Roidor C, Syx L, Beyne E, Raynaud P, Zielinski D, Teissandier A, Lee C, Walter M, Servant N, Chebli K, Bourc'his D, Surani MA, Borensztein M. Temporal and regional X-linked gene reactivation in the mouse germline reveals site-specific retention of epigenetic silencing. Nat Struct Mol Biol 2025; 32:926-939. [PMID: 39838109 DOI: 10.1038/s41594-024-01469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2024] [Indexed: 01/23/2025]
Abstract
Random X-chromosome inactivation is a hallmark of female mammalian somatic cells. This epigenetic mechanism, mediated by the long noncoding RNA Xist, occurs in the early embryo and is stably maintained throughout life, although inactivation is lost during primordial germ cell (PGC) development. Using a combination of single-cell allele-specific RNA sequencing and low-input chromatin profiling on developing mouse PGCs, we provide a detailed map of X-linked gene reactivation. Despite the absence of Xist expression, PGCs still harbor a fully silent X chromosome at embryonic day 9.5 (E9.5). Subsequently, X-linked genes undergo gradual and distinct regional reactivation. At E12.5, a substantial part of the inactive X chromosome resists reactivation, retaining an epigenetic memory of its silencing. Our findings define the orchestration of reactivation of the inactive X chromosome, a key event in female PGC reprogramming with direct implications for reproduction.
Collapse
Affiliation(s)
- Clara Roidor
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Laurène Syx
- INSERM U900, Mines ParisTech, Institut Curie, PSL Research University, Paris, France
| | | | - Peggy Raynaud
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Dina Zielinski
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Aurélie Teissandier
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Caroline Lee
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Marius Walter
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Nicolas Servant
- INSERM U900, Mines ParisTech, Institut Curie, PSL Research University, Paris, France
| | - Karim Chebli
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Deborah Bourc'his
- INSERM U934, CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - M Azim Surani
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Maud Borensztein
- IGMM, University of Montpellier, CNRS, Montpellier, France.
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Aktas Pepe N, Acar B, Erturk Zararsiz G, Ayaz Guner S, Sen A. Role of Long Non-Coding RNA X-Inactive-Specific Transcript ( XIST) in Neuroinflammation and Myelination: Insights from Cerebral Organoids and Implications for Multiple Sclerosis. Noncoding RNA 2025; 11:31. [PMID: 40407589 PMCID: PMC12101413 DOI: 10.3390/ncrna11030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
Background/Objectives: X-inactive-specific transcript (XIST) is a factor that plays a role in neuroinflammation. This study investigated the role of XIST in neuronal development, neuroinflammation, myelination, and therapeutic responses within cerebral organoids in the context of Multiple Sclerosis (MS) pathogenesis. Methods: Human cerebral organoids with oligodendrocytes were produced from XIST-silenced H9 cells, and the mature organoids were subsequently treated with either FTY720 or DMF. Gene expression related to inflammation and myelination was subsequently analyzed via qRT-PCR. Immunofluorescence staining was used to assess the expression of proteins related to inflammation, myelination, and neuronal differentiation. Alpha-synuclein protein levels were also checked via ELISA. Finally, transcriptome analysis was conducted on the organoid samples. Results: XIST-silenced organoids presented a 2-fold increase in the expression of neuronal stem cells, excitatory neurons, microglia, and mature oligodendrocyte markers. In addition, XIST silencing increased IL-10 mRNA expression by 2-fold and MBP and PLP1 expression by 2.3- and 0.6-fold, respectively. Although XIST silencing tripled IBA1 protein expression, it did not affect organoid MBP expression. FTY720, but not DMF, distinguished MBP and IBA1 expression in XIST-silenced organoids. Furthermore, XIST silencing reduced the concentration of alpha-synuclein from 300 to 100 pg/mL, confirming its anti-inflammatory role. Transcriptomic and gene enrichment analyses revealed that the differentially expressed genes are involved in neural development and immune processes, suggesting the role of XIST in neuroinflammation. The silencing of XIST modified the expression of genes associated with inflammation, myelination, and neuronal growth in cerebral organoids, indicating a potential involvement in the pathogenesis of MS. Conclusions: XIST may contribute to the MS pathogenesis as well as neuroinflammatory diseases such as and Alzheimer's and Parkinson's diseases and may be a promising therapeutic target.
Collapse
Affiliation(s)
- Nihan Aktas Pepe
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Türkiye; (N.A.P.); (B.A.)
| | - Busra Acar
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Türkiye; (N.A.P.); (B.A.)
| | - Gozde Erturk Zararsiz
- Department of Biostatistics, Faculty of Medicine, Erciyes University, Kayseri 38039, Türkiye;
| | - Serife Ayaz Guner
- Department of Molecular Biology and Genetics, Faculty Sciences, Izmir Institute of Technology, Izmir 35430, Türkiye;
| | - Alaattin Sen
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri 38080, Türkiye; (N.A.P.); (B.A.)
- Department of Biology, Faculty of Sciences, Pamukkale University, Kinikli, Denizli 20070, Türkiye
| |
Collapse
|
6
|
Cai F, Xu S, Li Y, He Q, Su Q, Chen H, Liu W, Chen J, Wang Q, Assaraf YG, Lin Y, Zhuang W. The role of the LncRNA XIST/miR-15a-5p/MN1 signaling axis in gender disparities in bladder cancer prognosis. Front Immunol 2025; 16:1554829. [PMID: 40308577 PMCID: PMC12040669 DOI: 10.3389/fimmu.2025.1554829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Bladder cancer (BC) exhibits significant gender disparities in incidence and prognosis, with women experiencing worse prognosis despite lower incidence rates. This study aims to elucidate the molecular mechanisms underlying these gender-specific differences, focusing on the role of the long non-coding RNA XIST. Methods Comprehensive bioinformatics analysis was performed using TCGA and GSE13507 cohorts to identify gender-differential gene expression. Functional experiments including cell proliferation, migration, and invasion assays were conducted in bladder cancer cell lines. Molecular interactions were investigated through gene knockdown, overexpression, and luciferase reporter assays. A zebrafish model was employed to validate in vivo findings. Results Our study revealed that XIST expression is significantly higher in female bladder cancer tissues and strongly associated with poor prognosis in female patients. The XIST/miR-15a-5p/MN1/FZD2 signaling axis was found to play a critical role in promoting bladder cancer progression. Specifically, XIST upregulates MN1 by sponging miR-15a-5p, which in turn enhances FZD2 expression. Functional experiments demonstrated that XIST knockdown significantly inhibited bladder cancer cell proliferation, migration, and invasion, effects which could be reversed by FZD2 overexpression. Conclusions The XIST/miR-15a-5p/MN1 signaling axis plays a critical role in the gender disparity observed in bladder cancer prognosis, particularly in women. Targeting this pathway may offer new therapeutic strategies for improving outcomes in female BC patients.
Collapse
Affiliation(s)
- Fangzhen Cai
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Siwei Xu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Yinan Li
- The School of Clinical Medicine, Fuian Medical University, Fuzhou, China
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Weihui Liu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qingshui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
7
|
Rouault CD, Bansard L, Martínez-Balsalobre E, Bonnet C, Wicinski J, Lin S, Colombeau L, Debieu S, Pinna G, Vandamme M, Machu M, Rosnet O, Chevrier V, Popovici C, Sobol H, Castellano R, Pasquier E, Guasch G, Rodriguez R, Pannequin J, Pascussi JM, Lachaud C, Charafe-Jauffret E, Ginestier C. Inhibition of the STAT3/Fanconi anemia axis is synthetic lethal with PARP inhibition in breast cancer. Nat Commun 2025; 16:2159. [PMID: 40038300 PMCID: PMC11880418 DOI: 10.1038/s41467-025-57476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025] Open
Abstract
The targeting of cancer stem cells (CSCs) has proven to be an effective approach for limiting tumor progression, thus necessitating the identification of new drugs with anti-CSC activity. Through a high-throughput drug repositioning screen, we identify the antibiotic Nifuroxazide (NIF) as a potent anti-CSC compound. Utilizing a click chemistry strategy, we demonstrate that NIF is a prodrug that is specifically bioactivated in breast CSCs. Mechanistically, NIF-induced CSC death is a result of a synergistic action that combines the generation of DNA interstrand crosslinks with the inhibition of the Fanconi anemia (FA) pathway activity. NIF treatment mimics FA-deficiency through the inhibition of STAT3, which we identify as a non-canonical transcription factor of FA-related genes. NIF induces a chemical HRDness (Homologous Recombination Deficiency) in CSCs that (re)sensitizes breast cancers with innate or acquired resistance to PARP inhibitor (PARPi) in patient-derived xenograft models. Our results suggest that NIF may be useful in combination with PARPi for the treatment of breast tumors, regardless of their HRD status.
Collapse
Affiliation(s)
- Celia D Rouault
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France
| | - Lucile Bansard
- IGF, University Montpellier, CNRS INSERM, Montpellier, France
| | - Elena Martínez-Balsalobre
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, DNA Interstrand Crosslink Lesions and Blood Disorder Team, Marseille, France
| | - Caroline Bonnet
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France
| | - Julien Wicinski
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France
| | - Shuheng Lin
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France
| | - Ludovic Colombeau
- Institut Curie, CNRS, INSERM, Biomedicine Laboratory PSL Research University, Paris, France
| | - Sylvain Debieu
- Institut Curie, CNRS, INSERM, Biomedicine Laboratory PSL Research University, Paris, France
| | - Guillaume Pinna
- Plateforme ARN Interférence (PARI), Université Paris Cité, Inserm, CEA Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie Vandamme
- Plateforme ARN Interférence (PARI), Université Paris Cité, Inserm, CEA Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Margot Machu
- IGF, University Montpellier, CNRS INSERM, Montpellier, France
| | - Olivier Rosnet
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France
| | - Véronique Chevrier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France
| | - Cornel Popovici
- Aix-Marseille University, Cancer Genetic Laboratory, Cancer Biology Department Institut Paoli-Calmettes, Marseille, France
| | - Hagay Sobol
- Aix-Marseille University, Cancer Genetic Laboratory, Cancer Biology Department Institut Paoli-Calmettes, Marseille, France
| | - Rémy Castellano
- CRCM, Aix-Marseille University, INSERM, CNRS, Institut Paoli-Calmettes, TrGET Plateform, Marseille, France
| | - Eddy Pasquier
- CRCM, INSERM, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Reverse Molecular Pharmacology in Pediatric Oncology, Marseille, France
| | - Geraldine Guasch
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, Biomedicine Laboratory PSL Research University, Paris, France
| | - Julie Pannequin
- IGF, University Montpellier, CNRS INSERM, Montpellier, France
| | | | - Christophe Lachaud
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, DNA Interstrand Crosslink Lesions and Blood Disorder Team, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre Le Cancer, Marseille, France.
| |
Collapse
|
8
|
Zhang B, Zhu Y, Tang Y, Liu L, Liu Y, Li Y, Yu W, Lu L. The mediator subunit complex protein MED15 promotes lipid deposition and cancer progression during hypoxia. J Biol Chem 2025; 301:108296. [PMID: 39947475 PMCID: PMC11930138 DOI: 10.1016/j.jbc.2025.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Hypoxia, a hallmark of solid tumors, is associated with increased lipid droplet (LD) accumulation. However, the mechanisms underlying this remain elusive. Here, we identify Mediator complex subunit 15 (MED15) as a critical regulator of hypoxia-inducible factor (HIF) signaling, potentially impacting LD accumulation. In mammalian cells, we elucidated that MED15, as a HIF target gene, participates in promoting HIF transcriptional activity without affecting HIFα protein levels, creating a positive feedback loop. Furthermore, zebrafish deficiency in med15 displayed decreased HIF activity and impaired tolerance to hypoxic stress. Functionally, MED15 deficiency attenuated the proliferation of colon and renal cancer cells in vitro and tumor growth in vivo. Mechanistically, MED15 acts upstream of carnitine palmitoyltransferase 1A (CPT1A), a key enzyme in fatty acid oxidation, ultimately promoting HIF-mediated LD accumulation. Disrupting the MED15-CPT1A axis impairs this process. These findings reveal a novel MED15-HIF-CPT1A axis that promotes LD formation, potentially contributing to hypoxic tumor progression.
Collapse
Affiliation(s)
- Boqi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yu Zhu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yanfei Tang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yun Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
9
|
Gao H, Yang X, Pan P, Liu X, Ma Y, Chen Y, Liu Y, Sun Y, Cao S, Tian Y, Yang Y. Pubertal low dose exposure to benzophenone-3 (BP-3) alters murine mammary stem cell functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117982. [PMID: 40020383 DOI: 10.1016/j.ecoenv.2025.117982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Benzophenone-3 (BP-3) is an organic UV filter that is widely used in personal care products and has been indicated to have negative impacts on the environment and human health. The mammary glands of humans and rodents have been confirmed to be target organs affected by BP-3 exposure. However, limited information is available on the underlying mechanism currently. In this study, we hypothesized that low-concentration BP3 exposure during puberty might lead to a susceptibility to tumors through the mediation of mammary stem cells. Our findings revealed that BP-3 exposure at 50 mg/kg/day for 5 weeks during puberty led to reproductive outcomes such as reduced body weight, decreased serum estradiol and progesterone levels, and increased terminal end bud (TEB) numbers and areas. These effects were accompanied by a decreased fraction of basal mammary stem cells and decreased self-renewal and differentiation abilities of basal mammary stem cells in vitro and in vivo such as decreased sphere formation ability, a smaller 3D structure, increased branching points and hyperplastic lesions in regenerated mammary glands. Notably, for the regenerated mammary glands formed by the basal mammary stem cells of BP-3-treated mice, a decrease in the fraction of basal mammary stem cells and decreased expression levels of the milk protein β-casein and STAT5 were observed. Taken together, our data suggest that pubertal BP-3 exposure decreases the function of basal mammary stem cells such that they induce the abnormal development of mammary glands.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Xintong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xueli Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yadan Chen
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yunxin Liu
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yaqi Sun
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Sinan Cao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Tian
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
10
|
Liang M, Zhang L, Gong H, Yang L, Wang H, Song N, Lai L, Xie W, Li Z. Deletion of Xist repeat B disrupts cell cycle and asymmetric cell division through Usp9x hyperactivation in mice. Nucleic Acids Res 2025; 53:gkaf142. [PMID: 40042815 PMCID: PMC11880805 DOI: 10.1093/nar/gkaf142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 05/13/2025] Open
Abstract
During X chromosome inactivation (XCI), Xist RNA establishes silencing by coating the chromosome in cis and binding diverse proteins to promote formation of a heterochromatic domain. However, Xist repeat B role beyond initiation of XCI remains unclear. Here, we find that loss of Xist repeat B in female mice allows survival and leads to a small body size persisting throughout life. Epigenetic and transcriptomic analyses reveal low levels of H3K27me3 and H2AK119ub occupancy on the X chromosome, except in certain CpG island regions, and partial reactivation of X-linked genes on the inactive X across multiple tissues. Notably, overdosage of Usp9x promotes centrosome amplification and chromosome instability. We further demonstrate that Usp9x overdosage alters asymmetric cell division, thereby affecting the process of cell differentiation. Thus, Xist repeat B is necessary for gene-specific silencing during XCI maintenance and impacts cell proliferation and differentiation during development. This provides insights into repeat B importance in maintaining XCI.
Collapse
Affiliation(s)
- Mingming Liang
- Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, The First Hospital of Jilin University, Changchun 130021, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lichao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Heng Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Li Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wanhua Xie
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhanjun Li
- Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, The First Hospital of Jilin University, Changchun 130021, China
- College of Animal Science, Jilin University, Changchun 130062, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Center of Laboratory Animals, Sanya 572000, China
| |
Collapse
|
11
|
Yuan Y, Tang Y, Fang Z, Wen J, Wicha MS, Luo M. Long Non-Coding RNAs: Key Regulators of Tumor Epithelial/Mesenchymal Plasticity and Cancer Stemness. Cells 2025; 14:227. [PMID: 39937018 PMCID: PMC11817775 DOI: 10.3390/cells14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing evidence has shown that lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels through specific regulatory actions and are involved in the development of cancer and other diseases. Despite many lncRNAs being expressed at lower levels than those of protein-coding genes with less sequence conservation across species, lncRNAs have become an intense area of RNA research. They exert diverse biological functions such as inducing chromatin remodeling, recruiting transcriptional machinery, acting as competitive endogenous RNAs for microRNAs, and modulating protein-protein interactions. Epithelial-mesenchymal transition (EMT) is a developmental process, associated with embryonic development, wound healing, and cancer progression. In the context of oncogenesis, the EMT program is transiently activated and confers migratory/invasive and cancer stem cell (CSC) properties to tumor cells, which are crucial for malignant progression, metastasis, and therapeutic resistance. Accumulating evidence has revealed that lncRNAs play crucial roles in the regulation of tumor epithelial/mesenchymal plasticity (EMP) and cancer stemness. Here, we summarize the emerging roles and molecular mechanisms of lncRNAs in regulating tumor cell EMP and their effects on tumor initiation and progression through regulation of CSCs. We also discuss the potential of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Yun Tang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Zeng Fang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shengyang 110032, China;
| | - Max S. Wicha
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming Luo
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Li D, Chen Y, Zhu X, Yang Y, Li H, Zhao RC. A novel human specific lncRNA MEK6-AS1 regulates adipogenesis and fatty acid biosynthesis by stabilizing MEK6 mRNA. J Biomed Sci 2025; 32:6. [PMID: 39773638 PMCID: PMC11708274 DOI: 10.1186/s12929-024-01098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity. The aim of our work is to identify lncRNAs that have important regulatory in differentiation of human mesenchymal stem cells (MSCs) into adipocytes, and to provide effective targets for clinical prevention and treatment of obesity and related metabolic disorders. METHODS We extracted primary MSCs from human adipose tissue, and conducted expression profile analysis of lncRNAs during adipogenic differentiation of MSCs to screen changed lncRNAs. Characteristics of lncRNA were revealed mainly by RACE and RNA FISH. Loss- and gain-of function experiments in vivo and in vitro were used to analyze effects of lncRNA. Targeted metabolomics was utilized to detect levels of free fatty acids. RNA pull-down, mRNA stability tests, etc. were employed to explore mechanisms of lncRNA. RESULTS Human-specific lncRNA, we named it MEK6-AS1, was the most up-regulated transcript during adipogenic differentiation of MSCs. MEK6-AS1 was highly expressed in adipose tissue samples from individuals with BMI ≥ 25 and positively correlated with adipogenic marker genes in these samples. Knocking down lncRNA inhibited expression of adipogenic differentiation markers and ectopic adipogenesis, reducing contents of various free fatty acids, as well as promoting osteogenic differentiation. Overexpression of lncRNA had the opposite effects to the above processes. We also found that MEK6-AS1 was elevated during hepatic steatosis organoid generation. Mechanistically, MEK6-AS1 worked partially through stabilization of MEK6 mRNA by NAT10. CONCLUSIONS We have identified a human-specific lncRNA (MEK6-AS1) with position information in the genomic database but has not been extensively reported. We demonstrated that MEK6-AS1 as a novel lncRNA involved in adipogenic differentiation and adipogenesis, fatty acid metabolism, and osteogenic differentiation. We found that MEK6-AS1 may exert its effect by enhancing MEK6 mRNA stability through NAT10. Our study may provide insights into implication of lncRNAs in stem cell biology and offer a new potential therapeutic target for the prevention and treatment of obesity and other related disease.
Collapse
Affiliation(s)
- Di Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Yunhua Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Xingyu Zhu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China
| | - Yanlei Yang
- Clinical Biobank, Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
13
|
Chaumeil J, Morey C. [X chromosome regulation and female functional specificities: Are two Xs better than one?]. Med Sci (Paris) 2024; 40:935-946. [PMID: 39705564 DOI: 10.1051/medsci/2024179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
What if the presence of two X chromosomes confers functional specificities on female cells and contributes to the different susceptibilites of men and women to certain diseases? One of the X chromosomes is randomly silenced in each female cell from the embryonic stage, theoretically making the sexes equal. This silencing of the X chromosome is a unique epigenetic process, affecting an entire chromosome and resulting in mosaic expression of X-linked genes throughout the body. However, some genes escape this process and X-inactivation appears to be somewhat labile in certain cell types. What are the physiological implications of these observations? This question is beginning to be explored, particularly in the immune and nervous systems, where several pathologies have sexual bias.
Collapse
Affiliation(s)
- Julie Chaumeil
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Céline Morey
- UMR7216 - Épigénétique et destin cellulaire, CNRS, Université Paris Cité, Paris, France
| |
Collapse
|
14
|
Naciri I, Liang M, Yang Y, Karner H, Lin B, De Lourdes Andrade Ludena M, Hanse EA, Lebron A, Razorenova OV, Nicholas D, Kong M, Sun S. Loss of XIST lncRNA unlocks stemness and cellular plasticity in ovarian cancer. Proc Natl Acad Sci U S A 2024; 121:e2418096121. [PMID: 39546568 PMCID: PMC11588085 DOI: 10.1073/pnas.2418096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Plasticity, a key hallmark of cancer, enables cells to transition into different states, driving tumor heterogeneity. This cellular plasticity is associated with cancer progression, treatment resistance, and relapse. Cancer stem cells (CSCs) play a central role in this process, yet the molecular factors underlying cancer cell stemness remain poorly understood. In this study, we explored the role of XIST (X-inactive specific transcript) long noncoding RNA in ovarian cancer stemness and plasticity through in silico and in vitro analyses. We found that XIST is significantly down-regulated in ovarian tumors, with low XIST expression linked to a higher stemness index and lower overall survival. Knocking down XIST in ovarian cancer cells enhanced stemness, particularly increasing mesenchymal-like CSCs, and under hypoxic conditions, it promoted epithelial-like CSC markers. Our findings suggest that XIST loss leads to CSC enrichment and cellular plasticity in ovarian cancer, pointing to potential therapeutic targets for patients with low XIST expression.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Minzhi Liang
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Heather Karner
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Benjamin Lin
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Maria De Lourdes Andrade Ludena
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Eric A. Hanse
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Alfredo Lebron
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Olga V. Razorenova
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Dequina Nicholas
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| | - Sha Sun
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697
| |
Collapse
|
15
|
Achom M, Sadagopan A, Bao C, McBride F, Li J, Konda P, Tourdot RW, Xu Q, Nakhoul M, Gallant DS, Ahmed UA, O'Toole J, Freeman D, Lee GSM, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for sex differences in Xp11 translocation renal cell carcinoma. Cell 2024; 187:5735-5752.e25. [PMID: 39168126 PMCID: PMC11455617 DOI: 10.1016/j.cell.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Richard W Tourdot
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jillian O'Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Cecalev D, Viçoso B, Galupa R. Compensation of gene dosage on the mammalian X. Development 2024; 151:dev202891. [PMID: 39140247 PMCID: PMC11361640 DOI: 10.1242/dev.202891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.
Collapse
Affiliation(s)
- Daniela Cecalev
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Beatriz Viçoso
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Rafael Galupa
- Molecular, Cellular and Developmental Biology (MCD) Unit, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| |
Collapse
|
17
|
Haghani V, Goyal A, Zhang A, Sharifi O, Mariano N, Yasui D, Korf I, LaSalle J. Improving rigor and reproducibility in chromatin immunoprecipitation assay data analysis workflows with Rocketchip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602975. [PMID: 39071274 PMCID: PMC11275724 DOI: 10.1101/2024.07.10.602975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
As genome sequencing technologies advance, the accumulation of sequencing data in public databases necessitates more robust and adaptable data analysis workflows. Here, we present Rocketchip, which aims to offer a solution to this problem by allowing researchers to easily compare and swap out different components of ChIP-seq, CUT&RUN, and CUT&Tag data analysis, thereby facilitating the identification of reliable analysis methodologies. Rocketchip enables researchers to efficiently process large datasets while ensuring reproducibility and allowing for the reanalysis of existing data. By supporting comparative analyses across different datasets and methodologies, Rocketchip contributes to the rigor and reproducibility of scientific findings. Furthermore, Rocketchip serves as a platform for benchmarking algorithms, allowing researchers to identify the most accurate and efficient analytical approaches to be applied to their data. In emphasizing reproducibility and adaptability, Rocketchip represents a significant step towards fostering robust scientific research practices.
Collapse
Affiliation(s)
- Viktoria Haghani
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Aditi Goyal
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Alan Zhang
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Osman Sharifi
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Natasha Mariano
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Dag Yasui
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Ian Korf
- Department of Molecular and Cellular Biology, Genome Center, University of California, Davis. Davis, CA, USA
| | - Janine LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, University of California, Davis. Davis, CA, USA
| |
Collapse
|
18
|
Naciri I, Andrade-Ludena MD, Yang Y, Kong M, Sun S. An emerging link between lncRNAs and cancer sex dimorphism. Hum Genet 2024; 143:831-842. [PMID: 38095719 PMCID: PMC11176266 DOI: 10.1007/s00439-023-02620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/05/2023] [Indexed: 06/15/2024]
Abstract
The prevalence and progression of cancer differ in males and females, and thus, sexual dimorphism in tumor development directly impacts clinical research and medicine. Long non-coding RNAs (lncRNAs) are increasingly recognized as important players in gene expression and various cellular processes, including cancer development and progression. In recent years, lncRNAs have been implicated in the differences observed in cancer incidence, progression, and treatment responses between men and women. Here, we present a brief overview of the current knowledge regarding the role of lncRNAs in cancer sex dimorphism, focusing on how they affect epigenetic processes in male and female mammalian cells. We discuss the potential mechanisms by which lncRNAs may contribute to sex differences in cancer, including transcriptional control of sex chromosomes, hormonal signaling pathways, and immune responses. We also propose strategies for studying lncRNA functions in cancer sex dimorphism. Furthermore, we emphasize the importance of considering sex as a biological variable in cancer research and the need to investigate the role lncRNAs play in mediating these sex differences. In summary, we highlight the emerging link between lncRNAs and cancer sex dimorphism and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Maria D Andrade-Ludena
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Gu S, Huang X, Luo S, Liu Y, Khoong Y, Liang H, Tu L, Xu R, Yang E, Zhao Y, Yao M, Zan T. Targeting the nuclear long noncoding transcript LSP1P5 abrogates extracellular matrix deposition by trans-upregulating CEBPA in keloids. Mol Ther 2024; 32:1984-1999. [PMID: 38553852 PMCID: PMC11184311 DOI: 10.1016/j.ymthe.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 06/09/2024] Open
Abstract
Keloids are characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix (ECM) and are a major global health care burden among cutaneous diseases. However, the function of long noncoding RNA (lncRNA)-mediated ECM remodeling during the pathogenesis of keloids is still unclear. Herein, we identified a long noncoding transcript, namely, lymphocyte-specific protein 1 pseudogene 5 (LSP1P5), that modulates ECM component deposition in keloids. First, high-throughput transcriptome analysis showed that LSP1P5 was selectively upregulated in keloids and correlated with more severe disease in a clinical keloid cohort. Therapeutically, the attenuation of LSP1P5 significantly decreased the expression of ECM markers (COL1, COL3, and FN1) both in vitro and in vivo. Intriguingly, an antifibrotic gene, CCAAT enhancer binding protein alpha (CEBPA), is a functional downstream candidate of LSP1P5. Mechanistically, LSP1P5 represses CEBPA expression by hijacking Suppressor of Zeste 12 to the promoter of CEBPA, thereby enhancing the polycomb repressive complex 2-mediated H3K27me3 and changing the chromosomal opening status of CEBPA. Taken together, these findings indicate that targeting LSP1P5 abrogates fibrosis in keloids through epigenetic regulation of CEBPA, revealing a novel antifibrotic therapeutic strategy that bridges our current understanding of lncRNA regulation, histone modification and ECM remodeling in keloids.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Liying Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Ruoqing Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - En Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China.
| |
Collapse
|
20
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
22
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
23
|
Hauth A, Panten J, Kneuss E, Picard C, Servant N, Rall I, Pérez-Rico YA, Clerquin L, Servaas N, Villacorta L, Jung F, Luong C, Chang HY, Zaugg JB, Stegle O, Odom DT, Loda A, Heard E. Escape from X inactivation is directly modulated by levels of Xist non-coding RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581559. [PMID: 38559194 PMCID: PMC10979913 DOI: 10.1101/2024.02.22.581559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.
Collapse
Affiliation(s)
- Antonia Hauth
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Germany
| | - Jasper Panten
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - Emma Kneuss
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Christel Picard
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Present address: Institute of Molecular Genetics of Montpellier University of Montpellier, CNRS, 34090 Montpellier, France
| | - Nicolas Servant
- Bioinformatics and Computational Systems Biology of Cancer, INSERM U900, Paris 75005, France
| | - Isabell Rall
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Present address: Institute of Human Biology (IHB), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Yuvia A Pérez-Rico
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Lena Clerquin
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Nila Servaas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory, Genomics Core Facility, 69117 Heidelberg, Germany
| | - Ferris Jung
- European Molecular Biology Laboratory, Genomics Core Facility, 69117 Heidelberg, Germany
| | - Christy Luong
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
- Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Agnese Loda
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Directors' Research, 69117 Heidelberg, Germany
- Collège de France, Paris 75005, France
| |
Collapse
|
24
|
Dai Z, Wang S, Guo X, Wang Y, Yin H, Tan J, Mu C, Sun S, Liu H, Yang F. Gender dimorphism in hepatocarcinogenesis-DNA methylation modification regulated X-chromosome inactivation escape molecule XIST. Clin Transl Med 2023; 13:e1518. [PMID: 38148658 PMCID: PMC10751514 DOI: 10.1002/ctm2.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Sex disparities constitute a significant issue in hepatocellular carcinoma (HCC). However, the mechanism of gender dimorphism in HCC is still not completely understood. METHODS 5-Hydroxymethylcytosine (5hmC)-Seal technology was utilised to detect the global 5hmC levels from four female and four male HCC samples. Methylation of XIST was detected by Sequenom MassARRAY methylation profiling between HCC tissues (T) and adjacent normal liver tissues (L). The role of Tet methylcytosine dioxygenase 2 (TET2) was investigated using diethylnitrosamine (DEN)-administered Tet2-/- female mice, which regulated XIST in hepatocarcinogenesis. All statistical analyses were carried out by GraphPad Prism 9.0 and SPSS version 19.0 software. RESULTS The results demonstrated that the numbers of 5hmC reads in the first exon of XIST from female HCC tissues (T) were remarkably lower than that in female adjacent normal liver tissues (L). Correspondingly, DNA methylation level of XIST first exon region was significantly increased in female T than in L. By contrast, no significant change was observed in male HCC patients. Compared to L, the expression of XIST in T was also significantly downregulated. Female patients with higher XIST in HCC had a higher overall survival (OS) and more extended recurrence-free survival (RFS). Moreover, TET2 can interact with YY1 binding to the promoter region of XIST and maintain the hypomethylation state of XIST. In addition, DEN-administered Tet2-/- mice developed more tumours than controls in female mice. CONCLUSIONS Our study provided that YY1 and TET2 could interact to form protein complexes binding to the promoter region of XIST, regulating the methylation level of XIST and then affecting the expression of XIST. This research will provide a new clue for studying sex disparities in hepatocarcinogenesis. HIGHLIGHTS XIST was significantly downregulated in HCC tissues and had gender disparity. Methylation levels in the XIST first exon were higher in female HCC tissues, but no significant change in male HCC patients. The TET2-YY1 complex regulate XIST expression in female hepatocytes. Other ways regulate XIST expression in male hepatocytes.
Collapse
Affiliation(s)
- Zhihui Dai
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Sijie Wang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Xinggang Guo
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Yuefan Wang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Haozan Yin
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Jian Tan
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Chenyang Mu
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Shu‐Han Sun
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
| | - Hui Liu
- Third Department of Hepatic SurgeryEastern Hepatobiliary Surgery Hospital, Naval Medical UniversityShanghaiChina
| | - Fu Yang
- Department of Medical GeneticsNaval Medical UniversityShanghaiChina
- Shanghai Key Laboratory of Medical BioprotectionShanghaiChina
- Key Laboratory of Biological Defense, Ministry of EducationShanghaiChina
| |
Collapse
|
25
|
Peeters SB, Posynick BJ, Brown CJ. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. EPIGENOMES 2023; 7:29. [PMID: 38131901 PMCID: PMC10742877 DOI: 10.3390/epigenomes7040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The silencing of all but one X chromosome in mammalian cells is a remarkable epigenetic process leading to near dosage equivalence in X-linked gene products between the sexes. However, equally remarkable is the ability of a subset of genes to continue to be expressed from the otherwise inactive X chromosome-in some cases constitutively, while other genes are variable between individuals, tissues or cells. In this review we discuss the advantages and disadvantages of the approaches that have been used to identify escapees. The identity of escapees provides important clues to mechanisms underlying escape from XCI, an arena of study now moving from correlation to functional studies. As most escapees show greater expression in females, the not-so-inactive X chromosome is a substantial contributor to sex differences in humans, and we highlight some examples of such impact.
Collapse
Affiliation(s)
| | | | - Carolyn J. Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
26
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Chalmers SB, van der Wal T, Fre S, Jonkers J. Fourteenth Annual ENBDC Workshop: Methods in Mammary Gland Biology and Breast Cancer. J Mammary Gland Biol Neoplasia 2023; 28:22. [PMID: 37801168 PMCID: PMC10558360 DOI: 10.1007/s10911-023-09549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The fourteenth annual workshop of the European Network for Breast Development and Cancer (ENBDC) on Methods in Mammary Gland Biology and Breast Cancer was held on April 26th - 29th in Weggis, Switzerland. For the first time, early career researchers organised and took part in an additional ECR workshop on the 26th of April, which was received with great enthusiasm. The topics of the main workshop included mammary branching and morphogenesis, novel experimental systems (model organisms), systemic influences on tumour progression and the tumour microenvironment. Novel and recent findings were shared across excellent oral and poster presentations.
Collapse
Affiliation(s)
| | - Tanne van der Wal
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Silvia Fre
- Department of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Lin S, Margueron R, Charafe-Jauffret E, Ginestier C. Disruption of lineage integrity as a precursor to breast tumor initiation. Trends Cell Biol 2023; 33:887-897. [PMID: 37061355 DOI: 10.1016/j.tcb.2023.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Increase in lineage infidelity and/or imbalance is frequently observed around the earliest stage of breast tumor initiation. In response to disruption of homeostasis, differentiated cells can partially lose their identity and gain cellular plasticity, a process involving epigenome landscape remodeling. This increase of cellular plasticity may promote the malignant transformation of breast tumors and fuel their heterogeneity. Here, we review recent studies that have yield insights into important regulators of lineage integrity and mechanisms that trigger mammary epithelial lineage derail, and evaluate their impacts on breast tumor development.
Collapse
Affiliation(s)
- Shuheng Lin
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, Sorbonne University, Paris, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univeristy, Epithelial Stem Cells and Cancer Laboratory, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| |
Collapse
|
29
|
Lin Y, Wu P, Guo L, Feng Q, Wang L, Lin X, Yang C, Liu N, Wen C, Li X, Ma X, Xue Y, Guan M. Prevalence of Diabetic Kidney Disease with Different Subtypes in Hospitalized Patients with Diabetes and Correlation Between eGFR and LncRNA XIST Expression in PBMCs. Diabetes Ther 2023; 14:1549-1561. [PMID: 37422842 PMCID: PMC10363095 DOI: 10.1007/s13300-023-01439-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) has become the leading cause of end-stage kidney disease (ESKD) in most countries. Recently, long noncoding RNA XIST has been found involved in the development of DKD. METHODS A total of 1184 hospitalized patients with diabetes were included and divided into four groups based on their estimated glomerular filtration rate (eGFR) and urinary albumin to creatinine ratio (UACR): normal control group (nDKD), DKD with normoalbuminuric and reduced eGFR (NA-DKD), DKD with albuminuria but without reduced eGFR (A-DKD), and DKD with albuminuria and reduced eGFR (Mixed), and then their clinical characteristics were analyzed. Peripheral blood mononuclear cells (PBMCs) of patients with DKD were isolated, and lncRNA XIST expression was detected by real-time quantitative PCR. RESULTS The prevalence of DKD in hospitalized patients with diabetes mellutus (DM) was 39.9%, and the prevalence of albuminuria and decreased eGFR was 36.6% and 16.2%, respectively. NA-DKD, A-DKD, and Mixed groups accounted for 23.7%, 3.3%, and 12.9%, respectively. Women with DKD had considerably lower levels of lncRNA XIST expression in their PBMCs compared to nDKD. There was a significant correlation between eGFR level and lncRNA XIST expression (R = 0.390, P = 0.036) as well as a negative correlation between HbA1c and lncRNA XIST expression (R = - 0.425, P = 0.027) in female patients with DKD. CONCLUSIONS Our study revealed that 39.9% of DM inpatients who were admitted to the hospital had DKD. Importantly, lncRNA XIST expression in PBMCs of female patients with DKD was significantly correlated with eGFR and HbA1c.
Collapse
Affiliation(s)
- Yingbei Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Peili Wu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Lei Guo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Qijian Feng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Xiaochun Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Chuyi Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Nannan Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Churan Wen
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Xuelin Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Xiaoqin Ma
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangdong, China.
| |
Collapse
|
30
|
Ruan L, Lei J, Yuan Y, Li H, Yang H, Wang J, Zhang Q. MIR31HG, a potential lncRNA in human cancers and non-cancers. Front Genet 2023; 14:1145454. [PMID: 37636269 PMCID: PMC10449471 DOI: 10.3389/fgene.2023.1145454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Long non-coding RNAs have recently attracted considerable attention due to their aberrant expression in human diseases. LncMIR31HG is a novel lncRNA that is abnormally expressed in multiple diseases and implicated in various stages of disease progression. A large proportion of recent studies have indicated that MIR31HG has biological functions by triggering various signalling pathways in the pathogenesis of human diseases, especially cancers. More importantly, the abnormal expression of MIR31HG makes it a potential biomarker in diagnosis and prognosis, as well as a promising target for treatments. This review aims to systematically summarize the gene polymorphism, expression profiles, biological roles, underlying mechanisms, and clinical applications of MIR31HG in human diseases.
Collapse
Affiliation(s)
- Luxi Ruan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Lei
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihang Yuan
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huizi Li
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyan Wang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quanan Zhang
- Department of Oncology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Achom M, Sadagopan A, Bao C, McBride F, Xu Q, Konda P, Tourdot RW, Li J, Nakhoul M, Gallant DS, Ahmed UA, O’Toole J, Freeman D, Mary Lee GS, Hecht JL, Kauffman EC, Einstein DJ, Choueiri TK, Zhang CZ, Viswanathan SR. A genetic basis for cancer sex differences revealed in Xp11 translocation renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552029. [PMID: 37577497 PMCID: PMC10418269 DOI: 10.1101/2023.08.04.552029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Xp11 translocation renal cell carcinoma (tRCC) is a female-predominant kidney cancer driven by translocations between the TFE3 gene on chromosome Xp11.2 and partner genes located on either chrX or on autosomes. The rearrangement processes that underlie TFE3 fusions, and whether they are linked to the female sex bias of this cancer, are largely unexplored. Moreover, whether oncogenic TFE3 fusions arise from both the active and inactive X chromosomes in females remains unknown. Here we address these questions by haplotype-specific analyses of whole-genome sequences of 29 tRCC samples from 15 patients and by re-analysis of 145 published tRCC whole-exome sequences. We show that TFE3 fusions universally arise as reciprocal translocations with minimal DNA loss or insertion at paired break ends. Strikingly, we observe a near exact 2:1 female:male ratio in TFE3 fusions arising via X:autosomal translocation (but not via X inversion), which accounts for the female predominance of tRCC. This 2:1 ratio is at least partially attributable to oncogenic fusions involving the inactive X chromosome and is accompanied by partial re-activation of silenced chrX genes on the rearranged chromosome. Our results highlight how somatic alterations involving the X chromosome place unique constraints on tumor initiation and exemplify how genetic rearrangements of the sex chromosomes can underlie cancer sex differences.
Collapse
Affiliation(s)
- Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Chunyang Bao
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Fiona McBride
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School; Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Richard W. Tourdot
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School; Boston, MA, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Maria Nakhoul
- Department of Informatics & Analytics, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Daniel S. Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Usman Ali Ahmed
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Jillian O’Toole
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Dory Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Jonathan L. Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center; Boston, MA, USA
| | - Eric C Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center; Buffalo, New York, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center; Boston, MA, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| |
Collapse
|
32
|
Tang Z, Liu L, Borlak J. Combined inhibition of histone deacetylase and cytidine deaminase improves epigenetic potency of decitabine in colorectal adenocarcinomas. Clin Epigenetics 2023; 15:89. [PMID: 37208732 DOI: 10.1186/s13148-023-01500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Targeting the epigenome of cancerous diseases represents an innovative approach, and the DNA methylation inhibitor decitabine is recommended for the treatment of hematological malignancies. Although epigenetic alterations are also common to solid tumors, the therapeutic efficacy of decitabine in colorectal adenocarcinomas (COAD) is unfavorable. Current research focuses on an identification of combination therapies either with chemotherapeutics or checkpoint inhibitors in modulating the tumor microenvironment. Here we report a series of molecular investigations to evaluate potency of decitabine, the histone deacetylase inhibitor PBA and the cytidine deaminase (CDA) inhibitor tetrahydrouridine (THU) in patient derived functional and p53 null colon cancer cell lines (CCCL). We focused on the inhibition of cell proliferation, the recovery of tumor suppressors and programmed cell death, and established clinical relevance by evaluating drug responsive genes among 270 COAD patients. Furthermore, we evaluated treatment responses based on CpG island density. RESULTS Decitabine caused marked repression of the DNMT1 protein. Conversely, PBA treatment of CCCL recovered acetylation of histone 3 lysine residues, and this enabled an open chromatin state. Unlike single decitabine treatment, the combined decitabine/PBA treatment caused > 95% inhibition of cell proliferation, prevented cell cycle progression especially in the S and G2-phase and induced programmed cell death. Decitabine and PBA differed in their ability to facilitate re-expression of genes localized on different chromosomes, and the combined decitabine/PBA treatment was most effective in the re-expression of 40 tumor suppressors and 13 genes typically silenced in cancer-associated genomic regions of COAD patients. Furthermore, this treatment repressed expression of 11 survival (anti-apoptotic) genes and augmented expression of X-chromosome inactivated genes, especially the lncRNA Xist to facilitate p53-mediated apoptosis. Pharmacological inhibition of CDA by THU or its gene knockdown prevented decitabine inactivation. Strikingly, PBA treatment recovered the expression of the decitabine drug-uptake transporter SLC15A1, thus enabling high tumor drug-loads. Finally, for 26 drug responsive genes we demonstrated improved survival in COAD patients. CONCLUSION The combined decitabine/PBA/THU drug treatment improved drug potency considerably, and given their existing regulatory approval, our findings merit prospective clinical trials for the triple combination in COAD patients.
Collapse
Affiliation(s)
- Zijiao Tang
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Lu Liu
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Lu J, Yang P, Yu L, Xie N, Wu Y, Li B. Identification of m7G-Related LncRNA Signature for Predicting Prognosis and Evaluating Tumor Immune Infiltration in Pancreatic Adenocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13101697. [PMID: 37238181 DOI: 10.3390/diagnostics13101697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
N7-Methylguanosine (m7G) modification holds significant importance in regulating posttranscriptional gene expression in epigenetics. Long non-coding RNAs (lncRNAs) have been demonstrated to play a crucial role in cancer progression. m7G-related lncRNA may be involved in the progression of pancreatic cancer (PC), although the underlying mechanism of regulation remains obscure. We obtained RNA sequence transcriptome data and relevant clinical information from the TCGA and GTEx databases. Univariate and multivariate Cox proportional risk analyses were performed to build a twelve-m7G-associated lncRNA risk model with prognostic value. The model was verified using receiver operating characteristic curve analysis and Kaplan-Meier analysis. The expression level of m7G-related lncRNAs in vitro was validated. Knockdown of SNHG8 increased the proliferation and migration of PC cells. Differentially expressed genes between high- and low-risk groups were identified for gene set enrichment analysis, immune infiltration, and potential drug exploration. We conducted an m7G-related lncRNA predictive risk model for PC patients. The model had independent prognostic significance and offered an exact survival prediction. The research provided us with better knowledge of the regulation of tumor-infiltrating lymphocytes in PC. The m7G-related lncRNA risk model may serve as a precise prognostic tool and indicate prospective therapeutic targets for PC patients.
Collapse
Affiliation(s)
- Jiawei Lu
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Pusheng Yang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lanting Yu
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ni Xie
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ying Wu
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
34
|
Ma Y, Zhu Y, Shang L, Qiu Y, Shen N, Wang J, Adam T, Wei W, Song Q, Li J, Wicha MS, Luo M. LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling. Oncogene 2023; 42:1419-1437. [PMID: 36922677 PMCID: PMC10154203 DOI: 10.1038/s41388-023-02652-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
Aberrant expression of XIST, a long noncoding RNA (lncRNA) initiating X chromosome inactivation (XCI) in early embryogenesis, is a common feature of breast cancer (BC). However, the roles of post-XCI XIST in breast carcinogenesis remain elusive. Here we identify XIST as a key regulator of breast cancer stem cells (CSCs), which exhibit aldehyde dehydrogenase positive (ALDH+) epithelial- (E) and CD24loCD44hi mesenchymal-like (M) phenotypes. XIST is variably expressed across the spectrum of BC subtypes, and doxycycline (DOX)-inducible knockdown (KD) of XIST markedly inhibits spheroid/colony forming capacity, tumor growth and tumor-initiating potential. This phenotype is attributed to impaired E-CSC in luminal and E- and M-CSC activities in triple-negative (TN) BC. Gene expression profiling unveils that XIST KD most significantly affects cytokine-cytokine receptor interactions, leading to markedly suppressed expression of proinflammatory cytokines IL-6 and IL-8 in ALDH- bulk BC cells. Exogenous IL-6, but not IL-8, rescues the reduced sphere-forming capacity and proportion of ALDH+ E-CSCs in luminal and TN BC upon XIST KD. XIST functions as a nuclear sponge for microRNA let-7a-2-3p to activate IL-6 production from ALDH- bulk BC cells, which acts in a paracrine fashion on ALDH+ E-CSCs that display elevated cell surface IL-6 receptor (IL6R) expression. This promotes CSC self-renewal via STAT3 activation and expression of key CSC factors including c-MYC, KLF4 and SOX9. Together, this study supports a novel role of XIST by derepressing let-7 controlled paracrine IL-6 proinflammatory signaling to promote CSC self-renewal.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongyou Zhu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Li Shang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA
| | - Yan Qiu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jonathan Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tiffany Adam
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Qingxuan Song
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jun Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
35
|
Pastor S, Wicinski J, Charafe-Jauffret E, Verhoeyen E, Guittard G, Ginestier C. Production of CRISPRi-engineered primary human mammary epithelial cells with baboon envelope pseudotyped lentiviral vectors. STAR Protoc 2023; 4:102055. [PMID: 36853718 PMCID: PMC9871349 DOI: 10.1016/j.xpro.2023.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary human mammary epithelial cells (pHMECs) are known to be remarkably difficult to engineer genetically. Here, we present a protocol for efficient transduction of pHMECs using a baboon retroviral envelope glycoprotein for pseudotyping of lentiviral vectors (BaEV-LVs). We describe the preparation of the BaEV-LVs, the isolation of pHMECs from breast samples, and the subsequent transduction of pHMECs. We also detail the use of CRISPRi technology to efficiently silence gene expression in pHMECs, which can then be used for functional assays. For complete details on the use and execution of this protocol, please refer to Richart et al. (2022).1.
Collapse
Affiliation(s)
- Sonia Pastor
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Immunity and Cancer Team, Marseille, France
| | - Julien Wicinski
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France
| | - Els Verhoeyen
- C3M, Université Côte d'Azur, Inserm, 06204 Nice, France; CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Geoffrey Guittard
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Immunity and Cancer Team, Marseille, France.
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Lab, Equipe Labellisée LIGUE Contre le Cancer, Marseille, France.
| |
Collapse
|
36
|
Mediat(or)ing adult stem cells by XIST. Nat Rev Mol Cell Biol 2022; 23:447. [PMID: 35668196 DOI: 10.1038/s41580-022-00502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Emerging roles and potential clinical applications of long non-coding RNAs in hepatocellular carcinoma. Biomed Pharmacother 2022; 153:113327. [PMID: 35779423 DOI: 10.1016/j.biopha.2022.113327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common highly malignant tumors in humans, as well as the leading cause of cancer-related death worldwide. Growing evidence has indicated that lncRNAs are implicated in different molecular mechanisms, including interactions with DNA, RNA, or protein, so that to regulate the gene expression at epigenetic, transcriptional, or posttranscriptional level. Moreover, the mechanism of action of lncRNA is closely related to its subcellular localization. An increasing number of studies have certified that lncRNA plays a significant biological function in the occurrence and development of hepatocellular carcinoma, such as involving in cell proliferation, metastasis, apoptosis, ferroptosis, autophagy, and reprogramming of energy metabolism. As a result, lncRNA has great potential as a novel biomarker for diagnosis or therapeutics of hepatocellular carcinoma. In this review, we highlight the correlation between subcellular localization of lncRNA and its mechanism of action, discuss the biological roles of lncRNA and the latest research advances in hepatocellular carcinoma, and emphasize the potential of lncRNA as a therapeutic target for advanced patients of hepatocellular carcinoma.
Collapse
|