1
|
Tan L, Xie XS, Lomvardas S. Genomic snowflakes: how the uniqueness of DNA folding allows us to smell the chemical universe. Curr Opin Genet Dev 2025; 92:102329. [PMID: 40107115 PMCID: PMC12068986 DOI: 10.1016/j.gde.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Olfactory receptor (OR) gene choice, the stable expression of one out of >2000 OR alleles by olfactory sensory neurons, constitutes a gene regulatory process that is driven by three-dimensional nuclear architecture. Moreover, the differentiation-dependent process that culminates in monogenic and monoallelic OR transcription represents a powerful demonstration of the rich mechanistic insight that single-cell genomics and multiomics can provide toward the understanding of a biological process. At this review, we describe the latest advances in the understanding of OR gene regulation and highlight important standing questions regarding the emerging specificity of ultra-long-range genomic interaction and the contribution of transcription and noncoding RNAs.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Neurobiology, Stanford University, Stanford, CA, USA. https://twitter.com/@tanlongzhi
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. https://twitter.com/@XieSunney
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Ojiro I, Kaneko R, Kashiwagi T, Terada I, Hoshino K, Terada Y, Ito K. Odorants have the potential to enhance the heterologous expression of human olfactory receptors: Evidence from ethyl 3-phenylglycidate and its effects on OR1A1, OR11G2, and OR2W1. Biochem Biophys Res Commun 2025; 752:151459. [PMID: 39952115 DOI: 10.1016/j.bbrc.2025.151459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Human olfactory receptors are G protein-coupled receptors that detect odorants and initiate olfactory signaling. Analyzing the olfactory receptor is important to elucidate the mechanism of olfaction. However, the expression of most human olfactory receptors in heterologous cell systems is challenging because of their poor stability and poor trafficking to the cell surface, which makes it difficult to analyze them. Here, we report a case in which an odorant enhanced the cell surface expression of human olfactory receptors. Using OR1A1 as a model olfactory receptor, we screened odorants and identified ethyl 3-phenylglycidate, which significantly increased both the total and cell surface expression levels of OR1A1 in a dose-dependent manner. This increase leads to an enhanced OR1A1 response to the agonist. Functional assays confirmed that ethyl 3-phenylglycidate acts as an agonist for OR1A1. Ethyl 3-phenylglycidate also enhances the expression of other human olfactory receptors, such as OR11G2 and OR2W1, which recognize ethyl 3-phenylglycidat as an agonist, like OR1A1. These findings indicate that ethyl 3-phenylglycidate stabilizes human olfactory receptors by binding to its ligand-binding pocket. Here, we showed the examples that treating human olfactory receptor-expressing cells with an odorant during the induction of hOR expression significantly increases the expression levels of the human olfactory receptor. Our findings provide a novel strategy to enhance the functional expression of human olfactory receptors, which will contribute to understanding of the functions of olfactory receptors as well as the mechanisms underlying olfactory perception.
Collapse
Affiliation(s)
- Ichie Ojiro
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Ryusei Kaneko
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Takahiro Kashiwagi
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishiyawata, Hiratsuka City, Kanagawa, 254-0073, Japan
| | - Ikuo Terada
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishiyawata, Hiratsuka City, Kanagawa, 254-0073, Japan
| | - Kunihide Hoshino
- Corporate Research and Development Division, Takasago International Corporation, 1-4-11 Nishiyawata, Hiratsuka City, Kanagawa, 254-0073, Japan
| | - Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
3
|
Buckley RC, Cooper M, Zhong L. Principal sensory experiences of forest visitors in four countries, for evidence‐based nature therapy. PEOPLE AND NATURE 2024; 6:2480-2493. [DOI: 10.1002/pan3.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
To advance the theoretical and practical underpinnings for nature therapies, i.e. nature exposure as a means to improve mental health, we compared the most memorable sensory experiences reported by forest tourists in Australia, Chile, China and Japan. Sensory experiences are a fundamental driver of the psychological effects of nature exposure.
We first reviewed relevant research from each country and language. We then conducted 100 on‐site interviews in Australia, 100 in Chile, and >500 in China, and compiled 1000 relevant social media posts from Japan. We analysed these datasets using directed‐content qualitative thematic analyses, both in original languages and in translated texts, and compared outcomes from each country.
The key sensory experiences are universal: sights of plant shapes and colours; sounds of birdsong, running water and rustling leaves; smells of flowers, trees, and earth; taste and temperature of clean air and water; and touch of bark and rocks. Participants gave detailed descriptions of each. These fine‐grained but widespread experiences are our principal finding.
These sensory experiences are at a scale that is broad enough to apply for prescriptible nature therapies in any forested region, but fine enough to be used in future quantitative research to test therapeutic designs, doses and durations. This distinguishes them from prior research, that is either too broad or too fine in scale for practical therapy design.
Future research aiming to maximise the mental health benefits of nature may not need to distinguish different countries and cultures, but may need to differentiate nature experiences more finely and precisely than in most therapy‐related research to date.
Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Ralf C. Buckley
- School of Environment and Sciences Griffith University Gold Coast Queensland Australia
| | - Mary‐Ann Cooper
- Faculty of Economics and Business Andrés Bello University Santiago Chile
| | - Linsheng Zhong
- Institute for Geographical Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| |
Collapse
|
4
|
de March CA, Ma N, Billesbølle CB, Tewari J, Llinas Del Torrent C, van der Velden WJC, Ojiro I, Takayama I, Faust B, Li L, Vaidehi N, Manglik A, Matsunami H. Engineered odorant receptors illuminate the basis of odour discrimination. Nature 2024; 635:499-508. [PMID: 39478229 DOI: 10.1038/s41586-024-08126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
How the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations remains poorly understood. Vertebrate animals perceive odours through G protein-coupled odorant receptors (ORs)1. In humans, around 400 ORs enable the sense of smell. The OR family comprises two main classes: class I ORs are tuned to carboxylic acids whereas class II ORs, which represent most of the human repertoire, respond to a wide variety of odorants2. A fundamental challenge in understanding olfaction is the inability to visualize odorant binding to ORs. Here we uncover molecular properties of odorant-OR interactions by using engineered ORs crafted using a consensus protein design strategy3. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modelling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled the determination of four cryogenic electron microscopy structures of distinct consORs with specific ligand recognition properties. The structure of a class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and generated a homology model of a related member of the human OR51 family with high predictive power. Structures of three class II consORs revealed distinct modes of odorant-binding and activation mechanisms between class I and class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas Del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ichie Ojiro
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ikumi Takayama
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Wang P, Li S, Li A. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. J Zhejiang Univ Sci B 2024; 25:824-840. [PMID: 39420520 PMCID: PMC11494158 DOI: 10.1631/jzus.b2400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 10/19/2024]
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
Collapse
Affiliation(s)
- Panke Wang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China
| | - An'an Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
6
|
Yang J, Shi P, Li Y, Zuo Y, Nie Y, Xu T, Peng D, An Z, Huang T, Zhang J, Zhang W, Xu Y, Tang Z, Li A, Xu J. Regulatory mechanisms orchestrating cellular diversity of Cd36+ olfactory sensory neurons revealed by scRNA-seq and scATAC-seq analysis. Cell Rep 2024; 43:114671. [PMID: 39215999 DOI: 10.1016/j.celrep.2024.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Recent discoveries have revealed remarkable complexity within olfactory sensory neurons (OSNs), including the existence of two OSN populations based on the expression of Cd36. However, the regulatory mechanisms governing this cellular diversity in the same cell type remain elusive. Here, we show the preferential expression of 79 olfactory receptors in Cd36+ OSNs and the anterior projection characteristics of Cd36+ OSNs, indicating the non-randomness of Cd36 expression. The integrated analysis of single-cell RNA sequencing (scRNA-seq) and scATAC-seq reveals that the differences in Cd36+/- OSNs occur at the immature OSN stage, with Mef2a and Hdac9 being important regulators of developmental divergence. We hypothesize that the absence of Hdac9 may affect the activation of Mef2a, leading to the up-regulation of Mef2a target genes, including teashirt zinc finger family member 1 (Tshz1), in the Cd36+ OSN lineage. We validate that Tshz1 directly promotes Cd36 expression through enhancer bindings. Our study unravels the intricate regulatory landscape and principles governing cellular diversity in the olfactory system.
Collapse
Affiliation(s)
- Jiawen Yang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yiheng Li
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yachao Zuo
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongjie Peng
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tingting Huang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingyi Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weixing Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yicong Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhongjie Tang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Forni PE, Yu CR. Two decades on: Special issue on olfaction celebrating Axel and Buck's Nobel Prize. Genesis 2024; 62:e23613. [PMID: 39054874 DOI: 10.1002/dvg.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Paolo E Forni
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, Albany, New York, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Cell Biology and Physiology, University of Kansas School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
8
|
Sieriebriennikov B, Sieber KR, Kolumba O, Mlejnek J, Jafari S, Yan H. Orco-dependent survival of odorant receptor neurons in ants. SCIENCE ADVANCES 2024; 10:eadk9000. [PMID: 38848359 PMCID: PMC11160473 DOI: 10.1126/sciadv.adk9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Olfaction is essential for complex social behavior in insects. To discriminate complex social cues, ants evolved an expanded number of odorant receptor (Or) genes. Mutations in the obligate odorant co-receptor gene orco lead to the loss of ~80% of the antennal lobe glomeruli in the jumping ant Harpegnathos saltator. However, the cellular mechanism remains unclear. Here, we demonstrate massive apoptosis of odorant receptor neurons (ORNs) in the mid to late stages of pupal development, possibly due to ER stress in the absence of Orco. Further bulk and single-nucleus transcriptome analysis shows that, although most orco-expressing ORNs die in orco mutants, a small proportion of them survive: They express ionotropic receptor (Ir) genes that form IR complexes. In addition, we found that some Or genes are expressed in mechanosensory neurons and nonneuronal cells, possibly due to leaky regulation from nearby non-Or genes. Our findings provide a comprehensive overview of ORN development and Or expression in H. saltator.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY 10003, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Olena Kolumba
- Department of Biology, New York University, New York, NY 10003, USA
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Nakashima A, Takeuchi H. Roles of odorant receptors during olfactory glomerular map formation. Genesis 2024; 62:e23610. [PMID: 38874301 DOI: 10.1002/dvg.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
11
|
van Heyningen V. Stochasticity in genetics and gene regulation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230476. [PMID: 38432316 PMCID: PMC10909507 DOI: 10.1098/rstb.2023.0476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 03/05/2024] Open
Abstract
Development from fertilized egg to functioning multi-cellular organism requires precision. There is no precision, and often no survival, without plasticity. Plasticity is conferred partly by stochastic variation, present inherently in all biological systems. Gene expression levels fluctuate ubiquitously through transcription, alternative splicing, translation and turnover. Small differences in gene expression are exploited to trigger early differentiation, conferring distinct function on selected individual cells and setting in motion regulatory interactions. Non-selected cells then acquire new functions along the spatio-temporal developmental trajectory. The differentiation process has many stochastic components. Meiotic segregation, mitochondrial partitioning, X-inactivation and the dynamic DNA binding of transcription factor assemblies-all exhibit randomness. Non-random X-inactivation generally signals deleterious X-linked mutations. Correct neural wiring, such as retina to brain, arises through repeated confirmatory activity of connections made randomly. In immune system development, both B-cell antibody generation and the emergence of balanced T-cell categories begin through stochastic trial and error followed by functional selection. Aberrant selection processes lead to immune dysfunction. DNA sequence variants also arise through stochastic events: some involving environmental fluctuation (radiation or presence of pollutants), or genetic repair system malfunction. The phenotypic outcome of mutations is also fluid. Mutations may be advantageous in some circumstances, deleterious in others. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
12
|
Chen Y, McDonald JA. Collective cell migration relies on PPP1R15-mediated regulation of the endoplasmic reticulum stress response. Curr Biol 2024; 34:1390-1402.e4. [PMID: 38428416 PMCID: PMC11003853 DOI: 10.1016/j.cub.2024.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.
Collapse
Affiliation(s)
- Yujun Chen
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
13
|
Iijima Y, Miki R, Takasugi N, Fujimura M, Uehara T. Characterization of pathological changes in the olfactory system of mice exposed to methylmercury. Arch Toxicol 2024; 98:1163-1175. [PMID: 38367039 PMCID: PMC10944439 DOI: 10.1007/s00204-024-03682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Methylmercury (MeHg) is a well-known environmental neurotoxicant that causes severe brain disorders such as Minamata disease. Although some patients with Minamata disease develop olfactory dysfunction, the underlying pathomechanism is largely unknown. We examined the effects of MeHg on the olfactory system using a model of MeHg poisoning in which mice were administered 30 ppm MeHg in drinking water for 8 weeks. Mice exposed to MeHg displayed significant mercury accumulation in the olfactory pathway, including the nasal mucosa, olfactory bulb, and olfactory cortex. The olfactory epithelium was partially atrophied, and olfactory sensory neurons were diminished. The olfactory bulb exhibited an increase in apoptotic cells, hypertrophic astrocytes, and amoeboid microglia, mainly in the granular cell layer. Neuronal cell death was observed in the olfactory cortex, particularly in the ventral tenia tecta. Neuronal cell death was also remarkable in higher-order areas such as the orbitofrontal cortex. Correlation analysis showed that neuronal loss in the olfactory cortex was strongly correlated with the plasma mercury concentration. Our results indicate that MeHg is an olfactory toxicant that damages the central regions involved in odor perception. The model described herein is useful for analyzing the mechanisms and treatments of olfactory dysfunction in MeHg-intoxicated patients.
Collapse
Affiliation(s)
- Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Ryohei Miki
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan
| | - Masatake Fujimura
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto, 867‑0008, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700‑8530, Japan.
| |
Collapse
|
14
|
Yusuf N, Monahan K. Epigenetic programming of stochastic olfactory receptor choice. Genesis 2024; 62:e23593. [PMID: 38562011 PMCID: PMC11003729 DOI: 10.1002/dvg.23593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.
Collapse
Affiliation(s)
- Nusrath Yusuf
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Kevin Monahan
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Raja R, Dumontier E, Phen A, Cloutier JF. Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development. Genesis 2024; 62:e23594. [PMID: 38590146 DOI: 10.1002/dvg.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.
Collapse
Affiliation(s)
- Reesha Raja
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Emilie Dumontier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Alina Phen
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Jean-François Cloutier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
16
|
Ishii C, Nakano H, Higashiseto R, Ooki Y, Umemura M, Takahashi S, Takahashi Y. Nescient helix-loop-helix 1 (Nhlh1) is a novel activating transcription factor 5 (ATF5) target gene in olfactory and vomeronasal sensory neurons in mice. Cell Tissue Res 2024; 396:85-94. [PMID: 38388750 DOI: 10.1007/s00441-024-03871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Activating transcription factor 5 (ATF5) is a transcription factor that belongs to the cAMP-response element-binding protein/ATF family and is essential for the differentiation and survival of sensory neurons in mouse olfactory organs. However, transcriptional target genes for ATF5 have yet to be identified. In the present study, chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) experiments were performed to verify ATF5 target genes in the main olfactory epithelium and vomeronasal organ in the postnatal pups. ChIP-qPCR was conducted using hemagglutinin (HA)-tagged ATF5 knock-in olfactory organs. The results obtained demonstrated that ATF5-HA fusion proteins bound to the CCAAT/enhancer-binding protein-ATF response element (CARE) site in the enhancer region of nescient helix-loop-helix 1 (Nhlh1), a transcription factor expressed in differentiating olfactory and vomeronasal sensory neurons. Nhlh1 mRNA expression was downregulated in ATF5-deficient (ATF5-/-) olfactory organs. The LIM/homeobox protein transcription factor Lhx2 co-localized with ATF5 in the nuclei of olfactory and vomeronasal sensory neurons and bound to the homeodomain site proximal to the CARE site in the Nhlh1 gene. The CARE region of the Nhlh1 gene was enriched by the active enhancer marker, acetyl-histone H3 (Lys27). The present study identified Nhlh1 as a novel target gene for ATF5 in murine olfactory organs. ATF5 may upregulate Nhlh1 expression in concert with Lhx2, thereby promoting the differentiation of olfactory and vomeronasal sensory neurons.
Collapse
Affiliation(s)
- Chiharu Ishii
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruo Nakano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Riko Higashiseto
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yusaku Ooki
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shigeru Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
17
|
Savage TM, Fortson KT, de Los Santos-Alexis K, Oliveras-Alsina A, Rouanne M, Rae SS, Gamarra JR, Shayya H, Kornberg A, Cavero R, Li F, Han A, Haeusler RA, Adam J, Schwabe RF, Arpaia N. Amphiregulin from regulatory T cells promotes liver fibrosis and insulin resistance in non-alcoholic steatohepatitis. Immunity 2024; 57:303-318.e6. [PMID: 38309273 PMCID: PMC10922825 DOI: 10.1016/j.immuni.2024.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Production of amphiregulin (Areg) by regulatory T (Treg) cells promotes repair after acute tissue injury. Here, we examined the function of Treg cells in non-alcoholic steatohepatitis (NASH), a setting of chronic liver injury. Areg-producing Treg cells were enriched in the livers of mice and humans with NASH. Deletion of Areg in Treg cells, but not in myeloid cells, reduced NASH-induced liver fibrosis. Chronic liver damage induced transcriptional changes associated with Treg cell activation. Mechanistically, Treg cell-derived Areg activated pro-fibrotic transcriptional programs in hepatic stellate cells via epidermal growth factor receptor (EGFR) signaling. Deletion of Areg in Treg cells protected mice from NASH-dependent glucose intolerance, which also was dependent on EGFR signaling on hepatic stellate cells. Areg from Treg cells promoted hepatocyte gluconeogenesis through hepatocyte detection of hepatic stellate cell-derived interleukin-6. Our findings reveal a maladaptive role for Treg cell-mediated tissue repair functions in chronic liver disease and link liver damage to NASH-dependent glucose intolerance.
Collapse
Affiliation(s)
- Thomas M Savage
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Katherine T Fortson
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | | | | | - Mathieu Rouanne
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Sarah S Rae
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | | | - Hani Shayya
- Mortimer B. Zuckerman Mind, and Brain and Behavior Institute, Columbia University, New York, NY, USA
| | - Adam Kornberg
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA; Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Renzo Cavero
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Arnold Han
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA; Columbia Center for Translational Immunology, Columbia University, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Julien Adam
- Pathology Department, Hopital Paris Saint-Joseph, Paris, France; INSERM U1186, Gustave Roussy, Villejuif, France
| | | | - Nicholas Arpaia
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Pourmorady AD, Bashkirova EV, Chiariello AM, Belagzhal H, Kodra A, Duffié R, Kahiapo J, Monahan K, Pulupa J, Schieren I, Osterhoudt A, Dekker J, Nicodemi M, Lomvardas S. RNA-mediated symmetry breaking enables singular olfactory receptor choice. Nature 2024; 625:181-188. [PMID: 38123679 PMCID: PMC10765522 DOI: 10.1038/s41586-023-06845-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Olfactory receptor (OR) choice provides an extreme example of allelic competition for transcriptional dominance, where every olfactory neuron stably transcribes one of approximately 2,000 or more OR alleles1,2. OR gene choice is mediated by a multichromosomal enhancer hub that activates transcription at a single OR3,4, followed by OR-translation-dependent feedback that stabilizes this choice5,6. Here, using single-cell genomics, we show formation of many competing hubs with variable enhancer composition, only one of which retains euchromatic features and transcriptional competence. Furthermore, we provide evidence that OR transcription recruits enhancers and reinforces enhancer hub activity locally, whereas OR RNA inhibits transcription of competing ORs over distance, promoting transition to transcriptional singularity. Whereas OR transcription is sufficient to break the symmetry between equipotent enhancer hubs, OR translation stabilizes transcription at the prevailing hub, indicating that there may be sequential non-coding and coding mechanisms that are implemented by OR alleles for transcriptional prevalence. We propose that coding OR mRNAs possess non-coding functions that influence nuclear architecture, enhance their own transcription and inhibit transcription from their competitors, with generalizable implications for probabilistic cell fate decisions.
Collapse
Affiliation(s)
- Ariel D Pourmorady
- Vagelos College of Physicians and Surgeons, Columbia University New York, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Elizaveta V Bashkirova
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Andrea M Chiariello
- Department of Physics 'Ettore Pancini', University of Naples, and INFN, Napoli, Italy
| | - Houda Belagzhal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albana Kodra
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Rachel Duffié
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Jerome Kahiapo
- Department of Molecular Biology & Biochemistry, Rutgers School of Arts and Sciences, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Kevin Monahan
- Department of Molecular Biology & Biochemistry, Rutgers School of Arts and Sciences, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Joan Pulupa
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Ira Schieren
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Alexa Osterhoudt
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mario Nicodemi
- Department of Physics 'Ettore Pancini', University of Naples, and INFN, Napoli, Italy
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
19
|
de March CA, Ma N, Billesbølle CB, Tewari J, del Torrent CL, van der Velden WJC, Ojiro I, Takayama I, Faust B, Li L, Vaidehi N, Manglik A, Matsunami H. Engineered odorant receptors illuminate structural principles of odor discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567230. [PMID: 38014344 PMCID: PMC10680712 DOI: 10.1101/2023.11.16.567230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A central challenge in olfaction is understanding how the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations. Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans, ~400 ORs enable the sense of smell. The OR family is composed of two major classes: Class I ORs are tuned to carboxylic acids while Class II ORs, representing the vast majority of the human repertoire, respond to a wide variety of odorants. How ORs recognize chemically diverse odorants remains poorly understood. A fundamental bottleneck is the inability to visualize odorant binding to ORs. Here, we uncover fundamental molecular properties of odorant-OR interactions by employing engineered ORs crafted using a consensus protein design strategy. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modeling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled four cryoEM structures of distinct consORs with unique ligand recognition properties. The structure of a Class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and yielded a homology model of a related member of the human OR51 family with high predictive power. Structures of three Class II consORs revealed distinct modes of odorant-binding and activation mechanisms between Class I and Class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
Collapse
Affiliation(s)
- Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gifsur- Yvette, 91190, France
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Wijnand J. C. van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ichie Ojiro
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ikumi Takayama
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Wang Y, Drum DL, Sun R, Zhang Y, Chen F, Sun F, Dal E, Yu L, Jia J, Arya S, Jia L, Fan S, Isakoff SJ, Kehlmann AM, Dotti G, Liu F, Zheng H, Ferrone CR, Taghian AG, DeLeo AB, Ventin M, Cattaneo G, Li Y, Jounaidi Y, Huang P, Maccalli C, Zhang H, Wang C, Yang J, Boland GM, Sadreyev RI, Wong L, Ferrone S, Wang X. Stressed target cancer cells drive nongenetic reprogramming of CAR T cells and solid tumor microenvironment. Nat Commun 2023; 14:5727. [PMID: 37714830 PMCID: PMC10504259 DOI: 10.1038/s41467-023-41282-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.
Collapse
Affiliation(s)
- Yufeng Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - David L Drum
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruochuan Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yida Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Chen
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fengfei Sun
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Dal
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ling Yu
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jingyu Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahrzad Arya
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lin Jia
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Song Fan
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven J Isakoff
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Allison M Kehlmann
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Fubao Liu
- Department of Hepatobiliary & Pancreatic Surgery and Liver Transplantation, Anhui Medical University, Hefei, Anhui, China
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alphonse G Taghian
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert B DeLeo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Ventin
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giulia Cattaneo
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yongxiang Li
- Department of Gastrointestinal Surgery and General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Hanyu Zhang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jibing Yang
- Center for Comparative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - LaiPing Wong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedics, Massachusetts General Hospital, Boston, MA, USA
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Kim SJ. Beyond Protein Folding: Exploring the Role of Unfolded Protein Response in Axon Targeting. Mol Cells 2023; 46:348-350. [PMID: 37288484 PMCID: PMC10258457 DOI: 10.14348/molcells.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Affiliation(s)
- Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
22
|
Billesbølle CB, de March CA, van der Velden WJC, Ma N, Tewari J, Del Torrent CL, Li L, Faust B, Vaidehi N, Matsunami H, Manglik A. Structural basis of odorant recognition by a human odorant receptor. Nature 2023; 615:742-749. [PMID: 36922591 PMCID: PMC10580732 DOI: 10.1038/s41586-023-05798-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
Our sense of smell enables us to navigate a vast space of chemically diverse odour molecules. This task is accomplished by the combinatorial activation of approximately 400 odorant G protein-coupled receptors encoded in the human genome1-3. How odorants are recognized by odorant receptors remains unclear. Here we provide mechanistic insight into how an odorant binds to a human odorant receptor. Using cryo-electron microscopy, we determined the structure of the active human odorant receptor OR51E2 bound to the fatty acid propionate. Propionate is bound within an occluded pocket in OR51E2 and makes specific contacts critical to receptor activation. Mutation of the odorant-binding pocket in OR51E2 alters the recognition spectrum for fatty acids of varying chain length, suggesting that odorant selectivity is controlled by tight packing interactions between an odorant and an odorant receptor. Molecular dynamics simulations demonstrate that propionate-induced conformational changes in extracellular loop 3 activate OR51E2. Together, our studies provide a high-resolution view of chemical recognition of an odorant by a vertebrate odorant receptor, providing insight into how this large family of G protein-coupled receptors enables our olfactory sense.
Collapse
Affiliation(s)
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas Del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, Barcelona, Spain
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
23
|
Wang Q, Sengoku T, Titlow WB, Strange JL, McClintock TS. Dissociation of Mouse Olfactory Mucosae for Fluorescence-Activated Cell Sorting of Olfactory Sensory Neurons. Methods Mol Biol 2023; 2710:111-120. [PMID: 37688728 DOI: 10.1007/978-1-0716-3425-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
An increasing diversity of techniques investigating the biology of specific cell types and individual cells have elevated the importance of dissociation of viable cells from living tissues. Here we describe a method for the dissociation of single cells from samples of adult mouse olfactory mucosae, with an emphasis on maximizing yield of viable single cells from fluorescence-activated cell sorting. Yields are typically in the range of 80,000-150,000 viable cells per adult mouse.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Tomoko Sengoku
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - William B Titlow
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Jennifer L Strange
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|