1
|
Gu Y, Xu J, Zhao Y, Zhang P, Zhang J, Yang W, Han X, Jin H, Zhang W, Wang Y, Yang Y, Shen X. Functional characterization of Mrr-family nuclease SLL1429 involved in MMC and phage resistance. Microbiol Res 2025; 296:128123. [PMID: 40037110 DOI: 10.1016/j.micres.2025.128123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Cyanobacteria, autotrophic prokaryotes capable of oxygenic photosynthesis, are important atmospheric carbon fixers of Earth and potential alternatives for producing green fuels and chemicals. However, they face significant environmental stress during growth, such as Ultraviolet radiation, salt, and cyanophage exposure, which can impact their physiology and growth. Nucleases, such as Mrr (Methylated adenine Recognition and Restriction) endonuclease, play key roles in stress response, DNA repair, or anti-phage functions, but these in cyanobacteria remains underexplored. The SLL1429 protein with Mrr/NA-iREase1 domain was predicted to play a role as a nuclease in stress resistance in cyanobacteria. In this study, our findings indicate that SLL1429 is a PD-(D/E)XK superfamily nuclease with DNase activities towards various DNA structures, including dsDNA, Holliday junction, Flap and Flap derivatives. The nuclease activity of SLL1429 is dependent on the Mrr domain. However, unlike classic Mrr, SLL1429 recognizes and cleaves both methylated and unmethylated DNA substrates. Notably, SLL1429 plays a role in Mitomycin C (MMC) resistance in Synechocystis sp. PCC6803 and anti-phage activity in E. coli. In view of the above, SLL1429 of Synechocystis sp. PCC6803 has been identified as a new stress-resistant nuclease. This discovery provides novel perspectives on the mechanism of environmental adaption in cyanobacteria and lays a theoretical foundation for further exploration of "microbial cell factory".
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayu Zhang
- Suzhou XinBio Co., Ltd, Suzhou, Jiangsu 215299, China
| | - Wenguang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Li H, Tan Y, Basu D, Corbett K, Zhang D. Unveiling the multifaceted domain polymorphism of the Menshen antiphage system. Nucleic Acids Res 2025; 53:gkaf357. [PMID: 40347139 PMCID: PMC12065111 DOI: 10.1093/nar/gkaf357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/12/2025] Open
Abstract
Recent advances have significantly enriched our understanding of complex bacteria-phage interactions. To date, over one hundred bacterial antiphage systems have been identified, yet the mechanisms of many, including the recently discovered Menshen system, remain elusive. We employed comparative genomics and protein bioinformatics for a systematic investigation of the Menshen system, focusing on its organization, structure, function, and evolution. By delineating six primary domain determinants and predicting their functions, we propose that the three components (NsnA-B-C) of Menshen likely act as sensor, transducer, and effector modules, respectively. Notably, we unveil remarkable polymorphism in domain composition within both NsnA and NsnC. NsnA proteins universally share ParB-DUF262 and DNA-binding ParBDB domains, and often include additional DNA-binding modules at their N-termini. NsnC effectors exhibit diverse inactive PIN (inPIN)-like domains for target recognition in their N-termini, and multiple nuclease domains for toxicity in their C-termini. We demonstrate that this multifaceted polymorphism results from the independent integration of various sensor domains into NsnA, alongside constant shuffling and diversification of the inPIN and effector domains in NsnC. These findings not only elucidate the functional diversity and inter-subunit interactions of the Menshen system, but also underscore its exceptional capacity for adaptability and versatility in the ongoing arms race between bacteria and phages.
Collapse
Affiliation(s)
- Huan Li
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, United States
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, United States
| | - Dwaipayan Basu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, United States
- Program of Bioinformatics and Computational Biology, School of Science and Engineering, Saint Louis University, Saint Louis, MO 63103, United States
| |
Collapse
|
3
|
Hör J. Advancing RNA phage biology through meta-omics. Nucleic Acids Res 2025; 53:gkaf314. [PMID: 40263712 PMCID: PMC12014289 DOI: 10.1093/nar/gkaf314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Bacteriophages with RNA genomes are among the simplest biological entities on Earth. Since their discovery in the 1960s, they have been used as important models to understand the principal processes of life, including translation and the genetic code. While RNA phages were generally thought of as rare oddities in nature, meta-omics methods are rapidly changing this simplistic view by studying diverse biomes with unprecedented resolution. Metatranscriptomics dramatically expanded the number of known RNA phages from tens to tens of thousands, revealed their widespread abundance, and discovered several new families of potential RNA phages with largely unknown hosts, biology, and environmental impact. At the same time, (meta)genomic analyses of bacterial hosts are discovering an arsenal of defense systems bacteria employ to protect themselves from predation, whose functions in immunity against RNA phages we are only beginning to understand. Here, I review how meta-omics approaches are advancing the field of RNA phage biology with a focus on the discovery of new RNA phages and how bacteria might fight them.
Collapse
Affiliation(s)
- Jens Hör
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg 97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
4
|
Wu PX, Yang WP, Feng T, Zhang J, Zhu GQ, Du XG, Ru Y, Zhao YF, Wu S, Li D, Zheng HX. African swine fever virus I177L induces host inflammatory responses by facilitating the TRAF6-TAK1 axis and NLRP3 inflammasome assembly. J Virol 2025; 99:e0208024. [PMID: 40135893 PMCID: PMC11998506 DOI: 10.1128/jvi.02080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
African swine fever virus (ASFV) is the pathogen of African swine fever (ASF), and its infection causes a lethal disease in pigs, with severe pathological lesions. These changes indicate excessive inflammatory responses in infected pigs, which is the main cause of death, but the ASFV proteins worked in this physiological process and the mechanisms underlying ASFV-induced inflammation remain unclear. Here, we identify that viral I177L works in these inflammatory responses. Mechanistically, I177L facilitates TRAF6 ubiquitination that enhances its binding to TAK1, which promotes TAK1 ubiquitination and phosphorylation. These processes depend on the E3 ubiquitin ligase activity of TRAF6. The upregulation of I177L to TRAF6-TAK1 interaction and TAK1 activation is responsible for I177L's activated effect on the NF-κB signaling pathway. Additionally, I177L promotes assembly of the NLRP3 inflammasome and ASC oligomerization, thus leading to the activation of the NLRP3 inflammasome and the production and secretion of mature IL-1β. TAK1 inhibition efficiently reverses ASFV-activated NF-κB signaling and inflammatory responses and suppresses ASFV replication. Furthermore, I177L-deficient ASFV induces milder inflammatory responses in pigs compared with parental ASFV, which still protects pigs against ASFV challenge. The finding confirms ASFV I177L as an important proinflammatory protein in vitro and in vivo and reveals a key mechanism underlying ASFV-mediated inflammatory responses for the first time, which enriches our knowledge of the complex ASFV, thus benefiting our understanding of the interplay between ASFV infection and the host's inflammatory responses.IMPORTANCEAfrican swine fever (ASF) is a devastating viral disease in pigs, and excessive inflammatory responses induced by ASFV mainly cause death. Thus, the study of the proinflammatory virulent proteins and the detailed mechanisms are important to ASF control. Here, I177L was demonstrated to be an essential protein in ASFV-mediated inflammation, which performs by simultaneously activating the NF-κB signaling and the NLRP3 inflammasome. The finding elucidates the molecular mechanism underlying ASFV-activated inflammatory responses for the first time. It provides a theoretical foundation for reducing the high mortality caused by excessive inflammation and opens new avenues for small-molecule drug development and vaccine design targeting ASFV.
Collapse
Affiliation(s)
- Pan-Xue Wu
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen-Ping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Guo-Qiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xu-Guang Du
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yao-Feng Zhao
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Hai-Xue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
5
|
Sullivan AE, Nabhani A, Schinkel K, Dinh DM, Duncan ML, Ednacot EMQ, Hoffman CR, Izrailevsky DS, Kibby EM, Nagy TA, Nguyen CM, Tak U, Burroughs AM, Aravind L, Whiteley AT, Morehouse BR. A minimal CRISPR polymerase produces decoy cyclic nucleotides to detect phage anti-defense proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646047. [PMID: 40196609 PMCID: PMC11974786 DOI: 10.1101/2025.03.28.646047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bacteria use antiphage systems to combat phages, their ubiquitous competitors, and evolve new defenses through repeated reshuffling of basic functional units into novel reformulations. A common theme is generating a nucleotide-derived second messenger in response to phage that activates an effector protein to halt virion production. Phages respond with counter-defenses that deplete these second messengers, leading to an escalating arms race with the host. Here we discover a novel antiphage system we call Panoptes that detects phage infection by surveying the cytosol for phage proteins that antagonize the nucleotide-derived second messenger pool. Panoptes is a two-gene operon, optSE. OptS is predicted to synthesize a second messenger using a minimal CRISPR polymerase (mCpol) domain, a version of the polymerase domain found in Type III CRISPR systems (Cas10) that is distantly related to GGDEF and Thg1 tRNA repair polymerase domains. OptE is predicted to be a transmembrane effector protein that binds cyclic nucleotides. optSE potently restricted phage replication but mutant phages that had loss-of-function mutations in anti-CBASS protein 2 (Acb2) escaped defense. These findings were unexpected because Acb2 is a nucleotide "sponge" that antagonizes second messenger signaling. Using genetic and biochemical assays, we found that Acb2 bound the OptS-synthesized nucleotide, 2',3'-cyclic adenosine monophosphate (2',3'-c-di-AMP); however, 2',3'-c-di-AMP was synthesized constitutively by OptS and inhibited OptE. Nucleotide depletion by Acb2 released OptE toxicity thereby initiating abortive infection to halt phage replication. These data demonstrate a sophisticated immune strategy that hosts use to guard their second messenger pool and turn immune evasion against the virus.
Collapse
Affiliation(s)
- Ashley E. Sullivan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Ali Nabhani
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Kate Schinkel
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Dinh
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Melissa L. Duncan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Eirene Marie Q. Ednacot
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | | | - Daniel S. Izrailevsky
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Christy M. Nguyen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Uday Tak
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin R. Morehouse
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Lin T, Liu L, Zeng L, Zhao C, Xiao S, Ma H, Li J, Mao F, Qin Y, Zhang Y, Zhang Y, Xiang Z, Yu Z. ChNLRC4, a cytoplasmic pattern recognition receptor, activates the pyroptosis signaling pathway in Mollusca. Int J Biol Macromol 2025; 296:139632. [PMID: 39793815 DOI: 10.1016/j.ijbiomac.2025.139632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
NLR inflammasomes recognize pathogen-associated molecular patterns (PAMPs), triggering Caspase-1 activation and leading to gasdermin D (GSDMD)-mediated pyroptosis, a crucial immune response in mammals. The functional GSDME-mediated pyroptosis has been reported in invertebrates, yet the existence of an NLR-Caspase-GSDME axis mediating pyroptosis signaling cascades remains unclear. In this study, we reported an NLRC4 homolog named ChNLRC4, a pattern recognition receptor from the oyster Crassostrea hongkongensis that is able to bind to LPS and Lys-type PGN through its LRR domain. ChNLRC4 interacted with ChCaspase-1 through CARD-CARD domain homotypic interactions and enhanced ChCaspase-1 activity. Additionally, overexpression of ChNLRC4 promoted ChCaspase-1-mediated cleavage of ChGSDME, leading to pyroptosis in HEK293T cells. Furthermore, knockdown of chnlrc4 resulted in a significant reduction in the death rate of hemocytes, immune infiltration of hemocytes, cilium shedding, and bacterial clearance. Collectively, this study provides insight into the role of NLR within the pyroptosis signaling pathway in oysters.
Collapse
Affiliation(s)
- Tianxiang Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zeng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congxin Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Mao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Qin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuehuan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiming Xiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ziniu Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Wein T, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Melamed S, Amitai G, Dym O, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 2025; 639:727-734. [PMID: 39880956 DOI: 10.1038/s41586-024-08498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis1. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death2. Here we show that CARD domains are present in defence systems that protect bacteria against phage. The bacterial CARD domain is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defence systems use CARD domains to activate a variety of cell death effectors, and that CARD domains mediate protein-protein interactions in these systems. We find that these systems are triggered by a conserved immune-evasion protein used by phages to overcome the bacterial defence system RexAB3, demonstrating that phage proteins inhibiting one defence system can activate another. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is shared in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aidan B Hill
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA.
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Zhong C, Li W, Zhang X, Zhang D, Wen Z, Song W, Jiang Z, Gao Z, Guo H, Bi G, Liu Z, Li D, Dinesh-Kumar SP, Zhang Y. A cell wall-associated kinase phosphorylates NLR immune receptor to negatively regulate resistosome formation. NATURE PLANTS 2025; 11:561-579. [PMID: 40119183 DOI: 10.1038/s41477-025-01949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Plants deploy intracellular nucleotide-binding leucine-rich repeats (NLRs) to detect pathogen effectors and initiate immune responses. Although the activation mechanism of some plant NLRs forming resistosomes has been elucidated, whether NLR resistosome assembly is regulated to fine-tune immunity remains enigmatic. Here we used an antiviral coiled coil-nucleotide-binding site-leucine rich repeat, Barley Stripe Resistance 1 (BSR1), as a model and demonstrate that BSR1 is phosphorylated. Using a proximity labelling approach, we identified a wall-associated kinase-like protein 20 (WAKL20) which negatively regulates BSR1-mediated immune responses by directly phosphorylating the Ser470 residue in the NB-ARC domain of BSR1. Mechanistically, Ser470 phosphorylation results in a steric clash of intramolecular domains of BSR1, thereby compromising BSR1 oligomerization. The phosphorylation site is conserved among multiple plant NLRs and our results show that WAKL20 participates in other NLR-mediated immune responses besides BSR1. Together, our data reveal phosphorylation as a mechanism for modulating plant resistosome assembly, and provide new insight into NLR-mediated plant immunity.
Collapse
Affiliation(s)
- Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Song
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hailong Guo
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Guozhi Bi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Science, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Zhu K, Shang K, Wang L, Yu X, Hua L, Zhang W, Qin B, Wang J, Gao X, Zhu H, Cui S. Activation of the bacterial defense-associated sirtuin system. Commun Biol 2025; 8:297. [PMID: 39994439 PMCID: PMC11850899 DOI: 10.1038/s42003-025-07743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The NADase activity of the defense-associated sirtuins (DSRs) is activated by the phage tail tube protein (TTP). Herein, we report cryo-EM structures of a free-state Bacillus subtilis DSR2 tetramer and a fragment of the tetramer, a phage SPR tail tube, and two DSR2-TTP complexes. DSR2 contains an N-terminal SIR2 domain, a middle domain (MID) and a C-terminal domain (CTD). The DSR2 CTD harbors the α-solenoid tandem-repeats like the HEAT-repeat proteins. DSR2 assembles into a tetramer with four SIR2 clustered at the center, and two intertwined MID-CTD chains flank the SIR2 core. SPR TTPs self-assemble into a tube-like complex. Upon DSR2 binding, the D1 domain of SPR TTP is captured between the HEAT-repeats domains of DSR2, which conflicts with TTPs self-assembly. Binding of TTPs induces conformational changes in DSR2 tetramer, resulting in increase of the NAD+ pocket volume in SIR2, thus activates the NADase activity and leads to cellular NAD+ depletion.
Collapse
Affiliation(s)
- Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Shang
- Yanan medical college of Yanan university, Yanan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lei Hua
- Yanan medical college of Yanan university, Yanan, China
| | - Weihe Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
11
|
Mayo-Muñoz D, Li H, Mestre MR, Pinilla-Redondo R. The role of noncoding RNAs in bacterial immunity. Trends Microbiol 2025; 33:208-222. [PMID: 39396887 DOI: 10.1016/j.tim.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Huijuan Li
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Ament-Velásquez SL, Furneaux B, Dheur S, Granger-Farbos A, Stelkens R, Johannesson H, Saupe SJ. Reconstructing NOD-like receptor alleles with high internal conservation in Podospora anserina using long-read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632504. [PMID: 39868110 PMCID: PMC11761791 DOI: 10.1101/2025.01.13.632504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
NOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The het-d and het-e NLRs in Podospora anserina are highly polymorphic incompatibility genes (het genes) whose products recognize different alleles of the het-c gene via a sensor domain composed of WD40 repeats. These repeats display unusually high sequence identity maintained by concerted evolution. However, some sites within individual repeats are hypervariable and under diversifying selection. Despite extensive genetic studies, inconsistencies in the reported WD40 domain sequence have hindered functional and evolutionary analyses. Here we demonstrate that the WD40 domain can be accurately reconstructed from long-read sequencing (Oxford Nanopore and PacBio) data, but not from Illumina-based assemblies. Functional alleles are usually formed by 11 highly conserved repeats, with different repeat combinations underlying the same phenotypic het-d and het-e incompatibility reactions. Protein structure models suggest that their WD40 domain folds into two 7-blade β-propellers composed of the highly conserved repeats, as well as three cryptic divergent repeats at the C-terminus. We additionally show that one particular het-e allele does not have an incompatibility reaction with common het-c alleles, despite being 11-repeats long. Our findings provide a robust foundation for future research into the molecular mechanisms and evolutionary dynamics of het NLRs, while also highlighting both the fragility and the flexibility of β-propellers as immune sensor domains.
Collapse
Affiliation(s)
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Sonia Dheur
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
| | - Sven J Saupe
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| |
Collapse
|
13
|
Baumer ZT, Newton MS, Löfstrand L, Carpio Paucar GN, Farny NG, Whitehead TA. Engineered Stop and Go T7 RNA Polymerases. ACS Synth Biol 2024; 13:4165-4174. [PMID: 39610115 DOI: 10.1021/acssynbio.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Precise, stringent, post-translational activation of enzymes is essential for many synthetic biology applications. For example, even a few intracellular molecules of unregulated T7 RNA polymerase can result in growth cessation in a bacterium. We sought to mimic the properties of natural enzymes, where activity is regulated ubiquitously by endogenous metabolites. Here we demonstrate that full-length, single subunit T7-derived RNA polymerases (T7 RNAP) can be activated by physiologically relevant concentrations of indoles. We used rational design and directed evolution to identify T7 RNAP variants with minimal transcriptional activity in the absence of indole, and a 29-fold increase in activity with an EC50 of 344 μM. Indoles control T7-dependent gene expression exogenously, endogenously, and between cells. We also demonstrate indole-dependent bacteriophage viability and propagation in trans. Specificity of different indoles, T7 promoter specificities, and portability to different bacteria are shown. Our ligand activated RNA polymerases (LARPs) represent a new chemically inducible "stop and go" platform immediately deployable for novel synthetic biology applications, including for modulation of synthetic cocultures.
Collapse
Affiliation(s)
- Zachary T Baumer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Matilda S Newton
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Lina Löfstrand
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| | - Genesis Nicole Carpio Paucar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States
| |
Collapse
|
14
|
Conte AN, Ruchel ME, Ridgeway SM, Kibby EM, Nagy TA, Whiteley AT. Phage detection by a bacterial NLR-related protein is mediated by DnaJ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597415. [PMID: 38895412 PMCID: PMC11185742 DOI: 10.1101/2024.06.04.597415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteria encode a wide range of antiphage systems and a subset of these proteins are homologous to components of the human innate immune system. Mammalian nucleotide-binding and leucine-rich repeat containing proteins (NLRs) and bacterial NLR-related proteins use a central NACHT domain to link detection of infection with initiation of an antimicrobial response. Bacterial NACHT proteins provide defense against both DNA and RNA phages. Here we determine the mechanism of RNA phage detection by the bacterial NLR-related protein bNACHT25 in E. coli. bNACHT25 was specifically activated by Emesvirus ssRNA phages and analysis of MS2 phage escaper mutants that evaded detection revealed a critical role for Coat Protein (CP). A genetic assay confirmed CP was sufficient to activate bNACHT25 but the two proteins did not directly interact. Instead, we found bNACHT25 requires the host chaperone DnaJ to detect CP. Our data suggest that bNACHT25 detects a wide range of phages by guarding a host cell process rather than binding a specific phage-derived molecule.
Collapse
Affiliation(s)
- Amy N. Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Madison E. Ruchel
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Department of Biology, Front Range Community College, Longmont, CO, USA
| | | | - Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
15
|
Kibby EM, Robbins LK, Deep A, Min NK, Whalen LA, Nagy TA, Freeborn L, Corbett KD, Whiteley AT. A bacterial NLR-related protein recognizes multiple unrelated phage triggers to sense infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.629029. [PMID: 39763729 PMCID: PMC11702601 DOI: 10.1101/2024.12.17.629029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Immune systems must rapidly sense viral infections to initiate antiviral signaling and protect the host. Bacteria encode >100 distinct viral (phage) defense systems and each has evolved to sense crucial components or activities associated with the viral lifecycle. Here we used a high-throughput AlphaFold-multimer screen to discover that a bacterial NLR-related protein directly senses multiple phage proteins, thereby limiting immune evasion. Phages encoded as many as 5 unrelated activators that were predicted to bind the same interface of a C-terminal sensor domain. Genetic and biochemical assays confirmed activators bound to the bacterial NLR-related protein at high affinity, induced oligomerization, and initiated signaling. This work highlights how in silico strategies can identify complex protein interaction networks that regulate immune signaling across the tree of life.
Collapse
Affiliation(s)
- Emily M. Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Laurel K. Robbins
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nathan K. Min
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lindsay A. Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Toni A. Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Layla Freeborn
- Research Computing, Office of Information Technology, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Aaron T. Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
16
|
Delcourte L, Sanchez C, Morvan E, Berbon M, Grélard A, Saragaglia C, Dakhli T, Thore S, Bardiaux B, Habenstein B, Kauffmann B, Saupe SJ, Loquet A. NMR resonance assignment of the cell death execution domain BELL2 from multicellular bacterial signalosomes. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:159-164. [PMID: 38907837 DOI: 10.1007/s12104-024-10183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death. Such cell death-inducing domains have been thoroughly characterized in plants, mammals and fungi, notably for the fungal cell death execution protein domain HeLo. However, little is known on the mechanisms of signalosome-based immune response in bacteria, and the conformation of cell death executors in bacterial signalosomes is still poorly characterized. We recently uncovered the existence of NLR signalosomes in various multicellular bacteria and used genome mining approaches to identify putative cell death executors in Streptomyces olivochromogenes. These proteins contain a C-terminal amyloid domain involved in signal transmission and a N-terminal domain, termed BELL for Bacteria analogous to fungal HeLL (HeLo-like), presumably responsible for membrane-targeting, pore-forming and cell death execution. In the present study, we report the high yield expression of S. olivochromogenes BELL2 and its characterization by solution NMR spectroscopy. BELL is folded in solution and we report backbone and sidechain assignments. We identified five α-helical secondary structure elements and a folded core much smaller than its fungal homolog HeLo. This study constitutes the first step toward the NMR investigation of the full-length protein assembly and its membrane targeting.
Collapse
Affiliation(s)
- Loic Delcourte
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Corinne Sanchez
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Estelle Morvan
- University of Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Mélanie Berbon
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Axelle Grélard
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Claire Saragaglia
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Thierry Dakhli
- University of Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Stéphane Thore
- University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000, Bordeaux, France
| | - Benjamin Bardiaux
- Institut Pasteur, Bacterial Transmembrane Systems Unit, Université Paris Cité, CNRS, UMR3528, Paris, France
| | - Birgit Habenstein
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France
| | - Brice Kauffmann
- University of Bordeaux, CNRS, Inserm, IECB, UAR3033, US01, Pessac, France
| | - Sven J Saupe
- University of Bordeaux, CNRS, UMR5095, Bordeaux, France.
| | - Antoine Loquet
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, IECB, UMR 5248, Pessac, France.
| |
Collapse
|
17
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024; 80:72-86. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Wang Y, Wang M, You H, Chen C, Zhang J, Li T, Gan N. Magnetic poly(phages) encoded probes-based dual-mode assay for rapid determination of live Escherichia coli and Hafnia paralvei based on microfluidic chip and ATP bioluminescence meter. Mikrochim Acta 2024; 191:765. [PMID: 39601866 DOI: 10.1007/s00604-024-06809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
A dual-mode assay was developed for screening and detecting live Escherichia coli (E. coli) and Hafnia paralvei (H. paralvei) (as two typical pathogens in aquatic environments) based on magnetic poly(phages) encoded probes (MPEP). The probes were prepared by grafting a large number of phages targeting different target bacteria on a long-chain DNA structure, respectively. They could specifically capture and enrich E. coli and H. paralvei by magnetic separation. Then, different DNA signal tags with different lengths conjugate with the corresponding MPEP-bacteria complex and form two kinds of sandwich structures, respectively. After that, the captured E. coli and H. paralvei were lysed to release both adenosine triphosphate (ATP) and DNA signal tags. The measurement includes two steps. Firstly, a portable ATP bioluminescence meter was employed to rapidly screen the positive samples that contain either of the two target bacteria. Secondly, only positive samples were injected into the microfluidic chip which could detect various DNA signal tags for accurate quantification of the target bacteria. The assay demonstrated high sensitivity (3 CFU/mL for E. coli and 5 CFU/mL for H. paralvei), high specificity (strain identification), signal amplification (20-fold), and short time (≤ 35 min). It can be applied to detect other pathogens solely by changing the relative phage in MPEP. Furthermore, the proposed dual-mode assay provides a wide prospect for rapid screening and accurate determination of live foodborne pathogens. Clinical Trial Number: nbdxms-20240322.
Collapse
Affiliation(s)
- Ye Wang
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Ming Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hang You
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chao Chen
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Jing Zhang
- Zhejiang Pharmaceutical University, Ningbo, 315100, Zhejiang, China
| | - Tianhua Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510000, China.
| |
Collapse
|
19
|
Béchon N, Tal N, Stokar-Avihail A, Savidor A, Kupervaser M, Melamed S, Amitai G, Sorek R. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat Commun 2024; 15:9860. [PMID: 39543107 PMCID: PMC11564622 DOI: 10.1038/s41467-024-54214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Antiviral STANDs (Avs) are bacterial anti-phage proteins evolutionarily related to immune pattern recognition receptors of the NLR family. Type 2 Avs proteins (Avs2) were suggested to recognize the phage large terminase subunit as a signature of phage infection. Here, we show that Avs2 from Klebsiella pneumoniae (KpAvs2) can recognize several different phage proteins as signature for infection. While KpAvs2 recognizes the large terminase subunit of Seuratvirus phages, we find that to protect against Dhillonvirus phages, KpAvs2 recognizes a different phage protein named KpAvs2-stimulating protein 1 (Ksap1). KpAvs2 directly binds Ksap1 to become activated, and phages mutated in Ksap1 escape KpAvs2 defense despite encoding an intact terminase. We further show that KpAvs2 protects against a third group of phages by recognizing another protein, Ksap2. Our results exemplify the evolutionary diversification of molecular pattern recognition in bacterial Avs2, and show that a single pattern recognition receptor evolved to recognize different phage-encoded proteins.
Collapse
Affiliation(s)
- Nathalie Béchon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Zhou DH, Jia XX, Wu YZ, Zhang WW, Wang Y, Liang DL, Gao LP, Xiao K, Chen C, Dong XP, Shi Q. Aberrant Enhanced NLRP3 Inflammasomes and Cell Pyroptosis in the Brains of Prion-Infected Rodent Models Are Largely Associated with the Proliferative Astrocytes. Mol Neurobiol 2024; 61:9582-9594. [PMID: 38664301 DOI: 10.1007/s12035-024-04169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 10/23/2024]
Abstract
Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1β and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.
Collapse
Affiliation(s)
- Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Dong-Lin Liang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
21
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
22
|
Wilkinson ME, Li D, Gao A, Macrae RK, Zhang F. Phage-triggered reverse transcription assembles a toxic repetitive gene from a noncoding RNA. Science 2024; 386:eadq3977. [PMID: 39208082 PMCID: PMC12039810 DOI: 10.1126/science.adq3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Reverse transcription has frequently been co-opted for cellular functions and in prokaryotes is associated with protection against viral infection, but the underlying mechanisms of defense are generally unknown. Here, we show that in the DRT2 defense system, the reverse transcriptase binds a neighboring pseudoknotted noncoding RNA. Upon bacteriophage infection, a template region of this RNA is reverse transcribed into an array of tandem repeats that reconstitute a promoter and open reading frame, allowing expression of a toxic repetitive protein and an abortive infection response. Biochemical reconstitution of this activity and cryo-electron microscopy provide a molecular basis for repeat synthesis. Gene synthesis from a noncoding RNA is a previously unknown mode of genetic regulation in prokaryotes.
Collapse
Affiliation(s)
- Max E. Wilkinson
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Li
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alex Gao
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Hobbs SJ, Nomburg J, Doudna JA, Kranzusch PJ. Animal and bacterial viruses share conserved mechanisms of immune evasion. Cell 2024; 187:5530-5539.e8. [PMID: 39197447 PMCID: PMC11455605 DOI: 10.1016/j.cell.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Animal and bacterial cells sense and defend against viral infections using evolutionarily conserved antiviral signaling pathways. Here, we show that viruses overcome host signaling using mechanisms of immune evasion that are directly shared across the eukaryotic and prokaryotic kingdoms of life. Structures of animal poxvirus proteins that inhibit host cGAS-STING signaling demonstrate architectural and catalytic active-site homology shared with bacteriophage Acb1 proteins, which inactivate CBASS anti-phage defense. In bacteria, phage Acb1 proteins are viral enzymes that degrade host cyclic nucleotide immune signals. Structural comparisons of poxvirus protein-2'3'-cGAMP and phage Acb1-3'3'-cGAMP complexes reveal a universal mechanism of host nucleotide immune signal degradation and explain kingdom-specific additions that enable viral adaptation. Chimeric bacteriophages confirm that animal poxvirus proteins are sufficient to evade immune signaling in bacteria. Our findings identify a mechanism of immune evasion conserved between animal and bacterial viruses and define shared rules that explain host-virus interactions across multiple kingdoms of life.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jason Nomburg
- Gladstone-UCSF Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Gladstone-UCSF Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Hornung V, Gaidt MM. Friendly fire: recognition of self by the innate immune system. Curr Opin Immunol 2024; 90:102457. [PMID: 39232338 DOI: 10.1016/j.coi.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
The innate immune system employs two different strategies to detect pathogens: first, it recognizes microbial components as ligands of pattern recognition receptors (pattern-triggered immunity [PTI]), and second, it detects the activities of pathogen-encoded effectors (effector-triggered immunity [ETI]). Recently, these pathogen-centric concepts were expanded to include sensing of self-derived signals during cellular distress or damage (damage-triggered immunity [DTI]). This extension relied on broadening the PTI model to include damage-associated molecular patterns (DAMPs). However, applying the pattern recognition framework of PTI to DTI overlooks the critical role of sterile activation of ETI pathways. We argue that both PTI and ETI pathways are prone to erroneous detection of self, which is largely attributable to 'friendly fire' rather than protective immune activation. This erroneous activation is inherent to the trade-off between sensitivity and specificity of immune sensing and might be tolerated because its detrimental effects emerge late in life, a phenomenon known as antagonistic pleiotropy.
Collapse
Affiliation(s)
- Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany.
| | - Moritz M Gaidt
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
25
|
Cury J, Haudiquet M, Hernandez Trejo V, Mordret E, Hanouna A, Rotival M, Tesson F, Bonhomme D, Ofir G, Quintana-Murci L, Benaroch P, Poirier EZ, Bernheim A. Conservation of antiviral systems across domains of life reveals immune genes in humans. Cell Host Microbe 2024; 32:1594-1607.e5. [PMID: 39208803 DOI: 10.1016/j.chom.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Deciphering the immune organization of eukaryotes is important for human health and for understanding ecosystems. The recent discovery of antiphage systems revealed that various eukaryotic immune proteins originate from prokaryotic antiphage systems. However, whether bacterial antiphage proteins can illuminate immune organization in eukaryotes remains unexplored. Here, we use a phylogeny-driven approach to uncover eukaryotic immune proteins by searching for homologs of bacterial antiphage systems. We demonstrate that proteins displaying sequence similarity with recently discovered antiphage systems are widespread in eukaryotes and maintain a role in human immunity. Two eukaryotic proteins of the anti-transposon piRNA pathway are evolutionarily linked to the antiphage system Mokosh. Additionally, human GTPases of immunity-associated proteins (GIMAPs) as well as two genes encoded in microsynteny, FHAD1 and CTRC, are respectively related to the Eleos and Lamassu prokaryotic systems and exhibit antiviral activity. Our work illustrates how comparative genomics of immune mechanisms can uncover defense genes in eukaryotes.
Collapse
Affiliation(s)
- Jean Cury
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Matthieu Haudiquet
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France; Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Veronica Hernandez Trejo
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Ernest Mordret
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Anael Hanouna
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France
| | - Florian Tesson
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Delphine Bonhomme
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Gal Ofir
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France; Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Philippe Benaroch
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Enzo Z Poirier
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| | - Aude Bernheim
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France.
| |
Collapse
|
26
|
Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S, Wu CH, Adachi H. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. THE PLANT CELL 2024; 36:3344-3361. [PMID: 38833594 PMCID: PMC11371149 DOI: 10.1093/plcell/koae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing receptor (NLR) proteins can form complex receptor networks to confer innate immunity. An NLR-REQUIRED FOR CELL DEATH (NRC) is a phylogenetically related node that functions downstream of a massively expanded network of disease resistance proteins that protect against multiple plant pathogens. In this study, we used phylogenomic methods to reconstruct the macroevolution of the NRC family. One of the NRCs, termed NRC0, is the only family member shared across asterid plants, leading us to investigate its evolutionary history and genetic organization. In several asterid species, NRC0 is genetically clustered with other NLRs that are phylogenetically related to NRC-dependent disease resistance genes. This prompted us to hypothesize that the ancestral state of the NRC network is an NLR helper-sensor gene cluster that was present early during asterid evolution. We provide support for this hypothesis by demonstrating that NRC0 is essential for the hypersensitive cell death that is induced by its genetically linked sensor NLR partners in 4 divergent asterid species: tomato (Solanum lycopersicum), wild sweet potato (Ipomoea trifida), coffee (Coffea canephora), and carrot (Daucus carota). In addition, activation of a sensor NLR leads to higher-order complex formation of its genetically linked NRC0, similar to other NRCs. Our findings map out contrasting evolutionary dynamics in the macroevolution of the NRC network over the last 125 million years, from a functionally conserved NLR gene cluster to a massive genetically dispersed network.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Claudia Martinez-Anaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62110, México
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Zhu HX, Wright BW, Logel DY, Needham P, Yehl K, Molloy MP, Jaschke PR. IbpAB small heat shock proteins are not host factors for bacteriophage ϕX174 replication. Virology 2024; 597:110169. [PMID: 38996611 DOI: 10.1016/j.virol.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied. In this work, we disrupted the ibpA and ibpB genes and measured the effects on ϕX174 replication. We found that in contrast to other E. coli heat shock proteins, they are not necessary for ϕX174 replication; moreover, their absence has no discernible effect on ϕX174 fecundity. These results suggest IbpA/B upregulation is a response to ϕX174 protein expression but does not play a role in phage replication, and they are not Microviridae host factors.
Collapse
Affiliation(s)
- Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bradley W Wright
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Patrick Needham
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Kevin Yehl
- Miami University, Department of Chemistry and Biochemistry, Oxford, 45056, USA
| | - Mark P Molloy
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; Kolling Institute, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
28
|
Li Z, Shang D. NOD1 and NOD2: Essential Monitoring Partners in the Innate Immune System. Curr Issues Mol Biol 2024; 46:9463-9479. [PMID: 39329913 PMCID: PMC11430502 DOI: 10.3390/cimb46090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain containing 1 (NOD1) and NOD2 are pivotal cytoplasmic pattern-recognition receptors (PRRs) that exhibit remarkable evolutionary conservation. They possess the ability to discern specific peptidoglycan (PGN) motifs, thereby orchestrating innate immunity and contributing significantly to immune homeostasis maintenance. The comprehensive understanding of both the structure and function of NOD1 and NOD2 has been extensively elucidated. These receptors proficiently recognize an array of damage-associated molecular patterns (DAMPs) as well as pathogen-associated molecular patterns (PAMPs), subsequently mediating inflammatory responses and autophagy. In recent years, emerging evidence has highlighted the crucial roles played by NOD1 and NOD2 in regulating infectious diseases, metabolic disorders, cancer, and autoimmune conditions, among others. Perturbation in either their loss or excessive activation can detrimentally impact immune homeostasis. This review offers a comprehensive overview of the structural characteristics, subcellular localization, activation mechanisms, and significant roles of NOD1 and NOD2 in innate immunity and related disease.
Collapse
Affiliation(s)
- Zhenjia Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
29
|
Yutin N, Tolstoy I, Mutz P, Wolf YI, Krupovic M, Koonin EV. DNA polymerase swapping in Caudoviricetes bacteriophages. Virol J 2024; 21:200. [PMID: 39187833 PMCID: PMC11348598 DOI: 10.1186/s12985-024-02482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Viruses with double-stranded (ds) DNA genomes in the realm Duplodnaviria share a conserved structural gene module but show a broad range of variation in their repertoires of DNA replication proteins. Some of the duplodnaviruses encode (nearly) complete replication systems whereas others lack (almost) all genes required for replication, relying on the host replication machinery. DNA polymerases (DNAPs) comprise the centerpiece of the DNA replication apparatus. The replicative DNAPs are classified into 4 unrelated or distantly related families (A-D), with the protein structures and sequences within each family being, generally, highly conserved. More than half of the duplodnaviruses encode a DNAP of family A, B or C. We showed previously that multiple pairs of closely related viruses in the order Crassvirales encode DNAPs of different families. METHODS Groups of phages in which DNAP swapping likely occurred were identified as subtrees of a defined depth in a comprehensive evolutionary tree of tailed bacteriophages that included phages with DNAPs of different families. The DNAP swaps were validated by constrained tree analysis that was performed on phylogenetic tree of large terminase subunits, and the phage genomes encoding swapped DNAPs were aligned using Mauve. The structures of the discovered unusual DNAPs were predicted using AlphaFold2. RESULTS We identified four additional groups of tailed phages in the class Caudoviricetes in which the DNAPs apparently were swapped on multiple occasions, with replacements occurring both between families A and B, or A and C, or between distinct subfamilies within the same family. The DNAP swapping always occurs "in situ", without changes in the organization of the surrounding genes. In several cases, the DNAP gene is the only region of substantial divergence between closely related phage genomes, whereas in others, the swap apparently involved neighboring genes encoding other proteins involved in phage genome replication. In addition, we identified two previously undetected, highly divergent groups of family A DNAPs that are encoded in some phage genomes along with the main DNAP implicated in genome replication. CONCLUSIONS Replacement of the DNAP gene by one encoding a DNAP of a different family occurred on many independent occasions during the evolution of different families of tailed phages, in some cases, resulting in very closely related phages encoding unrelated DNAPs. DNAP swapping was likely driven by selection for avoidance of host antiphage mechanisms targeting the phage DNAP that remain to be identified, and/or by selection against replicon incompatibility.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
31
|
Leão P, Little ME, Appler KE, Sahaya D, Aguilar-Pine E, Currie K, Finkelstein IJ, De Anda V, Baker BJ. Asgard archaea defense systems and their roles in the origin of eukaryotic immunity. Nat Commun 2024; 15:6386. [PMID: 39085212 PMCID: PMC11291487 DOI: 10.1038/s41467-024-50195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Dozens of new antiviral systems have been recently characterized in bacteria. Some of these systems are present in eukaryotes and appear to have originated in prokaryotes, but little is known about these defense mechanisms in archaea. Here, we explore the diversity and distribution of defense systems in archaea and identify 2610 complete systems in Asgardarchaeota, a group of archaea related to eukaryotes. The Asgard defense systems comprise 89 unique systems, including argonaute, NLR, Mokosh, viperin, Lassamu, and CBASS. Asgard viperin and argonaute proteins have structural homology to eukaryotic proteins, and phylogenetic analyses suggest that eukaryotic viperin proteins were derived from Asgard viperins. We show that Asgard viperins display anti-phage activity when heterologously expressed in bacteria. Eukaryotic and bacterial argonaute proteins appear to have originated in Asgardarchaeota, and Asgard argonaute proteins have argonaute-PIWI domains, key components of eukaryotic RNA interference systems. Our results support that Asgardarchaeota played important roles in the origin of antiviral defense systems in eukaryotes.
Collapse
Affiliation(s)
- Pedro Leão
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA.
- Department of Microbiology - RIBES, Radboud University, Nijmegen, The Netherlands.
| | - Mary E Little
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Kathryn E Appler
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Daphne Sahaya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Emily Aguilar-Pine
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Kathryn Currie
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Valerie De Anda
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Brett J Baker
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA.
| |
Collapse
|
32
|
Wang L, Zhou W. Phase separation as a new form of regulation in innate immunity. Mol Cell 2024; 84:2410-2422. [PMID: 38936362 DOI: 10.1016/j.molcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Innate immunity is essential for the host against pathogens, cancer, and autoimmunity. The innate immune system encodes many sensor, adaptor, and effector proteins and relies on the assembly of higher-order signaling complexes to activate immune defense. Recent evidence demonstrates that many of the core complexes involved in innate immunity are organized as liquid-like condensates through a mechanism known as phase separation. Here, we discuss phase-separated condensates and their diverse functions. We compare the biochemical, structural, and mechanistic details of solid and liquid-like assemblies to explore the role of phase separation in innate immunity. We summarize the emerging evidence for the hypothesis that phase separation is a conserved mechanism that controls immune responses across the tree of life. The discovery of phase separation in innate immunity provides a new foundation to explain the rules that govern immune system activation and will enable the development of therapeutics to treat immune-related diseases properly.
Collapse
Affiliation(s)
- Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
33
|
Liu T, Gao X, Chen R, Tang K, Liu Z, Wang P, Wang X. A nuclease domain fused to the Snf2 helicase confers antiphage defence in coral-associated Halomonas meridiana. Microb Biotechnol 2024; 17:e14524. [PMID: 38980956 PMCID: PMC11232893 DOI: 10.1111/1751-7915.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.
Collapse
Affiliation(s)
- Tianlang Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
34
|
Bernheim A, Cury J, Poirier EZ. The immune modules conserved across the tree of life: Towards a definition of ancestral immunity. PLoS Biol 2024; 22:e3002717. [PMID: 39008452 PMCID: PMC11249213 DOI: 10.1371/journal.pbio.3002717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Immune defence mechanisms exist across the tree of life in such diversity that prokaryotic antiviral responses have historically been considered unrelated to eukaryotic immunity. Mechanisms of defence in divergent eukaryotes were similarly believed to be largely clade specific. However, recent data indicate that a subset of modules (domains and proteins) from prokaryote defence systems are conserved in eukaryotes and populate many stages of innate immune pathways. In this Essay, we propose the notion of ancestral immunity, which corresponds to the set of immune modules conserved between prokaryotes and eukaryotes. After offering a typology of ancestral immunity, we speculate on the selective pressures that could have led to the differential conservation of specific immune modules across domains of life. The exploration of ancestral immunity is in its infancy and appears full of promises to illuminate immune evolution, and also to identify and decipher immune mechanisms of economic, ecological, and therapeutic importance.
Collapse
Affiliation(s)
- Aude Bernheim
- Molecular Diversity of Microbes laboratory, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Jean Cury
- Molecular Diversity of Microbes laboratory, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Enzo Z. Poirier
- Innate Immunity in Physiology and Cancer laboratory, Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
35
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
36
|
Chakraborty J. A comprehensive review of soybean RNL and TIR domain proteins. PLANT MOLECULAR BIOLOGY 2024; 114:78. [PMID: 38922375 DOI: 10.1007/s11103-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Both prokaryotic and eukaryotic organisms use the nucleotide-binding domain/leucine-rich repeat (NBD/LRR)-triggered immunity (NLR-triggered immunity) signaling pathway to defend against pathogens. Plant NLRs are intracellular immune receptors that can bind to effector proteins secreted by pathogens. Dicotyledonous plants express a type of NLR known as TIR domain-containing NLRs (TNLs). TIR domains are enzymes that catalyze the production of small molecules that are essential for immune signaling and lead to plant cell death. The activation of downstream TNL signaling components, such as enhanced disease susceptibility 1 (EDS1), phytoalexin deficient 4 (PAD4), and senescence-associated gene 101 (SAG101), is facilitated by these small molecules. Helper NLRs (hNLRs) and the EDS1-PAD4/SAG101 complex associate after activation, causing the hNLRs to oligomerize, translocate to the plasma membrane (PM), and produce cation-selective channels. According to a recent theory, cations enter cells through pores created by oligomeric hNLRs and trigger cell death. Occasionally, TNLs can self-associate to create higher-order oligomers. Here, we categorized soybean TNLs based on the protein domains that they possess. We believe that TNLs may help soybean plants effectively fight pathogens by acting as a source of genetic resistance. In summary, the purpose of this review is to elucidate the range of TNLs that are expressed in soybean.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
37
|
Fang X, Tong W, Wu S, Zhu Z, Zhu J. The role of intratumoral microorganisms in the progression and immunotherapeutic efficacy of head and neck cancer. ONCOLOGIE 2024; 26:349-360. [DOI: 10.1515/oncologie-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The effectiveness of cancer immunization is largely dependent on the tumor’s microenvironment, especially the tumor immune microenvironment. Emerging studies say microbes exist in tumor cells and immune cells, suggesting that these microbes can affect the state of the immune microenvironment of the tumor. Our comprehensive review navigates the intricate nexus between intratumoral microorganisms and their role in tumor biology and immune modulation. Beginning with an exploration of the historical acknowledgment of microorganisms within tumors, the article underscores the evolution of the tumor microenvironment (TME) and its subsequent implications. Using findings from recent studies, we delve into the unique bacterial compositions across different tumor types and their influence on tumor growth, DNA damage, and immune regulation. Furthermore, we illuminate the potential therapeutic implications of targeting these intratumoral microorganisms, emphasizing their multifaceted roles from drug delivery agents to immunotherapy enhancers. As advancements in next-generation sequencing (NGS) technology redefine our understanding of the tumor microbiome, the article underscores the importance of discerning their precise role in tumor progression and tailoring therapeutic interventions. The review culminates by emphasizing ongoing challenges and the pressing need for further research to harness the potential of intratumoral microorganisms in cancer care.
Collapse
Affiliation(s)
- Xuzhe Fang
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Weihong Tong
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Sheng Wu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhengyong Zhu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Jin Zhu
- Department of Otorhinolaryngology and Head Neck Surgery, Affiliated Hangzhou First People’s Hospital , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
38
|
Huang J, Zhu K, Gao Y, Ye F, Li Z, Ge Y, Liu S, Yang J, Gao A. Molecular basis of bacterial DSR2 anti-phage defense and viral immune evasion. Nat Commun 2024; 15:3954. [PMID: 38729958 PMCID: PMC11087589 DOI: 10.1038/s41467-024-48291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Defense-associated sirtuin 2 (DSR2) systems are widely distributed across prokaryotic genomes, providing robust protection against phage infection. DSR2 recognizes phage tail tube proteins and induces abortive infection by depleting intracellular NAD+, a process that is counteracted by another phage-encoded protein, DSR Anti Defense 1 (DSAD1). Here, we present cryo-EM structures of Bacillus subtilis DSR2 in its apo, Tube-bound, and DSAD1-bound states. DSR2 assembles into an elongated tetramer, with four NADase catalytic modules clustered in the center and the regulatory-sensing modules distributed at four distal corners. Interestingly, monomeric Tube protein, rather than its oligomeric states, docks at each corner of the DSR2 tetramer to form a 4:4 DSR2-Tube assembly, which is essential for DSR2 NADase activity. DSAD1 competes with Tube for binding to DSR2 by occupying an overlapping region, thereby inhibiting DSR2 immunity. Thus, our results provide important insights into the assembly, activation and inhibition of the DSR2 anti-phage defense system.
Collapse
Affiliation(s)
- Jiafeng Huang
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Keli Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yina Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Ye
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaolong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Ge
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Songqing Liu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| | - Ang Gao
- Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
39
|
Li J, Cheng R, Wang Z, Yuan W, Xiao J, Zhao X, Du X, Xia S, Wang L, Zhu B, Wang L. Structures and activation mechanism of the Gabija anti-phage system. Nature 2024; 629:467-473. [PMID: 38471529 DOI: 10.1038/s41586-024-07270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Wuliu Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jun Xiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xinyuan Zhao
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinran Du
- School of Electronic Information, Wuhan University, Wuhan, China
| | - Shiyu Xia
- Divison of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lianrong Wang
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Longfei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Martínez M, Rizzuto I, Molina R. Knowing Our Enemy in the Antimicrobial Resistance Era: Dissecting the Molecular Basis of Bacterial Defense Systems. Int J Mol Sci 2024; 25:4929. [PMID: 38732145 PMCID: PMC11084316 DOI: 10.3390/ijms25094929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Bacteria and their phage adversaries are engaged in an ongoing arms race, resulting in the development of a broad antiphage arsenal and corresponding viral countermeasures. In recent years, the identification and utilization of CRISPR-Cas systems have driven a renewed interest in discovering and characterizing antiphage mechanisms, revealing a richer diversity than initially anticipated. Currently, these defense systems can be categorized based on the bacteria's strategy associated with the infection cycle stage. Thus, bacterial defense systems can degrade the invading genetic material, trigger an abortive infection, or inhibit genome replication. Understanding the molecular mechanisms of processes related to bacterial immunity has significant implications for phage-based therapies and the development of new biotechnological tools. This review aims to comprehensively cover these processes, with a focus on the most recent discoveries.
Collapse
Affiliation(s)
| | | | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
41
|
Yutin N, Tolstoy I, Mutz P, Wolf YI, Krupovic M, Koonin EV. Jumping DNA polymerases in bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591309. [PMID: 38903090 PMCID: PMC11188092 DOI: 10.1101/2024.04.26.591309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Viruses with double-stranded (ds) DNA genomes in the realm Duplodnaviria share a conserved structural gene module but show a broad range of variation in their repertoires of DNA replication proteins. Some of the duplodnaviruses encode (nearly) complete replication systems whereas others lack (almost) all genes required for replication, relying on the host replication machinery. DNA polymerases (DNAPs) comprise the centerpiece of the DNA replication apparatus. The replicative DNAPs are classified into 4 unrelated or distantly related families (A-D), with the protein structures and sequences within each family being, generally, highly conserved. More than half of the duplodnaviruses encode a DNAP of family A, B or C. We showed previously that multiple pairs of closely related viruses in the order Crassvirales encode DNAPs of different families. Here we identify four additional groups of tailed phages in the class Caudoviricetes in which the DNAPs apparently were swapped on multiple occasions, with replacements occurring both between families A and B, or A and C, or between distinct subfamilies within the same family. The DNAP swapping always occurs "in situ", without changes in the organization of the surrounding genes. In several cases, the DNAP gene is the only region of substantial divergence between closely related phage genomes, whereas in others, the swap apparently involved neighboring genes encoding other proteins involved in phage replication. We hypothesize that DNAP swapping is driven by selection for avoidance of host antiphage mechanisms targeting the phage DNAP that remain to be identified, and/or by selection against replicon incompatibility. In addition, we identified two previously undetected, highly divergent groups of family A DNAPs that are encoded in some phage genomes along with the main DNAP implicated in genome replication.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | | |
Collapse
|
42
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
43
|
Doré H, Eisenberg AR, Junkins EN, Leventhal GE, Ganesh A, Cordero OX, Paul BG, Valentine DL, O’Malley MA, Wilbanks EG. Targeted hypermutation of putative antigen sensors in multicellular bacteria. Proc Natl Acad Sci U S A 2024; 121:e2316469121. [PMID: 38354254 PMCID: PMC10907252 DOI: 10.1073/pnas.2316469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Diversity-generating retroelements (DGRs) are used by bacteria, archaea, and viruses as a targeted mutagenesis tool. Through error-prone reverse transcription, DGRs introduce random mutations at specific genomic loci, enabling rapid evolution of these targeted genes. However, the function and benefits of DGR-diversified proteins in cellular hosts remain elusive. We find that 82% of DGRs from one of the major monophyletic lineages of DGR reverse transcriptases are encoded by multicellular bacteria, which often have two or more DGR loci in their genomes. Using the multicellular purple sulfur bacterium Thiohalocapsa sp. PB-PSB1 as an example, we characterized nine distinct DGR loci capable of generating 10282 different combinations of target proteins. With environmental metagenomes from individual Thiohalocapsa aggregates, we show that most of PB-PSB1's DGR target genes are diversified across its biogeographic range, with spatial heterogeneity in the diversity of each locus. In Thiohalocapsa PB-PSB1 and other bacteria hosting this lineage of cellular DGRs, the diversified target genes are associated with NACHT-domain anti-phage defenses and putative ternary conflict systems previously shown to be enriched in multicellular bacteria. We propose that these DGR-diversified targets act as antigen sensors that confer a form of adaptive immunity to their multicellular consortia, though this remains to be experimentally tested. These findings could have implications for understanding the evolution of multicellularity, as the NACHT-domain anti-phage systems and ternary systems share both domain homology and conceptual similarities with the innate immune and programmed cell death pathways of plants and metazoans.
Collapse
Affiliation(s)
- H. Doré
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - A. R. Eisenberg
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| | - E. N. Junkins
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
| | - G. E. Leventhal
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - O. X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - B. G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - D. L. Valentine
- Department of Earth Science, University of California, Santa Barbara, CA93106
- Marine Science Institute, University of California, Santa Barbara, CA93106
| | - M. A. O’Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| | - E. G. Wilbanks
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93106
- Department of Bioengineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
44
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Parthasarathy R, Wakefield D, Santiago FS, Kaakoush NO, Tedla N. Horizontal gene transfer and endogenous retroviruses as mechanisms for molecular mimicry. THE LANCET. MICROBE 2024; 5:e4-e5. [PMID: 37883987 DOI: 10.1016/s2666-5247(23)00316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Affiliation(s)
- Rohit Parthasarathy
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Denis Wakefield
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Fernando S Santiago
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
46
|
Castel B, El Mahboubi K, Jacquet C, Delaux PM. Immunobiodiversity: Conserved and specific immunity across land plants and beyond. MOLECULAR PLANT 2024; 17:92-111. [PMID: 38102829 DOI: 10.1016/j.molp.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Angiosperms represent most plants that humans cultivate, grow, and eat. However, angiosperms are only one of five major land plant lineages. As a whole lineage, plants also include algal groups. All these clades represent a tremendous genetic diversity that can be investigated to reveal the evolutionary history of any given mechanism. In this review, we describe the current model of the plant immune system, discuss its evolution based on the recent literature, and propose future directions for the field. In angiosperms, plant-microbe interactions have been intensively studied, revealing essential cell surface and intracellular immune receptors, as well as metabolic and hormonal defense pathways. Exploring diversity at the genomic and functional levels demonstrates the conservation of these pathways across land plants, some of which are beyond plants. On basis of the conserved mechanisms, lineage-specific variations have occurred, leading to diversified reservoirs of immune mechanisms. In rare cases, this diversity has been harnessed and successfully transferred to other species by integration of wild immune receptors or engineering of novel forms of receptors for improved resistance to pathogens. We propose that exploring further the diversity of immune mechanisms in the whole plant lineage will reveal completely novel sources of resistance to be deployed in crops.
Collapse
Affiliation(s)
- Baptiste Castel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Karima El Mahboubi
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| |
Collapse
|
47
|
Rousset F. Innate immunity: the bacterial connection. Trends Immunol 2023; 44:945-953. [PMID: 37919213 DOI: 10.1016/j.it.2023.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 11/04/2023]
Abstract
Pathogens have fueled the diversification of intracellular defense strategies that collectively define cell-autonomous innate immunity. In bacteria, innate immunity is manifested by a broad arsenal of defense systems that provide protection against bacterial viruses, called phages. The complexity of the bacterial immune repertoire has only been realized recently and is now suggesting that innate immunity has commonalities across the tree of life: many components of eukaryotic innate immunity are found in bacteria where they protect against phages, including the cGAS-STING pathway, gasdermins, and viperins. Here, I summarize recent findings on the conservation of innate immune pathways between prokaryotes and eukaryotes and hypothesize that bacterial defense mechanisms can catalyze the discovery of novel molecular players of eukaryotic innate immunity.
Collapse
Affiliation(s)
- François Rousset
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
48
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
49
|
Lažetić V, Batachari LE, Russell AB, Troemel ER. Similarities in the induction of the intracellular pathogen response in Caenorhabditis elegans and the type I interferon response in mammals. Bioessays 2023; 45:e2300097. [PMID: 37667453 PMCID: PMC10694843 DOI: 10.1002/bies.202300097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Lakshmi E. Batachari
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alistair B. Russell
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Emily R. Troemel
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
50
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|