1
|
Han M, Wang J, Wu Y, Liao J, Guo J, Tang Z. CEBPA as a potential hub gene for cutaneous inflammation in type 2 diabetes mellitus. Int J Biol Macromol 2025; 298:140080. [PMID: 39837449 DOI: 10.1016/j.ijbiomac.2025.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/29/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND The role of inflammation in the development of type 2 diabetes mellitus (T2DM) related skin complications necessitates further investigation. This study aims to explore the correlation between inflammation and cutaneous alterations in T2DM, enhancing comprehension of underlying mechanism involved. METHODS Utilizing bioinformatics, the GSE38396 and GSE92724 datasets were employed to identify differentially expressed genes (DEGs) and potential hub genes in T2DM-related skin inflammation. Subsequently, gene functional enrichment analysis was employed for functional annotation. Finally, we validated the regulatory impact of hub gene on inflammation during high glucose incubation using the in vitro model. RESULTS A comprehensive analysis identified 742 DEGs, including 9 hub genes and 4 potential biomarkers. Compared to the CON group, the expression of M2 macrophages was significantly upregulated in the T2DM group, while resting dendritic cells and eosinophils showed notable decreases, indicating a significant correlation with CEBPA. Furthermore, functional enrichment analysis revealed significant enrichment of DEGs in pathways linked to immunity and diabetes pathogenesis. Interestingly, overexpression of CEBPA demonstrated anti-inflammatory effects under hyperglycemic conditions, while silencing CEBPA expression appeared to worsen inflammation. CONCLUSION CEBPA emerges as a potential hub gene for skin inflammation in T2DM, shedding light on the underlying mechanisms of this condition.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jingchun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yijin Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Adebekun J, Nadig A, Saarah P, Asgari S, Kachuri L, Alagpulinsa DA. Genetic relations between type 1 diabetes, coronary artery disease and leukocyte counts. Diabetologia 2024; 67:2518-2529. [PMID: 39141130 DOI: 10.1007/s00125-024-06247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 08/15/2024]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is associated with excess coronary artery disease (CAD) risk even when known cardiovascular risk factors are accounted for. Genetic perturbation of haematopoiesis that alters leukocyte production is a novel independent modifier of CAD risk. We examined whether there are shared genetic determinants and causal relationships between type 1 diabetes, CAD and leukocyte counts. METHODS Genome-wide association study summary statistics were used to perform pairwise linkage disequilibrium score regression and heritability estimation from summary statistics (ρ-HESS) to respectively estimate the genome-wide and local genetic correlations, and two-sample Mendelian randomisation to estimate the causal relationships between leukocyte counts (335,855 healthy individuals), type 1 diabetes (18,942 cases, 501,638 control individuals) and CAD (122,733 cases, 424,528 control individuals). A latent causal variable (LCV) model was performed to estimate the genetic causality proportion of the genetic correlation between type 1 diabetes and CAD. RESULTS There was significant genome-wide genetic correlation (rg) between type 1 diabetes and CAD (rg=0.088, p=8.60 × 10-3) and both diseases shared significant genome-wide genetic determinants with eosinophil count (rg for type 1 diabetes [rg(T1D)]=0.093, p=7.20 × 10-3, rg for CAD [rg(CAD)]=0.092, p=3.68 × 10-6) and lymphocyte count (rg(T1D)=-0.052, p=2.76 × 10-2, rg(CAD)=0.176, p=1.82 × 10-15). Sixteen independent loci showed stringent Bonferroni significant local genetic correlations between leukocyte counts, type 1 diabetes and/or CAD. Cis-genetic regulation of the expression levels of genes within shared loci between type 1 diabetes and CAD was associated with both diseases as well as leukocyte counts, including SH2B3, CTSH, MORF4L1, CTRB1, CTRB2, CFDP1 and IFIH1. Genetically predicted lymphocyte, neutrophil and eosinophil counts were associated with type 1 diabetes and CAD (lymphocyte OR for type 1 diabetes [ORT1D]=0.67, p=2.02-19, ORCAD=1.09, p=2.67 × 10-6; neutrophil ORT1D=0.82, p=5.63 × 10-5, ORCAD=1.17, p=5.02 × 10-14; and eosinophil ORT1D=1.67, p=5.45 × 10-25, ORCAD=1.07, p=2.03 × 10-4. The genetic causality proportion between type 1 diabetes and CAD was 0.36 ± 0.16 (pLCV=1.30 × 10-2), suggesting a possible intermediary causal variable. CONCLUSIONS/INTERPRETATION This study sheds light on shared genetic mechanisms underlying type 1 diabetes and CAD, which may contribute to their co-occurrence through regulation of gene expression and leukocyte counts and identifies cellular and molecular targets for further investigation for disease prediction and potential drug discovery.
Collapse
Affiliation(s)
- Jolade Adebekun
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ajay Nadig
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Priscilla Saarah
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Samira Asgari
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Alagpulinsa
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Tanaka E, Yamasaki R, Saitoh BY, Abdelhadi A, Nagata S, Yoshidomi S, Inoue Y, Matsumoto K, Kira JI, Isobe N. Postnatal Allergic Inhalation Induces Glial Inflammation in the Olfactory Bulb and Leads to Autism-Like Traits in Mice. Int J Mol Sci 2024; 25:10464. [PMID: 39408806 PMCID: PMC11476352 DOI: 10.3390/ijms251910464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders. To explore its pathophysiology, we investigated the association between neonatal allergic exposure and behavioral changes. Adult female C57BL/6J mice were immunized with adjuvant (aluminum hydroxide) or ovalbumin emulsified with adjuvant. After immunization, the mice were mated, and offspring were born at full term. The postnatal dams and infants were then simultaneously exposed to an allergen (ovalbumin) or vehicle via inhalation. After weaning, behavioral testing and histopathological analyses were conducted on male offspring. Compared with the vehicle-exposed offspring, the ovalbumin-exposed offspring had decreased sociability and increased repetitive behavior, thus representing an ASD-like phenotype in mice. Moreover, histopathological analyses revealed that the ovalbumin-exposed mice had increased astroglial, microglial, and eosinophilic infiltration in the olfactory bulb, as well as increased eosinophils in the nasal mucosa. The ovalbumin-exposed mice also had decreased dendritic spine density and a lower proportion of mature spines, suggesting the impairment of stimulus-induced synaptogenesis. In conclusion, postnatal allergic exposure induced an ASD-like phenotype, as well as allergic rhinitis, which was followed by glial inflammation in the olfactory bulb parenchyma.
Collapse
Affiliation(s)
- Eizo Tanaka
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Miyazaki Prefectural Miyazaki Hospital, 5-30 Kita-Takamatsu-Cho, Miyazaki 880-8510, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ban-yu Saitoh
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurology, Himeno Hospital, 2316 Oaza-Nishiro, Hirokawa-machi, Yame-gun, Fukuoka 834-0115, Japan
| | - Amina Abdelhadi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig 44519, Al-Sharqia Governorate, Egypt
| | - Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sato Yoshidomi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuka Inoue
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koichiro Matsumoto
- Division of Respirology, Department of Medicine, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Jun-ichi Kira
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa 831-8501, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, 2-6-11 Yakuin, Chuo-ku, Fukuoka 810-0022, Japan
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Wykoff CC, Do DV, Goldberg RA, Dhoot DS, Lim JI, Du W, Silva FQ, Desai R, Moini H, Reed K, Berliner AJ, Vitti R, Clark WL. Ocular and Systemic Risk Factors for Disease Worsening Among Patients with NPDR: Post Hoc Analysis of the PANORAMA Trial. Ophthalmol Retina 2023; 8:S2468-6530(23)00567-5. [PMID: 39491132 DOI: 10.1016/j.oret.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
PURPOSE Identify baseline systemic and ocular characteristics associated with nonproliferative diabetic retinopathy (NPDR) worsening, and the impact of intravitreal aflibercept injection (IAI) on these associations. DESIGN Post hoc analysis of PANORAMA. PARTICIPANTS Patients with moderately severe to severe NPDR enrolled in the prospective PANORAMA phase 3 trial. METHODS Associations between baseline systemic and ocular factors with events indicative of NPDR worsening at Week 100 were evaluated by multivariable analysis in sham-treated eyes. NPDR worsening was defined as development of (1) vision-threatening complications (VTCs; comprising PDR and/or anterior segment neovascularization), (2) center-involved diabetic macular edema (CI-DME), or (3) ≥ 2-step Diabetic Retinopathy Severity Scale (DRSS) worsening. Impact of IAI on identified baseline factors was evaluated using univariable analysis in combined IAI groups. MAIN OUTCOMES MEASURES Baseline systemic and ocular factors associated with events indicative of NPDR worsening at Week 100. The cumulative incidence and risk of developing such events at Week 100 among sham versus IAI-treated eyes. RESULTS Using multivariable analyses among sham-treated eyes, 5 baseline factors associated with increased risk of NPDR worsening were identified: fluorescein leakage, retinal nonperfusion area, thicker central subfield thickness, eosinophil level, and proteinuria. Considering baseline fluorescein leakage area as a prognostic indicator in detail, the risk of developing VTCs alone, VTCs and/or CI-DME, or ≥ 2-step DRSS worsening increased with increasing fluorescein leakage area in the sham group (all P < 0.05). Considering baseline retinal nonperfusion area as a prognostic indicator in detail, the risk of developing VTCs alone, CI-DME alone, or VTCs and/or CI-DME increased with increasing baseline retinal nonperfusion area in the sham group (all P < 0.05). In contrast, among IAI-treated eyes, increasing baseline fluorescein leakage or retinal nonperfusion areas did not increase the risks of NPDR worsening. CONCLUSIONS Within the PANORAMA trial, increased areas of fluorescein leakage and retinal nonperfusion at baseline were identified as key ocular biomarkers associated with events indicative of NPDR worsening among sham-treated patients. IAI treatment appeared to mitigate the effect of these baseline risk factors and reduced the likelihood of NPDR worsening.
Collapse
Affiliation(s)
- Charles C Wykoff
- Retina Consultants of Texas; Retina Consultants of America; Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas.
| | - Diana V Do
- Byers Eye Institute, Stanford University, Palo Alto, California
| | | | - Dilsher S Dhoot
- California Retina Consultants/Retina Consultants of America, Santa Barbara, California
| | | | - Weiming Du
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Rutvi Desai
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Hadi Moini
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Kimberly Reed
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Robert Vitti
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | |
Collapse
|
5
|
Zhao S, Li Y, Su C. Assessment of common risk factors of diabetes and chronic kidney disease: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1265719. [PMID: 37780623 PMCID: PMC10535100 DOI: 10.3389/fendo.2023.1265719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Background The increasing prevalence of diabetes and its significant impact on mortality and morbidity rates worldwide has led to a growing interest in understanding its common risk factors, particularly in relation to chronic kidney disease (CKD). This research article aims to investigate the shared risk factors between type 1 diabetes (T1D), type 2 diabetes (T2D), and CKD using a Mendelian randomization (MR) design. Methods The study utilized genome-wide association study (GWAS) datasets for T1D, T2D, and CKD from the FinnGen research project. GWAS summary statistics datasets for 118 exposure traits were obtained from the IEU OpenGWAS database. MR analyses were conducted to examine the causal relationships between exposure traits and each of the three outcomes. Multiple methods, including inverse-variance weighted, weighted median, and MR-Egger, were employed for the MR studies. Results Phenome-wide MR analyses revealed that eosinophil percentage exhibited a significant and suggestive causal association with T1D and CKD, respectively, suggesting its potential as a shared risk factor for T1D and CKD. For T2D, 34 traits demonstrated significant associations. Among these 34 traits, 14 were also significantly associated with CKD, indicating the presence of common risk factors between T2D and CKD, primarily related to obesity, height, blood lipids and sex hormone binding globulin, blood pressure, and walking pace. Conclusion This research has uncovered the eosinophil percentage as a potential common risk factor for both T1D and CKD, while also identifying several traits, such as obesity and blood lipids, as shared risk factors for T2D and CKD. This study contributes to the understanding of the common risk factors between diabetes and CKD, emphasizing the need for targeted interventions to reduce the risk of these diseases.
Collapse
Affiliation(s)
- Shuwu Zhao
- Department of Pain, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Yiming Li
- School of Basic Medicine Science, Naval Medical University/Second Military University, Shanghai, China
| | - Chen Su
- Department of Pain, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Shapiro MR, Dong X, Perry DJ, McNichols JM, Thirawatananond P, Posgai AL, Peters LD, Motwani K, Musca RS, Muir A, Concannon P, Jacobsen LM, Mathews CE, Wasserfall CH, Haller MJ, Schatz DA, Atkinson MA, Brusko MA, Bacher R, Brusko TM. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight 2023; 8:e170767. [PMID: 37498686 PMCID: PMC10544250 DOI: 10.1172/jci.insight.170767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual and dramatic remodeling throughout the human life span, which complicates efforts to identify disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected controls). We constructed an immune age predictive model in unaffected participants and observed accelerated immune aging in T1D. We used generalized additive models for location, shape, and scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated immunological aging in T1D included increased CXCR3+ and programmed cell death 1-positive (PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated phenotypes for biomarker monitoring and therapeutic interventions.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Xiaoru Dong
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - James M. McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Leeana D. Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Keshav Motwani
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Richard S. Musca
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Patrick Concannon
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Genetics Institute and
| | - Laura M. Jacobsen
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Michael J. Haller
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Desmond A. Schatz
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Rhonda Bacher
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Wang F, Liang J, Zhu D, Xiang P, Zhou L, Yang C. Characteristic gene prognostic model of type 1 diabetes mellitus via machine learning strategy. Endocr J 2023; 70:281-294. [PMID: 36477008 DOI: 10.1507/endocrj.ej22-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The present study was designed to detect possible biomarkers associated with Type 1 diabetes mellitus (T1DM) incidence in an effort to develop novel treatments for this condition. Three mRNA expression datasets of peripheral blood mononuclear cells (PBMCs) were obtained from the GEO database. Differentially expressed genes (DEGs) between T1DM patients and healthy controls were identified by Limma package in R, and using the DEGs to conduct GO and DO pathway enrichment. The LASSO-SVM were used to screen the hub genes. We performed immune correlation analysis of hub genes and established a T1DM prognosis model. CIBERSORT algorithm was used to identify the different immune cells in distribution between T1DM and normal samples. The correlation of the hub genes and immune cells was analyzed by Spearman. ROC curves were used to assess the diagnostic value of genes in T1DM. A total of 60 immune related DEGs were obtained from the T1DM and normal samples. Then, DEGs were further screened to obtain 3 hub genes, ANP32A-IT1, ESCO2 and NBPF1. CIBERSORT analysis revealed the percentage of immune cells in each sample, indicating that there was significant difference in monocytes, T cells CD8+, gamma delta T cells, naive CD4+ T cells and activated memory CD4+ T cells between T1DM and normal samples. The area under curve (AUC) of ESCO2, ANP32A-IT1 and NBPF1 were all greater than 0.8, indicating that these three genes have high diagnostic value for T1DM. Together, the findings of these bioinformatics analyses thus identified key hub genes associated with T1DM development.
Collapse
Affiliation(s)
- Fenglin Wang
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
- Hebei North University, Zhangjiakou 075000, China
| | - Jiemei Liang
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
- Hebei North University, Zhangjiakou 075000, China
| | - Di Zhu
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
| | - Pengan Xiang
- Hospital of 94498 Troops, People's Liberation Army, Nanyang 474300, China
| | - Luyao Zhou
- Hebei North University, Zhangjiakou 075000, China
| | - Caizhe Yang
- Department of Endocrinology of the Air Force Medical Center, People's Liberation Army, Beijing 100142, China
| |
Collapse
|
9
|
Rafaqat S, Rafaqat S. Role of hematological parameters in pathogenesis of diabetes mellitus: A review of the literature. World J Hematol 2023; 10:25-41. [DOI: 10.5315/wjh.v10.i3.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Affiliation(s)
- Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore 5400, Pakistan
| | - Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore 5400, Pakistan
| |
Collapse
|
10
|
Comparative haemato-biochemical profile of induced anchylostomiasis in healthy and diabetic murine model. Exp Parasitol 2022; 240:108334. [DOI: 10.1016/j.exppara.2022.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
|
11
|
Jakubiak GK, Pawlas N, Cieślar G, Stanek A. Pathogenesis and Clinical Significance of In-Stent Restenosis in Patients with Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11970. [PMID: 34831726 PMCID: PMC8617716 DOI: 10.3390/ijerph182211970] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is a strong risk factor for the development of cardiovascular diseases such as coronary heart disease, cerebrovascular disease, and peripheral arterial disease (PAD). In the population of people living with DM, PAD is characterised by multi-level atherosclerotic lesions as well as greater involvement of the arteries below the knee. DM is also a factor that significantly increases the risk of lower limb amputation. Percutaneous balloon angioplasty with or without stent implantation is an important method of the treatment for atherosclerotic cardiovascular diseases, but restenosis is a factor limiting its long-term effectiveness. The pathogenesis of atherosclerosis in the course of DM differs slightly from that in the general population. In the population of people living with DM, more attention is drawn to such factors as inflammation, endothelial dysfunction, platelet dysfunction, blood rheological properties, hypercoagulability, and additional factors stimulating vascular smooth muscle cell proliferation. DM is a risk factor for restenosis. The purpose of this paper is to provide a review of the literature and to present the most important information on the current state of knowledge on mechanisms and the clinical significance of restenosis and in-stent restenosis in patients with DM, especially in association with the endovascular treatment of PAD. The role of such processes as inflammation, neointimal hyperplasia and neoatherosclerosis, allergy, resistance to antimitotic drugs used for coating stents and balloons, genetic factors, and technical and mechanical factors are discussed. The information on restenosis collected in this publication may be helpful in planning further research in this field, which may contribute to the formulation of more and more precise recommendations for the clinical practice.
Collapse
Affiliation(s)
- Grzegorz K. Jakubiak
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland; (G.K.J.); (G.C.)
| | - Natalia Pawlas
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 St., 41-800 Zabrze, Poland;
| | - Grzegorz Cieślar
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland; (G.K.J.); (G.C.)
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland; (G.K.J.); (G.C.)
| |
Collapse
|
12
|
Manohar M, Kandikattu HK, Upparahalli Venkateshaiah S, Yadavalli CS, Mishra A. Eosinophils in the pathogenesis of pancreatic disorders. Semin Immunopathol 2021; 43:411-422. [PMID: 33783592 PMCID: PMC8249347 DOI: 10.1007/s00281-021-00853-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Eosinophils comprise approximately 1-4% of total blood leukocytes that reside in the intestine, bone marrow, mammary gland, and adipose tissues to maintain innate immunity in healthy individuals. Eosinophils have four toxic granules known as major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil peroxidase (EPO), and eosinophil-derived neurotoxin (EDN), and upon degranulation, these granules promote pathogenesis of inflammatory diseases like allergy, asthma, dermatitis, and gastrointestinal disorders. Additionally, the role of eosinophils is underscored in exocrine disorders including pancreatitis. Chronic pancreatitis (CP) is an inflammatory disorder that occurs due to the alcohol consumption, blockage of the pancreatic duct, and trypsinogen mutation. Eosinophil levels are detected in higher numbers in both CP and pancreatic cancer patients compared with healthy individuals. The mechanistic understanding of chronic inflammation-induced pancreatic malignancy has not yet been reached and requires further exploration. This review provides a comprehensive summary of the epidemiology, pathophysiology, evaluation, and management of eosinophil-associated pancreatic disorders and further summarizes current evidence regarding risk factors, pathophysiology, clinical features, diagnostic evaluation, treatment, and prognosis of eosinophilic pancreatitis (EP) and pancreatic cancer.
Collapse
Affiliation(s)
- Murli Manohar
- School of Medicine, Gastrointestinal and Hepatology Division, Stanford University, Stanford, CA, 94304, USA
| | - Hemanth Kumar Kandikattu
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sathisha Upparahalli Venkateshaiah
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chandra Sekhar Yadavalli
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Anil Mishra
- John W. Deming Department of Medicine, Section of Pulmonary Diseases, Tulane Eosinophilic Disorder Center (TEDC), Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
The twilight zone: plasticity and mixed ontogeny of neutrophil and eosinophil granulocyte subsets. Semin Immunopathol 2021; 43:337-346. [PMID: 34009400 PMCID: PMC8132041 DOI: 10.1007/s00281-021-00862-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
It is now becoming clear that neutrophils and eosinophils are heterogeneous cells with potentially multiple subsets in health and disease. With greater marker coverage by multi-color flow cytometry and single-cell level sequencing of granulocyte populations, novel phenotypes of these cells began to emerge. Intriguingly, many newly described subsets blend distinctions between classical myeloid lineage phenotypes, which are especially true for tissue resident or recruited cells in contexts of inflammation and disease. This includes reports of neutrophils with features of eosinophils, monocytes and dendritic cells, and eosinophil subsets expressing neutrophil markers. Moreover, novel studies show the ability of immature neutrophils to transdifferentiate into mature cells belonging to other myeloid lineages (eosinophils, monocytes/macrophages). In this review, we summarize novel findings in this exciting research frontier and shed light on potential processes driving the plasticity and heterogeneity of granulocyte subsets. Specifically, we discuss the hematopoietic flexibility of granulocyte precursors in bone marrow and the adaptation of myeloid cells to local tissue microenvironments. The understanding of such intermediate and developmental phenotypes is very important, as it can teach us about origins of functionally distinct myeloid cells during inflammation, and explain reasons for successes and failures of biologics targeting terminally differentiated granulocytes.
Collapse
|
14
|
Upchurch K, Wiest M, Cardenas J, Skinner J, Nattami D, Lanier B, Millard M, Joo H, Turner J, Oh S. Whole blood transcriptional variations between responders and non-responders in asthma patients receiving omalizumab. Clin Exp Allergy 2020; 50:1017-1034. [PMID: 32472607 DOI: 10.1111/cea.13671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/10/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Anti-IgE (omalizumab) has been used for the treatment of moderate-to-severe asthma that is not controlled by inhaled steroids. Despite its success, it does not always provide patients with significant clinical benefits. OBJECTIVE To investigate the transcriptional variations between omalizumab responders and non-responders and to study the mechanisms of action of omalizumab. METHODS The whole blood transcriptomes of moderate-to-severe adult asthma patients (N = 45:34 responders and 11 non-responders) were analysed over the course of omalizumab treatment. Non-asthmatic healthy controls (N = 17) were used as controls. RESULTS Transcriptome variations between responders and non-responders were identified using the genes significant (FDR < 0.05) in at least one comparison of each patient response status and time point compared with control subjects. Using gene ontology and network analysis, eight clusters of genes were identified. Longitudinal analyses of individual clusters revealed that responders could maintain changes induced with omalizumab treatment and become more similar to the control subjects, while non-responders tend to remain more similar to their pre-treatment baseline. Further analysis of an inflammatory gene cluster revealed that genes associated with neutrophil/eosinophil activities were up-regulated in non-responders and, more importantly, omalizumab did not significantly alter their expression levels. The application of modular analysis supported our findings and further revealed variations between responders and non-responders. CONCLUSION AND CLINICAL RELEVANCE This study provides not only transcriptional variations between omalizumab responders and non-responders, but also molecular insights for controlling asthma by omalizumab.
Collapse
Affiliation(s)
| | - Matthew Wiest
- Baylor University, Institute for Biomedical Studies, Waco, TX, USA
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jacob Cardenas
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Jason Skinner
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Durgha Nattami
- Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Bobby Lanier
- North Texas Institute for Clinical Trials, Ft Worth, TX, USA
| | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, TX, USA
| | - HyeMee Joo
- Baylor University, Institute for Biomedical Studies, Waco, TX, USA
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
| | - Jacob Turner
- Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - SangKon Oh
- Baylor University, Institute for Biomedical Studies, Waco, TX, USA
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
15
|
Singh K, Martinell M, Luo Z, Espes D, Stålhammar J, Sandler S, Carlsson PO. Cellular immunological changes in patients with LADA are a mixture of those seen in patients with type 1 and type 2 diabetes. Clin Exp Immunol 2019; 197:64-73. [PMID: 30843600 PMCID: PMC6591143 DOI: 10.1111/cei.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
There is currently scarce knowledge of the immunological profile of patients with latent autoimmune diabetes mellitus in the adult (LADA) when compared with healthy controls (HC) and patients with classical type 1 diabetes (T1D) and type 2 diabetes (T2D). The objective of this study was to investigate the cellular immunological profile of LADA patients and compare to HC and patients with T1D and T2D. All patients and age‐matched HC were recruited from Uppsala County. Peripheral blood mononuclear cells were isolated from freshly collected blood to determine the proportions of immune cells by flow cytometry. Plasma concentrations of the cytokine interleukin (IL)‐35 were measured by enzyme‐linked immunosorbent assay (ELISA). The proportion of CD11c+CD123– antigen‐presenting cells (APCs) was lower, while the proportions of CD11c+CD123+ APCs and IL‐35+ tolerogenic APCs were higher in LADA patients than in T1D patients. The proportion of CD3–CD56highCD16+ natural killer (NK) cells was higher in LADA patients than in both HC and T2D patients. The frequency of IL‐35+ regulatory T cells and plasma IL‐35 concentrations in LADA patients were similar to those in T1D and T2D patients, but lower than in HC. The proportion of regulatory B cells in LADA patients was higher than in healthy controls, T1D and T2D patients, and the frequency of IL‐35+ regulatory B cells was higher than in T1D patients. LADA presents a mixed cellular immunological pattern with features overlapping with both T1D and T2D.
Collapse
Affiliation(s)
- K Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - M Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Z Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - D Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Stålhammar
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - S Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - P-O Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS, Lee JJ, Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 2018; 104:95-108. [PMID: 29656559 DOI: 10.1002/jlb.1mr1117-442rr] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergio E Chiarella
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth A Jacobsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
17
|
Samarasinghe AE, Melo RCN, Duan S, LeMessurier KS, Liedmann S, Surman SL, Lee JJ, Hurwitz JL, Thomas PG, McCullers JA. Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3214-3226. [PMID: 28283567 PMCID: PMC5384374 DOI: 10.4049/jimmunol.1600787] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/11/2017] [Indexed: 12/26/2022]
Abstract
Eosinophils are multifunctional cells of the innate immune system linked to allergic inflammation. Asthmatics were more likely to be hospitalized but less likely to suffer severe morbidity and mortality during the 2009 influenza pandemic. These epidemiologic findings were recapitulated in a mouse model of fungal asthma wherein infection during heightened allergic inflammation was protective against influenza A virus (IAV) infection and disease. Our goal was to delineate a mechanism(s) by which allergic asthma may alleviate influenza disease outcome, focused on the hypothesis that pulmonary eosinophilia linked with allergic respiratory disease is able to promote antiviral host defenses against the influenza virus. The transfer of eosinophils from the lungs of allergen-sensitized and challenged mice into influenza virus-infected mice resulted in reduced morbidity and viral burden, improved lung compliance, and increased CD8+ T cell numbers in the airways. In vitro assays with primary or bone marrow-derived eosinophils were used to determine eosinophil responses to the virus using the laboratory strain (A/PR/08/1934) or the pandemic strain (A/CA/04/2009) of IAV. Eosinophils were susceptible to IAV infection and responded by activation, piecemeal degranulation, and upregulation of Ag presentation markers. Virus- or viral peptide-exposed eosinophils induced CD8+ T cell proliferation, activation, and effector functions. Our data suggest that eosinophils promote host cellular immunity to reduce influenza virus replication in lungs, thereby providing a novel mechanism by which hosts with allergic asthma may be protected from influenza morbidity.
Collapse
Affiliation(s)
- Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103;
- Children's Foundation Research Institute, Memphis, TN 38103
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036, Brazil
| | - Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
- Children's Foundation Research Institute, Memphis, TN 38103
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - James J Lee
- Department of Biochemistry, Mayo Clinic, Scottsdale, AZ 85259
| | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105; and
| | - Jonathan A McCullers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
- Children's Foundation Research Institute, Memphis, TN 38103
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
18
|
Szablewski L, Sulima A. The structural and functional changes of blood cells and molecular components in diabetes mellitus. Biol Chem 2017; 398:411-423. [DOI: 10.1515/hsz-2016-0196] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Abstract
It is known fact that diabetes mellitus (DM) affects blood cells. Changes in the erythrocyte membrane, disorder in hemoglobin oxygen-binding and modification in mechanical characteristics, are effects of hyperglycemia on red blood cells. Altered susceptibility infection of patients with diabetes has been ascribed to a depression in the function of polymorphonuclear leukocytes. Neutrophil function in patients with diabetes with good glucose control is slightly different than in healthy ones. DM causes significant changes in lymphocytes metabolism and their functions. Patients with diabetes, presenting with acute coronary syndrome, are at higher risk of cardiovascular complications and recurrent ischemic events in comparison to non-diabetic counterparts. Various mechanisms, including endothelial dysfunction, platelet hyperactivity, and abnormalities in coagulation and fibrynolysis have been implicated for this increased atherothrombotic risk. There are many other alterations of blood cells due to DM. In the present review we focused on modifications of blood cells due to DM. Then, as a second point, we explored how the changes affect functions of red blood cells, white blood cells and platelets.
Collapse
|
19
|
Németh BC, Várkonyi T, Somogyvári F, Lengyel C, Fehértemplomi K, Nyiraty S, Kempler P, Mándi Y. Relevance of α-defensins (HNP1-3) and defensin β-1 in diabetes. World J Gastroenterol 2014; 20:9128-9137. [PMID: 25083086 PMCID: PMC4112898 DOI: 10.3748/wjg.v20.i27.9128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the genetic background of human defensin expression in type 1 and 2 diabetes.
METHODS: Associations between DEFA1/DEFA3 gene copy number polymorphism and diabetes as well as between the promoter polymorphisms of DEFB1 and diabetes were studied. The copy number variation of the DEFA1/DEFA3 genes was determined in 257 diabetic patients (117 patients with type 1 and 140 with type 2 diabetes). The control group consisted of 221 age- and gender-matched healthy blood donors. The cumulative copy numbers of the DEFA1/DEFA3 genes were detected by using quantitative PCR analysis. To evaluate the HNP 1-3 (human neutrophil peptide 1-3 or α-defensin) levels in the circulation, plasma HNP 1-3 concentrations were measured by ELISA. The expression of DEFA1/A3 in peripheral leukocytes of the diabetic patients was measured by quantitative RT PCR analysis. Three SNPs of the human DEFB1 (human defensin β-1) gene: DEFB1 G-20A (rs11362), DEFB1 C-44G (rs1800972) and DEFB1 G-52A (rs1799946) were genotyped by Custom TaqMan® Real Time PCR assay.
RESULTS: Significant differences were observed in HNP1-3 levels between the healthy subjects and both groups of diabetic patients. The mean ± SE was 28.78 ± 4.2 ng/mL in type 1 diabetes, and 29.82 ± 5.36 ng/mL in type 2 diabetes, vs 11.94 ± 2.96 ng/mL in controls; P < 0.01 respectively. There was no significant difference between patients with type 1 and type 2 diabetes in the high plasma concentrations of HNP1-3. The highest concentrations of α-defensin were found in diabetic patients with nephropathy (49.4 ± 4.8 ng/mL), neuropathy (38.7 ± 4.8 ng/mL) or cardiovascular complications (45.6 ± 1.45 ng/L). There was no significant difference in the cumulative copy numbers of DEFA1/DEFA3 genes between controls and patients, or between patients with the two types of diabetes. Comparisons of HNP 1-3 plasma level and DEFA1/A3 copy number of the same patient did not reveal significant relationship between defensin-α levels and the gene copy numbers (r2 = 0.01). Similarly, no positive correlation was observed between the copy numbers and the mRNA expression levels of DEFA1/A3. Regarding the C-44G polymorphism of DEFB1, the GG “protective” genotype was much less frequent (1%-2%) among both groups of patients than among controls (9%).
CONCLUSION: Elevated HNP1-3 levels in diabetes are independent of DEFA1/DEFA3 copy numbers, but GG genotype of C-44G SNP in DEFB1 gene may result in decreased defensin β-1 production.
Collapse
|
20
|
Reksten TR, Johnsen SJA, Jonsson MV, Omdal R, Brun JG, Theander E, Eriksson P, Wahren-Herlenius M, Jonsson R, Nordmark G. Genetic associations to germinal centre formation in primary Sjogren's syndrome. Ann Rheum Dis 2014; 73:1253-8. [PMID: 23606706 DOI: 10.1136/annrheumdis-2012-202500] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune rheumatic disease mainly characterised by focal mononuclear cell infiltration in the salivary and lacrimal glands, and by the symptoms xerostomia and keratoconjunctivitis sicca. Germinal centre-like structures (GC) are found in the minor salivary glands of approximately 25% of patients. In this study, we aimed to assess genetic variations in pSS patients with GC-like formations (GC+) compared with patients without such formations (GC-). METHODS Minor salivary gland biopsies from Swedish and Norwegian pSS patients (n=320) were evaluated for GC-like formations, identifying 76 GC+ and 244 GC- patients. A panel of 1536 single-nucleotide polymorphisms (SNPs) in 107 genes was genotyped. Minor allele frequencies in GC+ and GC- patients were compared using Fisher's exact test, and associations were considered significant when p<4.7×10(-4) and suggestive when p<0.01. RESULTS In this case-only analysis, we identified two SNPs in CCL11 (eotaxin) associated with GC-like structures (p<4.7×10(-4), OR 0.45 and 0.41, respectively). A haplotype of the two minor alleles was associated with GC status with p=2.6×10(-4), OR 0.40. Suggestive associations (p<0.01) were found in SNPs in the B cell activation and/or GC-formation related genes AICDA, BANK1 and BCL2. Furthermore, SNPs in IL17A, ICA1, PKN1 and SNPs in the NF-κB pathway genes CARD8, IKBKE and TANK were found suggestively associated with GC-like structures. CONCLUSIONS Our findings suggest that genetic variations may explain why ectopic GC-like structures are present in some pSS patients, and support the hypothesis that GC+ and GC- patients represent distinct disease phenotypes.
Collapse
Affiliation(s)
- Tove Ragna Reksten
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, , Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bogdani M, Henschel AM, Kansra S, Fuller JM, Geoffrey R, Jia S, Kaldunski ML, Pavletich S, Prosser S, Chen YG, Lernmark A, Hessner MJ. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes. J Endocrinol 2013; 216:111-23. [PMID: 23111281 PMCID: PMC4077722 DOI: 10.1530/joe-12-0385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabetogenesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility.
Collapse
Affiliation(s)
- Marika Bogdani
- Pacific Northwest Diabetes Research Institute, 720 Broadway, Seattle, Washington 98122, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|