1
|
Haubner S, Subklewe M, Sadelain M. Honing CAR T cells to tackle acute myeloid leukemia. Blood 2025; 145:1113-1125. [PMID: 39630061 DOI: 10.1182/blood.2024024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 03/14/2025] Open
Abstract
ABSTRACT Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in R/R AML. Redirecting the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123, or CLEC12A has occasionally yielded morphologic leukemia-free states but has so far been marred by threatening myeloablation and early relapses. These safety and efficacy limitations are largely due to the challenge of identifying suitable target antigens and designing adequate receptors for effective recognition and safe elimination of AML. Building on lessons learned from the initial clinical attempts, a new wave of CAR strategies relying on alternative target antigens and innovative CAR designs is about to enter clinical evaluation. Adapted multiantigen targeting, logic gating, and emerging cell engineering solutions offer new possibilities to better direct T-cell specificity and sensitivity toward AML. Pharmacologic modulation and genetic epitope engineering may extend these approaches by augmenting target expression in AML cells or minimizing target expression in normal hematopoietic cells. On/off switches or CAR T-cell depletion may curb excessive or deleterious CAR activity. Investigation of AML-intrinsic resistance and leukemic microenvironmental factors is poised to reveal additional targetable AML vulnerabilities. We summarize here the findings, challenges, and new developments of CAR therapy for AML. These illustrate the need to specifically adapt CAR strategies to the complex biology of AML to achieve better therapeutic outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- Animals
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Sascha Haubner
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Michel Sadelain
- Columbia Initiative in Cell Engineering and Therapy, Department of Medicine, Columbia University, New York, NY
| |
Collapse
|
2
|
Broksø AD, Bendixen L, Fammé S, Mikkelsen K, Jensen TI, Bak RO. Orthogonal transcriptional modulation and gene editing using multiple CRISPR-Cas systems. Mol Ther 2025; 33:71-89. [PMID: 39563029 PMCID: PMC11764084 DOI: 10.1016/j.ymthe.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
CRISPR-Cas-based transcriptional activation (CRISPRa) and interference (CRISPRi) enable transient programmable gene regulation by recruitment or fusion of transcriptional regulators to nuclease-deficient Cas (dCas). Here, we expand on the emerging area of transcriptional engineering and RNA delivery by benchmarking combinations of RNA-delivered dCas and transcriptional modulators. We utilize dCas9 from Staphylococcus aureus and Streptococcus pyogenes for orthogonal transcriptional modulation to upregulate one set of genes while downregulating another. We also establish trimodal genetic engineering by combining orthogonal transcriptional regulation with gene knockout by Cas12a (Acidaminococcus; AsCas12a) ribonucleoprotein delivery. To simplify trimodal engineering, we explore optimal parameters for implementing truncated single guide RNAs (sgRNAs) to make use of SpCas9 for knockout and CRISPRa. We find the Cas9 protein/sgRNA ratio to be crucial for avoiding sgRNA cross-complexation and for balancing knockout and activation efficiencies. We demonstrate high efficiencies of trimodal genetic engineering in primary human T cells while preserving basic T cell health and functionality. This study highlights the versatility and potential of complex genetic engineering using multiple CRISPR-Cas systems in a simple one-step process yielding transient transcriptome modulation and permanent DNA changes. We believe such elaborate engineering can be implemented in regenerative medicine and therapies to facilitate more sophisticated treatments.
Collapse
Affiliation(s)
| | - Louise Bendixen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Simon Fammé
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
3
|
Kan WL, Weekley CM, Nero TL, Hercus TR, Yip KH, Tumes DJ, Woodcock JM, Ross DM, Thomas D, Terán D, Owczarek CM, Liu NW, Martelotto LG, Polo JM, Pant H, Tvorogov D, Lopez AF, Parker MW. The β Common Cytokine Receptor Family Reveals New Functional Paradigms From Structural Complexities. Immunol Rev 2025; 329:e13430. [PMID: 39748163 DOI: 10.1111/imr.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Cytokines are small proteins that are critical for controlling the growth and activity of hematopoietic cells by binding to cell surface receptors and transmitting signals across membranes. The β common (βc) cytokine receptor family, consisting of the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 cytokine receptors, is an architype of the heterodimeric cytokine receptor systems. We now know that signaling by cytokine receptors is not always an "all or none" phenomenon. Subtle alterations of the cytokine:receptor complex can result in differential or selective signaling and underpin a variety of diseases including chronic inflammatory conditions and cancers. Structural biology techniques, such as X-ray crystallography and cryo-electron microscopy alongside cell biology studies, are providing detailed insights into cytokine receptor signaling. Recently, we found that the IL-3 receptor ternary complex forms higher-order assemblies, like those found earlier for the GM-CSF receptor, and demonstrated that functionally distinct biological signals arise from different IL-3 receptor oligomeric assemblies. As we enhance our understanding of the structural nuances of cytokine-receptor interactions, we foresee a new era of theranostics whereby structurally guided mechanism-based manipulation of cytokine signaling through rational/targeted protein engineering will harness the full potential of cytokine biology for precision medicine.
Collapse
Affiliation(s)
- Winnie L Kan
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Claire M Weekley
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tracy L Nero
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy R Hercus
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Kwok Ho Yip
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Joanna M Woodcock
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - David M Ross
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
- Acute Leukemia Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - David Terán
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Catherine M Owczarek
- CSL, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - Nora W Liu
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Epigenetics Program, South Australian immunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Harshita Pant
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Denis Tvorogov
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Cytokine Receptor Laboratory, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
- Discipline of Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael W Parker
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
4
|
Nkansah C, Osei‐Boakye F, Abbam G, Appiah SK, Daud S, Boakye B, Abdulai S, Ahmed M, Antwi TB, Boateng B, Libatin MP, Mensah AS, Missah MK, Duneeh RV, Haruna A, Adda S, Abdul‐Rauf PG, Ofori ZA, Fosu GB, Segnitome S, Adjei I, Appiah‐Kubi E, Banyeh M, Derigubah CA, Tanko MM, Chukwurah EF. Pro- and anti-inflammatory cytokines mediate the progression of severe anemia in malaria-infected children: A prospective study. Immun Inflamm Dis 2024; 12:e70013. [PMID: 39240033 PMCID: PMC11378270 DOI: 10.1002/iid3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Severe Plasmodium falciparum malarial anemia is still the principal cause of death in children in underdeveloped countries. An imbalance between proinflammatory and anti-inflammatory cytokines is associated with malaria progression. This study evaluated circulating levels of selected inflammatory cytokines among malaria-infected children in Ghana. METHODS This case-control study was conducted at Tamale Teaching Hospital, Ghana. One hundred and twenty children with malaria and 60 controls, aged 12-144 months were selected from April to July, 2023 for the study. Malaria was diagnosed through microscopy, full blood count was measured using hematology analyzer, and cytokines were measured using enzyme-linked immunosorbent assay. RESULTS Malaria-infected children had higher tumor necrosis factor alpha (TNF-α) (p < .001), interferon-gamma (IFN-ɣ) (p < .001), interleukin (IL)-1β (p < .001), IL-6 (p < .001), granulocyte macrophage-colony stimulating factor (GM-CSF) (p < .001), and IL-10 (p < .001) levels than controls. Participants with high parasitemia had raised TNF-α (p < .001), IFN-ɣ (p < .001), IL-1β (p < .001), IL-6 (p < .001), GM-CSF (p < .001), and IL-10 (p < .001), but reduced IL-3 (p < .001) and TGF-β (p < .001) than those with low parasitemia. Severe malarial anemic children had elevated TNF-α (p < .001), IFN-ɣ (p < .001), IL-1β (p < .001), IL-6 (p < .001), GM-CSF (p < .001), and IL-10 (p < .001), but lower IL-3 (p < .001) and TGF-β (p < .001) than those with uncomplicated malaria. CONCLUSION Parasite density was the principal predictor of the cytokine levels, as parasitemia positively associated with IL-10, GM-CSF, IL-6, IL-1β, IFN-ɣ, and TNF-α, but negatively associated with IL-3 and TGF-β. Malaria is associated with enhanced secretion of pro- and anti-inflammatory cytokines in Ghanaian children. Inflammatory cytokines may be involved in the development of severe malarial anemia in children. However, IL-3 and TGF-β may offer protection against severe malarial anemia.
Collapse
Affiliation(s)
- Charles Nkansah
- Department of Haematology, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
- Department of Medical Laboratory Science, Faculty of Health Sciences and TechnologyEbonyi State UniversityAbakalikiNigeria
| | - Felix Osei‐Boakye
- Department of Medical Laboratory Science, Faculty of Health Sciences and TechnologyEbonyi State UniversityAbakalikiNigeria
- Department of Medical Laboratory Technology, Faculty of Applied Science and TechnologySunyani Technical UniversitySunyaniGhana
| | - Gabriel Abbam
- Department of Haematology, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Samuel K. Appiah
- Department of Haematology, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
- Department of Medical Laboratory Science, Faculty of Health Sciences and TechnologyEbonyi State UniversityAbakalikiNigeria
| | - Samira Daud
- Department of Haematology, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Bright Boakye
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Samsiyatu Abdulai
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Madina Ahmed
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Theophilus B. Antwi
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Birago Boateng
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Miigbat P. Libatin
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Alexander S. Mensah
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Mary K. Missah
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Richard V. Duneeh
- Department of Medical Laboratory Science, School of Allied Health SciencesUniversity of Health and Allied SciencesHoGhana
| | - Ashiya Haruna
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Stephany Adda
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Pagnaa G. Abdul‐Rauf
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Zacharia A. Ofori
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - George B. Fosu
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Sandra Segnitome
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Isaac Adjei
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
- Haematology Unit, Department of Medical LaboratoryTamale Teaching HospitalTamaleGhana
| | - Emmanuel Appiah‐Kubi
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Moses Banyeh
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Charles A. Derigubah
- Department of Medical Laboratory Science, Faculty of Health Sciences and TechnologyEbonyi State UniversityAbakalikiNigeria
- Department of Medical Laboratory Technology, School of Applied Science and ArtsBolgatanga Technical UniversityBolgatangaGhana
| | - Muniru M. Tanko
- Department of Biomedical Laboratory Sciences, School of Allied Health SciencesUniversity for Development StudiesTamaleGhana
| | - Ejike F. Chukwurah
- Department of Medical Laboratory Science, Faculty of Health Sciences and TechnologyEbonyi State UniversityAbakalikiNigeria
| |
Collapse
|
5
|
Xiong J, Ling J, Yan J, Duan Y, Yu J, Li W, Yu W, Gao J, Xie D, Liu Z, Deng Y, Liao Y. LILRB4 knockdown inhibits aortic dissection development by regulating pyroptosis and the JAK2/STAT3 signaling pathway. Sci Rep 2024; 14:15564. [PMID: 38971897 PMCID: PMC11227527 DOI: 10.1038/s41598-024-66482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jianxian Xiong
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jiayuan Ling
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jie Yan
- Department of Thoracic Surgery, Nankang District First People's Hospital, Ganzhou City, 341400, Jiangxi Province, China
| | - Yanyu Duan
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
- Engineering Research Center of Intelligent Acoustic Signals of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
- Ganzhou Cardiovascular Rare Disease Diagnosis and Treatment Technology Innovation Center, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Junjian Yu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Wentong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Wenbo Yu
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Jianfeng Gao
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Dilin Xie
- The First Clinical Medical College, Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Ziyou Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, Taiyuan, 030024, China.
| | - Yongling Liao
- Heart Medical Centre, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
- Department of Cardiology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
6
|
Podolska MJ, Grützmann R, Pilarsky C, Bénard A. IL-3: key orchestrator of inflammation. Front Immunol 2024; 15:1411047. [PMID: 38938573 PMCID: PMC11208316 DOI: 10.3389/fimmu.2024.1411047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Interleukin (IL)-3 has long been known for its hematopoietic properties. However, recent evidence has expanded our understanding of IL-3 function by identifying IL-3 as a critical orchestrator of inflammation in a wide array of diseases. Depending on the type of disease, the course of inflammation, the cell or the tissue involved, IL-3 promotes either pathologic inflammation or its resolution. Here, we describe the cell-specific functions of IL-3 and summarize its role in diseases. We discuss the current treatments targeting IL-3 or its receptor, and highlight the potential and the limitations of targeting IL-3 in clinics.
Collapse
Affiliation(s)
| | | | | | - Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Ullrich KAM, Derdau J, Baltes C, Battistella A, Rosso G, Uderhardt S, Schulze LL, Liu LJ, Dedden M, Spocinska M, Kainka L, Kubánková M, Müller TM, Schmidt NM, Becker E, Ben Brahim O, Atreya I, Finotto S, Prots I, Wirtz S, Weigmann B, López-Posadas R, Atreya R, Ekici AB, Lautenschläger F, Guck J, Neurath MF, Zundler S. IL-3 receptor signalling suppresses chronic intestinal inflammation by controlling mechanobiology and tissue egress of regulatory T cells. Gut 2023; 72:2081-2094. [PMID: 37541770 PMCID: PMC10579496 DOI: 10.1136/gutjnl-2023-329818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2023]
Abstract
IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.
Collapse
Affiliation(s)
- Karen Anne-Marie Ullrich
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Derdau
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carsten Baltes
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Alice Battistella
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefan Uderhardt
- Department of Medicine 3, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, FAU Optical Imaging Competence Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Lisa Lou Schulze
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Li-Juan Liu
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marta Spocinska
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lucina Kainka
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Markéta Kubánková
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tanja Martina Müller
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Nina-Maria Schmidt
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oumaima Ben Brahim
- Department of Medicine 3, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Exploratory Research Unit, FAU Optical Imaging Competence Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
- Department of Molecular Pneumology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1 - Dental Preservation and Periodontology, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Hou S, Gu T, Shi Y, Huang Y, Yao J, Luo P, Cao M, Zhang J, Lin A, Zhu W. Correlation between IL3 signaling pathway-related genes and immune checkpoint inhibitor efficacy in patients with renal cell carcinoma. Cancer Biomark 2023; 38:489-504. [PMID: 38043008 DOI: 10.3233/cbm-230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
BACKGROUND There is a lack of effective biomarkers that predict immunotherapy efficacy in clear cell renal cell carcinoma(KIRC). OBJECTIVE We aimed to identify biomarkers that would predict the efficacy of KIRC treatment with immune checkpoint inhibitors (ICIs). METHODS Cohort data of KIRC patients with somatic mutations, mRNA expression and survival data from The Cancer Genome Atlas (TCGA) database and immunotherapy cohort and Genomics of Drug Sensitivity in Cancer (GDSC) database were analyzed and divided into interleukin 3 (IL3) pathway-related genes high expression (IL3-High) and IL3 pathway-related genes low expression (IL3-Low) groups according to pathway expression status to assess the relationship between the IL3 pathway-related genes activation status and the prognosis of KIRC patients treated with ICIs. The data were validated by immunohistochemistry experiments, and possible mechanisms of action were explored at the level of gene mutation landscape, immune microenvironment characteristics, transcriptome and copy number variation(CNV) characteristicsRESULTS: The IL3 pathway-related genes was an independent predictor of the efficacy of ICIs in KIRC patients, and the IL3-High group had a longer overall survival (OS); KIRC patients in the IL3-High group had increased levels of chemokines, cytolysis, immune checkpoint gene expression and abundant immunity. The IL3-Low group had poor immune cell infiltration and significant downregulation of complement activation, cytophagy, B-cell activation, and humoral immune response pathways. The high group was more sensitive to targeted drugs of some signaling pathways, and its efficacy in combining these drugs with immunity has been predicted in the published literature. CONCLUSION The IL3 pathway-related genes can be used as a predictor of the efficacy of ICIs in KIRC. The IL3 pathway-related genes may affect the therapeutic efficacy of ICIs by affecting the expression of immune-related molecules, immune cell infiltration, and the level of immune response pathways.
Collapse
|
9
|
Côrte-Real BF, Arroyo Hornero R, Dyczko A, Hamad I, Kleinewietfeld M. Dissecting the role of CSF2RB expression in human regulatory T cells. Front Immunol 2022; 13:1005965. [PMID: 36532080 PMCID: PMC9755334 DOI: 10.3389/fimmu.2022.1005965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Colony stimulating factor 2 receptor subunit beta (CSF2RB; CD131) is the common subunit of the type I cytokine receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5. Interestingly, FOXP3+ regulatory T cells (Tregs), which play a pivotal role in prevention of autoimmunity have been demonstrated to highly overexpress CSF2RB and genome-wide association studies (GWAS) identified CSF2RB as being linked to autoimmune diseases like multiple sclerosis (MS). However, the exact biological role of CD131 in human Tregs has not been defined yet. Here we investigated CD131 importance on Treg phenotype and function in a broad range of in vitro studies. Although we could not recognize a specific function of CSF2RB; CD131 in human Tregs, our data show that CD131 expression is vastly restricted to Tregs even under stimulatory conditions, indicating that CD131 could aid as a potential marker to identify Treg subpopulations from pools of activated CD4+ T cells. Importantly, our analysis further demonstrate the overexpression of CSF2RB in Tregs of patients with autoimmune diseases like MS and systemic lupus erythematosus (SLE) in comparison to healthy controls, thereby indicating that CSF2RB expression in Tregs could serve as a potential novel biomarker for disease.
Collapse
Affiliation(s)
- Beatriz F. Côrte-Real
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Rebeca Arroyo Hornero
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Aleksandra Dyczko
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium,Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University Mulpitle Sclerosis Center (UMSC), Hasselt University (UHasselt)/Campus, Diepenbeek, Belgium,*Correspondence: Markus Kleinewietfeld,
| |
Collapse
|
10
|
Targeted deletion of Interleukin-3 results in asthma exacerbations. iScience 2022; 25:104440. [PMID: 35707726 PMCID: PMC9189047 DOI: 10.1016/j.isci.2022.104440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
|
11
|
N. Mueller A, Morrisey S, A. Miller H, Hu X, Kumar R, T. Ngo P, Yan J, B. Frieboes H. Prediction of lung cancer immunotherapy response via machine learning analysis of immune cell lineage and surface markers. Cancer Biomark 2022; 34:681-692. [DOI: 10.3233/cbm-210529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Although advances have been made in cancer immunotherapy, patient benefits remain elusive. For non-small cell lung cancer (NSCLC), monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have shown survival benefit compared to chemotherapy. Personalization of treatment would be facilitated by a priori identification of patients likely to benefit. OBJECTIVE: This pilot study applied a suite of machine learning methods to analyze mass cytometry data of immune cell lineage and surface markers from blood samples of a small cohort (n= 13) treated with Pembrolizumab, Atezolizumab, Durvalumab, or Nivolumab as monotherapy. METHODS: Four different comparisons were evaluated between data collected at an initial visit (baseline), after 12-weeks of immunotherapy, and from healthy (control) samples: healthy vs patients at baseline, Responders vs Non-Responders at baseline, Healthy vs 12-week Responders, and Responders vs Non-Responders at 12-weeks. The algorithms Random Forest, Partial Least Squares Discriminant Analysis, Multi-Layer Perceptron, and Elastic Net were applied to find features differentiating between these groups and provide for the capability to predict outcomes. RESULTS: Particular combinations and proportions of immune cell lineage and surface markers were sufficient to accurately discriminate between the groups without overfitting the data. In particular, markers associated with the B-cell phenotype were identified as key features. CONCLUSIONS: This study illustrates a comprehensive machine learning analysis of circulating immune cell characteristics of NSCLC patients with the potential to predict response to immunotherapy. Upon further evaluation in a larger cohort, the proposed methodology could help guide personalized treatment selection in clinical practice.
Collapse
Affiliation(s)
- Alex N. Mueller
- School of Medicine, University of Louisville, Louisville, KY, USA
| | - Samantha Morrisey
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Hunter A. Miller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Xiaoling Hu
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Rohit Kumar
- School of Medicine, University of Louisville, Louisville, KY, USA
- UofL Health – Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Phuong T. Ngo
- School of Medicine, University of Louisville, Louisville, KY, USA
- UofL Health – Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- UofL Health – Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Hermann B. Frieboes
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- UofL Health – Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| |
Collapse
|
12
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
13
|
Li Z, Chu X, Gao L, Ling J, Xiao P, Lu J, Wang Y, He H, Li J, Hu Y, Li J, Pan J, Xiao S, Hu S. High Expression of Interleukin-3 Receptor Alpha Chain (CD123) Predicts Favorable Outcome in Pediatric B-Cell Acute Lymphoblastic Leukemia Lacking Prognosis-Defining Genomic Aberrations. Front Oncol 2021; 11:614420. [PMID: 33796456 PMCID: PMC8008053 DOI: 10.3389/fonc.2021.614420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background Aberrant expression of CD123 (IL-3Rα) was observed in various hematological malignancies including acute lymphoblastic leukemia (ALL), which is the most common malignancy in childhood. Although widely used for minimal residual disease (MRD) monitoring, the prognostic value of CD123 has not been fully characterized in pediatric B-ALL. This retrospective study aims to evaluate the association between the CD123 expression of leukemic blasts and the outcomes of the pediatric B-ALL patients. Methods A total of 976 pediatric B-ALL, including 328 treated with CCLG-ALL-2008 protocol and 648 treated with CCCG-ALL-2015 protocol, were recruited in this retrospective study. CD123 expression was evaluated by flow cytometry. Patients with >50, 20–50, or <20% of CD123 expressing blasts were grouped into CD123high, CD123low, and CD123neg, respectively. The correlation between CD123 expression and the patients’ clinical characteristics, overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were studied statistically. Results Of 976 pediatric B-ALL, 53.4% from the CCLG-ALL-2008 cohort and 49.2% from the CCCG-ALL-2015 cohort were CD123high. In the CCLG-ALL-2008 cohort, CD123high was significantly associated with chromosome hyperdiploidy (p < 0.0001), risk stratification (p = 0.004), and high survival rate (p = 0.005). By comparing clinical outcomes, patients with CD123high displayed favorable prognosis, with a significantly better OS (p = 0.005), EFS (p = 0.017), and RFS (p = 0.045), as compared to patients with CD123low and CD123neg. The prognostic value of CD123 expression was subsequently confirmed in the CCCG-ALL-2015 cohort. Univariate and multivariate cox regression model analysis showed that high CD123 expression was independently associated with favorable EFS (OR: 0.528; 95% CI: 0.327 to 0.853; p = 0.009) in this cohort. In patients without prognosis-defining genomic abnormalities, high CD123 expression strongly indicated superior survival rates and was identified as an independent prognosis factor for EFS and RFS in both cohorts. Conclusions A group of B-ALL lacks prognosis-defining genomic aberrations, which proposes a challenge in risk stratification. Our findings revealed that high CD123 expression of leukemic blasts was associated with favorable clinical outcomes in pediatric B-ALL and CD123 could serve as a promising prognosis predictor, especially in patients without prognosis-defining genetic aberrations.
Collapse
Affiliation(s)
- Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Li Gao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Ling
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Hailong He
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jianqin Li
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
The Poststroke Peripheral Immune Response Is Differentially Regulated by Leukemia Inhibitory Factor in Aged Male and Female Rodents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8880244. [PMID: 33376583 PMCID: PMC7746465 DOI: 10.1155/2020/8880244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023]
Abstract
Background The goal of this study was to determine whether leukemia inhibitory factor (LIF) promotes anti-inflammatory activity after stroke in a sex-dependent manner. Methods Aged (18-month-old) Sprague-Dawley rats of both sexes underwent sham surgery or permanent middle cerebral artery occlusion (MCAO). Animals received three doses of intravenous LIF (125 μg/kg) or PBS at 6, 24, and 48 h before euthanization at 72 h. Spleen weights were measured immediately following euthanization. Western blot was used to measure protein levels of CCL8, CD11b, CXCL9, CXCL10, IL-12 p40, IL-3, and the LIF receptor (LIFR) in spleen tissue. ELISA was used to measure IL-1β, IL-6, TNFα, and IFNγ in spleen tissue. A Griess Assay was used to indirectly quantify NO levels via measurement of nitrite. Levels of cellular markers and inflammatory mediators were normalized to the baseline (sham) group from each sex. Statistical analysis was performed using two-way ANOVA and followed by Fisher's LSD post hoc test. Results Aged female rats showed a significantly lower spleen weight after MCAO, but showed a significant increase in spleen size after LIF treatment. This effect was observed in aged male rats, but not to as great of an extent. CD11b levels were significantly higher in the spleens of MCAO+PBS males compared to their female counterparts, but there was no significant difference in CD11b levels between MCAO+LIF males and females. LIF significantly increased CXCL9 after LIF treatment in aged male and female rats. LIFR and IL-3 were upregulated after LIF treatment in aged females. Splenic nitrate increased after MCAO but decreased after LIF treatment in aged females. Splenic nitrate levels did not increase after MCAO but did increase after LIF treatment in aged males. The following cytokines/chemokines were not altered by sex or treatment: TNFα, IL-6, IL-12 p40, CCL8, IFNγ, and CXCL10. Conclusions LIF treatment after permanent MCAO induces sex-dependent effects on the poststroke splenic response and the production of proinflammatory cytokines among aged rats.
Collapse
|
15
|
Yao S, Jianlin C, Yarong L, Botao L, Qinghan W, Hongliang F, Lu Z, Hongmei N, Pin W, Hu C, Liangding H, Bin Z. Donor-Derived CD123-Targeted CAR T Cell Serves as a RIC Regimen for Haploidentical Transplantation in a Patient With FUS-ERG+ AML. Front Oncol 2019; 9:1358. [PMID: 31850234 PMCID: PMC6901822 DOI: 10.3389/fonc.2019.01358] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is part of standard treatment protocol for patients with acute myeloid leukemia (AML). FUS-ERG+ AML is rare but has an extremely poor prognosis even with allo-HSCT in remission, possibly due to its a leukemia stem cell (LSC)-driven disease resulting in chemotherapy resistance and a novel therapy is urgently required. It has been reported that FUS-ERG-positive AML expresses CD123, a marker of LSC, in some cases. CD123-targeted CAR T cell (CART123) is promising immunotherapy, but how to improve the complete remission (CR) rate and rescue potential hematopoietic toxicity still need to explore. Case Presentation: We used donor-derived CART123 as part of conditioning regimen for haploidentical HSCT (haplo-HSCT) in a patient with FUS-ERG+ AML who relapsed after allogeneic transplantation within 3 months, resists to multi-agent chemotherapy and donor lymphocyte infusion (DLI) and remained non-remission, aiming to reduce these chemotherapy-resistant blasts and rescue potential hematopoietic toxicity. The blasts in BM were reduced within 2 weeks and coincided with CAR copies expansion after CART123 infusion. The patient achieved full donor chimerism, CR with incomplete blood count recovery, and myeloid implantation. Conclusion: Our results hints that CART123 reduces the chemotherapy-resistant AML blasts for FUS-ERG+ AML without affecting the full donor chimerism and myeloid implantation.
Collapse
Affiliation(s)
- Sun Yao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Chen Jianlin
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Liu Yarong
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Li Botao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Qinghan
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Fang Hongliang
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Zhang Lu
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Ning Hongmei
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Pin
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States.,Department of Pharmaceutical Sciences and Pharmacology, University of Southern California, Los Angeles, CA, United States
| | - Chen Hu
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Hu Liangding
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Zhang Bin
- Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| |
Collapse
|
16
|
Wang M, Wu H, Duan M, Yang Y, Wang G, Che F, Liu B, He W, Li Q, Zhang L. SS30, a novel thioaptamer targeting CD123, inhibits the growth of acute myeloid leukemia cells. Life Sci 2019; 232:116663. [PMID: 31323275 DOI: 10.1016/j.lfs.2019.116663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
AIMS CD123 represents an important acute myeloid leukemia (AML) therapeutic target. CD123 aptamers may potentially serve as tumor-homing ligands with excellent affinity and specificity for AML targeted therapy, but their complexity, laborious preparation and nuclease digestion limited pharmacological application. The aim of this study was to develop the first CD123 thioaptamer to overcome these obstacles. MAIN METHODS Flow cytometry was utilized to assess the binding specificity, affinity and anti-nuclease ability of thioaptamer. CCK8, Annexin-V/DAPI, and colony forming assays were used to evaluate the anti-cancer ability of thioaptamer in vitro. The tumor volume, weights, survival rate, H&E staining of organs, and serum level of organ damage biomarkers of animal model were applied to investigate the anti-cancer ability of thioaptamer in vivo. Furthermore, we explored the binding mechanism between thioaptamer and CD123. KEY FINDINGS CD123 thioaptamer SS30 was able to bind to CD123 structure with high specificity in complex nuclease environment, the dissociation constant of 39.1 nM for CD123 peptide and 287.6 nM for CD123+ AML cells, while exhibiting minimal cross-reactivity to albumin. Furthermore, SS30 inhibited the proliferation and survival of AML cell lines and human AML blasts selectively in vitro (P < 0.01). In addition, SS30 prolonged the survival and inhibited tumor growth in a mouse xenograft tumor model in vivo. Of note, SS30 blocked the interaction between IL-3 and CD123, and decreased expression of p-STAT5 and p-AKT. SIGNIFICANCE The proliferation inhibition and nuclease resistance ability of SS30 made it as a more promising functional molecule for AML targeted therapy.
Collapse
Affiliation(s)
- Meng Wang
- Department of Orthopaedics, No. 946 Hospital of the PLA, YiNing, XinJiang 0086-835000, PR China
| | - Haibin Wu
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Mingyue Duan
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Guoxia Wang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Bailing Liu
- Department of Ultrasonography, Xi'an Children's Hospital, PR China
| | - Wei He
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China
| | - Qiao Li
- Clinical Laboratory, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China.
| | - Liyu Zhang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 0086-710003, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 0086-710061, PR China.
| |
Collapse
|
17
|
Sun Y, Wang S, Zhao L, Zhang B, Chen H. IFN-γ and TNF-α aggravate endothelial damage caused by CD123-targeted CAR T cell. Onco Targets Ther 2019; 12:4907-4925. [PMID: 31417286 PMCID: PMC6600319 DOI: 10.2147/ott.s205678] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Background: CD123-targeted chimeric antigen receptor (CAR) T cell (CART123) for the treatment of acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm has exhibited potential in clinical trials. However, capillary leakage syndrome, which is associated with endothelial cells damage, is under intensive focus in CART123 therapy. Purpose: The present study aimed to explore the change in CD123 in endothelial cells and the injury to endothelial cells caused by CART123. Methods: The expression of CD123 and cytotoxicity were assessed by flow cytometry. Cytokine release was assessed by ELISA. An in vitro co-culture model was designed to mimic the status, wherein CART123 was stimulated and cytokines were released. Results: In the current study, CART123 exhibited cytotoxicity and the effects of cytokine production on endothelium, and the upregulation of CD123 enhanced the cytotoxicity. The addition of interferon (IFN)-γ and tumor necrosis factor (TNF)-α neutralizing antibodies can effectively reverse the upregulation of CD123 on the endothelial cells caused by CART123, while the cytotoxicity of CART123 in AML cell lines was not affected in vitro. Second, we proved that CD123 expresses in CART123 and would be upregulated after activation, putatively causing an overactivated and fratricide effect. Conclusion: In summary, this study identified that the expression of CD123 on endothelial cells could be upregulated when co-cultured with CART123. Furthermore, IFN-γ and TNF-α could aggravate endothelial damage caused by CART123 in vitro.
Collapse
Affiliation(s)
- Yao Sun
- Academy of Military Medical Sciences , Beijing 100071, People's Republic of China.,Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Shenyu Wang
- Academy of Military Medical Sciences , Beijing 100071, People's Republic of China.,Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Long Zhao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), the Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing 100071, People's Republic of China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research , Beijing 100071, People's Republic of China
| |
Collapse
|