1
|
Shi H, Zhang M, Zhang Y. Construction of a prognostic model for autophagy in Wilm's tumor. Pediatr Surg Int 2024; 40:122. [PMID: 38704513 DOI: 10.1007/s00383-024-05712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Wilm's tumor (WT) is one of the most common childhood urological tumors, ranking second in the incidence of pediatric abdominal tumors. The development of WT is associated with various factors, and the correlation with autophagy is currently unclear. PURPOSE To develop a new prognostic model of autophagy-related genes (ATG) for WT. METHODS Using the Therapeutically applicable research to generate effective treatments (TARGET) database to screen for differentially expressed ATGs in WT and normal tissues. ATGs were screened for prognostic relevance to WT using one-way and multifactorial Cox regression analyses and prognostic models were constructed. The risk score was calculated according to the model, and the predictive ability of the constructed model was analyzed using the ROC (receiver operating characteristic) curve to verify the significance of the model for the prognosis of WT. RESULTS Sixty-eight differentially expressed ATGs were identified by univariate Cox regression analysis, and two critical prognostic ATGs (CXCR4 and ERBB2) were identified by multivariate Cox regression analysis. Patients were divided into high-risk and low-risk groups according to the differential expression of these two ATGs. Kaplan-Meier (KM) curves showed a significant difference in survival time between the two groups. The critical prognostic ATGs were combined with race, age, and stage in a multifactorial regression analysis, and the final prognostic model was produced as a line graph. CONCLUSION The prognostic model of autophagy-related genes composed of the CXCR4 gene and ERBB2 gene has a specific predictive value for the prognosis of WT, and the present study provides a clear basis for future research on biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Pediatric Surgery, Affiliated Matern and Child Care Hospital of Nantong University, 399 Century Avenue, Chongchuan, Nantong, Jiangsu, China
| | - Min Zhang
- Department of Pediatric Surgery, Affiliated Matern and Child Care Hospital of Nantong University, 399 Century Avenue, Chongchuan, Nantong, Jiangsu, China.
| | - Youbo Zhang
- Department of Pediatric Surgery, Affiliated Matern and Child Care Hospital of Nantong University, 399 Century Avenue, Chongchuan, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Perrone C, Bozzano F, Dal Bello MG, Del Zotto G, Antonini F, Munari E, Maggi E, Moretta F, Farshchi AH, Pariscenti G, Tagliamento M, Genova C, Moretta L, De Maria A. CD34 +DNAM-1 brightCXCR4 + haemopoietic precursors circulate after chemotherapy, seed lung tissue and generate functional innate-like T cells and NK cells. Front Immunol 2024; 15:1332781. [PMID: 38390333 PMCID: PMC10881815 DOI: 10.3389/fimmu.2024.1332781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Background There is little information on the trajectory and developmental fate of Lin-CD34+DNAM-1bright CXCR4+ progenitors exiting bone marrow during systemic inflammation. Objective To study Lin-CD34+DNAM-1bright CXCR4+ cell circulation in cancer patients, to characterize their entry into involved lung tissue and to characterize their progenies. Methods Flow cytometric analysis of PBMC from 18 patients with lung cancer on samples collected immediately before the first and the second treatment was performed to study Lin-CD34+DNAM-1bright CXCR4+ precursors. Precursors were purified (>99%) and cultured in vitro from all patients. Paired PBMC and tissue samples from patients undergoing tumor resection were analyzed by flow cytometry to assess tissue entry and compare phenotype and developmental potential of Lin-CD34+DNAM-1bright CXCR4+ cells in both compartments. Results Significant circulation of Lin-CD34+DNAM-1bright CXCR4+ precursors was observed 20d after the first treatment. Precursors express CXC3CR1, CXCR3, CXCR1 consistent with travel towards inflamed tissues. Flowcytometric analysis of lung tissue samples showed precursor presence in all patients in tumor and neighboring uninvolved areas. Successful purification and in vitro culture from both blood and lung tissue generates a minor proportion of maturing NK cells (<10%) and a predominant proportion (>85%) of α/β T-progenies with innate-like phenotype expressing NKG2D,NKp30,DNAM-1. Innate-like maturing T-cells in vitro are cytotoxic, can be triggered via NKR/TCR co-stimulation and display broad spectrum Th1,Th2 and Th1/Th17 cytokine production. Conclusion In advanced stage lung cancer CD34+DNAM-1brightCXCR4+ inflammatory precursors increase upon treatment, enter involved tissues, generate functional progenies and may thus represent an additional player contributing to immune balance in the highly SDF-1/CXCR4-biased pro-metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Carola Perrone
- Experimental Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Bozzano
- Laboratorio Diagnostico di Autoimmunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Genny Del Zotto
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Antonini
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | | | - Gianluca Pariscenti
- Thoracic Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy
| | - Carlo Genova
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea De Maria
- Department of Health Sciences, University of Genova, Genova, Italy
- Infections of Immunocompromised Hosts Unit, Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
3
|
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D’Agostino E, Pugliese G, Cerri S, Vitale MG, Madeo B, Dominici M, Sabbatini R. Bone Metastases and Health in Prostate Cancer: From Pathophysiology to Clinical Implications. Cancers (Basel) 2023; 15:1518. [PMID: 36900309 PMCID: PMC10000416 DOI: 10.3390/cancers15051518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Clinically relevant bone metastases are a major cause of morbidity and mortality for prostate cancer patients. Distinct phenotypes are described: osteoblastic, the more common osteolytic and mixed. A molecular classification has been also proposed. Bone metastases start with the tropism of cancer cells to the bone through different multi-step tumor-host interactions, as described by the "metastatic cascade" model. Understanding these mechanisms, although far from being fully elucidated, could offer several potential targets for prevention and therapy. Moreover, the prognosis of patients is markedly influenced by skeletal-related events. They can be correlated not only with bone metastases, but also with "bad" bone health. There is a close correlation between osteoporosis-a skeletal disorder with decreased bone mass and qualitative alterations-and prostate cancer, in particular when treated with androgen deprivation therapy, a milestone in its treatment. Systemic treatments for prostate cancer, especially with the newest options, have improved the survival and quality of life of patients with respect to skeletal-related events; however, all patients should be evaluated for "bone health" and osteoporotic risk, both in the presence and in the absence of bone metastases. Treatment with bone-targeted therapies should be evaluated even in the absence of bone metastases, as described in special guidelines and according to a multidisciplinary evaluation.
Collapse
Affiliation(s)
- Cinzia Baldessari
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Stefania Pipitone
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Eleonora Molinaro
- Oncology, AUSL of Modena Area Sud, Sassuolo-Vignola-Pavullo, 41121 Modena, Italy
| | - Krisida Cerma
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy
| | - Martina Fanelli
- Department of Oncology, Azienda Ospedaliero Universitaria S. M. della Misericordia, 33100 Udine, Italy
| | - Cecilia Nasso
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
- Medical Oncology, Ospedale Santa Corona, 17027 Pietra Ligure, Italy
| | - Marco Oltrecolli
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Marta Pirola
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Elisa D’Agostino
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Giuseppe Pugliese
- Department of Oncology and Hematology, Univerity of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Sara Cerri
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Maria Giuseppa Vitale
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Bruno Madeo
- Unit of Endocrinology, Department of Medical Specialities, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology and Hematology, Azienda Ospedaliero Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
4
|
Parol-Kulczyk M, Gzil A, Ligmanowska J, Grzanka D. Prognostic significance of SDF-1 chemokine and its receptors CXCR4 and CXCR7 involved in EMT of prostate cancer. Cytokine 2021; 150:155778. [PMID: 34920230 DOI: 10.1016/j.cyto.2021.155778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Tendency to conversion from state of chronic inflammation to malignancy is a tumor characteristic trait, which encourages progression to its metastatic stage.. The inflammatory cells maintaining in the tumor inaugurate a communication with cancer cells and become tumor-fostering cells. Epithelial-mesenchymal transition (EMT) is a program supporting malignant cells during switch phenotype into metastatic form, providing looseness of cell-cell adherence and strengthens migratory or invasive features. EMT-undergone tumor cells become more aggressive and resistant to apoptosis. Additionally, malignant cells can be stimulated to manufacture proinflammatory factors throughout EMT program. Chronic inflammation is responsible for EMT induction in malignancies. Developed tumors induce inflammatory response through excretion of cytokines, chemokines and growth factors, which recruit populations of infiltrating immune cells straight to the tumor microenvironment. The inflammatory reaction potentially exerts tumor control, but instead it can be intercepted by the tumor to stimulate its own development in direction to metastatic form. Our study confirmed that SDF-1 chemokine and its receptors, CXCR4 and CXCR7 may participate in initiation of metastases formation and EMT process.
Collapse
Affiliation(s)
- Martyna Parol-Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Joanna Ligmanowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland.
| |
Collapse
|
5
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
6
|
Nazeer MA, Karaoglu IC, Ozer O, Albayrak C, Kizilel S. Neovascularization of engineered tissues for clinical translation: Where we are, where we should be? APL Bioeng 2021; 5:021503. [PMID: 33834155 PMCID: PMC8024034 DOI: 10.1063/5.0044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the key challenges in engineering three-dimensional tissue constructs is the development of a mature microvascular network capable of supplying sufficient oxygen and nutrients to the tissue. Recent angiogenic therapeutic strategies have focused on vascularization of the constructed tissue, and its integration in vitro; these strategies typically combine regenerative cells, growth factors (GFs) with custom-designed biomaterials. However, the field needs to progress in the clinical translation of tissue engineering strategies. The article first presents a detailed description of the steps in neovascularization and the roles of extracellular matrix elements such as GFs in angiogenesis. It then delves into decellularization, cell, and GF-based strategies employed thus far for therapeutic angiogenesis, with a particularly detailed examination of different methods by which GFs are delivered in biomaterial scaffolds. Finally, interdisciplinary approaches involving advancement in biomaterials science and current state of technological development in fabrication techniques are critically evaluated, and a list of remaining challenges is presented that need to be solved for successful translation to the clinics.
Collapse
Affiliation(s)
| | | | - Onur Ozer
- Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | - Cem Albayrak
- Authors to whom correspondence should be addressed: and
| | - Seda Kizilel
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
Wang J, Wang J, Dai J, Jung Y, Wei CL, Wang Y, Havens AM, Hogg PJ, Keller ET, Pienta KJ, Nor JE, Wang CY, Taichman RS. Retraction: A Glycolytic Mechanism Regulating an Angiogenic Switch in Prostate Cancer. Cancer Res 2021; 81:1623. [PMID: 33723003 DOI: 10.1158/0008-5472.can-21-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Hussain S, Peng B, Cherian M, Song JW, Ahirwar DK, Ganju RK. The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Front Immunol 2020; 11:598532. [PMID: 33414786 PMCID: PMC7783453 DOI: 10.3389/fimmu.2020.598532] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a "pre-metastatic niche" like a "soil" in distant organs whereby circulating tumor cells "seed' and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bo Peng
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mathew Cherian
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan W Song
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Mechanical and Aerospace Engineering, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
9
|
Valipour E, Nooshabadi VT, Mahdipour S, Shabani S, Farhady-Tooli L, Majidian S, Noroozi Z, Mansouri K, Motevaseli E, Modarressi MH. Anti-angiogenic effects of testis-specific gene antigen 10 on primary endothelial cells. Gene 2020; 754:144856. [PMID: 32512160 DOI: 10.1016/j.gene.2020.144856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Growing evidence indicates the antitumor and antiangiogenesis activities of testis-specific gene antigen 10 (TSGA10). However, the underlying mechanisms and precise role of TSGA10 in angiogenesis are still elusive. In this study, we isolated human umbilical cord vein endothelial cells (HUVECs) and stably transfected with pcDNA3.1 carrying TSGA10 coding sequence. We demonstrated that TSGA10 over-expression significantly decreases HUVEC tubulogenesis and interconnected capillary network formation. HUVECs over-expressing TSGA10 exhibited a significant decrease in migration and proliferation rates. TSGA10 over-expression markedly decreased expression of angiogenesis-related genes, including VEGF-A, VEGFR-2, Ang-1, Ang-2, and Tie-2. Our ELISA results showed the decrease in VEGF-A mRNA expression level is associated with a significant decrease in its protein secretion. Additionally, over-expressing TSGA10 decreased expression levels of marker genes of cell migration (MMP-2, MMP-9, and SDF-1a) and proliferation (PCNA and Ki-67. Furthermore, ERK-1 and AKT phosphorylation significantly reduced in HUVECs over-expressing TSGA10. Our findings suggest a potent anti-angiogenesis activity of TSGA10 in HUVECs through down-regulation of ERK and AKT signalling pathways, and may provide therapeutic benefits for the management of different pathological angiogenesis.
Collapse
Affiliation(s)
- Elahe Valipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Shadi Mahdipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Shabani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Farhady-Tooli
- Department of Microbiology, School of Biology, College of Science, Tehran University, Tehran, Iran
| | - Sina Majidian
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zahra Noroozi
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elaheh Motevaseli
- Department of Molecular Medicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Jäger B, Klatt D, Plappert L, Golpon H, Lienenklaus S, Barbosa PD, Schambach A, Prasse A. CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer. Cell Signal 2020; 73:109672. [DOI: 10.1016/j.cellsig.2020.109672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
|
11
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
12
|
Fu Q, Yu Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci 2020; 256:117863. [PMID: 32479953 DOI: 10.1016/j.lfs.2020.117863] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Phosphoglycerate kinase 1 (PGK1) is the first critical enzyme to produce ATP in the glycolytic pathway. PGK1 is not only a metabolic enzyme but also a protein kinase, which mediates the tumor growth, migration and invasion through phosphorylation some important substrates. Moreover, PGK1 is associated with poor treatment and prognosis of cancers. This manuscript reviews the structure, functions, post-translational modifications (PTMs) of PGK1 and its relationship with tumors, which demonstrates that PGK1 has indispensable value in the tumor progression. The current review highlights the important role of PGK1 in anticancer treatments.
Collapse
Affiliation(s)
- Qi Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.; College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China..
| |
Collapse
|
13
|
Gao ZY, Yu LL, Shi BX, Dong ZL, Sun YJ, Ma HS. T140 Inhibits Apoptosis and Promotes Proliferation and Matrix Formation Through the SDF-1/CXC Receptor-4 Signaling Pathway in Endplate Chondrocytes of the Rat Intervertebral Discs. World Neurosurg 2020; 133:e165-e172. [DOI: 10.1016/j.wneu.2019.08.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023]
|
14
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
15
|
Jang YG, Go RE, Hwang KA, Choi KC. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway. J Steroid Biochem Mol Biol 2019; 192:105406. [PMID: 31185279 DOI: 10.1016/j.jsbmb.2019.105406] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignancies and the second most common cause of cancer-related deaths in men world-wide and is known to be affected by the action of dihydrotestosterone (DHT) via androgen receptor (AR). Resveratrol (Res) as a phytochemical in grapes and red wine has diverse biological effects such as anti-inflammation, anti-oxidation and anti-cancer. CXCR4 as a chemokine receptor has been found to be upregulated in cancer metastasis and has been used as a prognostic marker in various types of cancer, including leukemia, breast cancer, and prostate cancer. In this study, we focused on the role of DHT in the induction of prostate cancer progression by affecting the AR and CXCR4 pathway. Also, we investigated the inhibition effect of resveratrol on DHT-induced prostate cancer metastasis. In cell viability assay, DHT increased the cell viability of LNCaP prostate cancer cells, on the other hand, Res and its combination with bicalutamide (BCT) as an AR-antagonist or AMD3100 as a CXCR4 inhibitor significantly reduced the cell viability promoted by DHT. Trans-well migration assay and wound healing assay represented the similar results with cell viability assay. According to the results of TUNEL assay, the apoptotic activity was induced by treatment of Res. As results of western blot analysis, the expression of AR, CXCR4, p-PI3K, and p-AKT and the downstream genes related with cell cycle progression and epithelial-mesenchymal transition (EMT) were decreased and the expression of the apoptosis-related genes was increased by treatment of Res and its combination with BCT or AMD3100. This study would suggest that Res and its combination with AR and CXCR4 antagonists can be used in order to suppress the metastatic behaviors of prostate cancer.
Collapse
Affiliation(s)
- Yin-Gi Jang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryu-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
16
|
Kolb AD, Bussard KM. The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers (Basel) 2019; 11:cancers11071020. [PMID: 31330786 PMCID: PMC6678871 DOI: 10.3390/cancers11071020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Bone is a preferential site for cancer metastases, including multiple myeloma, prostate, and breast cancers.The composition of bone, especially the extracellular matrix (ECM), make it an attractive site for cancer cell colonization and survival. The bone ECM is composed of living cells embedded within a matrix composed of both organic and inorganic components. Among the organic components, type I collagen provides the tensile strength of bone. Inorganic components, including hydroxyapatite crystals, are an integral component of bone and provide bone with its rigidity. Under normal circumstances, two of the main cell types in bone, the osteoblasts and osteoclasts, help to maintain bone homeostasis and remodeling through cellular communication and response to biophysical signals from the ECM. However, under pathological conditions, including osteoporosis and cancer, bone remodeling is dysregulated. Once in the bone matrix, disseminated tumor cells utilize normal products of bone remodeling, such as collagen type I, to fuel cancer cell proliferation and lesion outgrowth. Models to study the complex interactions between the bone matrix and metastatic cancer cells are limited. Advances in understanding the interactions between the bone ECM and bone metastatic cancer cells are necessary in order to both regulate and prevent metastatic cancer cell growth in bone.
Collapse
Affiliation(s)
- Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
17
|
McDermott DH, Murphy PM. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol Rev 2018; 287:91-102. [DOI: 10.1111/imr.12719] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Affiliation(s)
- David H. McDermott
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| | - Philip M. Murphy
- Molecular Signaling Section; Laboratory of Molecular Immunology; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda Maryland
| |
Collapse
|
18
|
ZHOU Y, CAO HB, LI WJ, ZHAO L. The CXCL12 (SDF-1)/CXCR4 chemokine axis: Oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy. Chin J Nat Med 2018; 16:801-810. [DOI: 10.1016/s1875-5364(18)30122-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 02/07/2023]
|
19
|
Graham N, Qian BZ. Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. Int J Mol Sci 2018; 19:E1121. [PMID: 29642534 PMCID: PMC5979535 DOI: 10.3390/ijms19041121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the most advanced stage of many cancers and indicates a poor prognosis for patients due to resistance to anti-tumor therapies. The establishment of metastasis within the bone is a multistep process. To ensure survival within the bone marrow, tumor cells must initially colonize a niche in which they can enter dormancy. Subsequently, reactivation permits the proliferation and growth of the tumor cells, giving rise to a macro-metastasis displayed clinically as a bone metastatic lesion. Here, we review the evidences that suggest mesenchymal stromal cells play an important role in each of these steps throughout the development of bone metastasis. Similarities between the molecular mechanisms implicated in these processes and those involved in the homeostasis of the bone indicate that the metastatic cells may exploit the homeostatic processes to their own advantage. Identifying the molecular interactions between the mesenchymal stromal cells and tumor cells that promote tumor development may offer insight into potential therapeutic targets that could be utilized to treat bone metastasis.
Collapse
Affiliation(s)
- Nicola Graham
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Bin-Zhi Qian
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
20
|
Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM. Chemokines in homeostasis and diseases. Cell Mol Immunol 2018; 15:324-334. [PMID: 29375126 PMCID: PMC6052829 DOI: 10.1038/cmi.2017.134] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases. Therefore, understanding the role of chemokines and their GPCRs in the complex physiological and diseased microenvironment is important for the identification of novel therapeutic targets. This review introduces the functional array and signals of multiple chemokine GPCRs in guiding leukocyte trafficking as well as their roles in homeostasis, inflammation, immune responses and cancer.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, P. R. China
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., 21702, Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Okayama, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA.
| |
Collapse
|
21
|
Paudyal P, Xie Q, Vaddi PK, Henry MD, Chen S. Inhibiting G protein βγ signaling blocks prostate cancer progression and enhances the efficacy of paclitaxel. Oncotarget 2018; 8:36067-36081. [PMID: 28415604 PMCID: PMC5482639 DOI: 10.18632/oncotarget.16428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/11/2017] [Indexed: 01/29/2023] Open
Abstract
Aberrant activation of G protein-coupled receptors (GPCRs) is implicated in prostate cancer progression, but targeting them has been challenging because multiple GPCRs are involved in cancer progression. In this study, we tested the effect of blocking signaling via a hub through which multiple GPCRs converge — the G-protein Gβγ subunits. Inhibiting Gβγ signaling in several castration-resistant prostate cancer cell lines (i.e. PC3, DU145 and 22Rv1), impaired cell growth and migration in vitro, and halted tumor growth and metastasis in nude mice. The blockade of Gβγ signaling also diminished prostate cancer stem cell-like activities, by reducing tumorsphere formation in vitro and tumor formation in a limiting dilution assay in nude mice. Furthermore, Gβγ blockade enhanced the sensitivity of prostate cancer cells to paclitaxel treatment, both in vitro and in vivo. Together, our results identify a novel function of Gβγ in regulating prostate cancer stem-cell-like activities, and demonstrate that targeting Gβγ signaling is an effective approach in blocking prostate cancer progression and augmenting response to chemotherapy.
Collapse
Affiliation(s)
- Prakash Paudyal
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qing Xie
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Prasanna Kuma Vaddi
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael D Henry
- The Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Urology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Songhai Chen
- The Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,The Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
22
|
Goodwin TJ, Zhou Y, Musetti SN, Liu R, Huang L. Local and transient gene expression primes the liver to resist cancer metastasis. Sci Transl Med 2017; 8:364ra153. [PMID: 27831902 DOI: 10.1126/scitranslmed.aag2306] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/23/2016] [Indexed: 12/24/2022]
Abstract
The liver is the primary site of metastasis for gastrointestinal cancers and is a location highly susceptible to the establishment of metastasis in numerous other primary cancers, including breast, lung, and pancreatic cancers. The current standard of care typically consists of primary tumor resection and systemic administration of potent but toxic chemotherapeutics, yielding a minimal improvement in the median survival rate. CXCL12, a chemokine, is a key factor for activating the migration/survival pathways of CXCR4+ cancer cells and for recruiting immunosuppressive cells to areas of inflammation. Therefore, reducing CXCL12 concentrations within the liver has the potential to decrease tumor and immunosuppressive cell activation/migration within the liver. However, because of off-target toxicities associated with systemic administration of anti-CXCL12 therapies, transient and liver-specific expression of a CXCL12 trap is necessary. To address this challenge, we developed a lipid calcium phosphate nanoparticle optimized for delivering plasmid DNA, encoding an engineered CXCL12 protein trap, to the nucleus of liver hepatocytes. This pCXCL12-trap formulation yielded transient (4 days) liver-specific expression, which greatly decreased the occurrence of liver metastasis in two aggressive liver metastasis models, including colorectal [CT-26(FL3)] and breast (4T1) cancers. Subsequent studies in an aggressive human colorectal liver metastasis model (HT-29) decreased the establishment of liver metastasis more effectively than did systemic administration of the CXCL12 protein trap and to a level comparable to a high-dose regimen of a potent CXCR4 antagonist (AMD3100).
Collapse
Affiliation(s)
- Tyler J Goodwin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yingqiu Zhou
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sara N Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rihe Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2017; 38:1188-1234. [PMID: 28768055 DOI: 10.1002/med.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists (e.g., PlerixaforTM ) have been successfully validated as stem cell mobilizers for peripheral blood stem cell transplantation. Applications of the CXCR4 antagonists have heralded the era of cell-based therapy and opened a potential therapeutic horizon for many unmet medical needs such as kidney injury, ischemic stroke, cancer, and myocardial infarction. In this review, we first introduce the central role of CXCR4 in diverse cellular signaling pathways and discuss its involvement in several disease progressions. We then highlight the molecular design and optimization strategies for targeting CXCR4 from a large number of case studies, concluding that polyamines are the preferred CXCR4-binding ligands compared to other structural options, presumably by mimicking the highly positively charged natural ligand CXCL12. These results could be further justified with computer-aided docking into the CXCR4 crystal structure wherein both major and minor subpockets of the binding cavity are considered functionally important. Finally, from the clinical point of view, CXCR4 antagonists could mobilize hematopoietic stem/progenitor cells with long-term repopulating capacity to the peripheral blood, promising to replace surgically obtained bone marrow cells as a preferred source for stem cell transplantation.
Collapse
Affiliation(s)
- Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | | | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| |
Collapse
|
24
|
Yang QL, Zhang LY, Wang HF, Li Y, Wang YY, Chen TT, Dai MF, Wu HH, Chen SL, Wang WR, Wu Q, Chen CJ, Zhou CZ. The N-terminal polypeptide derived from viral macrophage inflammatory protein II reverses breast cancer epithelial-to-mesenchymal transition via a PDGFRα-dependent mechanism. Oncotarget 2017; 8:37448-37463. [PMID: 28415580 PMCID: PMC5514921 DOI: 10.18632/oncotarget.16394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/01/2017] [Indexed: 01/22/2023] Open
Abstract
NT21MP, a 21-residue peptide derived from the viral macrophage inflammatory protein II, competed effectively with the natural ligand of CXC chemokine receptor 4 (CXCR4), stromal cell-derived factor 1-alpha, to induce apoptosis and inhibit growth in breast cancer. Its role in tumor epithelial-to-mesenchymal transition (EMT) regulation remains unknown. In this study, we evaluated the reversal of EMT upon NT21MP treatment and examined its role in the inhibition of EMT in breast cancer. The parental cells of breast cancer (SKBR-3 and MCF-7) and paclitaxel-resistant (SKBR-3 PR and MCF-7 PR) cells were studied in vitro and in combined immunodeficient mice. The mice injected with SKBR-3 PR cells were treated with NT21MP through the tail vein or intraperitoneally with paclitaxel or saline. Sections from tumors were evaluated for tumor weight and EMT markers based on Western blot. In vitro, the effects of NT21MP, CXCR4 and PDGFRα on tumor EMT were assessed by relative quantitative real-time reverse transcription-polymerase chain reaction, western blot and biological activity in breast cancer cell lines expressing high or low levels of CXCR4. Our results illustrated that NT21MP could reverse the phenotype of EMT in paclitaxel-resistant cells. Furthermore, we found that NT21MP governed PR-mediated EMT partly due to controlling platelet-derived growth factors A and B (PDGFA and PDGFB) and their receptor (PDGFRα). More importantly, NT21MP down-regulated AKT and ERK1/2 activity, which were activated by PDGFRα, and eventually reversed the EMT. Together, these results indicated that CXCR4 overexpression drives acquired paclitaxel resistance, partly by activating the PDGFA and PDGFB/PDGFRα autocrine signaling loops that activate AKT and ERK1/2. Inhibition of the oncogenic EMT process by targeting CXCR4/PDGFRα-mediated pathways using NT21MP may provide a novel therapeutic approach towards breast cancer.
Collapse
Affiliation(s)
- Qing-Ling Yang
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 233030, China
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Ling-Yu Zhang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Hai-Feng Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yu Li
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yue-Yue Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Tian-Tian Chen
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Meng-Fen Dai
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Hai-Hua Wu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Su-Lian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wen-Rui Wang
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Chang-Jie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 233030, China
| |
Collapse
|
25
|
Casimiro S, Ferreira AR, Mansinho A, Alho I, Costa L. Molecular Mechanisms of Bone Metastasis: Which Targets Came from the Bench to the Bedside? Int J Mol Sci 2016; 17:E1415. [PMID: 27618899 PMCID: PMC5037694 DOI: 10.3390/ijms17091415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/06/2016] [Accepted: 08/19/2016] [Indexed: 12/31/2022] Open
Abstract
Bone metastases ultimately result from a complex interaction between cancer cells and bone microenvironment. However, prior to the colonization of the bone, cancer cells must succeed through a series of steps that will allow them to detach from the primary tumor, enter into circulation, recognize and adhere to specific endothelium, and overcome dormancy. We now know that as important as the metastatic cascade, tumor cells prime the secondary organ microenvironment prior to their arrival, reflecting the existence of specific metastasis-initiating cells in the primary tumor and circulating osteotropic factors. The deep comprehension of the molecular mechanisms of bone metastases may allow the future development of specific anti-tumoral therapies, but so far the approved and effective therapies for bone metastatic disease are mostly based in bone-targeted agents, like bisphosphonates, denosumab and, for prostate cancer, radium-223. Bisphosphonates and denosumab have proven to be effective in blocking bone resorption and decreasing morbidity; furthermore, in the adjuvant setting, these agents can decrease bone relapse after breast cancer surgery in postmenopausal women. In this review, we will present and discuss some examples of applied knowledge from the bench to the bed side in the field of bone metastasis.
Collapse
Affiliation(s)
- Sandra Casimiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
| | - Arlindo R Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal.
| | - André Mansinho
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal.
| | - Irina Alho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
| | - Luis Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal.
| |
Collapse
|
26
|
Mishan MA, Ahmadiankia N, Bahrami AR. CXCR4 and CCR7: Two eligible targets in targeted cancer therapy. Cell Biol Int 2016; 40:955-67. [PMID: 27248053 DOI: 10.1002/cbin.10631] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
Cancer is one of the most common cause of death in the world with high negative emotional, economic, and social impacts. Conventional therapeutic methods, including chemotherapy and radiotherapy, have not proven satisfactory and relapse is common in most cases. Recent studies have focused on targeted therapy with more precise identification and targeted attacks to the cancer cells. For this purpose, chemokine receptors are proper targets and among them, CXCR4 and CCR7, with a crucial role in cancer metastasis, are being considered as desired candidates for investigation. In this review paper, the most important experimental results are highlighted on the potential targeted therapies based on CXCR4 and CCR7 chemokine receptors.
Collapse
Affiliation(s)
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
27
|
Lin NN, Wang P, Zhao D, Zhang FJ, Yang K, Chen R. Significance of oral cancer-associated fibroblasts in angiogenesis, lymphangiogenesis, and tumor invasion in oral squamous cell carcinoma. J Oral Pathol Med 2016; 46:21-30. [PMID: 27229731 DOI: 10.1111/jop.12452] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are recognized as a pivotal promoter in cancer initiation and development. However, the role of CAFs in the progression and metastasis of oral squamous cell carcinoma (OSCC) has not been fully elucidated. MATERIALS AND METHODS Lymphatic vessel density (LVD) and microvessel density (MVD) and the expression of α-smooth muscle actin (α-SMA) and matrix metalloproteinase-9 (MMP-9) were evaluated by immunohistochemistry in 86 cases of OSCC. The correlations between α-SMA expression and MMP-9 expression, LVD, MVD, and other clinicopathological parameters were analyzed. In vitro invasion assay was performed to assess the effect of CAFs on the invasion of OSCC cells. We also investigated the effect of CAFs on the angiogenesis and lymphangiogenesis by inoculating CAFs with OSCC cells into nude mice subcutaneously. RESULTS Positive expression of α-SMA protein was detected in 69.8% of the tumors. Increased α-SMA expression was correlated strongly with enhanced tumor invasion, higher tumor grade, increased risk of recurrence, lymph node involvement, and higher peritumoral lymphatic vessel density and microvessel density (P < 0.05). CAFs induced more cancer cells to invade relative to normal fibroblasts (NFs) (P < 0.05). Compared with co-injection of OSCC cells and NFs or injection of tumor cells alone, co-injection of OSCC cells and CAFs resulted in earlier tumor formation and bigger tumor volume accompanied with increased angiogenesis and lymphangiogenesis (P < 0.05). CONCLUSION CAFs may play critical roles in OSCC progression as an inducer of tumor invasion, angiogenesis, and lymphangiogenesis. Therapeutic strategies targeting CAFs against OSCC is promising and need further exploration.
Collapse
Affiliation(s)
- Nan-Nan Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Wang
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fu-Jun Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Symmetrical bis-tertiary amines as novel CXCR4 inhibitors. Eur J Med Chem 2016; 118:340-50. [PMID: 27179215 DOI: 10.1016/j.ejmech.2016.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
CXCR4 inhibitors are promising agents for the treatment of cancer metastasis and inflammation. A series of novel tertiary amine derivatives targeting CXCR4 were designed, synthesized, and evaluated. The central benzene ring linker and side chains were modified and optimized to study the structure-activity relationship. Seven compounds displayed much more potent activity than the reference drug, AMD3100, in both the binding affinity assay and the blocking of Matrigel invasion functional assay. These compounds exhibited effective concentration ranging from 1 to 100 nM in the binding affinity assay and inhibited invasion from 65.3% to 100% compared to AMD3100 at 100 nM. Compound IIn showed a 50% suppressive effect against carrageenan-induced paw inflammation in a mouse model, which was as effective as the peptidic antagonist, TN14003 (48%). These data demonstrate that symmetrical bis-tertiary amines are unique CXCR4 inhibitors with high potency.
Collapse
|
29
|
Zhao Y, You W, Zheng J, Chi Y, Tang W, Du R. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals. Clin Transl Oncol 2016; 18:1123-1130. [DOI: 10.1007/s12094-016-1494-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/20/2016] [Indexed: 01/14/2023]
|
30
|
Coke CJ, Scarlett KA, Chetram MA, Jones KJ, Sandifer BJ, Davis AS, Marcus AI, Hinton CV. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem 2016; 291:9991-10005. [PMID: 26841863 DOI: 10.1074/jbc.m115.712661] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 12/19/2022] Open
Abstract
The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression.
Collapse
Affiliation(s)
- Christopher J Coke
- From the Department of Biological Sciences and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - Kisha A Scarlett
- From the Department of Biological Sciences and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - Mahandranauth A Chetram
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D. C. 20057, and
| | - Kia J Jones
- From the Department of Biological Sciences and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - Brittney J Sandifer
- From the Department of Biological Sciences and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - Ahriea S Davis
- From the Department of Biological Sciences and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia 30322
| | - Cimona V Hinton
- From the Department of Biological Sciences and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314,
| |
Collapse
|
31
|
Qiao A, Gu F, Guo X, Zhang X, Fu L. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications. Front Med 2016; 10:33-40. [DOI: 10.1007/s11684-016-0431-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023]
|
32
|
C. M. Okuyama N, Cezar dos Santos F, Paiva Trugilo K, Brajão de Oliveira K. Involvement of CXCL12 Pathway in HPV-related Diseases. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Randhawa V, Kumar Singh A, Acharya V. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer. MOLECULAR BIOSYSTEMS 2015; 11:3362-3377. [PMID: 26467789 DOI: 10.1039/c5mb00468c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.
Collapse
Affiliation(s)
- Vinay Randhawa
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| | - Anil Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| | - Vishal Acharya
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| |
Collapse
|
34
|
Improving chemotherapeutic efficiency in acute myeloid leukemia treatments by chemically synthesized peptide interfering with CXCR4/CXCL12 axis. Sci Rep 2015; 5:16228. [PMID: 26538086 PMCID: PMC4633653 DOI: 10.1038/srep16228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023] Open
Abstract
Bone marrow stroma can protect acute myeloid leukemia (AML) cells against chemotherapeutic agents and provide anti-apoptosis and chemoresistance signals through secreting chemokine CXCL12 to activate its receptor CXCR4 on AML cells, resulting in minimal residual leukemia and relapse. Therefore disrupting the CXCR4/CXCL12 axis with antagonists is of great significance for improving chemosensitivity and decreasing relapse rate. In a previous study, we reported a novel synthetic peptide E5 with its remarkable effect on inhibiting CXCR4/CXCL12-mediated adhesion and migration of AML cells. Here we presented E5's capacity of enhancing the therapeutic efficiency of various chemotherapeutics on AML in vitro and in vivo. Results showed that E5 can diminish bone marrow stromal cell-provided protection to leukemia cells, significantly increasing the apoptosis induced by various chemotherapeutics in multiple AML cell lines. In an AML mouse xenograft model, E5 induced 1.84-fold increase of circulating AML cells out of protective stroma niche. Combined with vincristine or cyclophosphamide, E5 inhibited infiltration of AML cells into bone marrow, liver and spleen, as well as prolonged the lifespan of AML mice compared with mice treated with chemotherapy alone. In addition, E5 presented no toxicity in vivo according to the histological analysis and routine clinical parameters of serum analysis.
Collapse
|
35
|
Katkoori VR, Basson MD, Bond VC, Manne U, Bumpers HL. Nef-M1, a peptide antagonist of CXCR4, inhibits tumor angiogenesis and epithelial‑to‑mesenchymal transition in colon and breast cancers. Oncotarget 2015; 6:27763-27777. [PMID: 26318034 PMCID: PMC4695024 DOI: 10.18632/oncotarget.4615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022] Open
Abstract
The Nef-M1 peptide competes effectively with the natural ligand of CXC chemokine receptor 4 (CXCR4), stromal cell-derived factor 1-alpha, to induce apoptosis and inhibit growth in colon cancer (CRC) and breast cancer (BC). Its role in tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) regulation, key steps involved in tumor growth and metastasis, are unknown. We evaluated the angioinhibitory effect of Nef-M1 peptide and examined its role in the inhibition of EMT in these cancers. Colon (HT29) and breast (MDA-MB231) cancer cells expressing CXCR4 were studied in vitro and in xenograft tumors propagated in severe combined immunodeficient mice. The mice were treated intraperitoneally with Nef-M1 or scrambled amino acid sequence of Nef-M1 (sNef-M1) peptide, a negative control, starting at the time of tumor implantation. Sections from tumors were evaluated for tumor angiogenesis, as measured by microvessel density (MVD) based on immunostaining of endothelial markers. In vitro tumor angiogenesis was assessed by treating human umbilical vein endothelial cells with conditioned media from the tumor cell lines. A BC cell line (MDA-MB 468) which does not express CXCR4 was used to study the actions of Nef-M1 peptide. Western blot and immunofluorescence analyses assessed the effect of Nef-M1 on tumor angiogenesis and EMT in both tumors and cancer cells. Metastatic lesions of CRC and BC expressed more CXCR4 than primary lesions. It was also found that tumors from mice treated with sNef-M1 had well established vascularity, while Nef-M1 treated tumors had very poor vascularization. Indeed, the mean MVD was lower in tumors from Nef-M1 treated mice than in sNef-M1 treated tumors. Nef-M1 treated tumor has poor morphology and loss of endothelial integrity. Although conditioned medium from CRC or BC cells supported HUVEC tube formation, the conditioned medium from Nef-M1 treated CRC or BC cells did not support tube formation. Western blot analyses revealed that Nef-M1 effectively suppressed the expression of VEGF-A in CRC and BC cells and tumors. This suggests that Nef-M1 treated CRC and BC cells are more consistent with E-cadherin signature, and thus appears more epithelial in nature. Our data indicate that Nef-M1 peptide inhibits tumor angiogenesis and the oncogenic EMT process. Targeting the chemokine receptor, CXCR4, mediated pathways using Nef-M1 may prove to be a novel therapeutic approach for CRC and BC.
Collapse
Affiliation(s)
- Venkat R. Katkoori
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| | - Marc D. Basson
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| | - Vincent C. Bond
- Department of Microbiology, Immunology and Biochemistry, Morehouse School of Medicine, Atlanta, GA, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harvey L. Bumpers
- Department of Surgery, Michigan State University, College of Human Medicine, Lansing, MI, USA
| |
Collapse
|
36
|
Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein Cell 2015; 6:890-903. [PMID: 26296527 PMCID: PMC4656211 DOI: 10.1007/s13238-015-0198-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/16/2015] [Indexed: 01/24/2023] Open
Abstract
Stromal cells provide a crucial microenvironment for overlying epithelium. Here we investigated the expression and function of a stromal cell-specific protein, stromal cell-derived factor-1 (SDF-1), in normal human skin and in the tissues of diseased skin. Immunohistology and laser capture microdissection (LCM)-coupled quantitative real-time RT-PCR revealed that SDF-1 is constitutively and predominantly expressed in dermal stromal cells in normal human skin in vivo. To our surprise, an extremely high level of SDF-1 transcription was observed in the dermis of normal human skin in vivo, evidenced by much higher mRNA expression level than type I collagen, the most abundant and highly expressed protein in human skin. SDF-1 was also upregulated in the tissues of many human skin disorders including psoriasis, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Double immunostaining for SDF-1 and HSP47 (heat shock protein 47), a marker of fibroblasts, revealed that fibroblasts were the major source of stroma-cell-derived SDF-1 in both normal and diseased skin. Functionally, SDF-1 activates the ERK (extracellular-signal-regulated kinases) pathway and functions as a mitogen to stimulate epidermal keratinocyte proliferation. Both overexpression of SDF-1 in dermal fibroblasts and treatment with rhSDF-1 to the skin equivalent cultures significantly increased the number of keratinocyte layers and epidermal thickness. Conversely, the stimulative function of SDF-1 on keratinocyte proliferation was nearly completely eliminated by interfering with CXCR4, a specific receptor of SDF-1, or by knock-down of SDF-1 in fibroblasts. Our data reveal that extremely high levels of SDF-1 provide a crucial microenvironment for epidermal keratinocyte proliferation in both physiologic and pathologic skin conditions.
Collapse
|
37
|
Thomas N, Li P, Fleming BC, Chen Q, Wei X, Pan XH, Wei L, Wei L. Attenuation of cartilage pathogenesis in post-traumatic osteoarthritis (PTOA) in mice by blocking the stromal derived factor 1 receptor (CXCR4) with the specific inhibitor, AMD3100. J Orthop Res 2015; 33:1071-8. [PMID: 25732515 PMCID: PMC4557642 DOI: 10.1002/jor.22862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/08/2015] [Indexed: 02/04/2023]
Abstract
SDF-1 was found to infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity after joint trauma. In this study, we tested the hypothesis that interference of the SDF-1/CXCR4 signaling pathway via AMD3100 can attenuate pathogenesis in a mouse model of PTOA. We also tested the predictive and confirmatory power of fluorescence molecular tomography (FMT) for cartilage assessment. AMD3100 was continuously delivered via mini-osmotic pumps. The extent of cartilage damage after AMD3100 or PBS treatment was assessed by histological analysis 2 months after PTOA was induced by surgical destabilization of the medial meniscus (DMM). Biochemical markers of PTOA were assessed via immunohistochemistry and in vivo fluorescence molecular tomography (FMT). Regression analysis was used to validate the predictive power of FMT measurements. Safranin-O staining revealed significant PTOA damage in the DMM/PBS mice, while the DMM/AMD3100 treated mice showed a significantly reduced response with minimal pathology. Immunohistochemistry showed that AMD3100 treatment markedly reduced typical PTOA marker expression in chondrocytes. FMT measurements showed decreased cathepsins and MMP activity in knee joints after treatment. The results demonstrate that AMD3100 treatment attenuates PTOA. AMD3100 may provide a viable and expedient option for PTOA therapy given the drug's FDA approval and well-known safety profile.
Collapse
Affiliation(s)
- Nathan Thomas
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence RI 02903
| | - Pengcui Li
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence RI 02903.,Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair. Taiyuan, China
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence RI 02903
| | - Qian Chen
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence RI 02903
| | - Xiaochun Wei
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair. Taiyuan, China
| | - Xiao-Hua Pan
- Department of Orthopedics, Shenzhen Second Hospital. Shenzhen, China
| | - Lei Wei
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence RI 02903.,Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair. Taiyuan, China., Author to whom correspondence should be addressed; ; Tel.: +1-401-793-8384; Fax: +1-401-444-6140
| | - Lei Wei
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence, Rhode Island, 02903.,Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, China
| |
Collapse
|
38
|
Abstract
Chemokines mediate numerous physiological and pathological processes related primarily to cell homing and migration. The chemokine CXCL12, also known as stromal cell-derived factor-1, binds the G-protein-coupled receptor CXCR4, which, through multiple divergent pathways, leads to chemotaxis, enhanced intracellular calcium, cell adhesion, survival, proliferation, and gene transcription. CXCR4, initially discovered for its involvement in HIV entry and leukocytes trafficking, is overexpressed in more than 23 human cancers. Cancer cell CXCR4 overexpression contributes to tumor growth, invasion, angiogenesis, metastasis, relapse, and therapeutic resistance. CXCR4 antagonism has been shown to disrupt tumor-stromal interactions, sensitize cancer cells to cytotoxic drugs, and reduce tumor growth and metastatic burden. As such, CXCR4 is a target not only for therapeutic intervention but also for noninvasive monitoring of disease progression and therapeutic guidance. This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of CXCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CXCR4 expression.
Collapse
Affiliation(s)
- Samit Chatterjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Babak Behnam Azad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
39
|
Sun X, Charbonneau C, Wei L, Chen Q, Terek RM. miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis. Mol Cancer Res 2015; 13:1347-57. [PMID: 26013170 DOI: 10.1158/1541-7786.mcr-14-0697] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/12/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Chondrosarcoma is the most common primary malignant bone tumor in adults, has no effective systemic treatment, and patients with this disease have poor survival. Altered expression of microRNA (miR) is involved in tumorigenesis; however, its role in chondrosarcoma is undetermined. miR-181a is overexpressed in high-grade chondrosarcoma, is upregulated by hypoxia, and increases VEGF expression. Here, the purpose was to determine the mechanism of miR-181a regulation of VEGF, determine whether miR-181a overexpression promotes tumor progression, and to evaluate an antagomir-based approach for chondrosarcoma treatment. Therapeutic inhibition of miR-181a decreased expression of VEGF and MMP1 in vitro, and angiogenesis, MMP1 activity, tumor growth, and lung metastasis, all by more than 50%, in a xenograft mouse model. A target of miR-181a is a regulator of G-protein signaling 16 (RGS16), a negative regulator of CXC chemokine receptor 4 (CXCR4) signaling. CXCR4 signaling is increased in chondrosarcoma, its expression is also increased by hypoxia, and is associated with angiogenesis and metastasis; however, receptor blockade is only partially effective. RGS16 expression is restored after miR-181a inhibition and partially accounts for the antiangiogenic and antimetastatic effects of miR-181a inhibition. These data establish miR-181a as an oncomiR that promotes chondrosarcoma progression through a new mechanism involving enhancement of CXCR4 signaling by inhibition of RGS16. IMPLICATIONS Targeting miR-181a can inhibit tumor angiogenesis, growth, and metastasis, thus suggesting the possibility of antagomir-based therapy in chondrosarcoma.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | | | - Lei Wei
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Qian Chen
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Richard M Terek
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island. Providence Veterans Administration Medical Center, Providence, Rhode Island.
| |
Collapse
|
40
|
Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2015; 35:816-26. [DOI: 10.1038/onc.2015.139] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 02/07/2023]
|
41
|
Mühlethaler-Mottet A, Liberman J, Ascenção K, Flahaut M, Balmas Bourloud K, Yan P, Jauquier N, Gross N, Joseph JM. The CXCR4/CXCR7/CXCL12 Axis Is Involved in a Secondary but Complex Control of Neuroblastoma Metastatic Cell Homing. PLoS One 2015; 10:e0125616. [PMID: 25955316 PMCID: PMC4425663 DOI: 10.1371/journal.pone.0125616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.
Collapse
Affiliation(s)
- Annick Mühlethaler-Mottet
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Julie Liberman
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Kelly Ascenção
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Marjorie Flahaut
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Katia Balmas Bourloud
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Pu Yan
- Department of Pathology, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jauquier
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Nicole Gross
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Joseph
- Department of Pediatrics, University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Hou M, Lai Y, He S, He W, Shen H, Ke Z. SGK3 (CISK) may induce tumor angiogenesis (Hypothesis). Oncol Lett 2015; 10:23-26. [PMID: 26170971 DOI: 10.3892/ol.2015.3182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
Serum- and glucocorticoid-inducible protein kinase 3 (SGK3), also known as cytokine-independent survival kinase (CISK), encoded by chromosome 8q12.2, is a downstream mediator of phosphatidylinositol 3-kinase (PI3K) oncogenic signaling. As a downstream target of PI3K, SGK3 has been reported to mediate pivotal roles in oncogenic progress in various cancers, including breast cancer, ovarian cancer and hepatocellular carcinoma. Functionally parallel to v-akt murine thymoma viral oncogene homolog (AKT)/protein kinase B, SGK3 serves as a hallmark mediating glycogen synthase kinase-β (GSK3-β), B-cell lymphoma (Bcl)-2-associated death promoter, forkead family of transcription factors, Bcl-extra large, Bcl-2, mammalian target of rapamycin, C-X-C chemokine receptor type 4 (CXCR4) and numerous other molecules in cell proliferation, growth, survival, migration and even tumor angiogenesis. Tumor angiogenesis is recognized as an essential step for tumor growth, invasion and metastasis, and it has become an intriguing target for anticancer drug development for tumor investigators worldwide. An abundance of experiments have been performed to investigate the role of the phosphoinositide 3-kinase (PI3K)/AKT pathway in regulating tumor angiogenesis. The mechanism of angiogenesis regulated by the PI3K/AKT pathway is, to a certain extent, clear. Although a number of SGK3 target molecules, including CXCR4 and GSK3β, have demonstrated potential roles in promoting angiogenesis, the exact association between angiogenesis and SGK3 remains unclear. Thus, we hypothesize that SGK3, parallel to AKT, may also be important in mediating angiogenesis. Identifying the role of SGK3 in tumor angiogenesis will certainly present a novel perspective on the malignant transformation of tumors, as well as a target for tumor therapy.
Collapse
Affiliation(s)
- Minzhi Hou
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shanyang He
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongwei Shen
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
43
|
Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of breast cancer progression. Cancer Lett 2015; 361:155-63. [PMID: 25700776 DOI: 10.1016/j.canlet.2015.02.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
Abstract
Cancerous tissue is a complex mix of tumor cells, stromal cells and extracellular matrix (ECM), all of which make up a disordered and aggressive niche in comparison with organized and homeostatic normal tissue. It is well accepted that the tumor microenvironment plays an indispensable role in cancer development, and thus can be recognized as an additional cancer hallmark alongside those that are well established. In breast cancer, cancer associated fibroblasts (CAFs) are the predominant cellular components and play a centric role in the tumor microenvironment since they not only promote cancer initiation, growth, invasion, metastasis and therapeutic resistance but are also involved in microenvironmental events including angiogenesis/lymphangiogenesis, ECM remodeling, cancer-associated inflammation and metabolism reprogramming, all of which are known to have pre-malignancy potency. At the molecular level, there is a sophisticated network underlying the interactions between CAFs and epithelial cells as well as other stromal components. Accordingly, targeting CAFs provides a novel strategy in cancer therapy. Herein, we summarize the current understanding of the role of CAFs in breast cancer.
Collapse
Affiliation(s)
- Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhimin Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
44
|
Yu FX, Hu WJ, He B, Zheng YH, Zhang QY, Chen L. Bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion. World J Surg Oncol 2015; 13:52. [PMID: 25890096 PMCID: PMC4334855 DOI: 10.1186/s12957-015-0465-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 01/17/2015] [Indexed: 12/26/2022] Open
Abstract
Background Bone marrow-derived stem cells (BMSCs) are locally adjacent to the tumor tissues and may interact with tumor cells directly. The purpose of this study was to explore the effects of BMSCs on the proliferation and invasion of osteosarcoma cells in vitro and the possible mechanism involved. Methods BMSCs were co-cultured with osteosarcoma cells, and CCK-8 assay was used to measure cell proliferation. The ELISA method was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. Reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the expression of CXCR4 in osteosarcoma cells and BMSCs. Matrigel invasion assay was performed to measure tumor cell invasion. Results SDF-1 was detected in the supernatants of BMSCs, but not in osteosarcoma cells. Higher CXCR4 mRNA levels were detected in the osteosarcoma cell lines compared to BMSCs. In addition, conditioned medium from BMSCs can promote the proliferation and invasion of osteosarcoma cells, and AMD3100, an antagonist for CXCR4, can significantly downregulate these growth-promoting effects. Conclusions BMSCs can promote the proliferation and invasion of osteosarcoma cells, which may involve the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Fu-Xiang Yu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang, 325002, China.
| | - Wei-Jian Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang, 325002, China.
| | - Bin He
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang, 325002, China.
| | - Yi-Hu Zheng
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang, 325002, China.
| | - Qi-Yu Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang, 325002, China.
| | - Lin Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nan Bai Xiang Street, Ouhai District, Wenzhou, Zhejiang, 325002, China.
| |
Collapse
|
45
|
ZHI YUNLAI, LU HONGTING, DUAN YUHE, SUN WEISHENG, GUAN GE, DONG QIAN, YANG CHUANMIN. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α. Int J Mol Med 2015; 35:349-357. [PMID: 25503960 PMCID: PMC4292717 DOI: 10.3892/ijmm.2014.2032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023] Open
Abstract
Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.
Collapse
Affiliation(s)
- YUNLAI ZHI
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - HONGTING LU
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - YUHE DUAN
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - WEISHENG SUN
- Department of Pediatric Surgery, The Children’s Hospital of Zhengzhou, Henan 450053, P.R. China
| | - GE GUAN
- Department of Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - QIAN DONG
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - CHUANMIN YANG
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
46
|
Thapa D, Ghosh R. Chronic inflammatory mediators enhance prostate cancer development and progression. Biochem Pharmacol 2015; 94:53-62. [PMID: 25593038 DOI: 10.1016/j.bcp.2014.12.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/26/2014] [Accepted: 12/31/2014] [Indexed: 12/18/2022]
Abstract
Chronic inflammation is postulated to influence prostate cancer progression. Preclinical studies have claimed that inflammatory mediators are involved in prostate cancer development and therefore suggested these as attractive targets for intervention. However, among the many pro-inflammatory mediators, there is no consensus regarding the identity of the primary one(s). In clinical studies, chronic inflammation has been found in prostate tumor specimens, and tissues resected for treatment of benign prostatic hyperplasia (BPH). Although collective evidence from molecular, experimental and clinical data suggests that inflammation can contribute or promote prostate carcinogenesis, an etiologic link has not yet been established. Moreover, the role of chronic inflammation in the onset of castration resistant and metastatic disease is unclear. Therefore it is important to open a dialog regarding recent findings on how chronic inflammatory mediators contribute to prostate cancer progression, and their usefulness to prevent disease progression. In this commentary, we assess the current literature with respect to chronic inflammation as a potential initiator and promoter of prostate carcinogenesis and discuss the prospects for its potential clinical applications.
Collapse
Affiliation(s)
- Dinesh Thapa
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rita Ghosh
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
47
|
Parris GE. Cell-Cell Fusion, Chemotaxis and Metastasis. INTERCELLULAR COMMUNICATION IN CANCER 2015:227-254. [DOI: 10.1007/978-94-017-7380-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
48
|
Lee JY, Kang DH, Chung DY, Kwon JK, Lee H, Cho NH, Choi YD, Hong SJ, Cho KS. Meta-Analysis of the Relationship between CXCR4 Expression and Metastasis in Prostate Cancer. World J Mens Health 2014; 32:167-75. [PMID: 25606566 PMCID: PMC4298820 DOI: 10.5534/wjmh.2014.32.3.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Experimental studies have suggested that the stromal-derived factor-1 (SDF-1)/CXCR4 axis is associated with tumor aggressiveness and metastasis in several malignancies. We performed a meta-analysis to elucidate the relationship between CXCR4 expression and the clinicopathological features of prostate cancer. MATERIALS AND METHODS Data were collected from studies comparing Gleason score, T stage, and the presence of metastasis with CXCR4 levels in human prostate cancer samples. The studies were pooled, and the odds ratio (OR) of CXCR4 expression for clinical and pathological variables was calculated. RESULTS Five articles were eligible for the current meta-analysis. We found no relationship between CXCR4 expression and Gleason score (<7 vs. ≥7). The forest plot using the fixed-effects model indicated an OR of 1.585 (95% confidence interval [CI]: 0.793~3.171; p=0.193). Further, CXCR4 expression was not associated with the T stage (<T3 vs. ≥T3), and the relevant meta-analysis showed OR=1.803 (95% CI: 0.756~4.297, p=0.183). However, increased CXCR4 expression was strongly associated with metastatic disease with a fixed-effects pooled OR of 7.459 (95% CI: 2.665~20.878, p<0.001). CONCLUSIONS Our meta-analysis showed that the higher CXCR4 protein expression in prostate cancer specimens is significantly associated with the presence of metastatic disease. This supports previous experimental data supporting the role played by the SDF-1/CXCR4 axis in metastasis.
Collapse
Affiliation(s)
- Joo Yong Lee
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Hyuk Kang
- Department of Urology, Yangpyeong Health Center, Yangpyeong, Korea
| | - Doo Yong Chung
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Kyou Kwon
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyungmin Lee
- Division of Epidemic Intelligence Service, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Nam Hoon Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Deuk Choi
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Joon Hong
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Su Cho
- Department of Urology, Gangnam Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Du Z, Zan T, Huang X, Sheng L, Li H, Li H, Li Q. DFO enhances the targeting of CD34-positive cells and improves neovascularization. Cell Transplant 2014; 24:2353-66. [PMID: 25506687 DOI: 10.3727/096368914x685753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Desferrioxamine (DFO), an iron chelator, mimicked hypoxia by inhibiting HIF-1α degradation and upregulated angiogenic factors. In this experiment, we elucidated the effect of DFO on CD34-positive cell migration and neovascularization. CD34-positive cells were cultured in media with DFO or an inhibitor and subjected to in vitro tubule formation and the expression of factors. Nude mice were randomly divided into five groups of 12: control, CD34, CD34-DFO, CD34-DFO-AMD (AMD3100, CXCR4 inhibitor), and CD34-DFO-LY (LY294002, the PI3K inhibitor) groups. Limb perfusion and in vivo imaging was evaluated by laser speckle imaging (LSI) and bioluminescence imaging (BLI). Capillary density was examined 14 days after surgery, and the relevant mechanism was also explored. In vitro, DFO significantly increased the tube formation and expression of angiogenic factors in CD34-positive cells, which were blocked by the PI3K inhibitor, LY294002. DFO enhanced blood flow, the function of the ischemic hindlimb, and the levels of VEGF. Further, p-eNOS and p-Akt increased in response to the ischemia. BLI showed that DFO increased the number of CD34-positive cells targeted to the ischemic sites. Immunohistofluorescence revealed that the capillary density in the ischemic hindlimb was significantly higher in the DFO treatment group compared with the other groups. However, all of these effects were diminished by LY294002. DFO treatment enhanced CD34-positive cell targeting and improved neovascularization via the PI3K/Akt signal transduction pathway in an ischemic hindlimb.
Collapse
Affiliation(s)
- Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
50
|
Wu D, Guo X, Su J, Chen R, Berenzon D, Guthold M, Bonin K, Zhao W, Zhou X. CD138-negative myeloma cells regulate mechanical properties of bone marrow stromal cells through SDF-1/CXCR4/AKT signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:338-47. [PMID: 25450979 DOI: 10.1016/j.bbamcr.2014.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/10/2014] [Accepted: 11/14/2014] [Indexed: 12/29/2022]
Abstract
As the second most prevalent hematologic malignancy, multiple myeloma (MM) remains incurable and relapses due to intrinsic or acquired drug resistance. Therefore, new therapeutic strategies that target molecular mechanisms responsible for drug resistance are attractive. Interactions of tumor cells with their surrounding microenvironment impact tumor initiation, progression and metastasis, as well as patient prognosis. This cross-talk is bidirectional. Tumor cells can also attract or activate tumor-associated stromal cells by releasing cytokines to facilitate their growth, invasion and metastasis. The effect of myeloma cells on bone marrow stromal cells (BMSCs) has not been well studied. In our study, we found that higher stiffness of BMSCs was not a unique characteristic of BMSCs from MM patients (M-BMSCs). BMSCs from MGUS (monoclonal gammopathy of undetermined significance) patients were also stiffer than the BMSCs from healthy volunteers (N-BMSCs). The stiffness of M-BMSCs was enhanced when cocultured with myeloma cells. In contrast, no changes were seen in myeloma cell-primed MGUS- and N-BMSCs. Interestingly, our data indicated that CD138⁻ myeloma cells, but not CD138⁺ cells, regulated M-BMSC stiffness. SDF-1 was highly expressed in the CD138⁻ myeloma subpopulation compared with that in CD138⁺ cells. Inhibition of SDF-1 using AMD3100 or knocking-down CXCR4 in M-BMSCs blocked CD138⁻ myeloma cells-induced increase in M-BMSC stiffness, suggesting a crucial role of SDF-1/CXCR4. AKT inhibition attenuated SDF-1-induced increases in M-BMSC stiffness. These findings demonstrate, for the first time, CD138⁻ myeloma cell-directed cross-talk with BMSCs and reveal that CD138⁻ myeloma cells regulate M-BMSC stiffness through SDF-1/CXCR4/AKT signaling.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Xinyi Guo
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Jing Su
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Ruoying Chen
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Dmitriy Berenzon
- Hematology & Oncology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Weiling Zhao
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|