1
|
Frusciante L, Geminiani M, Shabab B, Olmastroni T, Scavello G, Rossi M, Mastroeni P, Nyong'a CN, Salvini L, Lamponi S, Parisi ML, Sinicropi A, Costa L, Spiga O, Trezza A, Santucci A. Exploring the Antioxidant and Anti-Inflammatory Potential of Saffron ( Crocus sativus) Tepals Extract within the Circular Bioeconomy. Antioxidants (Basel) 2024; 13:1082. [PMID: 39334741 PMCID: PMC11428576 DOI: 10.3390/antiox13091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Repurposing saffron (Crocus sativus) waste presents a sustainable strategy for generating high-value products within the bioeconomy framework. Typically, flower components are discarded after stigma harvest, resulting in significant waste-350 kg of tepals per kilogram of stigmas. This research employed a comprehensive approach, integrating bioactivity studies (in vitro and in silico) with Life Cycle Assessment (LCA) evaluations, to extract and assess bioactive compounds from C. sativus tepals sourced in Tuscany, Italy. Phytochemical characterization using UPLC-MS/MS revealed a high abundance and variety of flavonoids in the hydro-ethanolic extract (CST). The antioxidant capacity was validated through various assays, and the ability to mitigate H2O2-induced oxidative stress and enhance fermentation was demonstrated in Saccharomyces cerevisiae. This study reports that C. sativus tepals extract reduces oxidative stress and boosts ethanol fermentation in yeast, paving the way for applications in the food and biofuels sectors. Further validation in RAW 264.7 macrophages confirmed CST's significant anti-inflammatory effects, indicating its potential for pharmaceutical, cosmeceutical, and nutraceutical applications. In silico studies identified potential targets involved in antioxidant and anti-inflammatory processes, shedding light on possible interaction mechanisms with Kaempferol 3-O-sophoroside (KOS-3), the predominant compound in the extract. The integration of LCA studies highlighted the environmental benefits of this approach. Overall, this research underscores the value of using waste-derived extracts through "green" methodologies, offering a model that may provide significant advantages for further evaluations compared to traditional methodologies and supporting the circular bioeconomy.
Collapse
Affiliation(s)
- Luisa Frusciante
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Behnaz Shabab
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Tommaso Olmastroni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Giorgia Scavello
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Martina Rossi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Pierfrancesco Mastroeni
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Collins Nyaberi Nyong'a
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Strada del Petriccio e Belriguardo, 53100 Siena, Italy
| | - Stefania Lamponi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Maria Laura Parisi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- LifeCARES, Via Emilio Vezzosi 15, 52100 Arezzo, Italy
| | - Adalgisa Sinicropi
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- LifeCARES, Via Emilio Vezzosi 15, 52100 Arezzo, Italy
| | - Lorenzo Costa
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Ottavia Spiga
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| | - Alfonso Trezza
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, Italy
| |
Collapse
|
2
|
Mazibuko M, Ghazi T, Chuturgoon A. Patulin alters alpha-adrenergic receptor signalling and induces epigenetic modifications in the kidneys of C57BL/6 mice. Arch Toxicol 2024; 98:2143-2152. [PMID: 38806716 PMCID: PMC11168996 DOI: 10.1007/s00204-024-03728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/07/2024] [Indexed: 05/30/2024]
Abstract
Patulin (PAT) is a food-borne mycotoxin produced by Penicillium and Byssochlamys species. It is widely known for its mutagenic, carcinogenic, and genotoxic effects and has been associated with kidney injury; however, the mechanism of toxicity remains unclear. To address this gap, we conducted a study to explore the changes in α-adrenergic receptor signalling pathways and epigenetic modifications induced by PAT in the kidneys of C57BL/6 mice during acute (1 day) and prolonged (10 days) exposure. The mice (20-22 g) were orally administered PAT (2.5 mg/kg; at 1 and 10 days), and post-treatment, the kidneys were harvested, homogenised and extracted for RNA, DNA, and protein. The relative gene expression of the α-adrenergic receptors (ADRA1, ADRA2A, ADRA2B) and associated signalling pathways (MAPK, MAPK14, ERK, PI3K, and AKT) was assessed by qPCR. The protein expression of ERK1/2 and MAPK was determined by western blot. The impact of PAT on DNA methylation was evaluated by quantifying global DNA methylation; qPCR was used to determine gene expression levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) and demethylase (MBD2). PAT downregulated the expression of ADRA1, ADRA2A, ADRA2B, PI3K, and AKT and upregulated ERK1/2 and MAPK protein expression. Furthermore, PAT induced alterations in DNA methylation patterns by upregulating DNMT1 and MBD2 expressions and downregulating DNMT3A and DNMT3B expressions, resulting in global DNA hypomethylation. In conclusion, PAT disrupts α-1 and α-2 adrenergic receptor signalling pathways and induces epigenetic modifications, that can lead to kidney injury.
Collapse
Affiliation(s)
- Makabongwe Mazibuko
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
3
|
Hong H, Ji M, Lai D. Chronic Stress Effects on Tumor: Pathway and Mechanism. Front Oncol 2022; 11:738252. [PMID: 34988010 PMCID: PMC8720973 DOI: 10.3389/fonc.2021.738252] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic stress is an emotional experience that occurs when people encounter something they cannot adapt to. Repeated chronic stress increases the risk of a variety of diseases, such as cardiovascular disease, depression, endocrine disease, inflammation and cancer. A growing body of research has shown that there is a link between chronic stress and tumor occurrence in both animal studies and clinical studies. Chronic stress activates the neuroendocrine system (hypothalamic-pituitary-adrenal axis) and sympathetic nervous system. Stress hormones promote the occurrence and development of tumors through various mechanisms. In addition, chronic stress also affects the immune function of the body, leading to the decline of immune monitoring ability and promote the occurrence of tumors. The mechanisms of chronic stress leading to tumor include inflammation, autophagy and epigenetics. These factors increase the proliferation and invasion capacity of tumor cells and alter the tumor microenvironment. Antagonists targeting adrenergic receptors have played a beneficial role in improving antitumor activity, as well as chemotherapy resistance and radiation resistance. Here, we review how these mechanisms contribute to tumor initiation and progression, and discuss whether these molecular mechanisms might be an ideal target to treat tumor.
Collapse
Affiliation(s)
- Hanqing Hong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Min Ji
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Speciality, Shanghai, China
| |
Collapse
|
4
|
Castillo RL, Ibacache M, Cortínez I, Carrasco-Pozo C, Farías JG, Carrasco RA, Vargas-Errázuriz P, Ramos D, Benavente R, Torres DH, Méndez A. Dexmedetomidine Improves Cardiovascular and Ventilatory Outcomes in Critically Ill Patients: Basic and Clinical Approaches. Front Pharmacol 2020; 10:1641. [PMID: 32184718 PMCID: PMC7058802 DOI: 10.3389/fphar.2019.01641] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2-adrenergic agonist with sedative and analgesic properties, with minimal respiratory effects. It is used as a sedative in the intensive care unit and the operating room. The opioid-sparing effect and the absence of respiratory effects make dexmedetomidine an attractive adjuvant drug for anesthesia in obese patients who are at an increased risk for postoperative respiratory complications. The pharmacodynamic effects on the cardiovascular system are known; however the mechanisms that induce cardioprotection are still under study. Regarding the pharmacokinetics properties, this drug is extensively metabolized in the liver by the uridine diphosphate glucuronosyltransferases. It has a relatively high hepatic extraction ratio, and therefore, its metabolism is dependent on liver blood flow. This review shows, from a basic clinical approach, the evidence supporting the use of dexmedetomidine in different settings, from its use in animal models of ischemia-reperfusion, and cardioprotective signaling pathways. In addition, pharmacokinetics and pharmacodynamics studies in obese subjects and the management of patients subjected to mechanical ventilation are described. Moreover, the clinical efficacy of delirium incidence in patients with indication of non-invasive ventilation is shown. Finally, the available evidence from DEX is described by a group of Chilean pharmacologists and clinicians who have worked for more than 10 years on DEX.
Collapse
Affiliation(s)
- Rodrigo L Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile
| | - Mauricio Ibacache
- Programa de Farmacología y Toxicología & División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Cortínez
- Programa de Farmacología y Toxicología & División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jorge G Farías
- Departmento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Francisco Salazar, Chile
| | - Rodrigo A Carrasco
- Departamento de Cardiología, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Patricio Vargas-Errázuriz
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago, Chile.,Unidad de Paciente Crítico Adulto, Clínica Universidad de Los Andes, Santiago, Chile.,Unidad de Paciente Crítico, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Daniel Ramos
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rafael Benavente
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Henríquez Torres
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal Méndez
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Karkoulias G, McCrink KA, Maning J, Pollard CM, Desimine VL, Patsouras N, Psallidopoulos M, Taraviras S, Lymperopoulos A, Flordellis C. Sustained GRK2-dependent CREB activation is essential for α 2-adrenergic receptor-induced PC12 neuronal differentiation. Cell Signal 2020; 66:109446. [PMID: 31678682 DOI: 10.1016/j.cellsig.2019.109446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022]
Abstract
Many aspects of neuronal development, such as neuronal survival and differentiation, are regulated by the transcription factor cAMP-response element-binding protein (CREB). We have previously reported that α2-adrenergic receptors (ARs), members of the G protein-coupled receptor (GPCR) superfamily, induce neuronal differentiation of rat pheochromocytoma (PC)-12 cells in a subtype-specific manner, i.e. α2A<α2B<α2C. Herein, we sought to investigate CREB`s involvement in this α2AR-dependent neurogenic process. We used a combination of gene reporter assays and immunoblotting analysis, coupled with co-immunoprecipitation and morphological analysis, in transfected PC12 cell lines. Chronic α2B- or α2C-AR activation results in sustained CREB activation, which is both necessary and sufficient for neuronal differentiation of PC12 cells expressing these two α2ARs. In contrast, chronic α2A activation only leads to transient CREB activation, insufficient for PC12 neuronal differentiation. However, upon CREB overexpression, α2A-AR triggers neuronal differentiation similarly to α2B- or α2C-ARs. Importantly, NGF (Nerve Growth Factor)`s TrkA receptor transactivation is essential for the sustained activation of CREB by all three α2 subtypes in PC12 cells, whereas protein kinase A (PKA), the prototypic kinase that phosphorylates CREB, is not. Instead, TrkA-activated GPCR-kinase (GRK)-2 mediates the sustained CREB activation during α2AR-induced neuronal differentiation of PC12 cells. In conclusion, catecholaminergic-induced neuronal differentiation of PC12 cells through α2ARs uses a non-canonical pathway involving TrkA transactivation and subsequent GRK2-dependent, sustained phosphorylation/activation of CREB. These findings provide novel insights into catecholaminergic neurogenesis and suggest that α2AR agonists, combined with NGF analogs or GRK2 stimulators, may exert neurogenic/neuroprotective effects.
Collapse
Affiliation(s)
- George Karkoulias
- Department of Pharmacology School of Medicine, University of Patras, Patras, Greece
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Nicholas Patsouras
- Department of Pharmacology School of Medicine, University of Patras, Patras, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| | | |
Collapse
|
6
|
Yin L, Chen X, Ji H, Gao S. Dexmedetomidine protects against sepsis‑associated encephalopathy through Hsp90/AKT signaling. Mol Med Rep 2019; 20:4731-4740. [PMID: 31702043 DOI: 10.3892/mmr.2019.10718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑associated encephalopathy (SAE) is characterized by neuronal apoptosis and changes in mental status. Accumulating evidence has. indicated that dexmedetomidine is capable of protecting the brain against external stimuli and improving cognitive dysfunctions. The aim of the present study was to investigate the possible neuroprotective effects of dexmedetomidine on SAE and the role of heat‑shock protein (Hsp)90/AKT signaling in an experimental model of sepsis. The SAE model was established by cecal ligation and perforation (CLP) in vivo and lipopolysaccharide (LPS) treated hippocampal neuronal cultures in vitro. It was found that dexmedetomidine inhibited caspase‑3, but increased the expression level ofBcl‑2 in CLP rats. CLP rats also exhibited a decreased level of phosphorylated AKT Thr 308 and Hsp90, and their expression could be reversed by treatment with dexmedetomidine. Additionally, application of dexmedetomidine increased cell survival and decreased neuronal apoptosis in vitro. Furthermore, the neuroprotective effects of dexmedetomidine could be reversed by 17‑AAG (a Hsp90 inhibitor), or wortmannin (a PI3K inhibitor). Analysis of TUNEL staining indicated that dexmedetomidine improved LPS‑induced neuronal apoptosis, which could be eradicated by AKT short hairpin RNA transfection, prazosin or yohimbine. Finally, dexmedetomidine ameliorated both the emotional and spatial cognitive disorders without alteration in locomotor activity. The present findings suggested that dexmedetomidine may protect the brain against SAE, and that the Hsp90/AKT pathway may be involved in this process.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, P.R. China
| | - Xuejun Chen
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, P.R. China
| | - Hongbo Ji
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, P.R. China
| | - Shunli Gao
- Department of Anesthesiology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin 301800, P.R. China
| |
Collapse
|
7
|
Di Liberto V, Mudò G, Belluardo N. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCR) in the brain: Focus on heteroreceptor complexes and related functional neurotrophic effects. Neuropharmacology 2018; 152:67-77. [PMID: 30445101 DOI: 10.1016/j.neuropharm.2018.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/11/2023]
Abstract
Neuronal events are regulated by the integration of several complex signaling networks in which G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are considered key players of an intense bidirectional cross-communication in the cell, generating signaling mechanisms that, at the same time, connect and diversify the traditional signal transduction pathways activated by the single receptor. For this receptor-receptor crosstalk, the two classes of receptors form heteroreceptor complexes resulting in RTKs transactivation and in growth-promoting signals. In this review, we describe heteroreceptor complexes between GPCR and RTKs in the central nervous system (CNS) and their functional effects in controlling a variety of neuronal effects, ranging from development, proliferation, differentiation and migration, to survival, repair, synaptic transmission and plasticity. In this interaction, RTKs can also recruit components of the G protein signaling cascade, creating a bidirectional intricate interplay that provides complex control over multiple cellular events. These heteroreceptor complexes, by the integration of different signals, have recently attracted a growing interest as novel molecular target for depressive disorders. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
8
|
Harun-Or-Rashid M, Hallböök F. Alpha 2-Adrenergic Receptor Agonist Brimonidine Stimulates ERK1/2 and AKT Signaling via Transactivation of EGF Receptors in the Human MIO-M1 Müller Cell Line. Curr Eye Res 2018; 44:34-45. [DOI: 10.1080/02713683.2018.1516783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Harun-Or-Rashid
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Castillo LF, Rivero EM, Goffin V, Lüthy IA. Alpha 2 -adrenoceptor agonists trigger prolactin signaling in breast cancer cells. Cell Signal 2017; 34:76-85. [DOI: 10.1016/j.cellsig.2017.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
|
11
|
Harun-Or-Rashid M, Konjusha D, Galindo-Romero C, Hallböök F. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors. PLoS One 2016; 11:e0167778. [PMID: 27930693 PMCID: PMC5145189 DOI: 10.1371/journal.pone.0167778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023] Open
Abstract
Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins among several other functions, serve as an injury-signal that regulate the gliotic response of Müller cells.
Collapse
Affiliation(s)
| | - Dardan Konjusha
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
12
|
Mastrogianni O, Crassous PA, Karkoulias G, Lykouras D, Schaak S, Patsouras N, Panayiotakopoulos G, Sivolapenko G, Paris H, Manolis AS, Flordellis C. The polymorphic deleted-form of the human α 2B-adrenergic receptor and its wild-type counterpart display post-receptor signaling pathway differences in LLC-PK1 cells. Hellenic J Cardiol 2016; 57:S1109-9666(16)30156-7. [PMID: 27729182 DOI: 10.1016/j.hjc.2016.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Affiliation(s)
- Orthodoxia Mastrogianni
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | | | - Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | - Dimosthenis Lykouras
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | - Stéphane Schaak
- INSERM Unit 388, Institut Louis Bugnard, IFR31, CHU Rangueil, 31400 Toulouse, France
| | - Nicholas Patsouras
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Rio Patras, Greece
| | | | - Gregory Sivolapenko
- Laboratory of Pharmacokinetics, Department of Pharmacy, University of Patras, Patras, Greece
| | - Hervé Paris
- INSERM Unit 388, Institut Louis Bugnard, IFR31, CHU Rangueil, 31400 Toulouse, France
| | - Antonis S Manolis
- Third Department of Cardiology, Athens University School of Medicine, Athens, Greece.
| | | |
Collapse
|
13
|
Lymperopoulos A, Brill A, McCrink KA. GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens. Int J Biochem Cell Biol 2016; 77:213-219. [PMID: 26851510 DOI: 10.1016/j.biocel.2016.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The circulating catecholamines (CAs) epinephrine (Epi) and norepinephrine (NE) derive from two major sources in the whole organism: the sympathetic nerve endings, which release NE on effector organs, and the chromaffin cells of the adrenal medulla, which are cells that synthesize, store and release Epi (mainly) and NE. All of the Epi in the body and a significant amount of circulating NE derive from the adrenal medulla. The secretion of CAs from adrenal chromaffin cells is regulated in a complex way by a variety of membrane receptors, the vast majority of which are G protein-coupled receptors (GPCRs), including adrenergic receptors (ARs), which act as "presynaptic autoreceptors" in this regard. There is a plethora of CA-secretagogue signals acting on these receptors but some of them, most notably the α2ARs, inhibit CA secretion. Over the past few years, however, a few new proteins present in chromaffin cells have been uncovered to participate in CA secretion regulation. Most prominent among these are GRK2 and β-arrestin1, which are known to interact with GPCRs regulating receptor signaling and function. The present review will discuss the molecular and signaling mechanisms by which adrenal chromaffin cell-residing GPCRs and their regulatory proteins modulate CA synthesis and secretion. Particular emphasis will be given to the newly discovered roles of GRK2 and β-arrestins in these processes and particular points of focus for future research will be highlighted, as well.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA.
| | - Ava Brill
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
14
|
Deutsch D, Deen S, Entschladen F, Coveney C, Rees R, Zänker KS, Powe DG. Alpha1B adrenoceptor expression is a marker of reduced survival and increased tumor recurrence in patients with endometrioid ovarian cancer. World J Obstet Gynecol 2016; 5:118-126. [DOI: 10.5317/wjog.v5.i1.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/27/2015] [Accepted: 11/11/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the expression patterns of different adrenoceptor isoforms in ovarian cancer and their association with survival and tumor recurrence.
METHODS: The protein expression levels of α1B, α2C and β2 adrenoceptor were assessed in unselected ovarian cancer using immunohistochemistry on microarrayed archival tissue samples. A database containing clinical and pathology parameters and follow-up was used to investigate the association between adrenoceptor isoform expression with ovarian specific survival and tumor recurrence, using univariate and multivariate statistical analysis.
RESULTS: Expression of α1B showed an association with reduced ovarian specific survival (P = 0.05; CI: 1.00-1.49) and increased tumor recurrence (P = 0.021, CI: 1.04-1.69) in the whole patient group. On sub-analysis the expression of α1B in endometrioid cancers (χ2 = 5.867, P = 0.015) was found to predict reduced ovarian specific survival and increased tumor recurrence independently of tumor grade, clinical stage and chemotherapy. An association with clinical outcome was not seen for α2C or β2 AR.
CONCLUSION: Alpha1B adrenoceptor protein was found to predict increased risk of tumor recurrence and reduced mortality in patients with endometrioid type ovarian cancer and should be investigated as a biomarker for identifying patients at increased risk of disease progression. Furthermore, α adrenergic receptor antagonists with α1B selectivity should be investigated as a possible adjuvant therapy for treating patients with endometrioid cancer. Proof of principle could be tested in a retrospective population study.
Collapse
|
15
|
Dexmedetomidine protects the heart against ischemia-reperfusion injury by an endothelial eNOS/NO dependent mechanism. Pharmacol Res 2015; 103:318-27. [PMID: 26607864 DOI: 10.1016/j.phrs.2015.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/27/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
The alpha2-adrenergic receptor agonist Dexmedetomidine (Dex) is a sedative medication used by anesthesiologists. Dex protects the heart against ischemia-reperfusion (IR) and can also act as a preconditioning mimetic. The mechanisms involved in Dex-dependent cardiac preconditioning, and whether this action occurs directly or indirectly on cardiomyocytes, still remain unclear. The endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway and endothelial cells are known to play key roles in cardioprotection against IR injury. Therefore, the aims of this work were to evaluate whether the eNOS/NO pathway mediates the pharmacological cardiac effect of Dex, and whether endothelial cells are required in this cardioprotective action. Isolated adult rat hearts were treated with Dex (10nM) for 25min and the dimerization of eNOS and production of NO were measured. Hearts were then subjected to global IR (30/120min) and the role of the eNOS/NO pathway was evaluated. Dex promoted the activation of eNOS and production of NO. Dex reduced the infarct size and improved the left ventricle function recovery, but this effect was reversed when Dex was co-administered with inhibitors of the eNOS/NO/PKG pathway. In addition, Dex was unable to reduce cell death in isolated adult rat cardiomyocytes subjected to simulated IR. Cardiomyocyte death was attenuated by co-culturing them with endothelial cells pre-treated with Dex. In summary, our results show that Dex triggers cardiac protection by activating the eNOS/NO signaling pathway. This pharmacological effect of Dex requires its interaction with the endothelium.
Collapse
|
16
|
Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PLoS One 2014; 9:e101315. [PMID: 24983750 PMCID: PMC4077766 DOI: 10.1371/journal.pone.0101315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023] Open
Abstract
There are conflicting reports on the link between the micronutrient selenium and the prevalence of diabetes. To investigate the possibility that selenium acts as a "double-edged sword" in diabetes, cDNA microarray profiling and two-dimensional differential gel electrophoresis coupled with mass spectrometry were used to determine changes in mRNA and protein expression in pancreatic and liver tissues of diabetic db/db mice in response to dietary selenate supplementation. Fasting blood glucose levels increased continuously in db/db mice administered placebo (DMCtrl), but decreased gradually in selenate-supplemented db/db mice (DMSe) and approached normal levels after termination of the experiment. Pancreatic islet size was increased in DMSe mice compared with DMCtrl mice, resulting in a clear increase in insulin production and a doubling of plasma insulin concentration. Genes that encode proteins involved in key pancreatic β-cell functions, including regulation of β-cell proliferation and differentiation and insulin synthesis, were found to be specifically upregulated in DMSe mice. In contrast, apoptosis-associated genes were downregulated, indicating that islet function was protected by selenate treatment. Conversely, liver fat accumulation increased in DMSe mice together with significant upregulation of lipogenic and inflammatory genes. Genes related to detoxification were downregulated and antioxidant enzymatic activity was reduced, indicating an unexpected reduction in antioxidant defense capacity and exacerbation of fatty liver degeneration. Moreover, proteomic analysis of the liver showed differential expression of proteins involved in glucolipid metabolism and the endoplasmic reticulum assembly pathway. Taken together, these results suggest that dietary selenate supplementation in db/db mice decreased hyperglycemia by increasing insulin production and secretion; however, long-term hyperinsulinemia eventually led to reduced antioxidant defense capacity, which exacerbated fatty liver degeneration.
Collapse
|
17
|
Radojević K, Rakin A, Pilipović I, Kosec D, Djikić J, Bufan B, Vujnović I, Leposavić G. Effects of catecholamines on thymocyte apoptosis and proliferation depend on thymocyte microenvironment. J Neuroimmunol 2014; 272:16-28. [PMID: 24837703 DOI: 10.1016/j.jneuroim.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/24/2023]
Abstract
The present study, through quantification of tyrosine hydroxylase (TH) expression and catecholamine (CA) content in the presence and in the absence of α-methyl-p-tyrosine (AMPT), a TH inhibitor, in adult thymic organ (ATOC) and thymocyte culture, demonstrated that thymic cells produce CAs. In addition, in ATOC an increase in β2-adrenoceptor (AR) mRNA expression and β2-AR thymocyte surface density was registered. Furthermore, AMPT (10(-4)M), as propranolol (10(-4)M), augmented thymocyte apoptosis and diminished thymocyte proliferation in ATOC. Propranolol exerted these effects acting on CD3(high) thymocytes. However, in thymocyte cultures, propranolol (10(-6)M) acting on the same thymocyte subset exerted the opposing effect on thymocyte apoptosis and ConA-stimulated proliferation. This suggested that, depending on thymocyte microenvironment, differential effects can be induced through the same type of AR. Additionally, arterenol (10(-8) to 10(-6)M), similar to propranolol, diminished apoptosis, but increased ConA-stimulated thymocyte proliferation in thymocyte culture. However, differently from propranolol, arterenol affected manly CD3- thymocyte subset, which harbors majority of α1-AR+thymocytes. Additionally, arterenol showed a dose-dependent decrease in efficiency of thymocyte apoptosis and proliferation modulation with the rise in its concentration. Considering greater affinity of arterenol for α1-ARs than for β2-ARs, the previous findings could be attributable to increased engagement of β2-ARs with the rise of arterenol concentration. Consistently, in the presence of propranolol (10(-6)M), a β-AR blocker, the arterenol (10(-8)M) effects on thymocytes were augmented. In conclusion, thymic endogenous CAs, acting through distinct AR types and, possible, the same AR type (but in different cell microenvironment) may exert the opposing effects on thymocyte apoptosis/proliferation.
Collapse
Affiliation(s)
- Katarina Radojević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ana Rakin
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
18
|
Tang H, Wei P, Duell EJ, Risch HA, Olson SH, Bueno-de-Mesquita HB, Gallinger S, Holly EA, Petersen G, Bracci PM, McWilliams RR, Jenab M, Riboli E, Tjønneland A, Boutron-Ruault MC, Kaaks R, Trichopoulos D, Panico S, Sund M, Peeters PHM, Khaw KT, Amos CI, Li D. Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene- and pathway-based interaction analysis of GWAS data. Carcinogenesis 2014; 35:1039-45. [PMID: 24419231 DOI: 10.1093/carcin/bgu010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is the best established modifiable risk factor for pancreatic cancer. Genetic factors that underlie smoking-related pancreatic cancer have previously not been examined at the genome-wide level. Taking advantage of the existing Genome-wide association study (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study in 2028 cases and 2109 controls to examine gene-smoking interactions at pathway/gene/single nucleotide polymorphism (SNP) level. Using the likelihood ratio test nested in logistic regression models and ingenuity pathway analysis (IPA), we examined 172 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 3 manually curated gene sets, 3 nicotine dependency gene ontology pathways, 17 912 genes and 468 114 SNPs. None of the individual pathway/gene/SNP showed significant interaction with smoking after adjusting for multiple comparisons. Six KEGG pathways showed nominal interactions (P < 0.05) with smoking, and the top two are the pancreatic secretion and salivary secretion pathways (major contributing genes: RAB8A, PLCB and CTRB1). Nine genes, i.e. ZBED2, EXO1, PSG2, SLC36A1, CLSTN1, MTHFSD, FAT2, IL10RB and ATXN2 had P interaction < 0.0005. Five intergenic region SNPs and two SNPs of the EVC and KCNIP4 genes had P interaction < 0.00003. In IPA analysis of genes with nominal interactions with smoking, axonal guidance signaling $$\left(P=2.12\times 1{0}^{-7}\right)$$ and α-adrenergic signaling $$\left(P=2.52\times 1{0}^{-5}\right)$$ genes were significantly overrepresented canonical pathways. Genes contributing to the axon guidance signaling pathway included the SLIT/ROBO signaling genes that were frequently altered in pancreatic cancer. These observations need to be confirmed in additional data set. Once confirmed, it will open a new avenue to unveiling the etiology of smoking-associated pancreatic cancer.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation. Exp Cell Res 2013; 319:2718-27. [DOI: 10.1016/j.yexcr.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/15/2022]
|
20
|
Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases. Br J Pharmacol 2012; 166:1225-43. [PMID: 22364165 DOI: 10.1111/j.1476-5381.2012.01917.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs)] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging crosstalk between these three systems. Although α- and β-adrenoceptor activation increases MMP but decreases TIMP expression, MMPs are implicated in the growth stimulatory effects of adrenoceptor activation through transactivation of epidermal growth factor receptor. Furthermore, they have recently been found to catalyse the proteolysis of β-adrenoceptors and modulate vascular tone. While the mechanisms underpinning these effects are not well defined, reversible protein phosphorylation by kinases and phosphatases may be key. In particular, PPP (Ser/Thr phosphatases) are not only critical in resensitization and internalization of adrenoceptors but also modulate MMP expression. The interrelationship is complex as isoprenaline (ISO) inhibits okadaic acid [phosphoprotein phosphatase type 1/phosphoprotein phosphatase type 2A (PP2A) inhibitor]-mediated MMP expression. While this may be simply due to its ability to transiently increase PP2A activity, there is evidence for MMP-9 that ISO prevents okadaic acid-mediated expression of MMP-9 through a β-arrestin, NF-κB-dependent pathway, which is abolished by knock-down of PP2A. It is essential that crosstalk between MMPs, adrenoceptors and PPP are investigated further as it will provide important insight into how adrenoceptors modulate cardiovascular remodelling, and may identify new targets for pharmacological manipulation of the MMP system.
Collapse
Affiliation(s)
- A Rietz
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
21
|
Qu WS, Tian DS, Guo ZB, Fang J, Zhang Q, Yu ZY, Xie MJ, Zhang HQ, Lü JG, Wang W. Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation 2012; 9:178. [PMID: 22824323 PMCID: PMC3418570 DOI: 10.1186/1742-2094-9-178] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/02/2012] [Indexed: 02/08/2023] Open
Abstract
Background Emerging evidence indicates that reactive microglia-initiated inflammatory responses are responsible for secondary damage after primary traumatic spinal cord injury (SCI); epidermal growth factor receptor (EGFR) signaling may be involved in cell activation. In this report, we investigate the influence of EGFR signaling inhibition on microglia activation, proinflammatory cytokine production, and the neuronal microenvironment after SCI. Methods Lipopolysaccharide-treated primary microglia/BV2 line cells and SCI rats were used as model systems. Both C225 and AG1478 were used to inhibit EGFR signaling activation. Cell activation and EGFR phosphorylation were observed after fluorescent staining and western blot. Production of interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNFα) was tested by reverse transcription PCR and ELISA. Western blot was performed to semi-quantify the expression of EGFR/phospho-EGFR, and phosphorylation of Erk, JNK and p38 mitogen-activated protein kinases (MAPK). Wet-dry weight was compared to show tissue edema. Finally, axonal tracing and functional scoring were performed to show recovery of rats. Results EGFR phosphorylation was found to parallel microglia activation, while EGFR blockade inhibited activation-associated cell morphological changes and production of IL-1β and TNFα. EGFR blockade significantly downregulated the elevated MAPK activation after cell activation; selective MAPK inhibitors depressed production of cytokines to a certain degree, suggesting that MAPK mediates the depression of microglia activation brought about by EGFR inhibitors. Subsequently, seven-day continual infusion of C225 or AG1478 in rats: reduced the expression of phospho-EGFR, phosphorylation of Erk and p38 MAPK, and production of IL-1β and TNFα; lessened neuroinflammation-associated secondary damage, like microglia/astrocyte activation, tissue edema and glial scar/cavity formation; and enhanced axonal outgrowth and functional recovery. Conclusions These findings indicate that inhibition of EGFR/MAPK suppresses microglia activation and associated cytokine production; reduces neuroinflammation-associated secondary damage, thus provides neuroprotection to SCI rats, suggesting that EGFR may be a therapeutic target, and C225 and AG1478 have potential for use in SCI treatment.
Collapse
Affiliation(s)
- Wen-Sheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ibacache M, Sanchez G, Pedrozo Z, Galvez F, Humeres C, Echevarria G, Duaso J, Hassi M, Garcia L, Díaz-Araya G, Lavandero S. Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim Biophys Acta Mol Basis Dis 2011; 1822:537-45. [PMID: 22230708 DOI: 10.1016/j.bbadis.2011.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/15/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
Abstract
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.
Collapse
Affiliation(s)
- Mauricio Ibacache
- Division de Anestesiologia, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li Y, Zhang H, Liao W, Song Y, Ma X, Chen C, Lu Z, Li Z, Zhang Y. Transactivated EGFR mediates α1-AR-induced STAT3 activation and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2011; 301:H1941-51. [DOI: 10.1152/ajpheart.00338.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Li Y, Zhang H, Liao W, Song Y, Ma X, Chen C, Lu Z, Li Z, Zhang Y. α1-Adrenergic receptor (α1-AR) is a crucial mediator of cardiac hypertrophy. Although numerous intracellular pathways have been implicated in α1-AR-induced hypertrophy, its precise mechanism remains elusive. We aimed to determine whether α1-AR induces cardiac hypertrophy through a novel signaling pathway-α1-AR/epidermal growth factor receptor (EGFR)/signal transducer and activator of transcription 3 (STAT3). The activation of STAT3 by α1-AR was first demonstrated by tyrosine phosphorylation, nuclear translocation, DNA binding, and transcriptional activity in neonatal Sprague-Dawley rat cardiomyocytes. Activated STAT3 showed an essential role in α1-AR-induced cardiomyocyte hypertrophic growth, as assessed by treatment with STAT3 inhibitory peptide and lentivirus-STAT3 small interfering RNA. The results were further confirmed by in vivo experiments involving intraperitoneal injection of the STAT3 inhibitor WP1066 significantly inhibiting phenylephrine-infusion-induced heart hypertrophy in male C57BL/6 mice. Furthermore, the α1-AR-activated STAT3 was associated with transactivation of EGFR because inhibition of EGFR with the selective inhibitor AG1478 prevented α1-AR-induced STAT3 tyrosine phosphorylation and its transcriptional activity, as well as cardiac hypertrophy. In summary, these results suggest that α1-AR induces the activation of STAT3, mainly through transactivation of EGFR, which plays an important role in α1-AR-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Yan Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Hui Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Wenqiang Liao
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Xiaowei Ma
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Chao Chen
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Zhizhen Lu
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptide, Ministry of Health, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
24
|
Yang Q, Wang EY, Huang XJ, Qu WS, Zhang L, Xu JZ, Wang W, Tian DS. Blocking epidermal growth factor receptor attenuates reactive astrogliosis through inhibiting cell cycle progression and protects against ischemic brain injury in rats. J Neurochem 2011; 119:644-53. [DOI: 10.1111/j.1471-4159.2011.07446.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Yanagawa Y, Matsumoto M, Togashi H. Enhanced dendritic cell antigen uptake via alpha2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. THE JOURNAL OF IMMUNOLOGY 2010; 185:5762-8. [PMID: 20935206 DOI: 10.4049/jimmunol.1001899] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although noradrenaline (NA), a stress-associated neurotransmitter, seems to affect the immune system, the precise mechanisms underlying NA-mediated immunoregulation are not fully understood. We examined the effect of NA on Ag uptake (endocytosis) by dendritic cells (DCs) using murine bone marrow-derived DCs and fluorescence-labeled endocytic tracers (dextran and OVA). Ag uptake by DCs notably increased following a very brief treatment (3 min) with NA. NA-induced endocytosis was completely blocked by treatment with α(2)-adrenoceptor antagonist yohimbine. Neither α(1)-adrenoceptor antagonist prazosin nor β-adrenoceptor antagonist propranolol affected NA-induced endocytosis by DCs. A selective α(2)-adrenoceptor agonist, azepexole (B-HT 933), also significantly increased endocytosis by DCs. Thus, the α(2)-adrenoceptor seems to be responsible for NA-induced DC endocytosis. In parallel, NA markedly activated intracellular signaling pathways of PI3K and ERK1/2 in DCs. NA-mediated activation of these pathways was completely inhibited by yohimbine treatment. Blocking PI3K activation significantly reduced NA-induced endocytosis by DCs. Based on these results, NA rapidly enhances Ag capture by DCs via α(2) adrenoceptor-mediated PI3K activation, which may be associated with immune enhancement following acute stress.
Collapse
Affiliation(s)
- Yoshiki Yanagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.
| | | | | |
Collapse
|
26
|
Robertson SD, Matthies HJG, Owens WA, Sathananthan V, Christianson NSB, Kennedy JP, Lindsley CW, Daws LC, Galli A. Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J Neurosci 2010; 30:11305-16. [PMID: 20739551 PMCID: PMC3448453 DOI: 10.1523/jneurosci.0126-10.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 06/18/2010] [Accepted: 06/22/2010] [Indexed: 01/01/2023] Open
Abstract
Noradrenergic signaling in the CNS plays an essential role in circuits involving attention, mood, memory, and stress as well as providing pivotal support for autonomic function in the peripheral nervous system. The high-affinity norepinephrine (NE) transporter (NET) is the primary mechanism by which noradrenergic synaptic transmission is terminated. Data indicate that NET function is regulated by insulin, a hormone critical for the regulation of metabolism. Given the high comorbidity of metabolic disorders such as diabetes and obesity with mental disorders such as depression and schizophrenia, we sought to determine how insulin signaling regulates NET function and thus noradrenergic homeostasis. Here, we show that acute insulin treatment, through the downstream kinase protein kinase B (Akt), significantly decreases NET surface expression in mouse hippocampal slices and superior cervical ganglion neuron boutons (sites of synaptic NE release). In vivo manipulation of insulin/Akt signaling, with streptozotocin, a drug that induces a type 1-like diabetic state in mice, also results in aberrant NET function and NE homeostasis. Notably, we also demonstrate that Akt inhibition or stimulation, independent of insulin, is capable of altering NET surface availability. These data suggest that aberrant states of Akt signaling such as in diabetes and obesity have the potential to alter NET function and noradrenergic tone in the brain. Furthermore, they provide one potential molecular mechanism by which Akt, a candidate gene for mood disorders such as schizophrenia and depression, can impact brain monoamine homeostasis.
Collapse
Affiliation(s)
- Sabrina D. Robertson
- Departments of Molecular Physiology and Biophysics, and
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, and
| | - Heinrich J. G. Matthies
- Departments of Molecular Physiology and Biophysics, and
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, and
| | - W. Anthony Owens
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | | | | | | | | | - Lynette C. Daws
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Aurelio Galli
- Departments of Molecular Physiology and Biophysics, and
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, and
| |
Collapse
|
27
|
KG-135, enriched with selected ginsenosides, inhibits the proliferation of human prostate cancer cells in culture and inhibits xenograft growth in athymic mice. Cancer Lett 2009; 289:99-110. [PMID: 19765891 DOI: 10.1016/j.canlet.2009.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 07/13/2009] [Accepted: 08/03/2009] [Indexed: 01/24/2023]
Abstract
Sun ginseng (SG) was recently developed as a heat-processed form of ginseng. The Rg3, Rk1, and Rg5 ginsenosides are its main ginsenoside components. SG has been reported to have more potent pharmacological activities than red ginseng (RG), where these pharmacological activities include vasodilatory, anti-oxidant and anti-tumorigenic effects. In the present study, we investigated KG-135, the ginsenoside-rich fraction of SG and demonstrated that this fraction inhibits proliferation of human prostate cancer cells both in vitro and in vivo. KG-135 caused a significant growth inhibition of DU145 and PC-3 human prostate cancer cells. KG-135 induced cell cycle arrest in the G1 phase and caused an associated increase in the p21(Cip1) protein levels. When KG-135 was fed to mice that had been xenografted with DU145 tumors, a time-dependent inhibition of tumor growth was noted without any observed toxicity. Immunohistochemical analysis of the tumor tissues showed that KG-135 led to a decrease in the expression of proliferating cell nuclear antigen (PCNA). Microarray analysis of the tumors revealed that KG-135 inhibited tumor growth and also caused changes in the expression levels of multiple cancer-related genes. These data suggest that KG-135 effectively inhibits prostate cancer cell proliferation. Its mechanism of action likely involves cyclin inhibition and regulation of the expression of the TNFRSF25 and ADRA2A genes.
Collapse
|
28
|
Musch MW, Arvans DL, Paris H, Chang EB. Alpha2-adrenergic receptors attenuate secretagogue-induced endocytosis and promote exocytosis of intestinal NHE2 and NHE3. J Pharmacol Exp Ther 2009; 330:818-25. [PMID: 19556451 PMCID: PMC2729798 DOI: 10.1124/jpet.109.151910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 06/23/2009] [Indexed: 11/22/2022] Open
Abstract
Adrenergic agonists, through activation of intestinal epithelial alpha2-adrenergic receptors (alpha2AR), inhibit electrolyte secretion and promote absorption. The mechanisms of action to promote basal Na(+) absorption and inhibit stimulated secretion are not understood completely. The effects of alpha2-agonists on Na(+) transport were studied in a cell line, Caco2-3B, derived from the Caco2 cell line engineered to permanently express human alpha2A-adrenergic receptors. Serosal, but not mucosal, addition of the alpha2AR agonist N-(2,6-dichlorophenyl)-4,5-dihydro-1H-imidazol-2-amine (clonidine) increased Caco2-3B apical (22)Na(+) uptake, an effect not seen in the Caco2 parent line that lacks alpha2AR expression. This effect was blocked by the alpha2AR antagonist 17alpha-yohmban-16alpha-carboxylic acid methyl ester (yohimbine). Increased Na(+) uptake was paralleled by increased apical surface abundance of the sodium/hydrogen exchangers NHE2 and NHE3. No changes in total cell NHE2 and NHE3 expression were observed. Clonidine also inhibited both cAMP and Ca(2+)-induced decreases in apical Na(+) uptake and apical membrane NHE2 and NHE3 endocytosis stimulated by these agents. alpha2AR actions were mediated via stimulation of phospholipase C, and metabolism of arachidonic acid by an epoxygenase activity followed epidermal growth factor release and activation of the epidermal growth factor receptor, resulting in phosphatidylinositol-3-kinase and Akt stimulation. In summary, activation of intestinal epithelial alpha2AR significantly blocks the inhibition of apical Na(+) transporters by cAMP- and Ca(2+)-mediated pathways and also directly increases apical sodium/hydrogen exchange activities. By both blocking electrolyte secretion and promoting absorption, alpha2-agonists could be potent antidiarrheal agents that could directly counteract the actions of toxigenic pathogens and other secretagogues causing secretory diarrhea.
Collapse
Affiliation(s)
- Mark W Musch
- Martin Boyer Laboratories, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
29
|
Epinephrine-induced hyperpolarization of pancreatic islet cells is sensitive to PI3K-PDK1 signaling. FEBS Lett 2009; 583:3101-6. [DOI: 10.1016/j.febslet.2009.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/20/2009] [Accepted: 08/22/2009] [Indexed: 02/02/2023]
|
30
|
Bruzzone A, Piñero CP, Castillo LF, Sarappa MG, Rojas P, Lanari C, Lüthy IA. Alpha2-adrenoceptor action on cell proliferation and mammary tumour growth in mice. Br J Pharmacol 2008; 155:494-504. [PMID: 18604234 DOI: 10.1038/bjp.2008.278] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Breast cancer, the most common cancer in women in most countries, is a highly stressful disease. Catecholamines released during stress bind to adrenoceptors and we have recently described alpha(2)-adrenoceptors in human breast cell lines, linked to enhanced cell proliferation. The purpose was to assess the in vivo effects of compounds acting on alpha(2)-adrenoceptors in a reliable model of breast cancer. EXPERIMENTAL APPROACH The expression of alpha(2)-adrenoceptors was confirmed by immunocytochemistry, immunofluorescence and reverse transcription-PCR in the mouse mammary tumour cell line MC4-L5. Proliferation was assessed by [(3)H]thymidine incorporation and tumours were measured daily. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick-end labelling. KEY RESULTS Incubation for 2 days with alpha(2)-adrenoceptor agonists (clonidine and dexmedetomidine) significantly enhanced proliferation of the mouse mammary tumour cell line MC4-L5. These agonists also significantly stimulated tumour growth of the progestin-dependent tumour C4-HD even in the presence of medroxyprogesterone acetate (MPA). In every tumour tested (C4-HD, CC4-2-HD and CC4-3-HI), regardless of MPA sensitivity, clonidine significantly enhanced tumour growth in the absence of MPA. The alpha(2)-adrenoceptor antagonists, yohimbine and rauwolscine, completely reversed the effects of clonidine. However, the group receiving yohimbine alone showed a nonsignificant but constant increase in tumour growth, whereas rauwolscine alone diminished tumour growth significantly, behaving as a reverse agonist. In CC4-3-HI tumours, rauwolscine treatment enhanced apoptosis and diminished the mitotic index, whereas clonidine had the inverse effect. CONCLUSIONS AND IMPLICATIONS Alpha(2)-adrenoceptor agonists enhanced tumour growth and rauwolscine behaved in vivo as a reverse agonist, suggesting that it may be tested for adjuvant treatment.
Collapse
Affiliation(s)
- A Bruzzone
- Hormones and Cancer Laboratory, Instituto de Biología y Medicina Experimental CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
31
|
Karkoulias G, Mastrogianni O, Papathanasopoulos P, Paris H, Flordellis C. α2-Adrenergic receptors activate cyclic AMP-response element-binding protein through arachidonic acid metabolism and protein kinase A in a subtype-specific manner. J Neurochem 2007; 103:882-95. [PMID: 17680988 DOI: 10.1111/j.1471-4159.2007.04852.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
On incubation with epinephrine, PC12 cells stably expressing alpha2-adrenergic receptor (alpha2-AR) undergo morphological and biochemical changes characteristic of neuron-like differentiation. The present study shows that alpha2-AR stimulation increases the phosphorylation of the transcription factor cAMP-response element-binding protein (CREB), the activity of a CRE-reporter plasmid and the expression of cyclin D1 with subtype-dependent efficiency (alpha2A approximately alpha2C >> alpha2B). The effects of epinephrine were mimicked by cell exposure to forskolin or to exogenous arachidonic acid (AA) and they were abrogated by prior treatment with the inhibitor of phospholipase C (PLC) (U73122) or the inhibitor of cytochrome P450-dependent epoxygenase, ketoconazole. On the other hand, treatment of the cells with epinephrine caused activation of protein kinase A (PKA), which was fully abolished by ketoconazole. Inhibition of PKA activity with H89 or ketoconazole abolished the effects of epinephrine on CREB, suggesting that activation of the cAMP/PKA pathway by AA epoxy-derivatives is responsible for CREB activation by alpha2-ARs. The effects of epinephrine were unaffected by LY294002. Furthermore, treatment with staurosporine, tyrphostin AG1478, PP1 or PD98059 did not change the extent of CREB phosphorylation but enhanced its transcriptional activity. Altogether, our results demonstrate that, in PC12 cells, the alpha2-AR subtypes cause phosphorylation and activation of CREB through a pathway involving stimulation of PLC, AA release, generation of epoxygenase derivative and increase of PKA activity. They also suggest attenuation of CREB transcriptional activity by mitogen-activated protein kinase, protein kinase C and Src kinases.
Collapse
Affiliation(s)
- Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, Rio Patras, Greece
| | | | | | | | | |
Collapse
|
32
|
Tummalapalli P, Gondi CS, Dinh DH, Gujrati M, Rao JS. RNA interference-mediated targeting of urokinase plasminogen activator receptor and matrix metalloproteinase-9 gene expression in the IOMM-lee malignant meningioma cell line inhibits tumor growth, tumor cell invasion and angiogenesis. Int J Oncol 2007. [PMID: 17549400 DOI: 10.3892/ijo.31.1.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Meningiomas are the most commonly occurring tumors of the central nervous system including the brain and spinal cord. Malignant meningiomas are highly aggressive and frequently recur after surgical resection of the tumor. Our previous studies have reported that urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9) play important roles in tumor progression. In the present study, we have attempted to evaluate the roles of these molecules in the malignant meningioma tumor microenvironment and to determine the effectiveness of using single or bicistronic small interfering RNA constructs for uPAR and MMP-9 on tumor cell proliferation, migration, invasion, angiogenesis and regression of pre-established orthotopic tumors. Transfection of single or bicistronic constructs downregulated uPAR and MMP-9 in meningioma cells compared to controls. A significant reduction in tumor invasion was determined with matrigel gel and spheroid invasion assays in meningioma cells after transfection of these plasmids. Furthermore, downregulation of uPAR and MMP-9 reduced migration of tumor spheroids on vitronectin-coated plates. uPAR and MMP-9 downregulation suppressed capillary network formation, in both in vitro and in vivo models. Also, it is well known that tumor cells manipulate intracellular signaling pathways to aid in various processes involved in tumor progression. Our study revealed that downregulation of uPAR and MMP-9 leads to a decrease in the activation of some of the important enzymes participating in the MAPK and PI3 kinase pathways, which in turn, might decrease cell survival and proliferation. In addition, we analyzed the efficiency of RNAi-mediated targeting of uPAR and MMP-9 in pre-established tumor growth in vivo. We observed a significant regression of pre-established orthotopic tumors upon RNAi-mediated targeting of uPAR and MMP-9. In addition, the present study indicated that targeting both the proteins simultaneously augmented the therapeutic treatment of human meningiomas.
Collapse
Affiliation(s)
- Padmaja Tummalapalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | |
Collapse
|
33
|
Buffin-Meyer B, Crassous PA, Delage C, Denis C, Schaak S, Paris H. EGF receptor transactivation and PI3-kinase mediate stimulation of ERK by alpha(2A)-adrenoreceptor in intestinal epithelial cells: a role in wound healing. Eur J Pharmacol 2007; 574:85-93. [PMID: 17655843 DOI: 10.1016/j.ejphar.2007.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Intestinal cells express alpha(2A)-adrenoreceptors that stimulate sodium and peptide absorption and promote cell proliferation. Involved mechanisms are poorly understood and are not fully related to inhibition of cAMP production. Previous study using a clone of CaCo2 cells expressing the human alpha(2A)-adrenoreceptor (CaCo2-3B) showed that alpha(2)-adrenoreceptor agonists cause extracellular signal-regulated kinase (ERK) phosphorylation. Present work examines the signaling pathway triggering ERK activation and investigates the consequence of alpha(2A)-adrenoreceptor stimulation on cell migration. Treatment of CaCo2-3B with the alpha(2)-adrenoreceptor agonist 5-bromo-6-(2-imidazolin-2-ylamino) quinoxaline (UK14304) induces not only ERK, but also Akt phosphorylation. Both effects are strongly attenuated by inhibition or desensitization of epidermal growth factor (EGF) receptor, matrix metalloproteinase (MMP) blockade, heparin-binding-EGF neutralization or phosphatidylinositol 3-kinase (PI3-kinase) inhibitors. Conditioned medium from UK14304-treated CaCo2-3B stimulates ERK in parental CaCo2 by a mechanism sensitive to EGF receptor and PI3-kinase inhibitors. Exposure of CaCo2-3B to UK14304 accelerates the wound healing. This effect is abolished by heparin-binding-EGF neutralization but not by mitomycin C, indicating that it results probably from increased cell spreading and/or migration. In conclusion, alpha(2A)-adrenoreceptor activates ERK and Akt in intestinal cells by a common pathway which depends on PI3-kinase activation and results from EGF receptor transactivation, via an autocrine/paracrine pathway implying MMP activation and heparin-binding-EGF shedding. Therefore, alpha(2A)-adrenoreceptor could have a positive role in intestinal regeneration in vivo.
Collapse
Affiliation(s)
- Bénédicte Buffin-Meyer
- INSERM, U858/I2MR, Department of Renal and Cardiac remodelling, team #5, 1 avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
34
|
Karkoulias G, Mastrogianni O, Ilias I, Lymperopoulos A, Taraviras S, Tsopanoglou N, Sitaras N, Flordellis CS. Alpha 2-adrenergic receptors decrease DNA replication and cell proliferation and induce neurite outgrowth in transfected rat pheochromocytoma cells. Ann N Y Acad Sci 2007; 1088:335-45. [PMID: 17192578 DOI: 10.1196/annals.1366.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alpha 2-adrenergic receptors (alpha(2)-ARs) have a widespread distribution in the central nervous system (CNS) and affect a number of biochemical and behavioral functions, including stimulation of prefrontal cortex (PFC) and cognitive function. In addition to its role as a classical neurotransmitter, norepinephrine (NE) has been recently shown to exert an important influence on the plasticity in areas of the brain where neurogenesis persists in the adult, notably the subgranular zone (SGZ) within the dentate gyrus of the hippocampus and the olfactory bulb (OB). In regulating adult neurogenesis, the noradrenergic system is functionally integrated with chronic stress and depression. Chronic stress, depression, or depletion of NE in vivo suppress, and antidepressant treatments induce hippocampal neurogenesis by down- or upregulating, respectively, cell proliferation. In the present study we show that alpha(2)-AR subtypes promote the differentiation rather than cell proliferation of PC12 cells. It is conceivable that alpha(2)-ARs might contribute neurotrophic actions in vivo synergistically or in permutation with other neurotrophic factors.
Collapse
Affiliation(s)
- G Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras-Rion, GR-26504, Greece
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Karkoulias G, Flordellis C. Delayed transactivation of the receptor for nerve growth factor is required for sustained signaling and differentiation by alpha2-adrenergic receptors in transfected PC12 cells. Cell Signal 2006; 19:945-57. [PMID: 17215105 DOI: 10.1016/j.cellsig.2006.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/06/2006] [Accepted: 11/06/2006] [Indexed: 11/26/2022]
Abstract
Alpha2-adrenergic receptors have been reported to induce subtype-specific neuronal differentiation in vitro, but the signaling mechanisms that mediate this effect have not been characterized. In the present study we found that stimulated alpha2-ARs induce delayed transactivation of TrkA in PC12 cells. The transactivation of TrkA was sensitive to the PP1 inhibitor of the Src family kinases and required prior transactivation of the EGF receptor. Moreover, alpha2-adrenergic receptors induced sustained activation of MAPK and Akt. The sustained activation of Akt, but not of MAPK, was subtype-specific and correlated with the neuronal differentiation of PC12 cells, with the order alpha2A<alpha2B<alpha2C. Furthermore, stimulated alpha2-ARs induced an increased over time expression of the cell cycle associated proteins, p21WAF1 and Cyclin D1 and led to cell cycle arrest in a similar subtype-specific manner. Contrary to sustained activation of MAPK, the persistent activation of Akt and of p21WAF1 and Cyclin D1 as well as neurite outgrowth and expression of the neuronal marker peripherin, were all blocked by K252a an inhibitor of TrkA activity. Together these results demonstrate a novel outcome following alpha2-AR-mediated EGFR transactivation, being the consecutive transactivation of TrkA, and that this event may mediate the subtype-specific differentiation of alpha2-AR-expressing PC12 cells.
Collapse
Affiliation(s)
- Georgios Karkoulias
- Department of Pharmacology, School of Medicine, University of Patras, 26110 Rio Patras, Greece
| | | |
Collapse
|