1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Imbert F, Langford D. Comprehensive SUMO Proteomic Analyses Identify HIV Latency-Associated Proteins in Microglia. Cells 2025; 14:235. [PMID: 39937027 PMCID: PMC11817477 DOI: 10.3390/cells14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
SUMOylation, the post-translational modification of proteins by small ubiquitin-like modifiers, plays a critical role in regulating various cellular processes, including innate immunity. This modification is essential for modulating immune responses and influencing signaling pathways that govern the activation and function of immune cells. Recent studies suggest that SUMOylation also contributes to the pathophysiology of central nervous system (CNS) viral infections, where it contributes to the host response and viral replication dynamics. Here, we explore the multifaceted role of SUMOylation in innate immune signaling and its implications for viral infections within the CNS. Notably, we present novel proteomic analyses aimed at elucidating the role of the small ubiquitin-related modifier (SUMO) in human immunodeficiency virus (HIV) latency in microglial cells. Our findings indicate that SUMOylation may regulate key proteins involved in maintaining viral latency, suggesting a potential mechanism by which HIV evades immune detection in the CNS. By integrating insights from proteomics with functional studies, we anticipate these findings to be the groundwork for future studies on HIV-host interactions and the mechanisms that underlie SUMOylation during latent and productive infection.
Collapse
Affiliation(s)
- Fergan Imbert
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Dianne Langford
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
3
|
Rossitto M, Déjardin S, Rands CM, Le Gras S, Migale R, Rafiee MR, Neirijnck Y, Pruvost A, Nguyen AL, Bossis G, Cammas F, Le Gallic L, Wilhelm D, Lovell-Badge R, Boizet-Bonhoure B, Nef S, Poulat F. TRIM28-dependent SUMOylation protects the adult ovary from activation of the testicular pathway. Nat Commun 2022; 13:4412. [PMID: 35906245 PMCID: PMC9338040 DOI: 10.1038/s41467-022-32061-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/17/2022] [Indexed: 11/08/2022] Open
Abstract
Gonadal sexual fate in mammals is determined during embryonic development and must be actively maintained in adulthood. In the mouse ovary, oestrogen receptors and FOXL2 protect ovarian granulosa cells from transdifferentiation into Sertoli cells, their testicular counterpart. However, the mechanism underlying their protective effect is unknown. Here, we show that TRIM28 is required to prevent female-to-male sex reversal of the mouse ovary after birth. We found that upon loss of Trim28, ovarian granulosa cells transdifferentiate to Sertoli cells through an intermediate cell type, different from gonadal embryonic progenitors. TRIM28 is recruited on chromatin in the proximity of FOXL2 to maintain the ovarian pathway and to repress testicular-specific genes. The role of TRIM28 in ovarian maintenance depends on its E3-SUMO ligase activity that regulates the sex-specific SUMOylation profile of ovarian-specific genes. Our study identifies TRIM28 as a key factor in protecting the adult ovary from the testicular pathway.
Collapse
Affiliation(s)
- Moïra Rossitto
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Stephanie Déjardin
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Chris M Rands
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Stephanie Le Gras
- GenomEast platform, IGBMC, 1, rue Laurent Fries, 67404 ILLKIRCH Cedex, Illkirch-Graffenstaden, France
| | - Roberta Migale
- The Francis Crick Institute, 1 Midland Road, London, NW1 2 1AT, UK
| | | | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Alain Pruvost
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Anvi Laetitia Nguyen
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Lionel Le Gallic
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France
| | - Dagmar Wilhelm
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva CMU, lab E09.2750.B 1, rue Michel-Servet CH 1211 Geneva 4, Geneva, Switzerland
| | - Francis Poulat
- Institute of Human Genetics, CNRS UMR9002 University of Montpellier, 34396, Montpellier, France.
| |
Collapse
|
4
|
Cai JH, Sun YT, Bao S. HucMSCs-exosomes containing miR-21 promoted estrogen production in ovarian granulosa cells via LATS1-mediated phosphorylation of LOXL2 and YAP. Gen Comp Endocrinol 2022; 321-322:114015. [PMID: 35271888 DOI: 10.1016/j.ygcen.2022.114015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Premature ovarian failure (POF) is one of the common disorders found in women leading to 1% female infertility. Clinical features of POF are hypoestrogenism or estrogen deficiency. With the development of regenerative medicine, human mesenchymal stem cells (hMSCs) therapy brings new prospects for POF. This research aims to reveal the therapeutic effects and potential mechanisms of human umbilical cord mesenchymal stem cells (hucMSCs)-derived exosomes on POF. METHODS The mRNA and protein expressions in hucMSCs and ovarian granulosa cells (KGN and SVOG cells) were assessed using qRT-PCR and western blot. ELISA assay was performed to evaluate estradiol (E2) secretion in granulosa cells. The binding relationship between miR-21 and LATS1 was verified by dual-luciferase reporter assay and RNA binding protein immunoprecipitation assay (RIP) assay. Additionally, Immunoprecipitation assay was carried out to confirm Lysyl oxidase like 2 (LOXL2) was phosphorylated by large tumor suppressor 1 (LATS1). Finally, the binding relationships between Yes-associated protein (YAP), StAR and LOXL2 were verified by dual-luciferase reporter assay and/or chromatin immunoprecipitation assay (ChIP) assay. RESULTS Here our results displayed that miR-21 was overexpressed in hucMSCs and hucMSCs-derived exosomes, compared with that ovarian granulosa cells. hucMSC-exo with overexpressing miR-21 could markedly promote the secretion of estrogen in ovarian granulosa cells. LATS1 overexpression in ovarian granulosa cells reduced the secretion of estrogen. We subsequently confirmed that LATS1 was the target of miR-21. In addition, LATS1 could regulate StAR expression by phosphorylating LOXL2 and YAP. CONCLUSION miR-21 carried by hucMSCs-derived exosomes could downregulate LATS1, thereby reducing phosphorylated LOXL2 and YAP, and ultimately promoting estrogen secretion in ovarian granulosa cells.
Collapse
Affiliation(s)
- Jun-Hong Cai
- Central Laboratory, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570311, People's Republic of China
| | - Yu-Ting Sun
- Hainan Medical University, Haikou, Hainan Province 571199, People's Republic of China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, Hainan Province 570311, People's Republic of China.
| |
Collapse
|
5
|
Penrad-Mobayed M, Perrin C, Herman L, Todeschini AL, Nigon F, Cosson B, Caburet S, Veitia RA. Conventional and unconventional interactions of the transcription factor FOXL2 uncovered by a proteome-wide analysis. FASEB J 2019; 34:571-587. [PMID: 31914586 DOI: 10.1096/fj.201901573r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
Beyond the study of its transcriptional target genes, the identification of the various interactors of a transcription factor (TF) is crucial to understand its diverse cellular roles. We focused on FOXL2, a winged-helix forkhead TF important for ovarian development and maintenance. FOXL2 has been implicated in diverse cellular processes, including apoptosis, the control of cell cycle or the regulation of steroid hormone synthesis. To reliably identify partners of endogenous FOXL2, we performed a proteome-wide analysis using co-immunoprecipitation in the murine granulosa cell-derived AT29c and the pituitary-derived alpha-T3 cell lines, using three antibodies targeting different parts of the protein. Following a stringent selection of mass spectrometry data on the basis of identification reliability and protein enrichment, we identified a core set of 255 partners common to both cell lines. Their analysis showed that we could co-precipitate several complexes involved in mRNA processing, chromatin remodeling and DNA replication and repair. We further validated (direct and/or indirect) interactions with selected partners, suggesting an unexpected role for FOXL2 in those processes. Overall, this comprehensive analysis of the endogenous FOXL2 interactome sheds light on its numerous and diverse interactors and unconventional cellular roles.
Collapse
Affiliation(s)
- May Penrad-Mobayed
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Caroline Perrin
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Laetitia Herman
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | | | - Fabienne Nigon
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Bertrand Cosson
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Sandrine Caburet
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Reiner A Veitia
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| |
Collapse
|
6
|
Watanabe L, Gomes F, Vianez J, Nunes M, Cardoso J, Lima C, Schneider H, Sampaio I. De novo transcriptome based on next-generation sequencing reveals candidate genes with sex-specific expression in Arapaima gigas (Schinz, 1822), an ancient Amazonian freshwater fish. PLoS One 2018; 13:e0206379. [PMID: 30372461 PMCID: PMC6205615 DOI: 10.1371/journal.pone.0206379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background The Arapaima (Arapaima gigas) is one of the world's largest freshwater bony fish, and is found in the rivers of the Amazon basin. This species is a potential aquaculture resource, although reproductive management in captivity is limited in particular due to the lack of external sexual dimorphism. In this study, using the 454 Roche platform (pyrosequencing) techniques, we evaluated a major portion of the transcriptome of this important Amazonian species. Results Four libraries obtained from the liver and skin tissue of juvenile specimens (representing males and females separately) were sequenced, yielding 5,453,919 high-quality reads. The de novo transcriptome assembly resulted in 175,792 contigs, with 51,057 significant blast hits. A total of 38,586 transcripts were mapped by Gene Ontology using Blast2GO. We identified 20,219 genes in the total transcriptome (9,551 in the liver and 16,818 in the skin). The gene expression analyses indicated 105 genes in the liver and 204 in the skin with differentiated expression profiles, with 95 being over-expressed in the females and 214 in the males. The log2 Fold Change and heatmap based on Reads Per Kilobase per Million mapped reads (RPKM) revealed that the gene expression in the skin is highly differentiated between male and female arapaima, while the levels of expression in the liver are similar between the sexes. Conclusion Transcriptome analysis based on pyrosequencing proved to be a reliable tool for the identification of genes with differentiated expression profiles between male and female arapaima. These results provide useful insights into the molecular pathways of sexual dimorphism in this important Amazonian species, and for comparative analyses with other teleosts.
Collapse
Affiliation(s)
- Luciana Watanabe
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
- * E-mail:
| | - Fátima Gomes
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| | - João Vianez
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Márcio Nunes
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Jedson Cardoso
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Clayton Lima
- Centro de Inovações Tecnológicas (CIT), Instituto Evandro Chagas (IEC), Ananindeua, Pará, Brazil
| | - Horacio Schneider
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| | - Iracilda Sampaio
- Laboratório de Genética e Biologia Molecular, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Campus de Bragança, Pará, Brazil
| |
Collapse
|
7
|
Xu R, Qin N, Xu X, Sun X, Chen X, Zhao J. Inhibitory effect of SLIT2 on granulosa cell proliferation mediated by the CDC42-PAKs-ERK1/2 MAPK pathway in the prehierarchical follicles of the chicken ovary. Sci Rep 2018; 8:9168. [PMID: 29907785 PMCID: PMC6003946 DOI: 10.1038/s41598-018-27601-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023] Open
Abstract
The SLIT2 ligand and ROBO receptors of the SLIT/ROBO pathway are expressed in hen ovarian follicles and have been shown to play critical roles in ovary development, cell proliferation and apoptosis in mammals. However, the exact roles of SLIT2 and the molecular mechanisms of chicken follicle development remain poorly understood. Here, we discovered that high levels of SLIT2 suppress FSHR, GDF9, STAR and CYP11A1 mRNA and protein expression in granulosa cells (GCs) and cell proliferation (p < 0.01). However, these inhibitory effects can be abolished by the siRNA-mediated knockdown of the ROBO1 and ROBO2 receptors. Furthermore, the activity of CDC42, which is a key Rho GTPase in the SLIT/ROBO pathway, is regulated by the ligand SLIT2 because the intrinsic GTPase activation activity of CDC42 is activated or repressed by regulating SRGAP1 expression (p < 0.01). The effects of the SLIT2 overexpression on GC proliferation and phosphorylation of the B-RAF, RAF1 and ERK1/2 kinases were completely abrogated by knocking down endogenous PAK1 and partially abrogated by the knockdown of PAK2 and PAK3 in the GCs. Collectively, our findings indicate that SLIT2 suppresses GC proliferation, differentiation and follicle selection mainly by a mechanism involving ROBO1 and ROBO2 and that this suppression is mediated by the CDC42-PAKs-ERK1/2 MAPK signaling cascade in the prehierarchical follicles of the chicken ovary.
Collapse
Affiliation(s)
- Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Changchun, 130118, People's Republic of China.
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Changchun, 130118, People's Republic of China
| | - Xiaoxing Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| |
Collapse
|
8
|
The Hippo/MST Pathway Member SAV1 Plays a Suppressive Role in Development of the Prehierarchical Follicles in Hen Ovary. PLoS One 2016; 11:e0160896. [PMID: 27505353 PMCID: PMC4978403 DOI: 10.1371/journal.pone.0160896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
The Hippo/MST signaling pathway is a critical player in controlling cell proliferation, self-renewal, differentiation, and apoptosis of most tissues and organs in diverse species. Previous studies have shown that Salvador homolog 1 (SAV1), a scaffolding protein which functions in the signaling system is expressed in mammalian ovaries and play a vital role in governing the follicle development. But the exact biological effects of chicken SAV1 in prehierarchical follicle development remain poorly understood. In the present study, we demonstrated that the SAV1 protein is predominantly expressed in the oocytes and undifferentiated granulosa cells in the various sized prehierarchical follicles of hen ovary, and the endogenous expression level of SAV1 mRNA appears down-regulated from the primordial follicles to the largest preovulatory follicles (F2-F1) by immunohistochemistry and real-time RT-PCR, respectively. Moreover, we found the intracellular SAV1 physically interacts with each of the pathway members, including STK4/MST1, STK3/MST2, LATS1 and MOB2 using western blotting. And SAV1 significantly promotes the phosphorylation of LATS1 induced by the kinase of STK4 or STK3 in vitro. Furthermore, SAV1 knockdown by small interfering RNA (siRNA) significantly increased proliferation of granulosa cells from the prehierarchical follicles (6-8 mm in diameter) by BrdU-incorporation assay, in which the expression levels of GDF9, StAR and FSHR mRNA was notably enhanced. Meanwhile, these findings were consolidated by the data of SAV1 overexpression. Taken together, the present results revealed that SAV1 can inhibit proliferation of the granulosa cells whereby the expression levels of GDF9, StAR and FSHR mRNA were negatively regulated. Accordingly, SAV1, as a member of the hippo/MST signaling pathway plays a suppressive role in ovarian follicle development by promoting phosphorylation and activity of the downstream LATS1, may consequently lead to prevention of the follicle selection during ovary development.
Collapse
|
9
|
Marongiu M, Deiana M, Marcia L, Sbardellati A, Asunis I, Meloni A, Angius A, Cusano R, Loi A, Crobu F, Fotia G, Cucca F, Schlessinger D, Crisponi L. Novel action of FOXL2 as mediator of Col1a2 gene autoregulation. Dev Biol 2016; 416:200-211. [PMID: 27212026 DOI: 10.1016/j.ydbio.2016.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/07/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause.
Collapse
Affiliation(s)
- Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Manila Deiana
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Loredana Marcia
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy; Università degli Studi di Sassari, Sassari 07100, Italy
| | - Andrea Sbardellati
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Isadora Asunis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Alessandra Meloni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Roberto Cusano
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Angela Loi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Francesca Crobu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy
| | - Giorgio Fotia
- Centre for Advanced Studies, Research and Development in Sardinia (CRS4), Pula, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy; Università degli Studi di Sassari, Sassari 07100, Italy
| | - David Schlessinger
- Laboratory of Genetics, NIA-IRP, NIH, Baltimore, 21224-6825 MD, United States
| | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato 09042, Italy.
| |
Collapse
|
10
|
Kim JH, Kim YH, Kim HM, Park HO, Ha NC, Kim TH, Park M, Lee K, Bae J. FOXL2 posttranslational modifications mediated by GSK3β determine the growth of granulosa cell tumours. Nat Commun 2015; 5:2936. [PMID: 24390485 DOI: 10.1038/ncomms3936] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022] Open
Abstract
Approximately 97% of patients with ovarian granulosa cell tumours (GCTs) bear the C134W mutation in FOXL2; however, the pathophysiological mechanism of this mutation is unknown. Here we report how this mutation affects GCT development. Sequential posttranslational modifications of the C134W mutant occur where hyperphosphorylation at serine 33 (S33) by GSK3β induces MDM2-mediated ubiquitination and proteasomal degradation. In contrast, S33 of wild-type FOXL2 is underphosphorylated, leading to its SUMOylation and stabilization. This prominent hyperphosphorylation is also observed at S33 of FOXL2 in GCT patients bearing the C134W mutation. In xenograft mice, the S33 phosphorylation status correlates with the oncogenicity of FOXL2, and the inhibition of GSK3β efficiently represses GCT growth. These findings reveal a previously unidentified regulatory mechanism that determines the oncogenic attributes of the C134W mutation via differential posttranslational modifications of FOXL2 in GCT development.
Collapse
Affiliation(s)
- Jae-Hong Kim
- 1] College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Korea [2]
| | - Yong-Hak Kim
- 1] Department of Microbiology, Catholic University of Daegu School of Medicine, 17 Duruegongwon-Ro, Nam-Gu, Daegu 705-718, Korea [2]
| | - Hong-Man Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Korea
| | - Ho-Oak Park
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Korea
| | - Nam-Chul Ha
- Department of Manufacturing Pharmacy, Pusan National University, 63 Busandaehak-Ro, Kumjeong-Gu, Busan 609-735, Korea
| | - Tae Heon Kim
- Department of Pathology, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam 463-836, Korea
| | - Mira Park
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Korea
| |
Collapse
|
11
|
Regulation of germ cell function by SUMOylation. Cell Tissue Res 2015; 363:47-55. [PMID: 26374733 DOI: 10.1007/s00441-015-2286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/11/2015] [Indexed: 01/30/2023]
Abstract
Oogenesis and spermatogenesis are tightly regulated complex processes that are critical for fertility. Germ cells undergo meiosis to generate haploid cells necessary for reproduction. Errors in meiosis, including the generation of chromosomal abnormalities, can result in reproductive defects and infertility. Meiotic proteins are regulated by post-translational modifications including SUMOylation, the covalent attachment of small ubiquitin-like modifier (SUMO) proteins. Here, we review the role of SUMO proteins in controlling germ cell development and maturation based on recent findings from mouse models. Several studies have characterized the localization of SUMO proteins in male and female germ cells. However, a deeper understanding of how SUMOylation regulates proteins with essential roles in oogenesis and spermatogenesis will provide useful insight into the underlying mechanisms of germ cell development and fertility.
Collapse
|
12
|
Suh DS, Oh HK, Kim JH, Park S, Shin E, Lee K, Kim YH, Bae J. Identification and Validation of Differential Phosphorylation Sites of the Nuclear FOXL2 Protein as Potential Novel Biomarkers for Adult-Type Granulosa Cell Tumors. J Proteome Res 2015; 14:2446-56. [PMID: 25871347 DOI: 10.1021/pr501230b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Granulosa cell tumor (GCT) is a rare form of ovarian cancer classified as a sex cord-stromal tumor. The c.402C→G missense mutation in the FOXL2 gene that changes cysteine 134 to tryptophan (C134W) is found in more than 97% of adult-type GCTs, and the C134W FOXL2 mutant is hyperphosphorylated. We identified three differential phosphorylation sites, at serine 33 (S33), tyrosine 186 (Y186), and serine 238 (S238), of the C134W mutant by tandem mass spectrometry. Among these sites, antibodies were raised against the pS33 and pY186 epitopes using specific peptides, and they were tested by immunostaining tissue microarrays of archival adult-type GCT specimens, other tumors, and normal tissues. The pS33 antibody showed greater sensitivity and specificity for the detection of adult-type GCTs than that of the other phospho and nonphospho antibodies. The specificity of the pS33 antibody to the pS33 epitope was further confirmed by enriching the pS33 peptide by affinity chromatography using the immobilized antibody, followed by mass spectrometric and western blot analyses from whole cell lysates of the adult-type GCT cell line, KGN. pS33 FOXL2 immunostaining levels were significantly higher in adult-type GCTs than those in other tumors and tissues. The receiver operating characteristic curve analysis of pS33 FOXL2 showed high sensitivity (1.0) and specificity (0.76) to adult-type GCTs with a cutoff score of >30% positive cells, and the area under the curve was 0.96. This suggests the potential of pS33 FOXL2 to serve as a new biomarker for the diagnosis of adult-type GCT.
Collapse
Affiliation(s)
- Dae-Shik Suh
- †Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pan L, Gong W, Zhou Y, Li X, Yu J, Hu S. A comprehensive transcriptomic analysis of infant and adult mouse ovary. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:239-48. [PMID: 25251848 PMCID: PMC4411413 DOI: 10.1016/j.gpb.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 12/13/2022]
Abstract
Ovary development is a complex process involving numerous genes. A well-developed ovary is essential for females to keep fertility and reproduce offspring. In order to gain a better insight into the molecular mechanisms related to the process of mammalian ovary development, we performed a comparative transcriptomic analysis on ovaries isolated from infant and adult mice by using next-generation sequencing technology (SOLiD). We identified 15,454 and 16,646 transcriptionally active genes at the infant and adult stage, respectively. Among these genes, we also identified 7021 differentially expressed genes. Our analysis suggests that, in general, the adult ovary has a higher level of transcriptomic activity. However, it appears that genes related to primordial follicle development, such as those encoding Figla and Nobox, are more active in the infant ovary, whereas expression of genes vital for follicle development, such as Gdf9, Bmp4 and Bmp15, is upregulated in the adult. These data suggest a dynamic shift in gene expression during ovary development and it is apparent that these changes function to facilitate follicle maturation, when additional functional gene studies are considered. Furthermore, our investigation has also revealed several important functional pathways, such as apoptosis, MAPK and steroid biosynthesis, that appear to be much more active in the adult ovary compared to those of the infant. These findings will provide a solid foundation for future studies on ovary development in mice and other mammals and help to expand our understanding of the complex molecular and cellular events that occur during postnatal ovary development.
Collapse
Affiliation(s)
- Linlin Pan
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Gong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Zhou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaonuan Li
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Governini L, Carrarelli P, Rocha ALL, Leo VD, Luddi A, Arcuri F, Piomboni P, Chapron C, Bilezikjian LM, Petraglia F. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci 2014; 21:1249-55. [PMID: 24520083 DOI: 10.1177/1933719114522549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study investigated expression and protein localization of FOXL2 messenger RNA (mRNA) in endometrium of healthy women and in patients with endometriosis during endometrial cycle. In endometriotic lesions, FOXL2 mRNA and protein were evaluated and a possible correlation with activin A mRNA expression changes was also studied. Endometrium was collected from healthy women (n = 52) and from women with endometriosis (n = 31) by hysteroscopy; endometriotic tissues were collected by laparoscopy (n = 38). FOXL2 gene expression analysis in endometrium of healthy women showed a significant expression and no significant changes in mRNA levels between proliferative and secretory phases; a similar pattern was observed in endometrium of patients with endometriosis. Immunohistochemical evaluation showed that FOXL2 protein localized in stromal and glandular cells and colocalized with SUMO-1. FOXL2 mRNA expression was 3-fold higher in endometriosis than in healthy endometrium (P < .01) and a positive correlation between FOXL2 and activin A mRNA was found (P < .05) in endometriosis. In conclusion, FOXL2 mRNA expression and its protein localization do not change during endometrial cycle in eutopic endometrium from healthy individuals or patients with endometriosis; the hyperexpression of FOXL2 in endometriotic lesions suggests an involvement of this transcriptional regulator, probably associated with activin A expression and related to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ana Luiza Lunardi Rocha
- Department of Obstetrics and Gynaecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Arcuri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, CHU Cochin, Paris, France
| | - Louise M Bilezikjian
- The Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
15
|
Georges A, Auguste A, Bessière L, Vanet A, Todeschini AL, Veitia RA. FOXL2: a central transcription factor of the ovary. J Mol Endocrinol 2014; 52:R17-33. [PMID: 24049064 DOI: 10.1530/jme-13-0159] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Forkhead box L2 (FOXL2) is a gene encoding a forkhead transcription factor preferentially expressed in the ovary, the eyelids and the pituitary gland. Its germline mutations are responsible for the blepharophimosis ptosis epicanthus inversus syndrome, which includes eyelid and mild craniofacial defects associated with primary ovarian insufficiency. Recent studies have shown the involvement of FOXL2 in virtually all stages of ovarian development and function, as well as in granulosa cell (GC)-related pathologies. A central role of FOXL2 is the lifetime maintenance of GC identity through the repression of testis-specific genes. Recently, a highly recurrent somatic FOXL2 mutation leading to the p.C134W subtitution has been linked to the development of GC tumours in the adult, which account for up to 5% of ovarian malignancies. In this review, we summarise data on FOXL2 modulators, targets, partners and post-translational modifications. Despite the progresses made thus far, a better understanding of the impact of FOXL2 mutations and of the molecular aspects of its function is required to rationalise its implication in various pathophysiological processes.
Collapse
Affiliation(s)
- Adrien Georges
- CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013 Paris, France Université Paris Diderot, Paris VII, Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Hu Q, Chen S. Cloning, genomic structure and expression analysis of ubc9 in the course of development in the half-smooth tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:181-8. [PMID: 23507627 DOI: 10.1016/j.cbpb.2013.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 01/20/2023]
Abstract
The small ubiquitin-like modifier (SUMO) pathway is an essential biological process in eukaryote, and Ubc9 is an important E2 conjugating enzyme (UBE2) for SUMO pathway and plays a critical role in cellular differentiation, development and sex modification in various species. However, the relationship between Ubc9 and sex modification and development in fish remains elusive. To elucidate the impact of Ubc9 on sex modification and development, the full length of the cDNA and genomic sequence was cloned from half-smooth tongue sole, Cynoglossus semilaevis. Real-time quantitative RT-PCR demonstrated that ubc9 was ubiquitously expressed in different tissues, and the expression levels varied in the different stages of embryonic and gonadal development. In addition, the expression level was significantly higher in the temperature-treated females than the normal females and males. Moreover, the PET-32-Ubc9 plasmid was constructed and the recombinant protein was expressed in Escherichia coli. Follistatin gene expression was initially up-regulated and FSE genes (cyp19a1a, ctnnb1, foxl2) were initially down-regulated after the injection of Ubc9 protein, prior to 96 h eventually recovered to normal levels. Taken together, the results show that Ubc9 is involved in embryogenesis, gametogenesis and sex modification, and exerts an effect on gene expression.
Collapse
Affiliation(s)
- Qiaomu Hu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | |
Collapse
|
17
|
Belaguli NS, Zhang M, Brunicardi FC, Berger DH. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation. PLoS One 2012; 7:e48019. [PMID: 23118920 PMCID: PMC3485284 DOI: 10.1371/journal.pone.0048019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/19/2012] [Indexed: 12/29/2022] Open
Abstract
The forkhead box protein A2 (FOXA2) is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1) and mapped the sumoylation site to the amino acid lysine 6 (K6). Preventing sumoylation by mutating the SUMO acceptor K6 to arginine resulted in downregulation of FOXA2 protein but not RNA expression in INS-1E insulinoma cells. K6R mutation also downregulated FOXA2 protein levels in HepG2 hepatocellular carcinoma cells, HCT116 colon cancer cells and LNCaP and DU145 prostate cancer cells. Further, interfering with FOXA2 sumoylation through siRNA mediated knockdown of UBC9, an essential SUMO E2 conjugase, resulted in downregulation of FOXA2 protein levels. Stability of sumoylation deficient FOXA2K6R mutant protein was restored when SUMO-1 was fused in-frame. FOXA2 sumoylation and FOXA2 protein levels were increased by PIAS1 SUMO ligase but not a SUMO ligase activity deficient PIAS1 mutant. Although expressed at lower levels, sumoylation deficient FOXA2K6R mutant protein was detectable in the nucleus indicating that FOXA2 nuclear localization is independent of sumoylation. Sumoylation increased the transcriptional activity of FOXA2 on Pdx-1 area I enhancer. Together, our results show that sumoylation regulates FOXA2 protein expression and activity.
Collapse
|
18
|
Eozenou C, Carvalho AV, Forde N, Giraud-Delville C, Gall L, Lonergan P, Auguste A, Charpigny G, Richard C, Pannetier M, Sandra O. FOXL2 Is Regulated During the Bovine Estrous Cycle and Its Expression in the Endometrium Is Independent of Conceptus-Derived Interferon Tau1. Biol Reprod 2012; 87:32. [DOI: 10.1095/biolreprod.112.101584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
Caburet S, Georges A, L'Hôte D, Todeschini AL, Benayoun BA, Veitia RA. The transcription factor FOXL2: at the crossroads of ovarian physiology and pathology. Mol Cell Endocrinol 2012; 356:55-64. [PMID: 21763750 DOI: 10.1016/j.mce.2011.06.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/21/2011] [Indexed: 12/20/2022]
Abstract
FOXL2 is a gene encoding a forkhead transcription factor. Its mutations or misregulation have been shown to cause the blepharophimosis-ptosis-epicanthus inversus (BPES) syndrome and more recently have been associated with the development of Ovarian Granulosa Cell Tumors (OGCT). BPES is a genetic disorder involving mild craniofacial abnormalities often associated with premature ovarian failure. OGCTs are endocrine malignancies, accounting for 2-5% of ovarian cancers, the treatment of which is still challenging. In this review we summarize recent data concerning FOXL2 transcriptional targets and molecular partners, its post-translational modifications, its mutations and its involvement in newly discovered pathophysiological processes. In the ovary, FOXL2 is involved in the regulation of cholesterol and steroid metabolism, apoptosis, reactive oxygen species detoxification and cell proliferation. Interestingly, one of the main roles of FOXL2 is also to preserve the identity of ovarian granulosa cells even at the adult stage and to prevent their transdifferentiation into Sertoli-like cells. All these recent advances indicate that FOXL2 is central to ovarian development and maintenance. The elucidation of the impact of FOXL2 germinal and somatic mutations will allow a better understanding of the pathogenesis of BPES and of OGCTs.
Collapse
Affiliation(s)
- Sandrine Caburet
- CNRS UMR 7592, Institut Jacques Monod, Equipe Génétique et Génomique du Développement Gonadique, 75205 Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
20
|
Auguste A, Chassot AA, Grégoire EP, Renault L, Pannetier M, Treier M, Pailhoux E, Chaboissier MC. Loss of R-spondin1 and Foxl2 amplifies female-to-male sex reversal in XX mice. Sex Dev 2011; 5:304-17. [PMID: 22116255 DOI: 10.1159/000334517] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2011] [Indexed: 11/19/2022] Open
Abstract
In vertebrates, 2 main genetic pathways have been shown to regulate ovarian development. Indeed, a loss of function mutations in Rspo1 and Foxl2 promote partial female-to-male sex reversal. In mice, it has been shown that the secreted protein RSPO1 is involved in ovarian differentiation and the transcription factor FOXL2 is required for follicular formation. Here, we analysed the potential interactions between these 2 genetic pathways and have shown that while Rspo1 expression seems to be independent of Foxl2 up-regulation, Foxl2 expression partly depends of Rspo1 signalisation. This suggests that different Foxl2-positive somatic cell lineages exist within the ovaries. In addition, a combination of both mutated genes in XX Foxl2(-/-)/Rspo1(-/-) gonads promotes sex reversal, detectable at earlier stages than in XX Rspo1(-/-) mutants. Ectopic development of the steroidogenic lineage is more pronounced in XX Foxl2(-/-)/Rspo1(-/-) gonads than in XX Rspo1(-/-) embryos, suggesting that Foxl2 is involved in preventing ectopic steroidogenesis in foetal ovaries.
Collapse
Affiliation(s)
- A Auguste
- INRA, UMR 1198, Biologie du Développement et de la Reproduction, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pannetier M, Elzaiat M, Thépot D, Pailhoux E. Telling the story of XX sex reversal in the goat: highlighting the sex-crossroad in domestic mammals. Sex Dev 2011; 6:33-45. [PMID: 22094227 DOI: 10.1159/000334056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The conditions for sex reversal in vertebrate species have been studied extensively and have highlighted numerous key factors involved in sex differentiation. We review here the history of the development of knowledge, referring to one example of complete female-to-male XX sex reversal associated with a polled phenotype in the goat. The results and hypotheses concerning this polled intersex syndrome (PIS) are then presented, firstly with respect to the transcriptional regulatory effects of the PIS mutation, and secondly regarding the role of the main ovarian-differentiating factor in this PIS locus, the FOXL2 gene.
Collapse
Affiliation(s)
- M Pannetier
- INRA, UMR 1198, ENVA, Biologie du Développement et de la Reproduction, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
22
|
Georges A, Benayoun BA, Marongiu M, Dipietromaria A, L'Hôte D, Todeschini AL, Auer J, Crisponi L, Veitia RA. SUMOylation of the Forkhead transcription factor FOXL2 promotes its stabilization/activation through transient recruitment to PML bodies. PLoS One 2011; 6:e25463. [PMID: 22022399 PMCID: PMC3192040 DOI: 10.1371/journal.pone.0025463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/05/2011] [Indexed: 01/28/2023] Open
Abstract
Background FOXL2 is a transcription factor essential for ovarian development and maintenance. It is mutated in the genetic condition called Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES) and in cases of isolated premature ovarian failure. We and others have previously shown that FOXL2 undergoes several post-translational modifications. Methods and Principal Findings Here, using cells in culture, we show that interference with FOXL2 SUMOylation leads to a robust inhibition of its transactivation ability, which correlates with a decreased stability. Interestingly, FOXL2 SUMOylation promotes its transient recruitment to subnuclear structures that we demonstrate to be PML (Promyelocytic Leukemia) Nuclear Bodies. Since PML bodies are known to be sites where post-translational modifications of nuclear factors take place, we used tandem mass spectrometry to identify new post-translational modifications of FOXL2. Specifically, we detected four phosphorylated, one sulfated and three acetylated sites. Conclusions By analogy with other transcription factors, we propose that PML Nuclear Bodies might transiently recruit FOXL2 to the vicinity of locally concentrated enzymes that could be involved in the post-translational maturation of FOXL2. FOXL2 acetylation, sulfation, phosphorylation as well as other modifications yet to be discovered might alter the transactivation capacity of FOXL2 and/or its stability, thus modulating its global intracellular activity.
Collapse
Affiliation(s)
- Adrien Georges
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
- Université Paris-Diderot/Paris VII, Paris, France
- Ecole Normale Supérieure de Paris, Paris, France
| | - Bérénice A. Benayoun
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
- Université Paris-Diderot/Paris VII, Paris, France
| | - Mara Marongiu
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Aurélie Dipietromaria
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
- Université Paris-Diderot/Paris VII, Paris, France
- Université Paris-Sud/Paris XI, Orsay, France
| | - David L'Hôte
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
- Université Paris-Diderot/Paris VII, Paris, France
| | - Anne-Laure Todeschini
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
- Université Paris-Diderot/Paris VII, Paris, France
| | - Jana Auer
- Faculté de Médecine Cochin-Port-Royal, Université Paris Descartes/Paris V, Paris, France
| | - Laura Crisponi
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Reiner A. Veitia
- Programme de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris, France
- Université Paris-Diderot/Paris VII, Paris, France
- * E-mail:
| |
Collapse
|
23
|
Kuo FT, Bentsi-Barnes IK, Barlow GM, Pisarska MD. Mutant Forkhead L2 (FOXL2) proteins associated with premature ovarian failure (POF) dimerize with wild-type FOXL2, leading to altered regulation of genes associated with granulosa cell differentiation. Endocrinology 2011; 152:3917-29. [PMID: 21862621 PMCID: PMC3176639 DOI: 10.1210/en.2010-0989] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Premature ovarian failure in the autosomal dominant disorder blepharophimosis-ptosis-epicanthus inversus is due to mutations in the gene encoding Forkhead L2 (FOXL2), producing putative truncated proteins. We previously demonstrated that FOXL2 is a transcriptional repressor of the steroidogenic acute regulatory (StAR), P450SCC (CYP11A), P450aromatase (CYP19), and cyclin D2 (CCND2) genes, markers of ovarian follicle proliferation and differentiation. Furthermore, we found that mutations of FOXL2 may regulate wild-type FOXL2, leading to loss of transcriptional repression of CYP19, similar to StAR. However, the regulatory mechanisms underlying these premature ovarian failure-associated mutations remain largely unknown. Therefore, we examined the effects of a FOXL2 mutant protein on the transcriptional repression of the CYP19 promoter by the full-length protein. We found that mutant FOXL2 exerts a dominant-negative effect on the repression of CYP19 by wild-type FOXL2. Both wild-type and mutant FOXL2 and can form homo- and heterodimers. We identified a minimal -57-bp human CYP19 promoter containing two potential FOXL2-binding regions and found that both wild-type and mutant FOXL2 can bind to either of these regions. Mutational analysis revealed that either site is sufficient for transcriptional repression by wild-type FOXL2, and the dominant-negative effect of mutant FOXL2, but these are eliminated when both sites are mutated. These findings confirm that mutant FOXL2 exerts a dominant-negative effect on wild-type FOXL2's activity as a transcriptional repressor of key genes in ovarian follicle differentiation and suggest that this is likely due to heterodimer formation and possibly also competition for DNA binding.
Collapse
Affiliation(s)
- Fang-Ting Kuo
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics/Gynecology, Cedars-Sinai Medical Center, 8635 West Third Street, Los Angeles, California 90048, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Since the discovery of the conserved forkhead (Fkh) DNA binding domain more than 20 years ago, members of the Fkh or forkhead box (FOX) family of transcription factors have been shown to act as important regulators of numerous developmental and homeostatic processes. The human genome contains 44 Fkh genes, several of which have recently been reported to be essential for female fertility. In this review, we highlight the roles of specific FOX proteins in ovarian folliculogenesis and present our current understanding of their molecular function. In particular, we describe what we have learned from loss-of-function studies using mouse models as well as human genetics and illustrate how different stages of folliculogenesis, both in oocytes and in somatic granulosa and theca cells, are regulated by FOXC1, FOXL2, and FOXO subfamily members.
Collapse
Affiliation(s)
- Nina Henriette Uhlenhaut
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin-Buch, Germany.
| | | |
Collapse
|
25
|
Pisarska MD, Barlow G, Kuo FT. Minireview: roles of the forkhead transcription factor FOXL2 in granulosa cell biology and pathology. Endocrinology 2011; 152:1199-208. [PMID: 21248146 PMCID: PMC3206711 DOI: 10.1210/en.2010-1041] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The forkhead transcription factor (FOXL2) is an essential transcription factor in the ovary. It is important in ovarian development and a key factor in female sex determination. In addition, FOXL2 plays a significant role in the postnatal ovary and follicle maintenance. The diverse transcriptional activities of FOXL2 are likely attributable to posttranslational modifications and binding to other key proteins involved in granulosa cell function. Mutations of FOXL2 lead to disorders of ovarian function ranging from premature follicle depletion and ovarian failure to unregulated granulosa cell proliferation leading to tumor formation. Thus, FOXL2 is a key regulator of granulosa cell function and a master transcription factor in these cells.
Collapse
Affiliation(s)
- Margareta D Pisarska
- Center for Fertility and Reproductive Medicine, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West Third Street, Suite 160W, Los Angeles, California 90048, USA.
| | | | | |
Collapse
|
26
|
Fleming NI, Knower KC, Lazarus KA, Fuller PJ, Simpson ER, Clyne CD. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One 2010; 5:e14389. [PMID: 21188138 PMCID: PMC3004790 DOI: 10.1371/journal.pone.0014389] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/30/2010] [Indexed: 12/14/2022] Open
Abstract
Background Granulosa cell tumors (GCT) of the ovary often express aromatase and synthesize estrogen, which in turn may influence their progression. Recently a specific point mutation (C134W) in the FOXL2 protein was identified in >94% of adult-type GCT and it is likely to contribute to their development. A number of genes are known to be regulated by FOXL2, including aromatase/CYP19A1, but it is unclear which are direct targets and whether the C134W mutation alters their regulation. Recently, it has been reported that FOXL2 forms a complex with steroidogenic factor 1 (SF-1) which is a known regulator of aromatase in granulosa cells. Methodology/Principal Findings In this work, the human GCT-derived cell lines KGN and COV434 were heterozygous and wildtype for the FOXL2:C134W mutation, respectively. KGN had abundant FOXL2 mRNA expression but it was not expressed in COV434. Expression of exogenous FOXL2:C134W in COV434 cells induced higher expression of a luciferase reporter for the ovarian specific aromatase promoter, promoter II (PII) (−516bp) than expression of wildtype FOXL2, but did not alter induction of a similar reporter for the steroidogenic acute regulatory protein (StAR) promoter (−1300bp). Co-immunoprecipitation confirmed that FOXL2 bound SF-1 and that it also bound its homologue, liver receptor homologue 1 (LRH-1), however, the C134W mutation did not alter these interactions or induce a selective binding of the proteins. A highly conserved putative binding site for FOXL2 was identified in PII. FOXL2 was demonstrated to bind the site by electrophoretic mobility shift assays (EMSA) and site-directed mutagenesis of this element blocked its differential induction by wildtype FOXL2 and FOXL2:C134W. Conclusions/Significance These findings suggest that aromatase is a direct target of FOXL2:C134W in adult-type GCT via a single distinctive and highly conserved binding site in PII and therefore provide insight into the pathogenic mechanism of this mutation.
Collapse
Affiliation(s)
| | - Kevin C. Knower
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | - Kyren A. Lazarus
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | - Peter J. Fuller
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Evan R. Simpson
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Colin D. Clyne
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
- * E-mail:
| |
Collapse
|
27
|
Abstract
This study represents a first review of contemporarily knowledge concerning involvement of transcription factors in control of different ovarian functions. After introduction of basic functions and classification of transcription factors, the available data concerning involvement of transcription factors in control of the following ovarian events are present: follicular development and selection, ovarian cell proliferation and cancerogenesis, ovarian cell apoptosis, ovarian secretory activity, oocyte/cumulus maturation, ovulation and luteogenesis, mediation effect of hormones, growth factors, and cytokines. The importance of transcription factors of Smad family, of forkhead transcription factor (Fox) family, of breast cancer-associated genes/transcription factor, hypoxia-induced transcription factors and of other transcription factors in control of these processes has been demonstrated.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Institute of Animal Genetics and Reproduction, Animal Production Research Centre Nitra, Nitra, Slovakia.
| |
Collapse
|
28
|
Yang WH, Gutierrez NM, Wang L, Ellsworth BS, Wang CM. Synergistic activation of the Mc2r promoter by FOXL2 and NR5A1 in mice. Biol Reprod 2010; 83:842-51. [PMID: 20650879 DOI: 10.1095/biolreprod.110.085621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Forkhead box protein L2 (FOXL2) is the earliest ovarian marker and plays an important role in the regulation of cholesterol and steroid metabolism, inflammation, apoptosis, and ovarian development and function. Mutations and deficiencies of the human FOXL2 gene have been shown to cause blepharophimosis-ptosis-epicanthus inversus syndrome as well as premature ovarian failure. Although Foxl2 interacts with steroidogenic factor 1 (Nr5a1) and up-regulates cyp19a1a gene transcription in fish, FOXL2 represses the transcriptional activity of the gene that codes for steroidogenic acute regulatory protein (Star) in mice. Most of the recent studies have heavily focused on the FOXL2 target genes (Star and Cyp19a1) in the ovaries. Hence, it is of importance to search for other downstream targets of FOXL2 and for the possibility of FOXL2 expression in nonovarian tissues. Herein, we demonstrate that the interplay between FOXL2 and NR5A1 regulates Star and melanocortin 2 receptor (Mc2r) gene expression in mammalian systems. Both FOXL2 and NR5A1 are expressed in ovarian and adrenal gland tissues. As expected, FOXL2 represses and NR5A1 enhances the promoter activity of Star. Notably, the promoter activity of Mc2r is activated by FOXL2 in a dose-dependent manner. Surprisingly, we found that FOXL2 and NR5A1 synergistically up-regulate the transcriptional activity of Mc2r. By mapping the Mc2r promoter, we provide evidence that distal NR5A1 response elements (-1410 and -975) are required for synergistic activation by FOXL2 and NR5A1. These results suggest that the interplay between FOXL2 and NR5A1 on the Mc2r promoter functions as a novel mechanism for regulating MC2R-mediated cell signaling as well as steroidogenesis in adrenal glands.
Collapse
Affiliation(s)
- Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 31404-3089, USA.
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Pisarska MD, Kuo FT, Bentsi-Barnes IK, Khan S, Barlow GM. LATS1 phosphorylates forkhead L2 and regulates its transcriptional activity. Am J Physiol Endocrinol Metab 2010; 299:E101-9. [PMID: 20407010 PMCID: PMC2904049 DOI: 10.1152/ajpendo.00534.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Forkhead L2 (FOXL2) is expressed in the ovary and acts as a transcriptional repressor of the steroidogenic acute regulatory (StAR) gene, a marker of granulosa cell differentiation. Human FOXL2 mutations that produce truncated proteins lacking the COOH terminus result in blepharophimosis/ptosis/epicanthus inversus (BPES) syndrome type I, which is associated with premature ovarian failure (POF). In this study, we investigated whether FOXL2's activity as a transcriptional repressor is regulated by phosphorylation. We found that FOXL2 is phosphorylated at a serine residue and, using yeast two-hybrid screening, identified LATS1 as a potential FOXL2-interacting protein. LATS1 is a serine/threonine kinase whose deletion in mice results in an ovarian phenotype similar to POF. Using coimmunoprecipitation and kinase assays, we confirmed that LATS1 binds to FOXL2 and demonstrated that LATS1 phosphorylates FOXL2 at a serine residue. Moreover, we found that FOXL2 and LATS1 are coexpressed in developing mouse gonads and in granulosa cells of small and medium follicles in the mouse ovary. Last, we demonstrated that coexpression with LATS1 enhances FOXL2's activity as a repressor of the StAR promoter, and this results from the kinase activity of LATS1. These results provide novel evidence that FOXL2 is phosphorylated by LATS1 and that this phosphorylation enhances the transcriptional repression of the StAR gene, a marker of granulosa cell differentiation. These data support our hypothesis that phosphorylation of FOXL2 may be a control mechanism regulating the rate of granulosa cell differentiation and hence, follicle maturation, and its dysregulation may contribute to accelerated follicular development and POF in BPES type I.
Collapse
Affiliation(s)
- Margareta D Pisarska
- Center for Fertility and Reproductive Medicine, Division of Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Cedars-Sinai Medical Center, 8635 West Third St., Los Angeles, CA 90048, USA.
| | | | | | | | | |
Collapse
|
31
|
Marongiu M, Deiana M, Meloni A, Marcia L, Puddu A, Cao A, Schlessinger D, Crisponi L. The forkhead transcription factor Foxl2 is sumoylated in both human and mouse: sumoylation affects its stability, localization, and activity. PLoS One 2010; 5:e9477. [PMID: 20209145 PMCID: PMC2830456 DOI: 10.1371/journal.pone.0009477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/08/2010] [Indexed: 11/22/2022] Open
Abstract
The FOXL2 forkhead transcription factor is expressed in ovarian granulosa cells, and mutated FOXL2 causes the blepharophimosis, ptosis and epicanthus inversus syndrome (BPES) and predisposes to premature ovarian failure. Inactivation of Foxl2 in mice demonstrated its indispensability for female gonadal sex determination and ovary development and revealed its antagonism of Sox9, the effector of male testis development. To help to define the regulatory activities of FOXL2, we looked for interacting proteins. Based on yeast two-hybrid screening, we found that FOXL2 interacts with PIAS1 and UBC9, both parts of the sumoylation machinery. We showed that human FOXL2 is sumoylated in transfected cell lines, and that endogenous mouse Foxl2 is comparably sumoylated. This modification changes its cellular localization, stability and transcriptional activity. It is intriguing that similar sumoylation and regulatory consequences have also been reported for SOX9, the male counterpart of FOXL2 in somatic gonadal tissues.
Collapse
Affiliation(s)
- Mara Marongiu
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Manila Deiana
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Alessandra Meloni
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Loredana Marcia
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Alessandro Puddu
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
- Università degli Studi di Cagliari, Cagliari, Italy
| | - Antonio Cao
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - David Schlessinger
- National Institute on Aging, National Institiutes of Health, Baltimore, Maryland, United States of America
| | - Laura Crisponi
- Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy
- * E-mail:
| |
Collapse
|
32
|
Bentsi-Barnes IK, Kuo FT, Barlow GM, Pisarska MD. Human forkhead L2 represses key genes in granulosa cell differentiation including aromatase, P450scc, and cyclin D2. Fertil Steril 2009; 94:353-6. [PMID: 19917504 DOI: 10.1016/j.fertnstert.2009.09.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/15/2009] [Accepted: 09/23/2009] [Indexed: 01/12/2023]
Abstract
FOXL2 is expressed in granulosa cells (GC) of small and medium ovarian follicles, functions as a repressor of the human steroidogenic acute regulatory gene, a marker of a GC differentiation, and its mutation is associated with premature ovarian failure (POF) in women with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES), type I. We now report that FOXL2 also represses the transcription of aromatase, P450scc, and cyclin D2, three other key genes involved in GC proliferation, differentiation, and steroidogenesis, and that a FOXL2 mutation found in patients with BPES type I, also fails to repress aromatase transcription, further supporting a role for FOXL2 in follicle maturation.
Collapse
Affiliation(s)
- Ikuko K Bentsi-Barnes
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics/Gynecology, Cedars-Sinai Medical Center, Los Angeles, California 90048 , USA
| | | | | | | |
Collapse
|