1
|
Gallardo-Blanco HL, Garza-Rodríguez MDL, Pérez-Ibave DC, Burciaga-Flores CH, Salinas-Torres VM, González-Escamilla M, Piñeiro-Retif R, Cerda-Flores RM, Vidal-Gutiérrez O, Sanchez-Dominguez CN. Genetic Insights into Breast Cancer in Northeastern Mexico: Unveiling Gene-Environment Interactions and Their Links to Obesity and Metabolic Diseases. Cancers (Basel) 2025; 17:982. [PMID: 40149317 PMCID: PMC11940701 DOI: 10.3390/cancers17060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Breast cancer (BC), one of the most common cancers, has increased in Mexico during the past decade, along with other chronic and metabolic diseases. Methods: Herein, we analyzed 121 SNPs (85 SNPs related to BC and/or glucose-associated metabolic pathways and 36 SNP classified as ancestry markers) in 92 confirmed BC cases and 126 unaffected BC women from Northeastern Mexico. The relationship of these 121 SNPs with BC, considering BMI, menopause status, and age as cofactors, was explored using a gene-environment (G × E) interaction multi-locus model. Results: Twelve gene variants were significantly associated with BC: three located in exome (rs3856806 PPARG, rs12792229 MMP8, and rs5218 KCNJ11-ABCC8), and nine in non-coding regions, which are involved in accelerated decay of the mRNA transcripts, regulatory regions, and flanking regions (rs3917542 PON1; rs3750804 and rs3750805 TCF7L2; rs1121980 and rs3751812 FTO; rs12946618 RPTOR; rs2833483 SCAF4; rs11652805 AMZ2P1-GNA13; and rs1800955 SCT-DEAF1-DRD4). Conclusions: This study identified an association between BC and menopause, age (above 45), obesity, and overweight status with gene variants implicated in diabetes mellitus, obesity, insulin resistance, inflammation, and remodeling of the extracellular matrix.
Collapse
Affiliation(s)
- Hugo Leonid Gallardo-Blanco
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - María de Lourdes Garza-Rodríguez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Diana Cristina Pérez-Ibave
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Carlos Horacio Burciaga-Flores
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Víctor Michael Salinas-Torres
- Departamento de Medicina Genómica, Hospital General Culiacán “Dr. Bernardo J. Gastélum”, Servicios de Salud del Instituto Mexicano del Seguro Social para el Bienestar, Culiacán 80064, SIN, Mexico;
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, SIN, Mexico
| | - Moisés González-Escamilla
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Rafael Piñeiro-Retif
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | | | - Oscar Vidal-Gutiérrez
- Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 66451, NL, Mexico; (H.L.G.-B.); (M.d.L.G.-R.); (D.C.P.-I.); (C.H.B.-F.); (M.G.-E.); (R.P.-R.); (O.V.-G.)
| | - Celia N. Sanchez-Dominguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| |
Collapse
|
2
|
Subramanyan LV, Rasheed SAK, Wang L, Ghosh S, Ong MSN, Lakshmanan M, Wang M, Casey PJ. GNA13 suppresses proliferation of ER+ breast cancer cells via ERα dependent upregulation of the MYC oncogene. Breast Cancer Res 2024; 26:113. [PMID: 38965558 PMCID: PMC11225210 DOI: 10.1186/s13058-024-01866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers. In most cases, Gα12 and Gα13, as closely related α-subunits in the subfamily, have similar cellular roles. However, in recent years their differences in signaling and function have started to emerge. We previously identified that Gα13 drives invasion of Triple Negative Breast Cancer (TNBC) cells in vitro. As a highly heterogenous disease with various well-defined molecular subtypes (ER+ /Her2-, ER+ /Her2+, Her2+, TNBC) and subtype associated outcomes, the function(s) of Gα13 beyond TNBC should be explored. Here, we report the finding that low expression of GNA13 is predictive of poorer survival in breast cancer, which challenges the conventional idea of Gα12/13 being universal oncogenes in solid tumors. Consistently, we found that Gα13 suppresses the proliferation in multiple ER+ breast cancer cell lines (MCF-7, ZR-75-1 and T47D). Loss of GNA13 expression drives cell proliferation, soft-agar colony formation and in vivo tumor formation in an orthotopic xenograft model. To evaluate the mechanism of Gα13 action, we performed RNA-sequencing analysis on these cell lines and found that loss of GNA13 results in the upregulation of MYC signaling pathways in ER+ breast cancer cells. Simultaneous silencing of MYC reversed the proliferative effect from the loss of GNA13, validating the role of MYC in Gα13 regulation of proliferation. Further, we found Gα13 regulates the expression of MYC, at both the transcript and protein level in an ERα dependent manner. Taken together, our study provides the first evidence for a tumor suppressive role for Gα13 in breast cancer cells and demonstrates for the first time the direct involvement of Gα13 in ER-dependent regulation of MYC signaling. With a few exceptions, elevated Gα13 levels are generally considered to be oncogenic, similar to Gα12. This study demonstrates an unexpected tumor suppressive role for Gα13 in ER+ breast cancer via regulation of MYC, suggesting that Gα13 can have subtype-dependent tumor suppressive roles in breast cancer.
Collapse
Affiliation(s)
| | | | - Lijin Wang
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
- Bioinformatics and Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Michelle Shi Ning Ong
- Biopharma Innovations and Solutions, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Manikandan Lakshmanan
- Biopharma Innovations and Solutions, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Dept. of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Song Y, Bai G, Li X, Zhou L, Si Y, Liu X, Deng Y, Shi Y. Bioinformatics analysis of human kallikrein 5 ( KLK5) expression in metaplastic triple-negative breast cancer. CANCER INNOVATION 2023; 2:376-390. [PMID: 38090381 PMCID: PMC10686124 DOI: 10.1002/cai2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2024]
Abstract
Background Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype; most cases are triple-negative breast cancers (TNBCs) and are poorly responsive to conventional systemic therapy. Few potential diagnostic and prognostic markers for distinguishing between metaplastic TNBC and nonmetaplastic TNBC have been discovered. We performed bioinformatic analysis to explore the underlying mechanism by which metaplastic TNBC differs from nonmetaplastic TNBC and provides potential pathogenic genes of metaplastic TNBC. Methods Differentially expressed genes (DEGs) in metaplastic tumors and nonmetaplastic tumors from TNBC patients were screened using GSE165407. The GSE76275 data set and The Cancer Genome Atlas (TCGA) database were used to screen DEGs in TNBC and non-TNBC. Metascape and DAVID were used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis of DEGs. Online databases, including UALCAN, GEPIA, HPA, Breast Cancer Gene-Expression Miner, and quantitative PCR and western blot, were used to examine KLK5 messenger RNA and protein expression in breast cancer. Analysis of KLK5‑associated genes was performed with TCGA data, and the LinkedOmics database was used to detect the genes co-expressed with KLK5. STRING (Search Tool for the Retrieval of Interacting Genes) and Cytoscape were used to screen for hub genes. Kaplan‑Meier plotter was used for survival analysis. Results KLK5 was identified among the DEGs in nonmetaplastic TNBC and metaplastic TNBC. The KLK5 gene was overexpressed in nonmetaplastic TNBC but downregulated in metaplastic TNBC. KEGG and GO analyses revealed that epithelial-to-mesenchymal transition was a pathogenic mechanism in metaplastic TNBC and an important pathway by which KLK5 and its associated genes DSG1 and DSG3 influence metaplastic TNBC progression. Prognosis analysis showed that only low expression of KLK5 in metaplastic TNBC had clinical significance. Conclusion Our research indicated that KLK5 may be a pivotal molecule with a key role in the mechanism of tumorigenesis in metaplastic TNBC.
Collapse
Affiliation(s)
- Yue Song
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Guiying Bai
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaoqing Li
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Liyan Zhou
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yiran Si
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaohui Liu
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yilin Deng
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yehui Shi
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
- Medical Oncology Department of Breast CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- National Clinical Research Center for CancerTianjinChina
| |
Collapse
|
4
|
Jeon Y, Shin YK, Kim H, Choi YY, Kang M, Kwon Y, Cho Y, Chi SW, Shin JE. βPix Guanine Nucleotide Exchange Factor Regulates Regeneration of Injured Peripheral Axons. Int J Mol Sci 2023; 24:14357. [PMID: 37762659 PMCID: PMC10532151 DOI: 10.3390/ijms241814357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Axon regeneration is essential for successful recovery after peripheral nerve injury. Although growth cone reformation and axonal extension are crucial steps in axonal regeneration, the regulatory mechanisms underlying these dynamic processes are poorly understood. Here, we identify βPix (Arhgef7), the guanine nucleotide exchange factor for Rac1 GTPase, as a regulator of axonal regeneration. After sciatic nerve injury in mice, the expression levels of βPix increase significantly in nerve segments containing regenerating axons. In regrowing axons, βPix is localized in the peripheral domain of the growth cone. Using βPix neuronal isoform knockout (NIKO) mice in which the neuronal isoforms of βPix are specifically removed, we demonstrate that βPix promotes neurite outgrowth in cultured dorsal root ganglion neurons and in vivo axon regeneration after sciatic nerve crush injury. Activation of cJun and STAT3 in the cell bodies is not affected in βPix NIKO mice, supporting the local action of βPix in regenerating axons. Finally, inhibiting Src, a kinase previously identified as an activator of the βPix neuronal isoform, causes axon outgrowth defects in vitro, like those found in the βPix NIKO neurons. Altogether, these data indicate that βPix plays an important role in axonal regrowth during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yewon Jeon
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (Y.K.S.); (H.K.); (Y.Y.C.); (M.K.)
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (Y.K.S.); (H.K.); (Y.Y.C.); (M.K.)
| | - Hwigyeong Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (Y.K.S.); (H.K.); (Y.Y.C.); (M.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Yun Young Choi
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (Y.K.S.); (H.K.); (Y.Y.C.); (M.K.)
| | - Minjae Kang
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (Y.K.S.); (H.K.); (Y.Y.C.); (M.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Younghee Kwon
- Department School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongcheol Cho
- Department of Brain Sciences, DGIST, Daegu 42899, Republic of Korea;
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea;
| | - Jung Eun Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (Y.K.S.); (H.K.); (Y.Y.C.); (M.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
5
|
Thüne K, Schmitz M, Wiedenhöft J, Shomroni O, Göbel S, Bunck T, Younas N, Zafar S, Hermann P, Zerr I. Genetic Variants Associated with the Age of Onset Identified by Whole-Exome Sequencing in Fatal Familial Insomnia. Cells 2023; 12:2053. [PMID: 37626863 PMCID: PMC10453322 DOI: 10.3390/cells12162053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Fatal familial insomnia (FFI) is a rare autosomal-dominant inherited prion disease with a wide variability in age of onset. Its causes are not known. In the present study, we aimed to analyze genetic risk factors other than the prion protein gene (PRNP), in FFI patients with varying ages of onset. Whole-exome sequencing (WES) analysis was performed for twenty-five individuals with FFI (D178N-129M). Gene ontology enrichment analysis was carried out by Reactome to generate hypotheses regarding the biological processes of the identified genes. In the present study, we used a statistical approach tailored to the specifics of the data and identified nineteen potential gene variants with a potential effect on the age of onset. Evidence for potential disease modulatory risk loci was observed in two pseudogenes (NR1H5P, GNA13P1) and three protein coding genes (EXOC1L, SRSF11 and MSANTD3). These genetic variants are absent in FFI patients with early disease onset (19-40 years). The biological function of these genes and PRNP is associated with programmed cell death, caspase-mediated cleavage of cytoskeletal proteins and apoptotic cleavage of cellular proteins. In conclusions, our study provided first evidence for the involvement of genetic risk factors additional to PRNP, which may influence the onset of clinical symptoms in FFI.
Collapse
Affiliation(s)
- Katrin Thüne
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
| | - John Wiedenhöft
- Scientific Core Facility Medical Biometry and Statistical Bioinformatics, University Medical Center Goettingen, 37075 Goettingen, Germany;
| | - Orr Shomroni
- NGS-Core Unit for Integrative Genomics, Institute of Human Genetics, University Medical Center Goettingen, 37075 Goettingen, Germany;
| | - Stefan Göbel
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
| | - Neelam Younas
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
| | - Saima Zafar
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
| | - Peter Hermann
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
| | - Inga Zerr
- Department of Neurology, National Reference Center for Human Spongiform Encephalopathies, University Medical Center, Georg-August University, 37075 Goettingen, Germany; (K.T.); (S.G.); (T.B.); (N.Y.); (S.Z.); (P.H.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Goettingen, Germany
| |
Collapse
|
6
|
Identification of potentially functional modules and diagnostic genes related to amyotrophic lateral sclerosis based on the WGCNA and LASSO algorithms. Sci Rep 2022; 12:20144. [PMID: 36418457 PMCID: PMC9684499 DOI: 10.1038/s41598-022-24306-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a genetically and phenotypically heterogeneous disease results in the loss of motor neurons. Mounting information points to involvement of other systems including cognitive impairment. However, neither the valid biomarker for diagnosis nor effective therapeutic intervention is available for ALS. The present study is aimed at identifying potentially genetic biomarker that improves the diagnosis and treatment of ALS patients based on the data of the Gene Expression Omnibus. We retrieved datasets and conducted a weighted gene co-expression network analysis (WGCNA) to identify ALS-related co-expression genes. Functional enrichment analysis was performed to determine the features and pathways of the main modules. We then constructed an ALS-related model using the least absolute shrinkage and selection operator (LASSO) regression analysis and verified the model by the receiver operating characteristic (ROC) curve. Besides we screened the non-preserved gene modules in FTD and ALS-mimic disorders to distinct ALS-related genes from disorders with overlapping genes and features. Altogether, 4198 common genes between datasets with the most variation were analyzed and 16 distinct modules were identified through WGCNA. Blue module had the most correlation with ALS and functionally enriched in pathways of neurodegeneration-multiple diseases', 'amyotrophic lateral sclerosis', and 'endocytosis' KEGG terms. Further, some of other modules related to ALS were enriched in 'autophagy' and 'amyotrophic lateral sclerosis'. The 30 top of hub genes were recruited to a LASSO regression model and 5 genes (BCLAF1, GNA13, ARL6IP5, ARGLU1, and YPEL5) were identified as potentially diagnostic ALS biomarkers with validating of the ROC curve and AUC value.
Collapse
|
7
|
Guo P, Tai Y, Wang M, Sun H, Zhang L, Wei W, Xiang YK, Wang Q. Gα 12 and Gα 13: Versatility in Physiology and Pathology. Front Cell Dev Biol 2022; 10:809425. [PMID: 35237598 PMCID: PMC8883321 DOI: 10.3389/fcell.2022.809425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), as the largest family of receptors in the human body, are involved in the pathological mechanisms of many diseases. Heterotrimeric G proteins represent the main molecular switch and receive cell surface signals from activated GPCRs. Growing evidence suggests that Gα12 subfamily (Gα12/13)-mediated signaling plays a crucial role in cellular function and various pathological processes. The current research on the physiological and pathological function of Gα12/13 is constantly expanding, Changes in the expression levels of Gα12/13 have been found in a wide range of human diseases. However, the mechanistic research on Gα12/13 is scattered. This review briefly describes the structural sequences of the Gα12/13 isoforms and introduces the coupling of GPCRs and non-GPCRs to Gα12/13. The effects of Gα12/13 on RhoA and other signaling pathways and their roles in cell proliferation, migration, and immune cell function, are discussed. Finally, we focus on the pathological impacts of Gα12/13 in cancer, inflammation, metabolic diseases, fibrotic diseases, and circulatory disorders are brought to focus.
Collapse
Affiliation(s)
- Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States.,VA Northern California Health Care System, Mather, CA, United States
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Rasheed SAK, Subramanyan LV, Lim WK, Udayappan UK, Wang M, Casey PJ. The emerging roles of Gα12/13 proteins on the hallmarks of cancer in solid tumors. Oncogene 2022; 41:147-158. [PMID: 34689178 PMCID: PMC8732267 DOI: 10.1038/s41388-021-02069-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
G12 proteins comprise a subfamily of G-alpha subunits of heterotrimeric GTP-binding proteins (G proteins) that link specific cell surface G protein-coupled receptors (GPCRs) to downstream signaling molecules and play important roles in human physiology. The G12 subfamily contains two family members: Gα12 and Gα13 (encoded by the GNA12 and GNA13 genes, respectively) and, as with all G proteins, their activity is regulated by their ability to bind to guanine nucleotides. Increased expression of both Gα12 and Gα13, and their enhanced signaling, has been associated with tumorigenesis and tumor progression of multiple cancer types over the past decade. Despite these strong associations, Gα12/13 proteins are underappreciated in the field of cancer. As our understanding of G protein involvement in oncogenic signaling has evolved, it has become clear that Gα12/13 signaling is pleotropic and activates specific downstream effectors in different tumor types. Further, the expression of Gα12/13 proteins is regulated through a series of transcriptional and post-transcriptional mechanisms, several of which are frequently deregulated in cancer. With the ever-increasing understanding of tumorigenic processes driven by Gα12/13 proteins, it is becoming clear that targeting Gα12/13 signaling in a context-specific manner could provide a new strategy to improve therapeutic outcomes in a number of solid tumors. In this review, we detail how Gα12/13 proteins, which were first discovered as proto-oncogenes, are now known to drive several "classical" hallmarks, and also play important roles in the "emerging" hallmarks, of cancer.
Collapse
Affiliation(s)
| | | | - Wei Kiang Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Udhaya Kumari Udayappan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Patrick J Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Dept. of Pharmacology and Cancer Biology, Duke Univ. Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Lim WK, Chai X, Ghosh S, Ray D, Wang M, Rasheed SAK, Casey PJ. Gα-13 induces C XC motif chemokine ligand 5 expression in prostate cancer cells by transactivating NF-κB. J Biol Chem 2019; 294:18192-18206. [PMID: 31636124 PMCID: PMC6885619 DOI: 10.1074/jbc.ra119.010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
GNA13, the α subunit of a heterotrimeric G protein, mediates signaling through G-protein-coupled receptors (GPCRs). GNA13 is up-regulated in many solid tumors, including prostate cancer, where it contributes to tumor initiation, drug resistance, and metastasis. To better understand how GNA13 contributes to tumorigenesis and tumor progression, we compared the entire transcriptome of PC3 prostate cancer cells with those cells in which GNA13 expression had been silenced. This analysis revealed that GNA13 levels affected multiple CXC-family chemokines. Further investigation in three different prostate cancer cell lines singled out pro-tumorigenic CXC motif chemokine ligand 5 (CXCL5) as a target of GNA13 signaling. Elevation of GNA13 levels consistently induced CXCL5 RNA and protein expression in all three cell lines. Analysis of the CXCL5 promoter revealed that the -505/+62 region was both highly active and influenced by GNA13, and a single NF-κB site within this region of the promoter was critical for GNA13-dependent promoter activity. ChIP experiments revealed that, upon induction of GNA13 expression, occupancy at the CXCL5 promoter was significantly enriched for the p65 component of NF-κB. GNA13 knockdown suppressed both p65 phosphorylation and the activity of a specific NF-κB reporter, and p65 silencing impaired the GNA13-enhanced expression of CXCL5. Finally, blockade of Rho GTPase activity eliminated the impact of GNA13 on NF-κB transcriptional activity and CXCL5 expression. Together, these findings suggest that GNA13 drives CXCL5 expression by transactivating NF-κB in a Rho-dependent manner in prostate cancer cells.
Collapse
Affiliation(s)
- Wei Kiang Lim
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Xiaoran Chai
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857 Singapore
| | - Sujoy Ghosh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857 Singapore
| | - Debleena Ray
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | | | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
10
|
Pampalakis G, Zingkou E, Sidiropoulos KG, Diamandis EP, Zoumpourlis V, Yousef GM, Sotiropoulou G. Biochemical pathways mediated by KLK6 protease in breast cancer. Mol Oncol 2019; 13:2329-2343. [PMID: 30980596 PMCID: PMC6822253 DOI: 10.1002/1878-0261.12493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) is a serine protease normally expressed in mammary tissue and aberrantly regulated in breast cancer. At physiological levels, KLK6 functions as a suppressor of breast cancer, while its aberrant overexpression (> 50-fold higher than normal) is characteristic of a subset of breast cancers and has been linked to accelerated growth of primary breast tumors in severe combined immunodeficiency mice (Pampalakis et al. Cancer Res 2009, 69, 3779). Here, we investigated the molecular mechanisms underlying the concentration-dependent functions of KLK6 by comparing MDA-MB-231 stable transfectants expressing increasing levels of KLK6 in in vitro and in vivo tumorigenicity assays (soft agar, xenograft growth, tail vein metastasis). Quantitative proteomics was applied to identify proteins that are altered upon re-expression of KLK6 in MDA-MB-231 at normal or constitutive levels. Overexpression of KLK6 is associated with increased metastatic ability of breast cancer cells into lungs, increased expression of certain S100 proteins (S100A4, S100A11) and keratins (KRT), and downregulation of the apoptosis-related proteases CASP7 and CASP8, and RABs. On the other hand, KLK6 re-expression at physiological levels leads to inhibition of lung metastases associated with suppression of S100 proteins (S100A4, S100A10, S100A13, S100A16) and induced CASP7 and CASP8 expression. As this is the first report that KLK6 expression is associated with S100 proteins, caspases, RABs, and KRTs, we validated this finding in clinical datasets. By integrating proteomics and microarray data from breast cancer patients, we generated two composite scores, KLK6 + S100B-S100A7 and KLK6 + S100B-S100A14-S100A16, to predict long-term survival of breast cancer patients. We present previously unknown pathways implicating KLK6 in breast cancer. The findings promise to aid our understanding of the functional roles of KLK6 in breast cancer and may yield new biomarkers for the cancer types in which KLK6 is known to be aberrantly upregulated.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Konstantinos Gus Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
11
|
Figueroa CD, Molina L, Bhoola KD, Ehrenfeld P. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer. Biol Chem 2019; 399:937-957. [PMID: 29885274 DOI: 10.1515/hsz-2018-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
The kallikrein family comprises tissue kallikrein and 14 kallikrein-related peptidases (KLKs) recognized as a subgroup of secreted trypsin- or chymotrypsin-like serine proteases. KLKs are expressed in many cellular types where they regulate important physiological activities such as semen liquefaction, immune response, neural development, blood pressure, skin desquamation and tooth enamel formation. Tissue kallikrein, the oldest member and kinin-releasing enzyme, and KLK3/PSA, a tumor biomarker for prostate cancer are the most prominent components of the family. Additionally, other KLKs have shown an abnormal expression in neoplasia, particularly in breast cancer. Thus, increased levels of some KLKs may increase extracellular matrix degradation, invasion and metastasis; other KLKs modulate cell growth, survival and angiogenesis. On the contrary, KLKs can also inhibit angiogenesis and produce tumor suppression. However, there is a lack of knowledge on how KLKs are regulated in tumor microenvironment by molecules present at the site, namely cytokines, inflammatory mediators and growth factors. Little is known about the signaling pathways that control expression/secretion of KLKs in breast cancer, and further how activation of PAR receptors may contribute to functional activity in neoplasia. A better understanding of these molecular events will allow us to consider KLKs as relevant therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Department of Science, Universidad San Sebastián, sede De la Patagonia, Puerto Montt, Chile
| | - Kanti D Bhoola
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Centro de Investigaciones del Sistema Nervioso (CISNe), Valdivia, Chile, e-mail:
| |
Collapse
|
12
|
Zhang Z, Tan X, Luo J, Cui B, Lei S, Si Z, Shen L, Yao H. GNA13 promotes tumor growth and angiogenesis by upregulating CXC chemokines via the NF-κB signaling pathway in colorectal cancer cells. Cancer Med 2018; 7:5611-5620. [PMID: 30267476 PMCID: PMC6246959 DOI: 10.1002/cam4.1783] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/15/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
GNA13 has been found overexpressed in various types of cancer, which is related to tumor metastasis and progression. However, the biological functions of GNA13 in colorectal cancer (CRC) progression remain unclear. This study aimed to explore the role of GNA13 in CRC and investigate the mechanism of how GNA13 promotes tumor growth. Interestingly, our findings showed that GNA13 is commonly upregulated in CRC, where these events are associated with a worse histologic grade and poor survival. Increased expression levels of GNA13 promoted cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas GNA13 silencing abrogated these malignant phenotypes. In addition, overexpressing GNA13 in cancer cells increased the levels of the chemokines CXCL1, CXCL2, and CXCL4, which contributed to CRC proliferation and colony formation. Moreover, our mechanistic investigations suggest that the NF-κB/p65 signaling pathway was activated by the increase in GNA13 levels. Inhibiting the NF-κB/p65 pathway with an inhibitor decreased GNA13-induced migration, invasion and CXCL chemokine level increases, indicating the critical role of NF-κB/p65 signaling in mediating the effects of GNA13 in CRC. Together, these results demonstrate a key role of GNA13 overexpression in CRC that contributes to malignant behavior in cancer cells, at least in part through stimulating angiogenesis and increasing the levels of the NF-κB-dependent chemokines CXCL1, CXCL2, and CXCL4.
Collapse
Affiliation(s)
- Zhongqiang Zhang
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiao Tan
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jing Luo
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Beibei Cui
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sanlin Lei
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhongzhou Si
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liangfang Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hongliang Yao
- Department of General SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
13
|
Rasheed SAK, Leong HS, Lakshmanan M, Raju A, Dadlani D, Chong FT, Shannon NB, Rajarethinam R, Skanthakumar T, Tan EY, Hwang JSG, Lim KH, Tan DSW, Ceppi P, Wang M, Tergaonkar V, Casey PJ, Iyer NG. GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers. Oncogene 2017; 37:1340-1353. [PMID: 29255247 PMCID: PMC6168473 DOI: 10.1038/s41388-017-0038-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022]
Abstract
Treatment failure in solid tumors occurs due to the survival of specific subpopulations of cells that possess tumor-initiating (TIC) phenotypes. Studies have implicated G protein-coupled-receptors (GPCRs) in cancer progression and the acquisition of TIC phenotypes. Many of the implicated GPCRs signal through the G protein GNA13. In this study, we demonstrate that GNA13 is upregulated in many solid tumors and impacts survival and metastases in patients. GNA13 levels modulate drug resistance and TIC-like phenotypes in patient-derived head and neck squamous cell carcinoma (HNSCC) cells in vitro and in vivo. Blockade of GNA13 expression, or of select downstream pathways, using small-molecule inhibitors abrogates GNA13-induced TIC phenotypes, rendering cells vulnerable to standard-of-care cytotoxic therapies. Taken together, these data indicate that GNA13 expression is a potential prognostic biomarker for tumor progression, and that interfering with GNA13-induced signaling provides a novel strategy to block TICs and drug resistance in HNSCCs.
Collapse
Affiliation(s)
| | - Hui Sun Leong
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore
| | - Manikandan Lakshmanan
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Anandhkumar Raju
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Dhivya Dadlani
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Fui-Teen Chong
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore
| | - Nicholas B Shannon
- Department of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | | | | | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Kok Hing Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Daniel Shao-Weng Tan
- Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore
| | - Paolo Ceppi
- IZKF Junior Research Group, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen, Germany
| | - Mei Wang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vinay Tergaonkar
- Mouse Models for Human Cancer Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Patrick J Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore. .,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, USA.
| | - N Gopalakrishna Iyer
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore. .,Cancer Therapeutics Research Laboratory, National Cancer Centre, Singapore, Singapore. .,Department of Surgical Oncology, National Cancer Centre, Singapore, Singapore.
| |
Collapse
|