1
|
Pienkowski T, Golonko A, Bolkun L, Wawrzak-Pienkowska K, Szczerbinski L, Kretowski A, Ciborowski M, Lewandowski W, Priebe W, Swislocka R. Investigation into biased signaling, glycosylation, and drug vulnerability of acute myeloid leukemia. Pharmacol Ther 2025; 270:108848. [PMID: 40194743 DOI: 10.1016/j.pharmthera.2025.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Understanding and harnessing biased signaling offers significant potential for developing novel therapeutic strategies or enhancing existing treatments. By managing biased signaling, it is possible to minimize adverse effects, including toxicity, and to optimize therapeutic outcomes by selectively targeting beneficial pathways. In the context of acute myeloid leukemia (AML), a highly aggressive blood cancer characterized by the rapid proliferation of abnormal myeloid cells in the bone marrow and blood, the dysregulation of these signaling pathways, particularly those involving G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs), significantly contributes to disease progression and therapeutic resistance. Traditional therapies for AML often struggle with resistance and toxicity, leading to poor patient outcomes. However, by exploiting the concept of biased signaling, researchers may be able to design drugs that selectively activate pathways that inhibit cancer cell growth while avoiding those that contribute to resistance or toxicity. Glycosylation, a key post-translational modification (PTM), plays a crucial role in biased signaling by altering receptor conformation and ligand-binding affinity, thereby affecting the outcome of biased signaling. Chemokine receptors like CXCR4, which are often overexpressed and heavily glycosylated in AML, serve as targets for therapeutic intervention. By externally inducing or inhibiting specific PTMs, it may be possible to further refine therapeutic strategies, unlocking new possibilities for developing more effective and less toxic treatments. This review highlights the importance of understanding the dynamic relationship between glycosylation and biased signaling in AML, which is essential for the development of more effective treatments and overcoming drug resistance, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Aleksandra Golonko
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland; Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Wawrzak-Pienkowska
- Department of Gastroenterology, Hepatology and Internal Diseases, Voivodeship Hospital in Bialystok, 15-278 Bialystok, Poland; Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Wlodzimierz Lewandowski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351 Bialystok, Poland
| |
Collapse
|
2
|
Fallon BS, Rondem KE, Mumby EJ, English JG. Biased Signaling in G Protein-Coupled Receptors: Understanding the Biological Relevance and Tools for Probing Functionally Selective Ligands. Biochemistry 2025; 64:1425-1436. [PMID: 40100969 DOI: 10.1021/acs.biochem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biased signaling has transformed pharmacology by revealing that receptors, particularly G protein-coupled receptors (GPCRs), can activate specific intracellular pathways selectively rather than uniformly. This discovery enables the development of targeted therapeutics that minimize side effects by precisely modulating receptor activity. Functionally selective ligands, which preferentially activate distinct signaling branches, have become essential tools for exploring receptor mechanisms and uncovering the complexities of GPCR signaling. These ligands help clarify receptor function in various physiological and pathological contexts, offering profound implications for therapeutic innovation. GPCRs, which mediate a wide range of cellular responses through coupling to G proteins and arrestins, are key pharmacological targets, with nearly a third of FDA-approved drugs acting on them. Recent advancements in biosensor development, multiplex assay platforms, and deep mutational scanning methods are improving our ability to define GPCR signaling, allowing for a better understanding of biased signaling pathways.
Collapse
Affiliation(s)
- Braden S Fallon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Kathleen E Rondem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Elizabeth J Mumby
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132-2101, United States
| |
Collapse
|
3
|
Yang J, Lu H, Li L. Chemokines: Orchestration of the Tumor Microenvironment and Control of Hepatocellular Carcinoma Progression. Cancer Med 2025; 14:e70789. [PMID: 40145607 PMCID: PMC11948061 DOI: 10.1002/cam4.70789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Chemokines, a family of chemotactic cytokines, play a central role in shaping the tumor microenvironment (TME) and in influencing the progression of hepatocellular carcinoma (HCC), a well-known inflammation-related cancer. This review addresses the intricate interplay between chemokines and HCC and highlights their multifaceted role. We discuss how altered expression of chemokines within the TME contributes to the development of HCC by orchestrating the recruitment of immune cells, ultimately leading to immunosuppression. In addition, we are investigating the contribution of chemokines to important features of HCC progression, including angiogenesis and epithelial-mesenchymal transition (EMT). The potential of chemokines as serum biomarkers for HCC diagnosis and their potential as novel therapeutic targets are also explored. This comprehensive review emphasizes the importance of chemokines in the pathogenesis of HCC and their potential for a better understanding and treatment of this difficult disease.
Collapse
Affiliation(s)
- Jiezuan Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesHangzhouChina
| | - Haifeng Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesHangzhouChina
| | - Lanjuan Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesHangzhouChina
| |
Collapse
|
4
|
Ma Y, Patterson B, Zhu L. Biased signaling in GPCRs: Structural insights and implications for drug development. Pharmacol Ther 2025; 266:108786. [PMID: 39719175 DOI: 10.1016/j.pharmthera.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans, playing a crucial role in regulating diverse cellular processes and serving as primary drug targets. Traditional drug design has primarily focused on ligands that uniformly activate or inhibit GPCRs. However, the concept of biased agonism-where ligands selectively stabilize distinct receptor conformations, leading to unique signaling outcomes-has introduced a paradigm shift in therapeutic development. Despite the promise of biased agonists to enhance drug efficacy and minimize side effects, a comprehensive understanding of the structural and biophysical mechanisms underlying biased signaling is essential. Recent advancements in GPCR structural biology have provided unprecedented insights into ligand binding, conformational dynamics, and the molecular basis of biased signaling. These insights, combined with improved techniques for characterizing ligand efficacy, have driven the development of biased ligands for several GPCRs, including opioid, angiotensin, and adrenergic receptors. This review synthesizes these developments, from mechanisms to drug discovery in biased signaling, emphasizing the role of structural insights in the rational design of next-generation biased agonists with superior therapeutic profiles. Ultimately, these advances hold the potential to revolutionize GPCR-targeted drug discovery, paving the way for more precise and effective treatments.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Brandon Patterson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States.
| |
Collapse
|
5
|
Boon K, Vanalken N, Szpakowska M, Chevigné A, Schols D, Van Loy T. High-affinity ELR+ chemokine ligands show G protein bias over β-arrestin recruitment and receptor internalization in CXCR1 signaling. J Biol Chem 2025; 301:108044. [PMID: 39615686 PMCID: PMC11732455 DOI: 10.1016/j.jbc.2024.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
The human CXC chemokine receptor 1 (CXCR1), a G protein-coupled receptor (GPCR), plays significant roles in inflammatory diseases and cancer. While CXCL8 is a well-established high-affinity ligand for CXCR1, there is no consensus regarding the binding ability of the other ELR+ chemokines (CXCL1-3 and CXCL5-8). Since research has predominantly focused on CXCL8-mediated CXCR1 signaling, insight into potential signaling bias induced by different CXCR1 ligands is lacking. Therefore, in this study we first compared and clarified the binding ability of all ELR+ chemokines using a competition binding assay. In this assay CXCL1-3 and CXCL5 behaved as low-affinity ligands while CXCL6-8 were high affinity ligands. We further investigated potential ligand bias within the CXCR1 signaling system. Using NanoBRET-based assays heterotrimeric G protein dissociation, β-arrestin recruitment and receptor internalization induced by chemokine binding to CXCR1 were investigated. A quantitative and qualitative investigation of ligand bias showed that the high-affinity ELR+ chemokines were biased towards G protein activation over β-arrestin recruitment and receptor internalization, when CXCL8 was used as a reference ligand.
Collapse
Affiliation(s)
- Katrijn Boon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium
| | - Nathan Vanalken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Leuven, Belgium.
| |
Collapse
|
6
|
Morales P, Scharf MM, Bermudez M, Egyed A, Franco R, Hansen OK, Jagerovic N, Jakubík J, Keserű GM, Kiss DJ, Kozielewicz P, Larsen O, Majellaro M, Mallo-Abreu A, Navarro G, Prieto-Díaz R, Rosenkilde MM, Sotelo E, Stark H, Werner T, Wingler LM. Progress on the development of Class A GPCR-biased ligands. Br J Pharmacol 2024. [PMID: 39261899 DOI: 10.1111/bph.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 09/13/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs) continue to garner interest for their essential roles in cell signalling and their importance as drug targets. Although numerous drugs in the clinic target these receptors, over 60% GPCRs remain unexploited. Moreover, the adverse effects triggered by the available unbiased GPCR modulators, limit their use and therapeutic value. In this context, the elucidation of biased signalling has opened up new pharmacological avenues holding promise for safer therapeutics. Functionally selective ligands favour receptor conformations facilitating the recruitment of specific effectors and the modulation of the associated pathways. This review surveys the current drug discovery landscape of GPCR-biased modulators with a focus on recent advances. Understanding the biological effects of this preferential coupling is at different stages depending on the Class A GPCR family. Therefore, with a focus on individual GPCR families, we present a compilation of the functionally selective modulators reported over the past few years. In doing so, we dissect their therapeutic relevance, molecular determinants and potential clinical applications.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Magdalena M Scharf
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marcel Bermudez
- Institute for Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Attila Egyed
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Olivia K Hansen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jan Jakubík
- Institute of Physiology Czech Academy of Sciences, Prague, Czech Republic
| | - György M Keserű
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal Chemistry Research Group and National Drug Discovery and Development Laboratory, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Olav Larsen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ana Mallo-Abreu
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Tobias Werner
- Heinrich Heine University Düsseldorf, Institut fuer Pharmazeutische und Medizinische Chemie, Duesseldorf, Germany
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
7
|
Jonczyk A, Gottschalk M, Mangan MS, Majlesain Y, Thiem MW, Burbaum LC, Weighardt H, Latz E, Mayer G, Förster I. Topical application of a CCL22-binding aptamer suppresses contact allergy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102254. [PMID: 39071952 PMCID: PMC11278340 DOI: 10.1016/j.omtn.2024.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested in vitro. The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS in vivo after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m ex vivo demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.
Collapse
Affiliation(s)
- Anna Jonczyk
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany
| | - Marlene Gottschalk
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | | | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Manja W. Thiem
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lea-Corinna Burbaum
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Günter Mayer
- Centre of Aptamer Research and Development, University of Bonn, 53121 Bonn, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
8
|
Gareri C, Pfeiffer CT, Jiang X, Paulo JA, Gygi SP, Pham U, Chundi A, Wingler LM, Staus DP, Stepniewski TM, Selent J, Lucero EY, Grogan A, Rajagopal S, Rockman HA. Phosphorylation patterns in the AT1R C-terminal tail specify distinct downstream signaling pathways. Sci Signal 2024; 17:eadk5736. [PMID: 39137246 PMCID: PMC11443182 DOI: 10.1126/scisignal.adk5736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Different ligands stabilize specific conformations of the angiotensin II type 1 receptor (AT1R) that direct distinct signaling cascades mediated by heterotrimeric G proteins or β-arrestin. These different active conformations are thought to engage distinct intracellular transducers because of differential phosphorylation patterns in the receptor C-terminal tail (the "barcode" hypothesis). Here, we identified the AT1R barcodes for the endogenous agonist AngII, which stimulates both G protein activation and β-arrestin recruitment, and for a synthetic biased agonist that only stimulates β-arrestin recruitment. The endogenous and β-arrestin-biased agonists induced two different ensembles of phosphorylation sites along the C-terminal tail. The phosphorylation of eight serine and threonine residues in the proximal and middle portions of the tail was required for full β-arrestin functionality, whereas phosphorylation of the serine and threonine residues in the distal portion of the tail had little influence on β-arrestin function. Similarly, molecular dynamics simulations showed that the proximal and middle clusters of phosphorylated residues were critical for stable β-arrestin-receptor interactions. These findings demonstrate that ligands that stabilize different receptor conformations induce different phosphorylation clusters in the C-terminal tail as barcodes to evoke distinct receptor-transducer engagement, receptor trafficking, and signaling.
Collapse
Affiliation(s)
- Clarice Gareri
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Conrad T. Pfeiffer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Xue Jiang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Laura M. Wingler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P. Staus
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Emilio Y. Lucero
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alyssa Grogan
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Kayastha K, Zhou Y, Brünle S. Structural perspectives on chemokine receptors. Biochem Soc Trans 2024; 52:1011-1024. [PMID: 38856028 PMCID: PMC11346446 DOI: 10.1042/bst20230358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Chemokine receptors are integral to the immune system and prime targets in drug discovery that have undergone extensive structural elucidation in recent years. We outline a timeline of these structural achievements, discuss the intracellular negative allosteric modulation of chemokine receptors, analyze the mechanisms of orthosteric receptor activation, and report on the emerging concept of biased signaling. Additionally, we highlight differences of G-protein binding among chemokine receptors. Intracellular allosteric modulators in chemokine receptors interact with a conserved motif within transmembrane helix 7 and helix 8 and exhibit a two-fold inactivation mechanism that can be harnessed for drug-discovery efforts. Chemokine recognition is a multi-step process traditionally explained by a two-site model within chemokine recognition site 1 (CRS1) and CRS2. Recent structural studies have extended our understanding of this complex mechanism with the identification of CRS1.5 and CRS3. CRS3 is implicated in determining ligand specificity and surrounds the chemokine by almost 180°. Within CRS3 we identified the extracellular loop 2 residue 45.51 as a key interaction mediator for chemokine binding. Y2917.43 on the other hand was shown in CCR1 to be a key determinant of signaling bias which, along with specific chemokine-dependent phosphorylation ensembles at the G-protein coupled receptors (GPCR's) C-terminus, seems to play a pivotal role in determining the direction of signal bias in GPCRs.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Yangli Zhou
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
10
|
Luscombe VB, Wang P, Russell AJ, Greaves DR. Biased agonists of GPR84 and insights into biological control. Br J Pharmacol 2024; 181:1509-1523. [PMID: 38148720 DOI: 10.1111/bph.16310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
GPR84 was first identified as an open reading frame encoding an orphan Class A G protein coupled receptor in 2001. Gpr84 mRNA is expressed in a limited number of cell types with the highest levels of expression being in innate immune cells, M1 polarised macrophages and neutrophils. The first reported ligands for this receptor were medium chain fatty acids with chain lengths between 9 and 12 carbons. Subsequently, a series of synthetic agonists that signal via the GPR84 receptor were identified. Radioligand binding assays and molecular modelling with site-directed mutagenesis suggest the presence of three ligand binding sites on the receptor, but the physiological agonist(s) of the receptor remain unidentified. Here, we review the effects of GPR84 agonists on innate immune cells following a series of chemical discoveries since 2001. The development of highly biased agonists has helped to probe receptor function in vitro, and the remaining challenge is to follow the effects of biased signalling to the physiological functions of innate immune cell types. LINKED ARTICLES: This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.
Collapse
Affiliation(s)
| | - Pinqi Wang
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
La Cognata V, Morello G, Guarnaccia M, Cavallaro S. The multifaceted role of the CXC chemokines and receptors signaling axes in ALS pathophysiology. Prog Neurobiol 2024; 235:102587. [PMID: 38367748 DOI: 10.1016/j.pneurobio.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease with complex genetic basis and still no clear etiology. Multiple intertwined layers of immune system-related dysfunctions and neuroinflammatory mechanisms are emerging as substantial determinants in ALS onset and progression. In this review, we collect the increasingly arising evidence implicating four main CXC chemokines/cognate receptors signaling axes (CXCR1/2-CXCL1/2/8; CXCR3-CXCL9/10/11; CXCR4/7-CXCL12; CXCR5-CXCL13) in the pathophysiology of ALS. Findings in preclinical models implicate these signaling pathways in motor neuron toxicity and neuroprotection, while in ALS patients dysregulation of CXCLs/CXCRs has been shown at both central and peripheral levels. Immunological monitoring of CXC-ligands in ALS may allow tracking of disease progression, while pharmacological modulation of CXC-receptors provides a novel therapeutic strategy. A deeper understanding of the interplay between CXC-mediated neuroinflammation and ALS is crucial to advance research into treatments for this debilitating uncurable disorder.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, Catania 95126, Italy.
| |
Collapse
|
12
|
Vanalken N, Boon K, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic Assessment of Human CCR7 Signalling Using NanoBRET Biosensors Points towards the Importance of the Cellular Context. BIOSENSORS 2024; 14:142. [PMID: 38534251 DOI: 10.3390/bios14030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited β-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.
Collapse
Affiliation(s)
- Nathan Vanalken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Katrijn Boon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Gardner J, Eiger DS, Hicks C, Choi I, Pham U, Chundi A, Namjoshi O, Rajagopal S. GPCR kinases differentially modulate biased signaling downstream of CXCR3 depending on their subcellular localization. Sci Signal 2024; 17:eadd9139. [PMID: 38349966 PMCID: PMC10927030 DOI: 10.1126/scisignal.add9139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of β-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.
Collapse
Affiliation(s)
- Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | | | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Anand Chundi
- Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Ojas Namjoshi
- Center for Drug Discovery RTI International, Research Triangle Park, NC, 27709, USA
- Present address: Engine Biosciences, 733 Industrial Rd., San Carlos, CA, 94070, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| |
Collapse
|
14
|
Boon K, Vanalken N, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic assessment of chemokine ligand bias at the human chemokine receptor CXCR2 indicates G protein bias over β-arrestin recruitment and receptor internalization. Cell Commun Signal 2024; 22:43. [PMID: 38233929 PMCID: PMC10795402 DOI: 10.1186/s12964-023-01460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, β-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in β-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards β-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of β-arrestin1/2 subtypes, respectively. However, compared to β-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.
Collapse
Affiliation(s)
- Katrijn Boon
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Nathan Vanalken
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), Esch-Sur-Alzette, Luxembourg
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Tom Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
15
|
Srivastava N, Mishra Y, Mishra V. Dendrimers: A novel and efficient carrier for anti-HIV drugs. AIP CONFERENCE PROCEEDINGS 2024; 3007:030154. [DOI: 10.1063/5.0195747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Sarma P, Carino CMC, Seetharama D, Pandey S, Dwivedi-Agnihotri H, Rui X, Cao Y, Kawakami K, Kumari P, Chen YC, Luker KE, Yadav PN, Luker GD, Laporte SA, Chen X, Inoue A, Shukla AK. Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system. Nat Commun 2023; 14:4808. [PMID: 37558722 PMCID: PMC10412580 DOI: 10.1038/s41467-023-40482-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207. We observe that CXCR7 lacks G-protein-coupling while maintaining robust βarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected but exhibits significantly reduced βarr-coupling compared to CXCR7. These two receptors induce distinct βarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We also identify a key contribution of a single phosphorylation site in CXCR7 for βarr recruitment and endosomal localization. Our study provides molecular insights into intrinsic-bias encoded in the CXCR4-CXCR7 system with broad implications for drug discovery.
Collapse
Affiliation(s)
- Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Carlo Marion C Carino
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Deeksha Seetharama
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Xue Rui
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Poonam Kumari
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Yu-Chih Chen
- Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Prem N Yadav
- Neuroscience and Ageing Biology Division, CSIR-Central Drug Research Institute Sector 10, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G 1Y6, Canada
- Department of Medicine, McGill University Health Center, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Xin Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
17
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
18
|
Kaffashi K, Dréau D, Nesmelova IV. Heterodimers Are an Integral Component of Chemokine Signaling Repertoire. Int J Mol Sci 2023; 24:11639. [PMID: 37511398 PMCID: PMC10380872 DOI: 10.3390/ijms241411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a family of signaling proteins that play a crucial role in cell-cell communication, cell migration, and cell trafficking, particularly leukocytes, under both normal and pathological conditions. The oligomerization state of chemokines influences their biological activity. The heterooligomerization occurs when multiple chemokines spatially and temporally co-localize, and it can significantly affect cellular responses. Recently, obligate heterodimers have emerged as tools to investigate the activities and molecular mechanisms of chemokine heterodimers, providing valuable insights into their functional roles. This review focuses on the latest progress in understanding the roles of chemokine heterodimers and their contribution to the functioning of the chemokine network.
Collapse
Affiliation(s)
- Kimia Kaffashi
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
19
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Hicks C, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. Cell Chem Biol 2023; 30:362-382.e8. [PMID: 37030291 PMCID: PMC10147449 DOI: 10.1016/j.chembiol.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 04/10/2023]
Abstract
G protein-coupled receptor (GPCR)-biased agonism, selective activation of certain signaling pathways relative to others, is thought to be directed by differential GPCR phosphorylation "barcodes." At chemokine receptors, endogenous chemokines can act as "biased agonists", which may contribute to the limited success when pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomics studies. Mutation of CXCR3 phosphosites altered β-arrestin 2 conformation in cellular assays and was consistent with conformational changes observed in molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes, leading to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S Eiger
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Jeffrey S Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Dermatology Program, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Nicole M Knape
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Justin D Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Jana Selent
- Research Program on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Jon M Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
20
|
Shpakov AO. Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 2023; 24:6187. [PMID: 37047169 PMCID: PMC10094638 DOI: 10.3390/ijms24076187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Allosteric regulation is critical for the functioning of G protein-coupled receptors (GPCRs) and their signaling pathways. Endogenous allosteric regulators of GPCRs are simple ions, various biomolecules, and protein components of GPCR signaling (G proteins and β-arrestins). The stability and functional activity of GPCR complexes is also due to multicenter allosteric interactions between protomers. The complexity of allosteric effects caused by numerous regulators differing in structure, availability, and mechanisms of action predetermines the multiplicity and different topology of allosteric sites in GPCRs. These sites can be localized in extracellular loops; inside the transmembrane tunnel and in its upper and lower vestibules; in cytoplasmic loops; and on the outer, membrane-contacting surface of the transmembrane domain. They are involved in the regulation of basal and orthosteric agonist-stimulated receptor activity, biased agonism, GPCR-complex formation, and endocytosis. They are targets for a large number of synthetic allosteric regulators and modulators, including those constructed using molecular docking. The review is devoted to the principles and mechanisms of GPCRs allosteric regulation, the multiplicity of allosteric sites and their topology, and the endogenous and synthetic allosteric regulators, including autoantibodies and pepducins. The allosteric regulation of chemokine receptors, proteinase-activated receptors, thyroid-stimulating and luteinizing hormone receptors, and beta-adrenergic receptors are described in more detail.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
21
|
Eiger DS, Smith JS, Shi T, Stepniewski TM, Tsai CF, Honeycutt C, Boldizsar N, Gardner J, Nicora CD, Moghieb AM, Kawakami K, Choi I, Zheng K, Warman A, Alagesan P, Knape NM, Huang O, Silverman JD, Smith RD, Inoue A, Selent J, Jacobs JM, Rajagopal S. Phosphorylation barcodes direct biased chemokine signaling at CXCR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532634. [PMID: 36993369 PMCID: PMC10055163 DOI: 10.1101/2023.03.14.532634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptor (GPCR) biased agonism, the activation of some signaling pathways over others, is thought to largely be due to differential receptor phosphorylation, or "phosphorylation barcodes." At chemokine receptors, ligands act as "biased agonists" with complex signaling profiles, which contributes to the limited success in pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation. Chemokine stimulation resulted in distinct changes throughout the kinome in global phosphoproteomic studies. Mutation of CXCR3 phosphosites altered β-arrestin conformation in cellular assays and was confirmed by molecular dynamics simulations. T cells expressing phosphorylation-deficient CXCR3 mutants resulted in agonist- and receptor-specific chemotactic profiles. Our results demonstrate that CXCR3 chemokines are non-redundant and act as biased agonists through differential encoding of phosphorylation barcodes and lead to distinct physiological processes.
Collapse
Affiliation(s)
- Dylan S. Eiger
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S. Smith
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children’s Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | - Kouki Kawakami
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC 27710 USA
| | - Kevin Zheng
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Priya Alagesan
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Nicole M. Knape
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Ouwen Huang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Justin D. Silverman
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, 08003, Spain
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
22
|
Finneran D, Li Q, Subbarayan MS, Joly-Amado A, Kamath S, Dengler DG, Gordon MN, Jackson MR, Morgan D, Bickford PC, Smith LH, Nash KR. Concentration and proteolysis of CX3CL1 may regulate the microglial response to CX3CL1. Glia 2023; 71:245-258. [PMID: 36106533 PMCID: PMC9772123 DOI: 10.1002/glia.24269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
Fractalkine (FKN) is a membrane-bound chemokine that can be cleaved by proteases such as ADAM 10, ADAM 17, and cathepsin S to generate soluble fragments. Studies using different forms of the soluble FKN yield conflicting results in vivo. These observations prompted us to investigate the function and pharmacology of two commonly used isoforms of FKN, a human full-length soluble FKN (sFKN), and a human chemokine domain only FKN (cdFKN). Both are prevalent in the literature and are often assumed to be functionally equivalent. We observed that recombinant sFKN and cdFKN exhibit similar potencies in a cell-based cAMP assay, but binding affinity for CX3CR1 was modestly different. There was a 10-fold difference in potency between sFKN and cdFKN when assessing their ability to stimulate β-arrestin recruitment. Interestingly, high concentrations of FKN, regardless of cleavage variant, were ineffective at reducing pro-inflammatory microglial activation and may induce a pro-inflammatory response. This effect was observed in mouse and rat primary microglial cells as well as microglial cell lines. The inflammatory response was exacerbated in aged microglia, which is known to exhibit age-related inflammatory phenotypes. We observed the same effects in Cx3cr1-/- primary microglia and therefore speculate that an alternative FKN receptor may exist. Collectively, these data provide greater insights into the function and pharmacology of these common FKN reagents, which may clarify conflicting reports and urge greater caution in the selection of FKN peptides for use in in vitro and in vivo studies and the interpretation of results obtained using these differing peptides.
Collapse
Affiliation(s)
- Dylan Finneran
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
- Michigan State University, Department of Translational Neuroscience, 400 Monroe Ave. NW, Grand Rapids, MI, United States
| | - Qingyou Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Meena S. Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, 1650 Owens St, San Francisco, CA 94158
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Siddharth Kamath
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Daniela G. Dengler
- Conrad Prebys Center for Chemical Genomics, Sandford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Marcia N. Gordon
- Michigan State University, Department of Translational Neuroscience, 400 Monroe Ave. NW, Grand Rapids, MI, United States
| | - Michael R. Jackson
- Conrad Prebys Center for Chemical Genomics, Sandford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Dave Morgan
- Michigan State University, Department of Translational Neuroscience, 400 Monroe Ave. NW, Grand Rapids, MI, United States
| | - Paula C. Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
- Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Layton H. Smith
- Conrad Prebys Center for Chemical Genomics, Sandford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| |
Collapse
|
23
|
Discovery of Bis-Imidazoline Derivatives as New CXCR4 Ligands. Molecules 2023; 28:molecules28031156. [PMID: 36770826 PMCID: PMC9920567 DOI: 10.3390/molecules28031156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.
Collapse
|
24
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Kirchner S, Hicks C, Choi I, Pham U, Zheng K, Warman A, Smith JS, Zhang JY, Rajagopal S. Location bias contributes to functionally selective responses of biased CXCR3 agonists. Nat Commun 2022; 13:5846. [PMID: 36195635 PMCID: PMC9532441 DOI: 10.1038/s41467-022-33569-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023] Open
Abstract
Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, β-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, β-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.
Collapse
Affiliation(s)
| | | | | | - Julia Gardner
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Stephen Kirchner
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27707, USA
| | - Chloe Hicks
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Issac Choi
- Department of Medicine, Duke University, Durham, NC, 27710, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Kevin Zheng
- Harvard Medical School, Boston, MA, 02115, USA
| | - Anmol Warman
- Trinity College, Duke University, Durham, NC, 27710, USA
| | - Jeffrey S Smith
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Dermatology Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, 27707, USA
- Department of Pathology, Duke University, Durham, NC, 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
- Department of Medicine, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
25
|
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022; 79:512. [PMID: 36094626 PMCID: PMC9468113 DOI: 10.1007/s00018-022-04539-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine–chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany
| | - Elena Siminkovitch
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jeremy A Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Vanessa Rohde
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Fröhlich
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jona Golemi
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Michael K Otabil
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Junfu Luo
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kevin H Mayo
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Biochemistry, Molecular Biology and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
26
|
Cellular Electrical Impedance as a Method to Decipher CCR7 Signalling and Biased Agonism. Int J Mol Sci 2022; 23:ijms23168903. [PMID: 36012168 PMCID: PMC9408853 DOI: 10.3390/ijms23168903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The human C-C chemokine receptor type 7 (CCR7) has two endogenous ligands, C-C chemokine ligand 19 (CCL19) and CCL21, displaying biased agonism reflected by a pronounced difference in the level of β-arrestin recruitment. Detecting this preferential activation generally requires the use of separate, pathway-specific label-based assays. In this study, we evaluated an alternative methodology to study CCR7 signalling. Cellular electrical impedance (CEI) is a label-free technology which yields a readout that reflects an integrated cellular response to ligand stimulation. CCR7-expressing HEK293 cells were stimulated with CCL19 or CCL21, which induced distinct impedance profiles with an apparent bias during the desensitisation phase of the response. This discrepancy was mainly modulated by differential β-arrestin recruitment, which shaped the impedance profile but did not seem to contribute to it directly. Pathway deconvolution revealed that Gαi-mediated signalling contributed most to the impedance profile, but Gαq- and Gα12/13-mediated pathways were also involved. To corroborate these results, label-based pathway-specific assays were performed. While CCL19 more potently induced β-arrestin2 recruitment and receptor internalisation than CCL21, both chemokines showed a similar level of Gαi protein activation. Altogether, these findings indicate that CEI is a powerful method to analyse receptor signalling and biased agonism.
Collapse
|
27
|
Georgakis MK, Bernhagen J, Heitman LH, Weber C, Dichgans M. Targeting the CCL2-CCR2 axis for atheroprotection. Eur Heart J 2022; 43:1799-1808. [PMID: 35567558 DOI: 10.1093/eurheartj/ehac094] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Decades of research have established atherosclerosis as an inflammatory disease. Only recently though, clinical trials provided proof-of-concept evidence for the efficacy of anti-inflammatory strategies with respect to cardiovascular events, thus offering a new paradigm for lowering residual vascular risk. Efforts to target the inflammasome-interleukin-1β-interleukin-6 pathway have been highly successful, but inter-individual variations in drug response, a lack of reduction in all-cause mortality, and a higher rate of infections also highlight the need for a second generation of anti-inflammatory agents targeting atherosclerosis-specific immune mechanisms while minimizing systemic side effects. CC-motif chemokine ligand 2/monocyte-chemoattractant protein-1 (CCL2/MCP-1) orchestrates inflammatory monocyte trafficking between the bone marrow, circulation, and atherosclerotic plaques by binding to its cognate receptor CCR2. Adding to a strong body of data from experimental atherosclerosis models, a coherent series of recent large-scale genetic and observational epidemiological studies along with data from human atherosclerotic plaques highlight the relevance and therapeutic potential of the CCL2-CCR2 axis in human atherosclerosis. Here, we summarize experimental and human data pinpointing the CCL2-CCR2 pathway as an emerging drug target in cardiovascular disease. Furthermore, we contextualize previous efforts to interfere with this pathway, scrutinize approaches of ligand targeting vs. receptor targeting, and discuss possible pathway-intrinsic opportunities and challenges related to pharmacological targeting of the CCL2-CCR2 axis in human atherosclerotic disease.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Center of Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christian Weber
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
28
|
Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol 2022; 18:264-271. [PMID: 34949837 PMCID: PMC8885419 DOI: 10.1038/s41589-021-00918-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Biased signaling of G protein-coupled receptors describes an ability of different ligands that preferentially activate an alternative downstream signaling pathway. In this work, we identified and characterized different N-terminal truncations of endogenous chemokine CCL15 as balanced or biased agonists targeting CCR1, and presented three cryogenic-electron microscopy structures of the CCR1-Gi complex in the ligand-free form or bound to different CCL15 truncations with a resolution of 2.6-2.9 Å, illustrating the structural basis of natural biased signaling that initiates an inflammation response. Complemented with pharmacological and computational studies, these structures revealed it was the conformational change of Tyr291 (Y2917.43) in CCR1 that triggered its polar network rearrangement in the orthosteric binding pocket and allosterically regulated the activation of β-arrestin signaling. Our structure of CCL15-bound CCR1 also exhibited a critical site for ligand binding distinct from many other chemokine-receptor complexes, providing new insights into the mode of chemokine recognition.
Collapse
|
29
|
Spiller S, Wippold T, Bellmann-Sickert K, Franz S, Saalbach A, Anderegg U, Beck-Sickinger AG. Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model. Pharmaceutics 2021; 13:pharmaceutics13101597. [PMID: 34683890 PMCID: PMC8539926 DOI: 10.3390/pharmaceutics13101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration.
Collapse
Affiliation(s)
- Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Tom Wippold
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Anja Saalbach
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| |
Collapse
|
30
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
31
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
32
|
Biological characterization of ligands targeting the human CC chemokine receptor 8 (CCR8) reveals the biased signaling properties of small molecule agonists. Biochem Pharmacol 2021; 188:114565. [PMID: 33872569 DOI: 10.1016/j.bcp.2021.114565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
The human CC chemokine receptor 8 (CCR8) is a promising drug target for cancer immunotherapy and autoimmune disease. Besides human and viral chemokines, previous studies revealed diverse classes of CCR8-targeting small molecules. We characterized a selection of these CCR8 ligands (hCCL1, vCCL1, ZK756326, AZ6; CCR8 agonists and a naphthalene-sulfonamide-based CCR8 antagonist), in in vitro cell-based assays (hCCL1AF647 binding, calcium mobilization, cellular impedance, cell migration, β-arrestin 1/2 recruitment), and used pharmacological tools to determine G protein-dependent and -independent signaling pathways elicited by these ligands. Our data reveal differences in CCR8-mediated signaling induced by chemokines versus small molecules, which was most pronounced in cell migration studies. Human CCL1 most efficiently induced cell migration whereby Gβγ signaling was indispensable. In contrast, Gβγ signaling did not contribute to cell migration induced by other CCR8 ligands (vCCL1, ZK756326, AZ6). Although all tested CCR8 agonists were full agonists for calcium mobilization, a significant contribution for Gβγ signaling herein was only apparent for human and viral CCL1. Despite both Gαi- and Gαq-signaling regulate intracellular Ca2+-release, cellular impedance experiments showed that CCR8 agonists predominantly induce Gαi-dependent signaling. Finally, small molecule agonists displayed higher efficacy in β-arrestin 1 recruitment, which occurred independently of Gαi signaling. Also in this latter assay, only hCCL1-induced activity was dependent on Gβγ-signaling. Our study provides insight into CCR8 signaling and function and demonstrates differential CCR8 activation by different classes of ligands. This reflects the ability of CCR8 small molecules to evoke different subsets of the receptor's signaling repertoire, which categorizes them as biased agonists.
Collapse
|
33
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of approved therapeutic targets. Ligands stimulating these receptors specifically activate multiple signalling pathways that induce not only the desired therapeutic response, but sometimes untolerated side effects that limit their clinical use. The diversity in signalling induced by each ligand could be considered a viable path for improving this situation. Biased agonism, which offers the promise of identifying pathway-selective drugs has been proposed as a means to exploit this opportunity. However, identifying biased agonists is not an easy process and quantifying ligand bias for a given signalling pathway requires careful consideration and control of several confounding factors. To date, the molecular mechanisms of biased signalling remain unclear and known theories that constitute our understanding of the mechanisms underlying therapeutic and side effects are still being challenged, making the strategy of selecting promising potential drugs more difficult. This special issue summarizes the latest advances in the discovery and optimization of biased ligands for different GPCRs. It also focuses on identifying novel insights into the field of biased agonism, while at the same time, highlighting the conceptual and experimental limitations of that concept for drug discovery. This aims to broaden our understanding of the signalling induced by the various identified biased agonists and provide perspectives that could straighten our path towards the development of more effective and tolerable therapeutics.
Collapse
Affiliation(s)
- Karim Nagi
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar.
| | - H Ongun Onaran
- Ankara University, Faculty of Medicine, Department of Pharmacology, Molecular Biology and Technology Development Unit, Ankara, Turkey
| |
Collapse
|