1
|
Abu-Serie MM, Blasco MA. Diethyldithiocarbamate-Cu 4O 3 nanocomplex induced mitochondrial and telomerase dysfunction in non-small cell lung cancer. Nanomedicine (Lond) 2025:1-14. [PMID: 40377424 DOI: 10.1080/17435889.2025.2502321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Targeting cancer stem cells (CSCs)-mediated aggressive features of non-small cell lung cancer (NSCLC) is a promising anticancer approach. This can be accomplished via suppressing critical mediators, such as functional mitochondria, aldehyde dehydrogenase (ALDH)1A, and telomere protectors (telomerase reverse transcriptase (TERT) and telomere repeat binding factor (TRF)1). MATERIALS & METHODS Copper nanocomplexes (diethyldithiocarbamate (DE)-Cu4O3 nanoparticles (NPs) and DE-Cu NPs) were prepared using the simplest green chemistry method and assessed for inducing mitochondrial dysfunction-dependent non-apoptotic pathway (cuproptosis) and repressing CSC markers. RESULTS DE-Cu4O3 NPs had higher growth inhibition for NSCLC (A549, H520, and H1299) spheroids than DE-Cu NPs. DE-Cu4O3 NPs had higher uptake rate and prooxidant effect resulting in lower mitochondrial membrane potential and mitochondrial DNA copy number, as well as stronger inhibition of telomerase and ALDH1A than DE-Cu NPs. This caused dramatic redox imbalance and lowering AKT pathway (activator of telomere stabilizers and stemness)-mediated repression of TERT and TRF1 protein levels as well as phosphorylated NF-κB subunit (p65) led to collapsing telomeres, as evidenced by downregulating TERT regulators and confocal microscopy. In animal study, this active nanocomplex revealed powerful and selective therapeutic tumor-targeting effects, with no evidence of toxicity to healthy tissues. CONCLUSION DE-Cu4O3 nanocomplex is deemed as promising nanomedicine for NSCLC.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
2
|
Xu K, Kang Y, Wang J, Hou Y, Zheng W, Tian W, Liang C, Liu Y, Xiang X. SYT7 accelerates nasopharyngeal carcinoma progression via ALDH1A3-mediated STAT3 signaling activation. Oncogenesis 2025; 14:16. [PMID: 40346036 PMCID: PMC12064795 DOI: 10.1038/s41389-025-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a special histological and ethical type of head and neck cancer with unsatisfactory clinical outcome. Thus, exploring effective molecular targets is critical for NPC treatment. We observed increased expression levels of synaptotagmin-7 (SYT7) in NPC tissues, which correlated with unfavorable prognoses. Furthermore, knockdown of SYT7 in NPC cells suppressed proliferation and migration rates, and enhanced apoptosis. In contrast, overexpression of SYT7 accelerated NPC tumor growth. Using whole-genome gene arrays and immunoprecipitation-mass spectrometry assays, aldehyde dehydrogenase 1 family member A3 (ALDH1A3), a regulator of glycolytic metabolism, was identified as a critical downstream target of SYT7. Mechanistically, SYT7 binds and promotes ALDH1A3 deubiquitination, resulting in decreased ALDH1A3 degradation. Notably, we also observed an increased expression of ALDH1A3 in NPC. More importantly, the knockdown of ALDH1A3 resulted in suppressed proliferation, migration, glycolysis, and promoted apoptosis, all of which could be restored by the overexpression of SYT7 in NPC cells. Taken together, we found that SYT7 increases ALDH1A3-mediated STAT3 activation and glycolysis, contributing to NPC progression, which provides a possible molecular mechanism for the development of targeted therapeutics interventions.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Otolaryngology, Zibo Central Hospital, Zibo, China
| | - Ying Hou
- Department of Otolaryngology, Zibo Central Hospital, Zibo, China
| | - Wenxiang Zheng
- Central of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Wenxiu Tian
- Central of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Chuanjie Liang
- Central of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Yongliang Liu
- Department of Otolaryngology, Zibo Central Hospital, Zibo, China.
| | - Xinxin Xiang
- Central of Translational Medicine, Zibo Central Hospital, Zibo, China.
| |
Collapse
|
3
|
Rosa M, Dupont A, Smadja DM, Soquet J, Abdoul J, Pamart T, Vincent F, Le Tanno C, Borowczak E, Bigot T, Ung A, Vaast B, Daniel M, Jashari R, Mouquet F, Delhaye C, Sottejeau Y, Rancic J, Corseaux D, Juthier F, Staels B, Susen S, Van Belle E. Aortic Valve Calcification Is Induced by the Loss of ALDH1A1 and Can Be Prevented by Agonists of Retinoic Acid Receptor Alpha: Preclinical Evidence for Drug Repositioning. Circulation 2025; 151:1329-1341. [PMID: 39989358 DOI: 10.1161/circulationaha.124.071954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND To date, the only effective treatment of severe aortic stenosis is valve replacement. With the introduction of transcatheter aortic valve replacement and extending indications to younger patients, the use of bioprosthetic valves (BPVs) has considerably increased. The main inconvenience of BPVs is their limited durability because of mechanisms similar as the fibro-calcifying processes observed in native aortic stenosis. One of the major gaps of the field is to identify therapeutic targets to prevent or slow the fibro-calcifying process leading to severe and symptomatic aortic stenosis. METHODS Explanted valves were collected from patients and organ donor hearts. A comparative transcriptomic analysis was performed on valvular interstitial cells (VIC) obtained from calcified (bicuspid and tricuspid) versus control valves. The mechanisms and consequences of aldehyde dehydrogenase 1 family member A1 (ALDH1A1) downregulation were analyzed in VIC cultures from control human aortic valves. ALDH1A1 was inhibited or silenced and its impact on osteogenic marker expression and calcification processes assessed in VIC. The effect of all-trans retinoic acid on calcification was tested on human VIC cultures and on 2 animal models: the model of subcutaneous implantation of bovine pericardium in rats and the model of xenograft aortic valve replacement in juvenile sheep. RESULTS Transcriptome analysis of human VIC identified ALDH1A1 as the most downregulated gene in VIC from calcified versus control valves. In human VIC, ALDH1A1 expression is downregulated by TGF-β in a SMAD2/3-dependent manner. ALDH1A1 inhibition promotes an osteoblast-like VIC phenotype and increases calcium deposition through inhibition of retinoic acid receptor alpha signaling. Conversely, VIC treatment with retinoids decreases calcium deposition and attenuates VIC osteoblast activity. Last, all-trans retinoic acid inhibits calcification development of aortic BPV in both in vivo models and improves aortic valve echocardiographic parameters in the xenograft sheep model. CONCLUSIONS These results show that ALDH1A1 is downregulated in calcified valves, hence promoting VIC transition into an osteoblastic phenotype. Retinoic acid receptor alpha agonists, including all-trans retinoic acid through a drug repositioning strategy, represent a promising and innovative pharmacological approach to prevent calcification of native aortic valves and BPV.
Collapse
Affiliation(s)
- Mickael Rosa
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Annabelle Dupont
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - David M Smadja
- Université de Paris Cité, Innovative Therapies in Hemostasis, Inserm, France (D.M.S., J.R.)
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, France (D.M.S., J.R.)
| | - Jérôme Soquet
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Johan Abdoul
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Thibault Pamart
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Flavien Vincent
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Department of Interventional Cardiology for Coronary, Valves and Structural Heart Diseases (F.V., C.D., E.V.B.), CHU Lille, France
| | - Christina Le Tanno
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Eloise Borowczak
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Timothée Bigot
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Alexandre Ung
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Bertrand Vaast
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Mélanie Daniel
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | | | - Frédéric Mouquet
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Cedric Delhaye
- Department of Interventional Cardiology for Coronary, Valves and Structural Heart Diseases (F.V., C.D., E.V.B.), CHU Lille, France
| | - Yoann Sottejeau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Jeanne Rancic
- Université de Paris Cité, Innovative Therapies in Hemostasis, Inserm, France (D.M.S., J.R.)
- Hematology Department, AP-HP, Georges Pompidou European Hospital, Paris, France (D.M.S., J.R.)
| | - Delphine Corseaux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Francis Juthier
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Department of Cardiac Surgery (F.J.), CHU Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
| | - Sophie Susen
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Hemostasis and Transfusion Department (A.D., A.U., B.V., M.D., F.M., S.S.), CHU Lille, France
| | - Eric Van Belle
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1011-EGID (M.R., A.D., J.S., J.A., T.P., F.V., C.L.T., E.B., T.B., A.U., B.V., M.D., Y.S., D.C., F.J., B.S., S.S., E.V.B.), CHU Lille, France
- Department of Interventional Cardiology for Coronary, Valves and Structural Heart Diseases (F.V., C.D., E.V.B.), CHU Lille, France
| |
Collapse
|
4
|
Paul SK, Guendouzi A, Banerjee A, Guendouzi A, Haldar R. Identification of approved drugs with ALDH1A1 inhibitory potential aimed at enhancing chemotherapy sensitivity in cancer cells: an in-silico drug repurposing approach. J Biomol Struct Dyn 2025; 43:3830-3844. [PMID: 38189344 DOI: 10.1080/07391102.2023.2300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
The aldehyde dehydrogenase 1A1 (ALDH1A1) also known as retinal dehydrogenase, is an enzyme normally involved in the cellular metabolism, development and detoxification processes in healthy cells. However, it's also considered a cancer stem cell marker and its high levels of expression in several cancers, including breast, lung, ovarian, and colon cancer have been associated with poor prognosis and resistance to chemotherapy. Given its crucial role in chemotherapy resistance by detoxification of chemotherapeutic drugs, ALDH1A1 has attracted significant research interest as a potential therapeutic target for cancer. Though a few synthetic inhibitors of ALDH1A1 have been synthesized and their efficacy has been proved in-vitro and in-vivo studies, none of them have passed clinical trials so far. In this scenario, we have performed an in-silico study to verify whether any of the already approved drugs used for various purposes has the ability to inhibit catalytic activity of ALDH1A1, so that they can be repurposed for cancer therapy. Keeping in mind the feasibility of repurposing in a larger population we have selected the approved drugs from five widely used drug categories such as antibiotic, antiviral, antifungal, anti diabetic and antihypertensive for screening. Computational techniques like molecular docking, molecular dynamics simulations and MM-PBSA binding energy calculation have been used in this study to screen the approved drugs. Based on the logical analysis of results, we propose that three drugs - telmisartan, irbesartan and maraviroc can inhibit the catalytic activity of ALDH1A1 and thus can be repurposed to increase chemotherapy sensitivity in cancer cells.
Collapse
Affiliation(s)
- Sanjay Kumar Paul
- Department of Physiology, University of Calcutta, Kolkata, India
- Department of Zoology, Rammohan College, Kolkata, West Bengal, India
| | - Abdelmadjid Guendouzi
- Center for Research in Pharmaceutical Sciences (CRSP), Constantine, Algeria
- Ecole Normale Supérieure ENS Constantine, Constantine, Algeria
| | | | | | - Rajen Haldar
- Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Abu-Serie MM, Gutiérrez-García AK, Enman M, Vaish U, Fatima H, Dudeja V. Ferroptosis- and stemness inhibition-mediated therapeutic potency of ferrous oxide nanoparticles-diethyldithiocarbamate using a co-spheroid 3D model of pancreatic cancer. J Gastroenterol 2025; 60:641-657. [PMID: 39888413 PMCID: PMC12014774 DOI: 10.1007/s00535-025-02213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem). This is mainly attributed to the antioxidant defense system (glutathione and aldehyde dehydrogenase (ALDH) 1A1), which sustains stemness features of cancer stem cells (CSCs) and activated pancreatic stellate cells (PSCs)-generated excess stromal proteins. This dense stroma retards drug delivery. METHODS This study established co-spheroid model consisting of mouse PDAC cell line (KPC) and PSCs (1:5) to accurately investigate the anti-PDAC activity of nanocomplex of ferrous oxide nanoparticles-diethyldithiocarbamate (FeO NPs-DE), compared to Gem, using in vitro and in vivo 3D models. RESULTS In vitro and in vivo co-spheroid models demonstrated higher therapeutic efficacy of FeO NPs-DE than Gem. FeO NPs-DE induced selective accumulation of iron-dependent ferroptosis (non-apoptosis)-generated a lethal lipid peroxidation that was potentiated by DE-mediated glutathione and ALDH1A1 suppression. This led to collapse of stemness, as evidenced by down-regulating CSC genes and p-AKT protein expression. Subsequently, gene and/or protein levels of PSC activators (transforming growth factor (TGF)-β, plasminogen activator inhibitor-1, ZEB1, and phosphorylated extracellular signal-regulated kinase) and stromal proteins (collagen 1A2, smooth muscle actin, fibronectin, and matrix metalloproteinase-9) were suppressed. Moreover, DE of nanocomplex enhanced caspase 3-dependent apoptosis with diminishing the main oncogene, BCL-2. CONCLUSIONS FeO NPs-DE had a stronger eradicating effect than Gem on primary and metastatic peritoneal PDAC tumors. This nanocomplex-mediated ferroptosis and stemness inhibition provides an effective therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| | - Ana K Gutiérrez-García
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Macie Enman
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Utpreksha Vaish
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Huma Fatima
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35249, USA
| | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| |
Collapse
|
6
|
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V, Vlahopoulos S. ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 2025; 29:213. [PMID: 40093866 PMCID: PMC11905208 DOI: 10.3892/ol.2025.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all-trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1-induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance-inducing effects is associated with the stemness-supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem-like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting-edge methods that detect the expression of tracked biomarkers within tumors.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Varlı M, Bhosle SR, Jo E, Yu YH, Yang Y, Ha HH, Kim H. Development and synthesis of diffractaic acid analogs as potent inhibitors of colorectal cancer stem cell traits. Sci Rep 2025; 15:6695. [PMID: 40000756 PMCID: PMC11861905 DOI: 10.1038/s41598-025-90552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, evidence for the anti-cancer activity of lichen secondary metabolites has been rapidly increasing. In this study, we synthesised analogues of diffractaic acid, a lichen secondary metabolite, and evaluated their ability to suppress colorectal cancer stem potential. Among the 10 compounds after H/CH₃/benzylation of the diffractaic acid structure or modifications in an aromatic hydrophobic domain, TU3 has a more inhibition effect on the stem potential of colorectal cancer compared to other compounds. The compound TU3 targets ALDH1 and suppresses key signalling pathways such as WNT, STAT3, NF-κB, Hedgehog, and AP-1. Inhibition of these signalling pathways by TU3 contribute to attenuate the survival mechanisms of colorectal cancer stem cell and thus inhibit cancer progression.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Suresh R Bhosle
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Eunsol Jo
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Young Hyun Yu
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Yi Yang
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
8
|
Nguyen AL, Facey COB, Boman BM. The Significance of Aldehyde Dehydrogenase 1 in Cancers. Int J Mol Sci 2024; 26:251. [PMID: 39796106 PMCID: PMC11720537 DOI: 10.3390/ijms26010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The goal of this paper is to discuss the role of ALDH isozymes in different cancers, review advances in ALDH1-targeting cancer therapies, and explore a mechanism that explains how ALDH expression becomes elevated during cancer development. ALDH is often overexpressed in cancer, and each isoform has a unique expression pattern and a distinct role in different cancers. The abnormal expression of ALDHs in different cancer types (breast, colorectal, lung, gastric, cervical, melanoma, prostate, and renal) is presented and correlated with patient prognosis. ALDH plays a significant role in various cellular functions, such as metabolism, oxidative stress response, detoxification, and cellular differentiation. Among the ALDH families, ALDH1 has gained considerable attention as a cancer stem cell (CSC) marker due to its significant role in the maintenance of stemness and the differentiation of stem cells (SCs), along with its involvement in tumorigenesis. A description of the cellular mechanisms and physiology of ALDH1 that underlies cancer development is provided. Moreover, current advances in ALDH1-targeting cancer therapies are discussed.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Vangala V, Chen YC, Dinavahi SS, Gowda K, Lone NA, Herlyn M, Drabick J, Helm K, Zhu J, Neves RI, Sharma AK, Berg A, Archetti M, Amin S, Schell TD, Robertson GP. Tumor Heterogeneity Shapes Survival Dynamics in Drug-Treated Cells, Revealing Size-Drifting Subpopulations. ACS Pharmacol Transl Sci 2024; 7:3573-3584. [PMID: 39539277 PMCID: PMC11555517 DOI: 10.1021/acsptsci.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The goal of this project was to demonstrate that subpopulations of cells in tumors can uniquely fluctuate in size in response to environmental conditions created during drug treatment, thereby acting as a dynamic "rheostat" to create a favorable tumor environment for growth. The cancer modeling used for these studies was subpopulations of melanoma cells existing in cultured and tumor systems that differed in aldehyde dehydrogenase (ALDH) activity. However, similar observations were found in other cancer types in addition to melanoma, making them applicable broadly across cancer. The approach was designed to show that either ALDHhigh and ALDHlow subpopulations rapidly epigenetically transition between stem-cell-like high into nonstem-like low production states to create an environment during drug treatment that would enable optimal cellular proliferation and tumor expansion to facilitate drug resistance. The controlled experiments showed proportional changes in each cell population to reach an evolutionarily stable equilibrium mediated by the needed levels of ALDH enzyme activity. Mechanistically, cell population size changes served to functionally move the aldehyde and the resulting reactive oxygen species (ROS) levels to those compatible with optimal cellular proliferation with population fluctuations dependent on the levels of drug induced tumor stress. This is the first report documenting fluctuations in the sizes of cell populations in tumors to cooperatively assist in drug resistance development.
Collapse
Affiliation(s)
- Venugopal Vangala
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Yu-Chi Chen
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Saketh S. Dinavahi
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Krishne Gowda
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Nazir A. Lone
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Meenhard Herlyn
- Molecular
and Cellular Oncogenesis Program and Melanoma Research Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Joseph Drabick
- Department
of Medicine, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Klaus Helm
- Department
of Dermatology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Jiyue Zhu
- Department
of Pharmaceutical Sciences, Washington State
University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington 99202, United States
| | - Rogerio I. Neves
- Department
of Surgery, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Arun K. Sharma
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Arthur Berg
- Department
of Public Health Sciences, Pennsylvania
State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Marco Archetti
- Department
of Biology, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Shantu Amin
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Todd D. Schell
- Department
of Microbiology and Immunology, Pennsylvania
State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Gavin P. Robertson
- Department
of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Department
of Dermatology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Department
of Pathology, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Department
of Surgery, Pennsylvania State University
College of Medicine, Hershey, Pennsylvania 17033, United States
- Foreman
Foundation for Melanoma Research, Pennsylvania
State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Melanoma
Center, Pennsylvania State University College
of Medicine, Hershey, Pennsylvania 17033, United States
- Melanoma
Therapeutics Program, Pennsylvania State
University College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
10
|
Kumar A, Sharma V, Behl T, Ganesan S, Nathiya D, Gulati M, Khalid M, Elossaily GM, Chigurupati S, Sachdeva M. Insights into medicinal attributes of imidazo[1,2-a]pyridine derivatives as anticancer agents. Arch Pharm (Weinheim) 2024; 357:e2400402. [PMID: 39221527 DOI: 10.1002/ardp.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cancer ranks among the most life-threatening diseases worldwide and is continuously affecting all age groups. Consequently, many research studies are being carried out to develop new cancer treatments, but many of them experience resistance and cause severe toxicity to the patients. Therefore, there is a continuous need to design novel anticancer agents that are target-based, have a higher potency, and have minimal toxicity. The imidazo[1,2-a]pyridine (IP) pharmacophore has been found to be a prominent moiety in the field of medicinal chemistry due to its vast biological properties. Also, it holds immense potential for combating cancer with minimal side effects, depending on the substitution patterns of the core structure. IPs exhibit significant capability in regulating various cellular pathways, offering possibilities for targeted anticancer effects. The present review summarizes the anticancer profile of numerous IP derivatives synthesized and developed by various researchers from 2016 till now, as inhibitors of phosphoinositide-3-kinase/mammalian target of rapamycin (PI3K/mTOR), protein kinase B/mammalian target of rapamycin (Akt/mTOR), aldehyde dehydrogenase (ALDH), and tubulin polymerization. This review provides a comprehensive analysis of the anticancer activity afforded by the discussed IP compounds, emphasizing the structure-activity-relationships (SARs). The aim is also to underscore the potential therapeutic future of the IP moiety as a potent partial structure for upcoming cancer drug development and to aid researchers in the field of rational drug design.
Collapse
Affiliation(s)
- Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Jiménez R, Constantinescu A, Yazir M, Alfonso-Triguero P, Pequerul R, Parés X, Pérez-Alea M, Candiota AP, Farrés J, Lorenzo J. Targeting Retinaldehyde Dehydrogenases to Enhance Temozolomide Therapy in Glioblastoma. Int J Mol Sci 2024; 25:11512. [PMID: 39519068 PMCID: PMC11546810 DOI: 10.3390/ijms252111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GB) is an aggressive malignant central nervous system tumor that is currently incurable. One of the main pitfalls of GB treatment is resistance to the chemotherapeutic standard of care, temozolomide (TMZ). The role of aldehyde dehydrogenases (ALDHs) in the glioma stem cell (GSC) subpopulation has been related to chemoresistance. ALDHs take part in processes such as cell proliferation, differentiation, invasiveness or metastasis and have been studied as pharmacological targets in cancer treatment. In the present work, three novel α,β-acetylenic amino thiolester compounds, with demonstrated efficacy as ALDH inhibitors, were tested in vitro on a panel of six human GB cell lines and one murine GB cell line. Firstly, the expression of the ALDH1A isoforms was assessed, and then inhibitors were tested for their cytotoxicity and their ability to inhibit cellular ALDH activity. Drug combination assays with TMZ were performed, as well as an assessment of the cell death mechanism and generation of ROS. A knockout of several ALDH genes was carried out in one of the human GB cell lines, allowing us to discuss their role in cell proliferation, migration capacity and resistance to treatment. Our results strongly suggest that ALDH inhibitors could be an interesting approach in the treatment of GB, with EC50 values in the order of micromolar, decreasing ALDH activity in GB cell lines to 40-50%.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Andrada Constantinescu
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Muhube Yazir
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Paula Alfonso-Triguero
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, E-08193 Bellaterra, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Mileidys Pérez-Alea
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Ana Paula Candiota
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Julia Lorenzo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| |
Collapse
|
12
|
Adasme-Reyes S, Fuentes J, Gutiérrez-Vega I, Isla E, Pérez V, Ponce C, Quilaqueo ME, Herrera-Marschitz M, Quintanilla ME, Vásquez D, Rivera-Meza M. Pharmacological activators of ALDH2: A new strategy for the treatment of alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:153-177. [PMID: 39523053 DOI: 10.1016/bs.irn.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In mammals, ethanol is metabolized to acetaldehyde mainly by the liver alcohol dehydrogenase (ADH), and acetaldehyde is subsequently oxidized to acetate by mitochondrial aldehyde dehydrogenase (ALDH2). The presence of an inactive variant of ALDH2 or the use of inhibitors of this enzyme leads to an accumulation of acetaldehyde after ethanol consumption, generating an aversive reaction that inhibits subsequent alcohol intake. However, experimental evidence shows that acetaldehyde has potent rewarding effects at the central level, suggesting that acetaldehyde would be responsible for the addictive effect of alcohol. Alda-1 is an organic molecule that acts as a pharmacological activator of ALDH2. Studies in animal models of alcohol use disorders (AUD; i.e. alcoholism) have shown that Alda-1 can inhibit the acquisition, the chronic intake, and the relapse of alcohol consumption. These effects are reversible without any effects on water consumption or other natural reinforcer such as saccharin. It has also been reported that Alda-1 can act as a protective agent from the toxic effects on various tissues and organs mediated by ethanol-derived acetaldehyde, including liver damage, cancer, and central nervous system (CNS) alterations. Using in silico tools such as molecular docking the identification of important molecular interactions between Alda-1 and ALDH2 has been demonstrated, identifying new molecules with higher pharmacological features. Thus, there is now preclinical evidence supporting the use of activators of ALDH2 as a pharmacological strategy for the treatment of AUD.
Collapse
Affiliation(s)
- Sofía Adasme-Reyes
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Juan Fuentes
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Ignacio Gutiérrez-Vega
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Eduardo Isla
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Vicente Pérez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Carolina Ponce
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - María Elena Quilaqueo
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - David Vásquez
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile.
| |
Collapse
|
13
|
Kaltsas A, Chrisofos M, Symeonidis EN, Zachariou A, Stavropoulos M, Kratiras Z, Giannakodimos I, Symeonidis A, Dimitriadis F, Sofikitis N. To Drink or Not to Drink? Investigating Alcohol's Impact on Prostate Cancer Risk. Cancers (Basel) 2024; 16:3453. [PMID: 39456547 PMCID: PMC11506468 DOI: 10.3390/cancers16203453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is a significant global health issue. The relationship between alcohol consumption and PCa risk has been the subject of extensive research, yet findings remain inconsistent. This review aims to clarify the association between alcohol intake and PCa risk, its aggressiveness, and the potential metabolic pathways involved in PCa onset. METHODS A comprehensive literature search was conducted across multiple databases, including PubMed and MEDLINE, focusing on epidemiological studies, meta-analyses, cohort studies, and case-control studies. Studies evaluating alcohol consumption, prostate-specific antigen (PSA) levels, and PCa risk were included. The review also explored the roles of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in alcohol metabolism. RESULTS The analysis reveals a complex relationship between alcohol consumption and PCa. Heavy alcohol intake is associated with an increased risk of PCa, particularly more aggressive forms, and higher mortality rates. However, studies also show weak or no association between moderate alcohol consumption and PCa. The variability in findings may be attributed to differences in alcohol types, regional factors, and study methodologies. CONCLUSIONS The link between alcohol consumption and PCa risk is multifaceted. While heavy drinking appears to increase the risk of aggressive PCa, the overall relationship remains unclear. Further research is needed to better understand these associations and inform public health recommendations and cancer prevention strategies.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.); (M.S.); (Z.K.); (I.G.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.); (M.S.); (Z.K.); (I.G.)
| | | | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Marios Stavropoulos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.); (M.S.); (Z.K.); (I.G.)
| | - Zisis Kratiras
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.); (M.S.); (Z.K.); (I.G.)
| | - Ilias Giannakodimos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (M.C.); (M.S.); (Z.K.); (I.G.)
| | - Asterios Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (F.D.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.S.); (F.D.)
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
14
|
Ueda H, Ishiguro T, Mori Y, Yamawaki K, Okamoto K, Enomoto T, Yoshihara K. Glycolysis-mTORC1 crosstalk drives proliferation of patient-derived endometrial cancer spheroid cells with ALDH activity. Cell Death Discov 2024; 10:435. [PMID: 39394200 PMCID: PMC11470041 DOI: 10.1038/s41420-024-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
Cancer stem cells are associated with aggressive phenotypes of malignant tumors. A prominent feature of uterine endometrial cancer is the activation of the PI3K-Akt-mTOR pathway. In this study, we present variations in sensitivities to a PI3K-Akt-mTORC1 inhibitor among in vitro endometrial cancer stem cell-enriched spheroid cells from clinical specimens. The in vitro sensitivity was consistent with the effects observed in in vivo spheroid-derived xenograft tumor models. Our findings revealed a complementary suppressive effect on endometrial cancer spheroid cell growth with the combined use of aldehyde dehydrogenase (ALDH) and PI3K-Akt inhibitors. In the PI3K-Akt-mTORC1 signaling cascade, the influence of ALDH on mTORC1 was partially channeled through retinoic acid-induced lactate dehydrogenase A (LDHA) activation. LDHA inhibition was found to reduce endometrial cancer cell growth, aligning with the effects of mTORC1 inhibition. Building upon our previous findings highlighting ALDH-driven glycolysis through GLUT1 in uterine endometrial cancer spheroid cells, curbing mTORC1 enhanced glucose transport via GLUT1 activation. Notably, elevated LDHA expression correlated with adverse clinical survival and escalated tumor grade, especially in advanced stages. Collectively, our findings emphasize the pivotal role of ALDH-LDHA-mTORC1 cascade in the proliferation of endometrial cancer. Targeting the interaction between mTORC1 and ALDH-influenced glycolysis holds promise for developing novel strategies to combat this aggressive cancer.
Collapse
Affiliation(s)
- Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
15
|
Bai K, Hou Y, Zhang Z, Yuan F, Huang X, Liu P, Zou X, Sun J. A New Rat Model of Sacral Cord Injury Producing a Neurogenic Bladder and Its Functional and Mechanistic Studies. Biomolecules 2024; 14:1141. [PMID: 39334907 PMCID: PMC11429646 DOI: 10.3390/biom14091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Sacral spinal cord injury (SSCI) can disrupt bladder neuromodulation and impair detrusor function. Current studies provide limited information on the histologic and genetic changes associated with SSCI-related neurogenic lower urinary tract dysfunction (NLUTD), resulting in few treatment options. This study aimed to establish a simple animal model of SSCI to better understand the disease progression. Ninety 8-week-old Sprague-Dawley (SD) rats were randomly separated into sham operation and SSCI groups. The SSCI group underwent sacral spinal cord injury, while the sham group did not. Urodynamic and histological assessments were conducted at various intervals (1, 2, 3, 4, and 6 weeks) post-injury to elucidate the disease process. Urodynamic examinations revealed significant bladder dysfunction in the SSCI group compared to the sham group, stabilizing around 3-4 weeks post-injury. Histological examination, including hematoxylin-eosin and Masson's trichrome staining, correlated these functional changes with bladder microstructural alterations. RNA-seq was performed on bladder tissues from the sham group and SSCI group at 6 weeks to identify differentially expressed genes and pathways. Selected genes were further analyzed using polymerase chain reaction (PCR). The findings indicated a pronounced inflammatory response in the first 2 weeks post-SSCI, progressing to bladder fibrosis at 3-4 weeks. In conclusion, this study presents a reliable, reproducible, and straightforward SSCI model, providing insights into bladder functional and morphological alterations post-SSCI and laying the groundwork for future therapeutic research.
Collapse
Affiliation(s)
- Kaiping Bai
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| | - Zhiyuan Zhang
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| | - Fei Yuan
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| | - Xiaoling Huang
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| | - Pengtao Liu
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China
| |
Collapse
|
16
|
Datta N, Vp S, Parvathy K, A S S, Maliekal TT. ALDH1A1 as a marker for metastasis initiating cells: A mechanistic insight. Exp Cell Res 2024; 442:114213. [PMID: 39173941 DOI: 10.1016/j.yexcr.2024.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property. That subset of metastatic cells possessing CSC property are referred to as metastasis initiating cells (MICs). Among the different cellular intermediates regulating metastasis in response to hypoxia by inducing EMT and self-renewal property, ALDH1A1 is a critical molecule, which can be used as a marker for MICs in a wide variety of malignancies. The cytosolic ALDHs can irreversibly convert retinal to retinoic acid (RA), which initiates RA signaling, important for self-renewal and EMT. The metastasis permissive tumor microenvironment increases the expression of ALDH1A1, primarily through HIF1α, and leads to metabolic reprograming through OXPHOS regulation. The ALDH1A1 expression and its high activity can reprogram the cancer cells with the transcriptional upregulation of several genes, involved in EMT through RA signaling to manifest hybrid EMT or Hybrid E/M phenotype, which is important for acquiring the characteristics of MICs. Thus, the review on this topic highlights the use of ALDH1A1 as a marker for MICs, and reporters for the marker can be effectively used to trace the population in mouse models, and to screen drugs that target MICs.
Collapse
Affiliation(s)
- Nandini Datta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Snijesh Vp
- Division of Molecular Medicine, St. John's Research Institute, St John's National Academy of Health Sciences, Bangalore, 560034, India
| | - K Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Sneha A S
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
17
|
Magrassi L, Pinton G, Luzzi S, Comincini S, Scravaglieri A, Gigliotti V, Bernardoni BL, D’Agostino I, Juretich F, La Motta C, Garavaglia S. A New Vista of Aldehyde Dehydrogenase 1A3 (ALDH1A3): New Specific Inhibitors and Activity-Based Probes Targeting ALDH1A3 Dependent Pathways in Glioblastoma, Mesothelioma and Other Cancers. Cancers (Basel) 2024; 16:2397. [PMID: 39001459 PMCID: PMC11240489 DOI: 10.3390/cancers16132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Aldehyde dehydrogenases of the subfamily 1A (ALDH1A) are enzymes necessary for the oxidation of all-trans or 9-cis retinal to retinoic acid (RA). Retinoic acid and its derivatives are important for normal development and maintenance of epithelia, reproduction, memory, and immune function in adults. Moreover, in recent years, it has been demonstrated that ALDH1A members are also expressed and functional in several human cancers where their role is not limited to the synthesis of RA. Here, we review the current knowledge about ALDH1A3, one of the 1A isoforms, in cancers with an emphasis on two of the deadliest tumors that affect humans: glioblastoma multiforme and mesothelioma. In both tumors, ALDH1A3 is considered a negative prognostic factor, and its level correlates with excessive proliferation, chemoresistance, and invasiveness. We also review the recent attempts to develop both ALDH1A3-selective inhibitors for cancer therapy and ALDH1A3-specific fluorescent substrates for fluorescence-guided tumor resection.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
- Istituto di Genetica Molecolare—CNR, 27100 Pavia, Italy
| | - Giulia Pinton
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Sabino Luzzi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Sergio Comincini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy;
| | - Andrea Scravaglieri
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Valentina Gigliotti
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Bianca Laura Bernardoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Francesca Juretich
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Silvia Garavaglia
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| |
Collapse
|
18
|
Duan X, Hu H, Wang L, Chen L. Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int 2024. [PMID: 38800962 DOI: 10.1002/cbin.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Aldehyde dehydrogenase 1 (ALDH1), a crucial aldehyde metabolizing enzyme, has six family members. The ALDH1 family is expressed in various tissues, with a significant presence in the liver. It plays a momentous role in several pathophysiological processes, including aldehyde detoxification, oxidative stress, and lipid peroxidation. Acetaldehyde detoxification is the fundamental function of the ALDH1 family in participating in vital pathological mechanisms. The ALDH1 family can catalyze retinal to retinoic acid (RA) that is a hormone-signaling molecule and plays a vital role in the development and adult tissues. Furthermore, there is a need for further and broader research on the role of the ALDH1 family as a signaling molecule. The ALDH1 family is widely recognized as a cancer stem cell (CSC) marker and plays a significant role in the proliferation, invasion, metastasis, prognosis, and drug resistance of cancer. The ALDH1 family also participates in other human diseases, such as neurodegenerative diseases, osteoarthritis, diabetes, and atherosclerosis. It can inhibit disease progression by inhibiting/promoting the expression/activity of the ALDH1 family. In this review, we comprehensively analyze the tissue distribution, and functions of the ALDH1 family. Additionally, we review the involvement of the ALDH1 family in diseases, focusing on the underlying pathological mechanisms and briefly talk about the current status and development of ALDH1 family inhibitors. The ALDH1 family presents new possibilities for treating diseases, with both its upstream and downstream pathways serving as promising targets for therapeutic intervention. This offers fresh perspectives for drug development in the field of disease research.
Collapse
Affiliation(s)
- Xiangning Duan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lingzhi Wang
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
19
|
Abu-Serie MM, Osuka S, Heikal LA, Teleb M, Barakat A, Dudeja V. Diethyldithiocarbamate-ferrous oxide nanoparticles inhibit human and mouse glioblastoma stemness: aldehyde dehydrogenase 1A1 suppression and ferroptosis induction. Front Pharmacol 2024; 15:1363511. [PMID: 38720782 PMCID: PMC11076782 DOI: 10.3389/fphar.2024.1363511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
The development of effective therapy for eradicating glioblastoma stem cells remains a major challenge due to their aggressive growth, chemoresistance and radioresistance which are mainly conferred by aldehyde dehydrogenase (ALDH)1A1. The latter is the main stemness mediator via enhancing signaling pathways of Wnt/β-catenin, phosphatidylinositol 3-kinase/AKT, and hypoxia. Furthermore, ALDH1A1 mediates therapeutic resistance by inactivating drugs, stimulating the expression of drug efflux transporters, and detoxifying reactive radical species, thereby apoptosis arresting. Recent reports disclosed the potent and broad-spectrum anticancer activities of the unique nanocomplexes of diethyldithiocarbamate (DE, ALDH1A1 inhibitor) with ferrous oxide nanoparticles (FeO NPs) mainly conferred by inducing lipid peroxidation-dependent non-apoptotic pathways (iron accumulation-triggered ferroptosis), was reported. Accordingly, the anti-stemness activity of nanocomplexes (DE-FeO NPs) was investigated against human and mouse glioma stem cells (GSCs) and radioresistant GSCs (GSCs-RR). DE-FeO NPs exhibited the strongest growth inhibition effect on the treated human GSCs (MGG18 and JX39P), mouse GSCs (GS and PDGF-GSC) and their radioresistant cells (IC50 ≤ 70 and 161 μg/mL, respectively). DE-FeO NPs also revealed a higher inhibitory impact than standard chemotherapy (temozolomide, TMZ) on self-renewal, cancer repopulation, chemoresistance, and radioresistance potentials. Besides, DE-FeO NPs surpassed TMZ regarding the effect on relative expression of all studied stemness genes, as well as relative p-AKT/AKT ratio in the treated MGG18, GS and their radioresistant (MGG18-RR and GS-RR). This potent anti-stemness influence is primarily attributed to ALDH1A1 inhibition and ferroptosis induction, as confirmed by significant elevation of cellular reactive oxygen species and lipid peroxidation with significant depletion of glutathione and glutathione peroxidase 4. DE-FeO NPs recorded the optimal LogP value for crossing the blood brain barrier. This in vitro novel study declared the potency of DE-FeO NPs for collapsing GSCs and GSCs-RR with improving their sensitivity to chemotherapy and radiotherapy, indicating that DE-FeO NPs may be a promising remedy for GBM. Glioma animal models will be needed for in-depth studies on its safe effectiveness.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Satoru Osuka
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Lamiaa A. Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
20
|
Wang Y, Han Y, Jin L, Ji L, Liu Y, Lin M, Zhou S, Yang R. A novel prognostic signature based on cancer stemness and metabolism-related genes for cervical squamous cell carcinoma and endocervical adenocarcinoma. Aging (Albany NY) 2024; 16:7293-7310. [PMID: 38656879 PMCID: PMC11087133 DOI: 10.18632/aging.205757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND CESC is the second most commonly diagnosed gynecological malignancy. Given the pivotal involvement of metabolism-related genes (MRGs) in the etiology of multiple tumors, our investigation aims to devise a prognostic risk signature rooted in cancer stemness and metabolism. METHODS The stemness index based on mRNA expression (mRNAsi) of samples from the TCGA dataset was computed using the One-class logistic regression (OCLR) algorithm. Furthermore, potential metabolism-related genes related to mRNAsi were identified through weighted gene co-expression network analysis (WGCNA). We construct a stemness-related metabolic gene signature through shrinkage estimation and univariate analysis, thereby calculating the corresponding risk scores. Moreover, we selected corresponding DEGs between groups with high- and low-risk score and conducted routine bioinformatic analyses. Furthermore, we validated the expression of four hub genes at the protein level through immunohistochemistry (IHC) in samples obtained from our patient cohort. RESULTS According to the findings, it was found that six genes-AKR1B10, GNA15, ALDH1B1, PLOD2, LPCAT1, and GPX8- were differentially expressed in both TCGA-CSEC and GEO datasets among 23 differentially expressed metabolism-related genes (DEMRGs). mRNAsi exhibited a notable association with the extent of key oncogene mutation. The results showed that the AUC values for forecasting survival at 1, 3, and 5 years are 0.715, 0.689, and 0.748, individually. We observed a notable association between the risk score and different immune cell populations, along with enrichment in crucial signaling pathways in CESC. Four genes differentially expressed between different risk score groups were validated by IHC to be highly expressed in the CESC samples at the protein level. CONCLUSION The current investigation indicated that a 3-gene signature based on stemness-related metabolic and 4 hub genes with differential expression between high and low-risk score subgroups may serve as valuable prognostic markers and potential therapeutic targets in CESC.
Collapse
Affiliation(s)
- Yaokai Wang
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Liangzi Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lulu Ji
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong, China
| | - Yanxiang Liu
- Yantian District Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Min Lin
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, Guangdong, China
| | - Sitong Zhou
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Abu-Serie MM. Synergistic eradicating impact of 5-fluouracil with FeO nanoparticles-diethyldithiocarbamate in colon cancer spheroids. Nanomedicine (Lond) 2024; 19:979-994. [PMID: 38578787 PMCID: PMC11221372 DOI: 10.2217/nnm-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
Background: Cancer stem cells' (CSCs) resistance to 5-fluorouracil (Fu), which is the main obstacle in treating colon cancer (CC), can be overcome by ferroptosis. The latter, herein, can be triggered by FeO nanoparticles (inducer of iron accumulation) and diethyldithiocarbamate-inhibited glutathione system and aldehyde dehydrogenase (ALDH1A1-maintained stemness, therapeutic resistance and metastasis). Materials & methods: Nanocomplex of FeO nanoparticles and diethyldithiocarbamate (FD) was used in combination with Fu to investigate its potential synergistic anti-CSC influence using CC spheroid models. Results: In Fu + FD-treated spheroids, the strongest growth inhibition, the highest cell death percentage, and the lowest CD133+-CSCs percentage and stemness gene expressions (e.g., drug efflux transporter), and the strongest antimetastatic effect were recorded with high synergistic indexes. Conclusion: Fu + FD represents effective combination therapy for chemoresistant CC cells.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| |
Collapse
|
22
|
Mori Y, Masuda M, Yoshida-Shimizu R, Aoyagi S, Adachi Y, Nguyen AT, Maruyama Y, Okumura Y, Kamei Y, Sakai M, Ohnishi K, Ohminami H, Taketani Y. All-trans retinoic acid induces lipophagy through the activation of the AMPK-Beclin1 signaling pathway and reduces Rubicon expression in adipocytes. J Nutr Biochem 2024; 126:109589. [PMID: 38295886 DOI: 10.1016/j.jnutbio.2024.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Lipophagy is defined as a lipolysis pathway that degrades lipid droplet (LD) via autophagy. All-trans retinoic acid (atRA), a metabolite of vitamin A, stimulates lipolysis through hormone-sensitive lipase and β-oxidation. However, the regulation of lipolysis by atRA-induced autophagy in adipocytes remains unclear. In this study, we investigated the effect of atRA on autophagy in epididymal fat of mice and the molecular mechanisms of autophagy in 3T3-L1 adipocytes. Western blotting showed that atRA decreased the expression of p62, a cargo receptor for autophagic degradation, and increased the expression of the lipidated LC3B (LC3B-II), an autophagy marker, in epididymal fat. Next, we confirmed that atRA increased autophagic flux in differentiated 3T3-L1 cells using the GFP-LC3-RFP-LC3ΔG probe. Immunofluorescent staining revealed that the colocalization of LC3B with perilipin increased in differentiated 3T3-L1 cells treated with atRA. The knockdown of Atg5, an essential gene in autophagy induction, partly suppressed the atRA-induced release of non-esterified fatty acid (NEFA) from LDs in differentiated 3T3-L1 cells. atRA time-dependently elicited the phosphorylation of AMPK and Beclin1, autophagy-inducing factors, in mature 3T3-L1 adipocytes. Inversely, atRA decreased the protein expression of Rubicon, an autophagy repressor, in differentiated 3T3-L1 cells and epididymal fat. Interestingly, the expression of ALDH1A1, atRA-synthesizing enzymes, increased in epididymal fat with decreased protein expression of Rubicon in aged mice. These results suggest that atRA may partially induce lipolysis through lipophagy by activating the AMPK-Beclin1 signaling pathway in the adipocytes and increased atRA levels may contribute to decreased Rubicon expression in the epididymal fat of aged mice. (248/250 words).
Collapse
Affiliation(s)
- Yuki Mori
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan.
| | - Risa Yoshida-Shimizu
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Saki Aoyagi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yuichiro Adachi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Anh The Nguyen
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yusuke Maruyama
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yosuke Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yuki Kamei
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Maiko Sakai
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
23
|
Chen Z, Chen J, Xu X, Li Q, Zhang C, Li S, Liu L, Cao C, Chen D, He Q. METTL3-mediated ALDH m 6A methylation regulates the malignant behavior of BMI1 + HNSCC stem cells. Oral Dis 2024; 30:1061-1071. [PMID: 37249063 DOI: 10.1111/odi.14609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/15/2023] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES To reveal the effect and mechanism of methyltransferase-like 3 (METTL3) on cancer stem cells (CSCs) of head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS First, we analyzed 14-HNSCC-patients' scRNA-seq dataset and TCGA dataset of HNSCC. Then, Mettl3 knockout or overexpression mice models were studied via tracing and staining technologies. In addition, we took flow cytometry sorting and sphere formation assays to observe tumorigenicity and used cell transfection and western blotting to verify target protein expression levels. Furthermore, methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-quantitative real-time PCR (MeRIP-qPCR) were taken to identify the mechanism of Mettl3 regulating Bmi1+ CSCs in HNSCC. RESULTS Due to SOX4 transcriptional regulation, METTL3 regulated the malignant behavior of BMI1+ HNSCC stem cells through cell division pathway. The progression and malignancy of HNSCC were decreased after Mettl3 knocked-out, while increased after Mettl3 knocked-in in Bmi1+ CSCs in vivo. Knockdown of Mettl3 inhibited stemness properties of CSCs in vitro. Mechanically, Mettl3 mediated the m6A modification of ALDH1A3 and ALDH7A1 mRNA in Bmi1+ HNSCC CSCs. CONCLUSION Regulated by SOX4, METTL3-mediated ALDH m6A methylation regulates the malignant behavior of BMI1+ HNSCC CSCs through cell division pathway.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Xu
- Department of Stomatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Caihua Zhang
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Li
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lianlian Liu
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Congyuan Cao
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianting He
- Department of Oral and Maxillofacial Surgery, Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Elsaman T, Ahmad I, Eltayib EM, Suliman Mohamed M, Yusuf O, Saeed M, Patel H, Mohamed MA. Flavonostilbenes natural hybrids from Rhamnoneuron balansae as potential antitumors targeting ALDH1A1: molecular docking, ADMET, MM-GBSA calculations and molecular dynamics studies. J Biomol Struct Dyn 2024; 42:3249-3266. [PMID: 37261483 DOI: 10.1080/07391102.2023.2218936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Several studies have linked Cancer stem cells (CSCs) to cancer resistance development to chemotherapy and radiotherapy. ALDH1A1 is a key enzyme that regulates the gene expression of CSCs and creates an immunosuppressive tumor microenvironment. It was reported that quercetin and resveratrol were among the inhibitors of ALDH1A1. In early 2022, it was reported that new 11 flavonostilbenes (rhamnoneuronal D-N) were isolated from Rhamnoneuron balansae as potential antiaging natural products. Rhamnoneuronal H (5) could be envisioned as a natural hybrid of quercetin and resveratrol. It was therefore hypothesized that 5 and its analogous isolates rhamnoneuronal D-G (1-4) and rhamnoneuronal I-N (6-11) would have potential ALDH1A1 inhibitory activity. To this end, all isolates were subjected to molecular docking, MM-GBSA, ADMET, and molecular dynamics simulations studies to assess their potential as new leads for cancer treatment targeting ALDH1A1. In silico findings revealed that natural hybrid 5 has a similar binding affinity, judged by MM-GBSA, to the ALDH1A1 active site when compared to the co-crystalized ligand (-64.71 kcal/mole and -64.12 kcal/mole, respectively). Despite having lesser affinity than that of the co-crystalized ligand, the rest of the flavonostilbenes, except 2-4, displayed better binding affinities (-37.55 kcal/mole to -58.6 kcal/mole) in comparison to either resveratrol (-34.44 kcal/mole) or quercetin (-36.48 kcal/mole). Molecular dynamic simulations showed that the natural hybrids 1, 5-11 are of satisfactory stability up to 100 ns. ADMET outcomes indicate that these hybrids displayed acceptable properties and hence could represent an ideal starting point for the development of potent ALDH1A1 inhibitors for cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Osman Yusuf
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Neelain University, Khartoum, Sudan
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| |
Collapse
|
25
|
Gorodetska I, Offermann A, Püschel J, Lukiyanchuk V, Gaete D, Kurzyukova A, Freytag V, Haider MT, Fjeldbo CS, Di Gaetano S, Schwarz FM, Patil S, Borkowetz A, Erb HHH, Baniahmad A, Mircetic J, Lyng H, Löck S, Linge A, Lange T, Knopf F, Wielockx B, Krause M, Perner S, Dubrovska A. ALDH1A1 drives prostate cancer metastases and radioresistance by interplay with AR- and RAR-dependent transcription. Theranostics 2024; 14:714-737. [PMID: 38169509 PMCID: PMC10758061 DOI: 10.7150/thno.88057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: Current therapies for metastatic osseous disease frequently fail to provide a durable treatment response. To date, there are only limited therapeutic options for metastatic prostate cancer, the mechanisms that drive the survival of metastasis-initiating cells are poorly characterized, and reliable prognostic markers are missing. A high aldehyde dehydrogenase (ALDH) activity has been long considered a marker of cancer stem cells (CSC). Our study characterized a differential role of ALDH1A1 and ALDH1A3 genes as regulators of prostate cancer progression and metastatic growth. Methods: By genetic silencing of ALDH1A1 and ALDH1A3 in vitro, in xenografted zebrafish and murine models, and by comparative immunohistochemical analyses of benign, primary tumor, and metastatic specimens from patients with prostate cancer, we demonstrated that ALDH1A1 and ALDH1A3 maintain the CSC phenotype and radioresistance and regulate bone metastasis-initiating cells. We have validated ALDH1A1 and ALDH1A3 as potential biomarkers of clinical outcomes in the independent cohorts of patients with PCa. Furthermore, by RNAseq, chromatin immunoprecipitation (ChIP), and biostatistics analyses, we suggested the molecular mechanisms explaining the role of ALDH1A1 in PCa progression. Results: We found that aldehyde dehydrogenase protein ALDH1A1 positively regulates tumor cell survival in circulation, extravasation, and metastatic dissemination, whereas ALDH1A3 plays the opposite role. ALDH1A1 and ALDH1A3 are differentially expressed in metastatic tumors of patients with prostate cancer, and their expression levels oppositely correlate with clinical outcomes. Prostate cancer progression is associated with the increasing interplay of ALDH1A1 with androgen receptor (AR) and retinoid receptor (RAR) transcriptional programs. Polo-like kinase 3 (PLK3) was identified as a transcriptional target oppositely regulated by ALDH1A1 and ALDH1A3 genes in RAR and AR-dependent manner. PLK3 contributes to the control of prostate cancer cell proliferation, migration, DNA repair, and radioresistance. ALDH1A1 gain in prostate cancer bone metastases is associated with high PLK3 expression. Conclusion: This report provides the first evidence that ALDH1A1 and PLK3 could serve as biomarkers to predict metastatic dissemination and radiotherapy resistance in patients with prostate cancer and could be potential therapeutic targets to eliminate metastasis-initiating and radioresistant tumor cell populations.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Diana Gaete
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anastasia Kurzyukova
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden and Center for Healthy Aging, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Vera Freytag
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Marie-Therese Haider
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Simona Di Gaetano
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Franziska Maria Schwarz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shivaprasad Patil
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Borkowetz
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Holger H H Erb
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Jovan Mircetic
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Linge
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
- Institute of Anatomy I, Cancer Center Central Germany, Jena, University Hospital, Jena, Germany
| | - Franziska Knopf
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden and Center for Healthy Aging, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mechthild Krause
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Luebeck, Germany; Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden: German Cancer Research Center (DKFZ), Heidelberg; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
26
|
Sołtysiak M, Paplińska-Goryca M, Misiukiewicz-Stępień P, Wójtowicz P, Dutkiewicz M, Zegrocka-Stendel O, Sikorska M, Dymkowska D, Turos-Korgul L, Krenke R, Koziak K. β-escin activates ALDH and prevents cigarette smoke-induced cell death. Biomed Pharmacother 2024; 170:115924. [PMID: 38016364 DOI: 10.1016/j.biopha.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The tobacco use is one of the biggest public health threats worldwide. Cigarette smoke contains over 7000 chemicals among other aldehydes, regarded as priority toxicants. β-escin (a mixture of triterpenoid saponins extracted from the Aesculus hippocastanum. L) is a potent activator of aldehyde dehydrogenase (ALDH) - an enzyme catalyzing oxidation of aldehydes to non-toxic carboxylic acids. PURPOSE The aim of this study was to evaluate the effect of β-escin on ALDH activity, ALDH isoforms mRNA expression and cytotoxicity in nasal epithelial cells exposed to cigarette smoke extract (CSE). METHODS Nasal epithelial cells from healthy non-smokers were treated with β-escin (1 µM) and exposed to 5% CSE. After 6- or 24-hours of stimulation cell viability, DNA damage, ALDH activity and mRNA expression of ALDH isoforms were examined. RESULTS 24 h β-escin stimulation revised CSE induced cytotoxicity and DNA damage. Cells cultured with β-escin or exposed to CSE responded with strong increase in ALDH activity. This effect was more pronounced in cultures treated with combination of β-escin and CSE. The strongest stimulatory effect on ALDH isoform mRNA expression was observed in cells cultured simultaneously with β-escin and CSE: at 6 h for ALDH1A1 and ALDH3A1, and at 24 h for ALDH1A3, ALDH3A2, ALDH3B1, and ALDH18A1. Combined β-escin and CSE treatment prevented the CSE-induced inhibition of ALDH2 expression at 24 h. CONCLUSIONS β-escin is an effective ALDH stimulatory and cytoprotective agent and might be useful in the prevention or supportive treatment of tobacco smoke-related diseases.
Collapse
Affiliation(s)
- Malwina Sołtysiak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Paulina Misiukiewicz-Stępień
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Paulina Wójtowicz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Małgorzata Dutkiewicz
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Maria Sikorska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Laura Turos-Korgul
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Katarzyna Koziak
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland.
| |
Collapse
|
27
|
Steingruber L, Krabichler F, Franzmeier S, Wu W, Schlegel J, Koch M. ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 control myogenic differentiation of skeletal muscle satellite cells by retinoic acid-dependent and -independent mechanisms. Cell Tissue Res 2023; 394:515-528. [PMID: 37904003 DOI: 10.1007/s00441-023-03838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
ALDH1A1 and ALDH1A3 paralogues of aldehyde dehydrogenase 1 (ALDH1) control myogenic differentiation of skeletal muscle satellite cells (SC) by formation of retinoic acid (RA) and subsequent cell cycle adjustments. The respective relevance of each paralogue for myogenic differentiation and the mechanistic interaction of each paralogue within RA-dependent and RA-independent pathways remain elusive.We analysed the impact of ALDH1A1 and ALDH1A3 activity on myogenesis of murine C2C12 myoblasts. Both paralogues are pivotal factors in myogenic differentiation, since CRISPR/Cas9-edited single paralogue knock-out impaired serum withdrawal-induced myogenic differentiation, while successive recombinant re-expression of ALDH1A1 or ALDH1A3, respectively, in the corresponding ALDH1 paralogue single knock-out cell lines, recovered the differentiation potential. Loss of differentiation in single knock-out cell lines was restored by treatment with RA-analogue TTNPB, while RA-receptor antagonization by AGN 193109 inhibited differentiation of wildtype cell lines, supporting the idea that RA-dependent pathway is pivotal for myogenic differentiation which is accomplished by both paralogues.However, overexpression of ALDH1-paralogues or disulfiram-mediated inhibition of ALDH1 enzymatic activity not only increased ALDH1A1 and ALDH1A3 protein levels but also induced subsequent differentiation of C2C12 myoblasts independently from serum withdrawal, indicating that ALDH1-dependent myogenic differentiation relies on different cellular conditions. Remarkably, ALDH1-paralogue knock-out impaired the autophagic flux, namely autophagosome cargo protein p62 formation and LC3B-I to LC3B-II conversion, demonstrating that ALDH1-paralogues interact with autophagy in myogenesis. Together, ALDH1 paralogues play a crucial role in myogenesis by orchestration of complex RA-dependent and RA-independent pathways.
Collapse
Affiliation(s)
- Laura Steingruber
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany.
| | - Florian Krabichler
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany.
| | - Sophie Franzmeier
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Wei Wu
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Marco Koch
- Anatomy and Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
28
|
Barik D, Shyamal S, Das K, Jena S, Dash M. Glycoprotein Injectable Hydrogels Promote Accelerated Bone Regeneration through Angiogenesis and Innervation. Adv Healthc Mater 2023; 12:e2301959. [PMID: 37712303 DOI: 10.1002/adhm.202301959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
Glycoproteins are gaining prominence as multifunctional biomaterials. The study reports development of glycoprotein mucin as biomaterial promoting bone regeneration. Mucin 1 deletion has resulted in stiffer femoral bones with scarce presence of osteoblasts in trabecular linings and its role has been established in determining bone mass and mineralization. Limited information about its structure limits its processability, exploration as biomaterial, which is discussed in this study. The role of mucin in ECM (extracellular cellular matrix) formation validated by RNA sequencing analysis of human bone marrow derived mesenchymal stem cells is reported. The structure and stability of mucins is dependent on the presence of glycans in its structure. A thermosensitive hydrogel acquired from thermosensitive Poly (N-isopropyl acrylamide)-(PNIPAM) modified mucin and collagen is developed. The hydrogel demonstrates porous structure and mechanical strength. Newly formed bone tissue is observed at 8 weeks post-implantation in the hydrogel treated groups. The formation of blood vessels, nerves, and bone is observed with upregulation of angiopoietin (ANG), neurofilament heavy chain (NF-H), and osteoadherin (OSAD) or osteocalcin (OCN) respectively in rat calvarial defects. The outcome demonstrates that the thermosensitive injectable hydrogel accelerates repair and healing in calvarial bone defects making it a promising biodegradable biomaterial capable of regenerating bone by promoting angiogenesis and innervation.
Collapse
Affiliation(s)
- Debyashreeta Barik
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Sharmistha Shyamal
- RNA Biology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Kapilash Das
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sarita Jena
- Animal House Facility, DBT-Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Mamoni Dash
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
29
|
Rahman SJ, Chen SC, Wang YT, Gao Y, Schepmoes AA, Fillmore TL, Shi T, Chen H, Rodland KD, Massion PP, Grogan EL, Liu T. Validation of a Proteomic Signature of Lung Cancer Risk from Bronchial Specimens of Risk-Stratified Individuals. Cancers (Basel) 2023; 15:4504. [PMID: 37760474 PMCID: PMC10526486 DOI: 10.3390/cancers15184504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A major challenge in lung cancer prevention and cure hinges on identifying the at-risk population that ultimately develops lung cancer. Previously, we reported proteomic alterations in the cytologically normal bronchial epithelial cells collected from the bronchial brushings of individuals at risk for lung cancer. The purpose of this study is to validate, in an independent cohort, a selected list of 55 candidate proteins associated with risk for lung cancer with sensitive targeted proteomics using selected reaction monitoring (SRM). Bronchial brushings collected from individuals at low and high risk for developing lung cancer as well as patients with lung cancer, from both a subset of the original cohort (batch 1: n = 10 per group) and an independent cohort of 149 individuals (batch 2: low risk (n = 32), high risk (n = 34), and lung cancer (n = 83)), were analyzed using multiplexed SRM assays. ALDH3A1 and AKR1B10 were found to be consistently overexpressed in the high-risk group in both batch 1 and batch 2 brushing specimens as well as in the biopsies of batch 1. Validation of highly discriminatory proteins and metabolic enzymes by SRM in a larger independent cohort supported their use to identify patients at high risk for developing lung cancer.
Collapse
Affiliation(s)
- S.M. Jamshedur Rahman
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.M.J.R.); (P.P.M.)
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA; (S.-C.C.); (H.C.)
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Thomas L. Fillmore
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA; (S.-C.C.); (H.C.)
| | - Karin D. Rodland
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, USA;
| | - Pierre P. Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.M.J.R.); (P.P.M.)
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Eric L. Grogan
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| |
Collapse
|
30
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
31
|
Markov AV, Odarenko KV, Sen'kova AV, Ilyina AA, Zenkova MA. Evaluation of the Antitumor Potential of Soloxolone Tryptamide against Glioblastoma Multiforme Using in silico, in vitro, and in vivo Approaches. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1008-1021. [PMID: 37751870 DOI: 10.1134/s000629792307012x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 09/28/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor characterized by uncontrollable diffusive growth, resistance to chemo- and radiotherapy, and a high recurrence rate leading to a low survival rate of patients with GBM. Due to a large number of signaling pathways regulating GBM pathogenesis, one of the promising directions is development of novel anti-glioblastoma compounds based on natural metabolites capable of affecting multiple targets. Here, we investigated the antitumor potential of the semisynthetic triterpenoid soloxolone tryptamide (STA) against human glioblastoma U87 cells. STA efficiently blocked the growth of U87 cells in 2D and 3D cultures, enhanced adhesiveness of tumor cells, and displayed synergistic cytotoxicity with temozolomide. In silico analysis suggested that the anti-glioblastoma activity of STA can be explained by its direct interaction with EGFR, ERBB2, and AKT1 which play an important role in the regulation of GBM malignancy. Along with direct effect on U87 cells, STA normalized tumor microenvironment in murine heterotopic U87 xenograft model by suppressing the development of immature blood vessels and elastin production in the tumor tissue. Taken together, our results clearly demonstrate that STA can be a novel promising antitumor candidate for GMB treatment.
Collapse
Affiliation(s)
- Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Kirill V Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anna A Ilyina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
32
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
33
|
Kim JH, Park S, Jung E, Shin J, Kim YJ, Kim JY, Sessler JL, Seo JH, Kim JS. A dual-action niclosamide-based prodrug that targets cancer stem cells and inhibits TNBC metastasis. Proc Natl Acad Sci U S A 2023; 120:e2304081120. [PMID: 37186828 PMCID: PMC10214212 DOI: 10.1073/pnas.2304081120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Chemotherapy typically destroys the tumor mass but rarely eradicates the cancer stem cells (CSCs) that can drive metastatic recurrence. A key current challenge is finding ways to eradicate CSCs and suppress their characteristics. Here, we report a prodrug, Nic-A, created by combining a carbonic anhydrase IX (CAIX) inhibitor, acetazolamide, with a signal transducer and transcriptional activator 3 (STAT3) inhibitor, niclosamide. Nic-A was designed to target triple-negative breast cancer (TNBC) CSCs and was found to inhibit both proliferating TNBC cells and CSCs via STAT3 dysregulation and suppression of CSC-like properties. Its use leads to a decrease in aldehyde dehydrogenase 1 activity, CD44high/CD24low stem-like subpopulations, and tumor spheroid-forming ability. TNBC xenograft tumors treated with Nic-A exhibited decreased angiogenesis and tumor growth, as well as decreased Ki-67 expression and increased apoptosis. In addition, distant metastases were suppressed in TNBC allografts derived from a CSC-enriched population. This study thus highlights a potential strategy for addressing CSC-based cancer recurrence.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Soeun Park
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul08308, Korea
| | - Eunsun Jung
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul08308, Korea
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul02841, Korea
| | - Yoon-Jae Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul08308, Korea
| | - Ji Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul08308, Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Jae Hong Seo
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul02841, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University, Seoul08308, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul02841, Korea
| |
Collapse
|
34
|
EGFRvIII Promotes the Proneural–Mesenchymal Transition of Glioblastoma Multiforme and Reduces Its Sensitivity to Temozolomide by Regulating the NF-κB/ALDH1A3 Axis. Genes (Basel) 2023; 14:genes14030651. [PMID: 36980923 PMCID: PMC10048499 DOI: 10.3390/genes14030651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
(1) Background: Glioblastoma multiforme (GBM) is the most common and malignant intracranial tumor in adults. At present, temozolomide (TMZ) is recognized as the preferred chemotherapeutic drug for GBM, but some patients have low sensitivity to TMZ or chemotherapy resistance to TMZ. Our previous study found that GBM patients with EGFRvIII (+) have low sensitivity to TMZ. However, the reasons and possible mechanisms of the chemoradiotherapy resistance in GBM patients with EGFRvIII (+) are not clear. (2) Methods: In this study, tissue samples of patients with GBM, GBM cell lines, glioma stem cell lines, and NSG mice were used to explore the causes and possible mechanisms of low sensitivity to TMZ in patients with EGFRvIII (+)-GBM. (3) Results: The study found that EGFRvIII promoted the proneural–mesenchymal transition of GBM and reduced its sensitivity to TMZ, and EGFRvIII regulated of the expression of ALDH1A3. (4) Conclusions: EGFRvIII activated the NF-κB pathway and further regulated the expression of ALDH1A3 to promote the proneural–mesenchymal transition of GBM and reduce its sensitivity to TMZ, which will provide an experimental basis for the selection of clinical drugs for GBM patients with EGFRvIII (+).
Collapse
|
35
|
Al-Shamma SA, Zaher DM, Hersi F, Abu Jayab NN, Omar HA. Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci 2023; 320:121541. [PMID: 36870386 DOI: 10.1016/j.lfs.2023.121541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Modern cancer chemotherapy originated in the 1940s, and since then, many chemotherapeutic agents have been developed. However, most of these agents show limited response in patients due to innate and acquired resistance to therapy, which leads to the development of multi-drug resistance to different treatment modalities, leading to cancer recurrence and, eventually, patient death. One of the crucial players in inducing chemotherapy resistance is the aldehyde dehydrogenase (ALDH) enzyme. ALDH is overexpressed in chemotherapy-resistant cancer cells, which detoxifies the generated toxic aldehydes from chemotherapy, preventing the formation of reactive oxygen species and, thus, inhibiting the induction of oxidative stress and the stimulation of DNA damage and cell death. This review discusses the mechanisms of chemotherapy resistance in cancer cells promoted by ALDH. In addition, we provide detailed insight into the role of ALDH in cancer stemness, metastasis, metabolism, and cell death. Several studies investigated targeting ALDH in combination with other treatments as a potential therapeutic regimen to overcome resistance. We also highlight novel approaches in ALDH inhibition, including the potential synergistic employment of ALDH inhibitors in combination with chemotherapy or immunotherapy against different cancers, including head and neck, colorectal, breast, lung, and liver.
Collapse
Affiliation(s)
- Salma A Al-Shamma
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
36
|
Kamiyama H, Miyano M, Ito D, Kimura T, Hagiwara K, Kogai H, Kaburagi Y, Kotake Y, Takase Y. Identification of a novel ALDH1A3-selective inhibitor by a chemical probe with unrelated bioactivity: An approach to affinity-based drug target discovery. Chem Biol Drug Des 2023; 101:727-739. [PMID: 36334047 DOI: 10.1111/cbdd.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
The identification of biologically active target compounds and their binding proteins is important in mechanism-of-action studies for drug development. Additionally, the newly discovered binding proteins provide unforeseen ideas for novel drug discovery and for subsequent structural transformation to improve target specificity. Based on the lead and final candidate compounds related to the type 5 phosphodiesterase (PDE5) inhibitor E4021, we designed chemical probes and identified their target proteins by the affinity chromatography approach. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3), currently reported as a cancer stem cell target, was clearly isolated as a binding protein of the lead 'immature' inhibitor probe against PDE5. In the early derivatization to the closely related structure, Compound 5 (ER-001135935) was found to significantly inhibit ALDH1A3 activity. The discovery process of a novel ALDH1A3-selective inhibitor with affinity-based binder identification is described, and the impact of this identification method on novel drug discovery is discussed.
Collapse
Affiliation(s)
| | - Masayuki Miyano
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Daisuke Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Takayuki Kimura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Koji Hagiwara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Hiroyuki Kogai
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Yosuke Kaburagi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Yasutaka Takase
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| |
Collapse
|
37
|
Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers. Int J Mol Sci 2023; 24:ijms24031973. [PMID: 36768291 PMCID: PMC9916805 DOI: 10.3390/ijms24031973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Ovarian cancer is a lethal reproductive tumour affecting women worldwide. The advancement in presentation and occurrence of chemoresistance are the key factors for poor survival among ovarian cancer women. Surgical debulking was the mainstay of systemic treatment for ovarian cancer, which was followed by a successful start to platinum-based chemotherapy. However, most women develop platinum resistance and relapse within six months of receiving first-line treatment. Thus, there is a great need to identify biomarkers to predict platinum resistance before enrolment into chemotherapy, which would facilitate individualized targeted therapy for these subgroups of patients to ensure better survival and an improved quality of life and overall outcome. Harnessing the immune response through immunotherapy approaches has changed the treatment way for patients with cancer. The immune outline has emerged as a beneficial tool for recognizing predictive and prognostic biomarkers clinically. Studying the tumour microenvironment (TME) of ovarian cancer tissue may provide awareness of actionable targets for enhancing chemotherapy outcomes and quality of life. This review analyses the relevance of immunohistochemistry biomarkers as prognostic biomarkers in predicting chemotherapy resistance and improving the quality of life in ovarian cancer.
Collapse
|
38
|
Eid RA, Alaa Edeen M, Shedid EM, Kamal ASS, Warda MM, Mamdouh F, Khedr SA, Soltan MA, Jeon HW, Zaki MSA, Kim B. Targeting Cancer Stem Cells as the Key Driver of Carcinogenesis and Therapeutic Resistance. Int J Mol Sci 2023; 24:ijms24021786. [PMID: 36675306 PMCID: PMC9861138 DOI: 10.3390/ijms24021786] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
The emerging concept of cancer stem cells (CSCs) as the key driver behind carcinogenesis, progression, and diversity has displaced the prior model of a tumor composed of cells with similar subsequently acquired mutations and an equivalent capacity for renewal, invasion, and metastasis. This significant change has shifted the research focus toward targeting CSCs to eradicate cancer. CSCs may be characterized using cell surface markers. They are defined by their capacity to self-renew and differentiate, resist conventional therapies, and generate new tumors following repeated transplantation in xenografted mice. CSCs' functional capabilities are governed by various intracellular and extracellular variables such as pluripotency-related transcription factors, internal signaling pathways, and external stimuli. Numerous natural compounds and synthetic chemicals have been investigated for their ability to disrupt these regulatory components and inhibit stemness and terminal differentiation in CSCs, hence achieving clinical implications. However, no cancer treatment focuses on the biological consequences of these drugs on CSCs, and their functions have been established. This article provides a biomedical discussion of cancer at the time along with an overview of CSCs and their origin, features, characterization, isolation techniques, signaling pathways, and novel targeted therapeutic approaches. Additionally, we highlighted the factors endorsed as controlling or helping to promote stemness in CSCs. Our objective was to encourage future studies on these prospective treatments to develop a framework for their application as single or combined therapeutics to eradicate various forms of cancer.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Muhammad Alaa Edeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.A.E.); (B.K.)
| | - Eslam M. Shedid
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Al Shaimaa S. Kamal
- Biotechnology Department, Faculty of Agriculture, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Mona M. Warda
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Farag Mamdouh
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Sohila A. Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.A.E.); (B.K.)
| |
Collapse
|
39
|
Aramini B, Masciale V. Editorial: Aldehyde dehydrogenase in clinical settings: Potential biomarker and therapeutic target in solid tumors. Front Med (Lausanne) 2023; 9:1116908. [PMID: 36687443 PMCID: PMC9846756 DOI: 10.3389/fmed.2022.1116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlí, Italy,*Correspondence: Beatrice Aramini ✉
| | - Valentina Masciale
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
40
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
41
|
Wang Q, Li Z, Hao Y, Zhang Y, Zhang C. Near-Infrared Fluorescence Probe with a New Recognition Moiety for Specific Detection and Imaging of Aldehyde Dehydrogenase Expecting the Identification and Isolation of Cancer Stem Cells. Anal Chem 2022; 94:17328-17333. [PMID: 36453832 DOI: 10.1021/acs.analchem.2c04801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Aldehyde dehydrogenase (ALDH) is a vital enzyme that converts aldehyde to acetic acid during alcohol metabolism. ALDH is also a cellular marker of cancer stem cells (CSCs), which plays an important role in cancer diagnosis and prognosis assessment. Therefore, there is a need to explore convenient, selective, and sensitive methods for the detection and imaging of ALDH. Because of the low background fluorescence and high penetration, near-infrared (NIR) fluorescent probes are powerful tools for the detection of ALDH. Until now, only one NIR fluorescent probe has been reported for detecting ALDH. Hence, we synthesized a novel NIR fluorescent probe, Probe-ALDH, by linking the new specific recognition moiety 4-hydroxymethyl benzaldehyde with NIR fluorophore AXPI. Compared with the existing ALDH fluorescent probes, Probe-ALDH has excellent properties, such as a new specific recognition moiety without the substitution of benzaldehyde, a simple synthesis method, emission wavelength in the NIR region, reaction time of only 30 min, and a detection limit as low as 0.03 U·mL-1, which is better than those of the previously reported probes. The probe effectively eliminates the interference from reactive oxygen species (ROS), amino acids, and amines. More importantly, the flow cytometry results showed that Probe-ALDH has great potential applications in the identification and isolation of CSCs. Ultimately, it was successfully applied to the imaging analysis of endogenous ALDH in HepG2 cells by the addition of inhibitor disulfiram. The excellent performance of Probe-ALDH makes it a promising candidate for drug discovery, cancer diagnosis, and so forth.
Collapse
Affiliation(s)
- Qiuyue Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
42
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
43
|
Anti-metastatic breast cancer potential of novel nanocomplexes of diethyldithiocarbamate and green chemically synthesized iron oxide nanoparticles. Int J Pharm 2022; 627:122208. [PMID: 36122615 DOI: 10.1016/j.ijpharm.2022.122208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Mortality rate of metastatic breast cancer is linked to cancer stem cells (CSCs)' aggressive features (chemoresistance to apoptosis and redox imbalance). Therefore, unique dual therapeutic strategy compacts CSCs with inducing oxidative stress-mediated nonapoptosis (ferroptosis), confers effective malignant tumor eradication. Diethyldithiocarbamate (DDC) is a potent inhibitor of CSC aldehyde dehydrogenase and lowers glutathione (GSH) which aggravate iron-dependent ferroptosis. Herein, nanoformulations of DDC with green chemically synthesized ferrous oxide nanoparticles (FeO NPs) and ferric oxide (Fe2O3 NPs) were prepared. Due to nanoparticle characters and synergistic effect between iron oxide NPs and DDC, nanocomplexes (DFeO NPs and DFe2O3 NPs, respectively) exhibited the strongest anti-metastatic cancer potency in vitro. Because of corresponding iron oxide nature, DFeO NPs demonstrated better therapeutic efficacy than DFe4O3 NPs, in mammary tumor liver metastasis-bearing mice, in terms of tumor size, histological analysis, immunostaining % of ki-67+ and caspase 3+, and gene expression of p53 and BCl2. The potent anti-tumor effect of DFeO nanocomplex is attributed to the maximum elevation of reactive oxygen species and lipid peroxidation (ferroptosis hall marker) with severe depletion of GSH and Nrf2 selectively in both tumor tissues, causing CSC eradication with halting metastatic activity. The latters were confirmed by lowering CD44+ % and gene expression of HIF-α, β-catenin, Notch, ABCG2-mediated chemoresistance, and MMP9 with diminishing liver tumor marker. Moreover, this nanocomplex did not cause any abnormal alterations in histological and biochemical parameters, compared to healthy group. Therefore, the selective apoptotic and ferroptotic with anti-CSC effects of DFeO NPs open new safe avenue for metastatic tumor therapy.
Collapse
|
44
|
Pakkarato S, Sakagami H, Goto K, Watanabe M, Kondo H, Hipkaeo W, Chomphoo S. Localization of phosphatidylinositol phosphate 5 kinase γ, phospholipase β3 and diacylglycerol kinase ζ in corneal epithelium in comparison with conjunctival epithelium of mice. Exp Eye Res 2022; 223:109205. [PMID: 35963308 DOI: 10.1016/j.exer.2022.109205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022]
Abstract
Based on the theory that the phosphoinositide (PI) signal is involved in the physiology of cornea and conjunctiva, we examined the localization in the mouse anterior ocular epithelia of immunoreactivities for phosphatidylinositol 4-phosphate 5-kinase (PIP5K), phospholipase C (PLC) and diacylglycerol kinase (DGK), enzymes that work sequentially in PI cycle. Immunoreactivity for PIP5Kγ in the corneal epithelium, including the limbus, was distinct in adults in contrast to faint or negligible immunoreactivity in the conjunctival epithelium in neonatal mice. This adult localization pattern was first recognized at the postnatal time of eyelid opening. Immunoreactivity for PLCβ3 was rather equally distinct throughout the entire corneal and conjunctival epithelia in adults. DGKζ-immunoreactive nuclei were mainly localized in the basal half domain of the corneal epithelium but in both basal and apical domains of the conjunctival epithelium in adults. This nuclear immunoreactivity was at weak or negligible levels in the peripheral and limbus cornea and in a considerable portion of the bulbar conjunctival epithelium continuous with the limbus. The adult patterns for PLCβ3 and DGKζ were already present at birth. The present findings suggest the following possibilities on the functional significance of the three enzyme molecules. PIP5Kγ is involved in cornea-specific functions such as bright-field vision, including corneal transparency, and in the stability of epithelial junctions, for which there seems to be a much higher requirement in the corneal epithelium than in the conjunctival epithelium. PLCβ3 is involved from birth in as-yet undefined functions exerted ubiquitously from birth in both corneal and conjunctival epithelia. DGKζ is involved in regulation from birth of the transcription in epithelial cells, including apoptosis as well as regulation of mitosis of epithelial cells in both cornea and conjunctiva, with the transcription involvement more apparent in the conjunctiva, although it does not work in stem cells of the corneal limbus.
Collapse
Affiliation(s)
- Sawetree Pakkarato
- Department of Sports and Health Sciences, Faculty of Science and Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand; Department of Anatomy, Electron Microscopy Unit, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hiroyuki Sakagami
- Department of Anatomy, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Kaoru Goto
- Department of Anatomy, School of Medicine, Yamagata University, Yamagata, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan; Department of Anatomy, Electron Microscopy Unit, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wiphawi Hipkaeo
- Department of Anatomy, Electron Microscopy Unit, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Surang Chomphoo
- Department of Anatomy, Electron Microscopy Unit, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
45
|
Isoliquiritigenin Inhibits Gastric Cancer Stemness, Modulates Tumor Microenvironment, and Suppresses Tumor Growth through Glucose-Regulated Protein 78 Downregulation. Biomedicines 2022; 10:biomedicines10061350. [PMID: 35740372 PMCID: PMC9220208 DOI: 10.3390/biomedicines10061350] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer; however, the currently available therapeutic drugs for treatment have limited efficacy. Cancer stemness and the tumor microenvironment may play crucial roles in tumor growth and chemoresistance. Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum chaperone facilitating protein folding and cell homeostasis during stress and may participate in chemoresistance. Isoliquiritigenin (ISL) is a bioactive flavonoid found in licorice. In this study, we demonstrated the role of GRP78 in gastric cancer stemness and evaluated GRP78-mediated stemness inhibition, tumor microenvironment regulation, and chemosensitivity promotion by ISL. ISL not only suppressed GRP78-mediated gastric cancer stem cell–like characteristics, stemness-related protein expression, and cancer-associated fibroblast activation but also gastric tumor growth in xenograft animal studies. The findings indicated that ISL is a promising candidate for clinical use in combination chemotherapy.
Collapse
|
46
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
47
|
Zanoni M, Bravaccini S, Fabbri F, Arienti C. Emerging Roles of Aldehyde Dehydrogenase Isoforms in Anti-cancer Therapy Resistance. Front Med (Lausanne) 2022; 9:795762. [PMID: 35299840 PMCID: PMC8920988 DOI: 10.3389/fmed.2022.795762] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes often upregulated in cancer cells and associated with therapeutic resistance. In humans, the ALDH family comprises 19 isoenzymes active in the majority of mammalian tissues. Each ALDH isoform has a specific differential expression pattern and most of them have individual functional roles in cancer. ALDHs are overexpressed in subpopulations of cancer cells with stem-like features, where they are involved in several processes including cellular proliferation, differentiation, detoxification and survival, participating in lipids and amino acid metabolism and retinoic acid synthesis. In particular, ALDH enzymes protect cancer cells by metabolizing toxic aldehydes in less reactive and more soluble carboxylic acids. High metabolic activity as well as conventional anticancer therapies contribute to aldehyde accumulation, leading to DNA double strand breaks (DSB) through the generation of reactive oxygen species (ROS) and lipid peroxidation. ALDH overexpression is crucial not only for the survival of cancer stem cells but can also affect immune cells of the tumour microenvironment (TME). The reduction of ROS amount and the increase in retinoic acid signaling impairs immunogenic cell death (ICD) inducing the activation and stability of immunosuppressive regulatory T cells (Tregs). Dissecting the role of ALDH specific isoforms in the TME can open new scenarios in the cancer treatment. In this review, we summarize the current knowledge about the role of ALDH isoforms in solid tumors, in particular in association with therapy-resistance.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | | | - Chiara Arienti
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
48
|
Omran Z. Novel Disulfiram Derivatives as ALDH1a1-Selective Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020480. [PMID: 35056791 PMCID: PMC8778300 DOI: 10.3390/molecules27020480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase-1a1 (ALDH1a1), the enzyme responsible for the oxidation of retinal into retinoic acid, represents a key therapeutic target for the treatment of debilitating disorders such as cancer, obesity, and inflammation. Drugs that can inhibit ALDH1a1 include disulfiram, an FDA-approved drug to treat chronic alcoholism. Disulfiram, by carbamylation of the catalytic cysteines, irreversibly inhibits ALDH1a1 and ALDH2. The latter is the isozyme responsible for important physiological processes such as the second stage of alcohol metabolism. Given the fact that ALDH1a1 has a larger substrate tunnel than that in ALDH2, replacing disulfiram ethyl groups with larger motifs will yield selective ALDH1a1 inhibitors. We report herein the synthesis of new inhibitors of ALDH1a1 where (hetero)aromatic rings were introduced into the structure of disulfiram. Most of the developed compounds retained the anti-ALDH1a1 activity of disulfiram; however, they were completely devoid of inhibitory activity against ALDH2.
Collapse
Affiliation(s)
- Ziad Omran
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
49
|
Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021; 10:antiox10121942. [PMID: 34943045 PMCID: PMC8750393 DOI: 10.3390/antiox10121942] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with the poorest prognosis, representing the deadliest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations, present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has significantly improved progression-free and overall survival in advanced melanoma patients carrying BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described. Moreover, in recent years, oxidative stress has emerged as another major force involved in all the phases of melanoma development, from initiation to progression until the onsets of the metastatic phenotype and chemoresistance, and has thus become a target for therapy. In the present review, we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.
Collapse
|