1
|
Liu Y, Stockwell BR, Jiang X, Gu W. p53-regulated non-apoptotic cell death pathways and their relevance in cancer and other diseases. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00842-3. [PMID: 40204927 DOI: 10.1038/s41580-025-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Programmed cell death is a mechanism that is crucial for numerous physiological and pathological processes. Whereas p53-mediated apoptosis is a major cell death pathway in cancer, accumulating evidence indicates that p53 also has crucial roles in controlling different non-apoptotic cell death (NACD) pathways, including ferroptosis, necroptosis, pyroptosis, autophagy-dependent cell death, entotic cell death, parthanatos and paraptosis, and may regulate PANoptosis, cuproptosis and disulfidptosis. Notably, the function of p53 in these NACDs substantially contributes to its biological effects, particularly in cancer development and other pathological processes. In this Review, we discuss recent advances in understanding the roles and underlying mechanisms of p53-mediated NACDs, focusing on ferroptosis, necroptosis and pyroptosis. We discuss the complex and distinct physiological settings in which NACDs are regulated by p53, and potential targeting of p53-regulated NACDs for the treatment of cancer and other human diseases. Finally, we highlight several important questions concerning p53-regulated NACDs that warrant further investigation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Wu R, Chen X, Chen H, Li M, Liang Y. Plasmodium infection downregulates hypoxia‑inducible factor 1α expression to suppress the vascularization and tumorigenesis of liver cancer. Oncol Lett 2024; 28:604. [PMID: 39483968 PMCID: PMC11525613 DOI: 10.3892/ol.2024.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/06/2024] [Indexed: 11/03/2024] Open
Abstract
Liver cancer is characterized by hypervascularization. Anti-angiogenic agents may normalize the tumor vasculature and improve the efficacy of other treatments. The present study aims to investigate the anti-angiogenic effect of Plasmodium infection in a mouse model of implanted liver cancer cells. HepG2 cells were injected into the left liver lobe of nude mice as a model of in situ hepatic tumorigenesis. Plasmodium yoelii parasitized erythrocytes were administered in the animal model of liver cancer to introduce Plasmodium infection. The tumor growth and microvascular density were determined in the presence or absence of Plasmodium infection. The expression levels of hypoxia-inducible factor 1α (HIF-1α) and angiogenesis-related factors were evaluated using western blotting and reverse transcription-quantitative PCR analysis. The results demonstrated that Plasmodium infection suppressed tumor growth and vascularization in the mouse model of implanted HepG2 cells. Plasmodium parasites reduced the expression of pro-angiogenic factors (vascular endothelial growth factor A and angiopoietin 2), matrix metalloproteinases [(MMP)2 and MMP9] and inflammatory cytokines [tumor necrosis factor α, interleukin 6 (IL)-6) and IL-1β] in both hepatic and tumor tissues. HIF-1α was downregulated in both hepatic and tumor tissues upon Plasmodium infection, and HIF-1α overexpression rescued angiogenesis and tumor growth under the condition of Plasmodium infection. In conclusion, the results of the present study demonstrated the anti-angiogenic and anti-tumorigenic effects of Plasmodium infection on liver cancer through downregulating HIF-1α expression, indicating that Plasmodium parasites could be developed as an intervention strategy to restrain neo-angiogenesis in liver cancer.
Collapse
Affiliation(s)
- Runling Wu
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiao Chen
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Huan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Mei Li
- Department of Clinical Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
3
|
Dai Y, Liang Y, Liu C, Liu T, Chen L, Li Y. Can artemisinin and its derivatives treat malaria in a host-directed manner? Biochem Pharmacol 2024; 225:116260. [PMID: 38705539 DOI: 10.1016/j.bcp.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Malaria is caused by an apicomplexan protozoan parasite, Plasmodium, and is transmitted through vectors. It remains a substantial health burden, especially in developing countries, leading to significant socioeconomic losses. Although the World Health Organization (WHO) has approved various antimalarial medications in the past two decades, the increasing resistance to these medications has worsened the situation. The development of drug resistance stems from genetic diversity among Plasmodium strains, impeding eradication efforts. Consequently, exploring innovative technologies and strategies for developing effective medications based on the host is crucial. Artemisinin and its derivatives (artemisinins) have been recommended by the WHO for treating malaria owing to their known effectiveness in killing the parasite. However, their potential to target the host for malaria treatment has not been investigated. This article concisely reviews the application of host-directed therapeutics, potential drug candidates targeting the host for treating malaria, and usage of artemisinins in numerous diseases. It underscores the importance of host-directed interventions for individuals susceptible to malaria, suggests the potential utility of artemisinins in host-directed malaria treatments, and posits that the modulation of host proteins with artemisinins may offer a means of intervening in host-parasite interactions. Further studies focusing on the host-targeting perspective of artemisinins can provide new insights into the mechanisms of artemisinin resistance and offer a unique opportunity for new antimalarial drug discovery.
Collapse
Affiliation(s)
- Yue Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Shapira T, Christofferson M, Av-Gay Y. The antimicrobial activity of innate host-directed therapies: A systematic review. Int J Antimicrob Agents 2024; 63:107138. [PMID: 38490573 DOI: 10.1016/j.ijantimicag.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Intracellular human pathogens are the deadliest infectious diseases and are difficult to treat effectively due to their protection inside the host cell and the development of antimicrobial resistance (AMR). An emerging approach to combat these intracellular pathogens is host-directed therapies (HDT), which harness the innate immunity of host cells. HDT rely on small molecules to promote host protection mechanisms that ultimately lead to pathogen clearance. These therapies are hypothesized to: (1) possess indirect yet broad, cross-species antimicrobial activity, (2) effectively target drug-resistant pathogens, (3) carry a reduced susceptibility to the development of AMR and (4) have synergistic action with conventional antimicrobials. As the field of HDT expands, this systematic review was conducted to collect a compendium of HDT and their characteristics, such as the host mechanisms affected, the pathogen inhibited, the concentrations investigated and the magnitude of pathogen inhibition. The evidential support for the main four HDT hypotheses was assessed and concluded that HDT demonstrate robust cross-species activity, are active against AMR pathogens, clinical isolates and laboratory-adapted pathogens. However, limited information exists to support the notion that HDT are synergistic with canonical antimicrobials and are less predisposed to AMR development.
Collapse
Affiliation(s)
- Tirosh Shapira
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Christofferson
- Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Microbiology and Immunology, Division of Infectious Disease, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer 2024; 24:192-215. [PMID: 38287107 DOI: 10.1038/s41568-023-00658-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/31/2024]
Abstract
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
Collapse
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Selivanova
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol 2024; 13:1324134. [PMID: 38259969 PMCID: PMC10800934 DOI: 10.3389/fcimb.2023.1324134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Ghrelin widely exists in the central nervous system and peripheral organs, and has biological activities such as maintaining energy homeostasis, regulating lipid metabolism, cell proliferation, immune response, gastrointestinal physiological activities, cognition, memory, circadian rhythm and reward effects. In many benign liver diseases, it may play a hepatoprotective role against steatosis, chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and apoptosis, and improve liver cell autophagy and immune response to improve disease progression. However, the role of Ghrelin in liver Echinococcosis is currently unclear. This review systematically summarizes the molecular mechanisms by which Ghrelin regulates liver growth metabolism, immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its protective effects in liver fibrosis diseases, and further proposes the role of Ghrelin in liver Echinococcosis infection. During the infectious process, it may promote the parasitism and survival of parasites on the host by improving the immune-inflammatory microenvironment and fibrosis state, thereby accelerating disease progression. However, there is currently a lack of targeted in vitro and in vivo experimental evidence for this viewpoint.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Meng Menggen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Sena-Dos-Santos C, Cavalcante GC, Marques D, Silva CS, de Moraes MR, Pinto P, Santana-da-Silva MN, Ferraz RS, Costa SPT, Ventura AMR, Póvoa MM, Cunha MG, Ribeiro-Dos-Santos Â. Association of apoptosis-related variants to malaria infection and parasite density in individuals from the Brazilian Amazon. Malar J 2023; 22:295. [PMID: 37794476 PMCID: PMC10552311 DOI: 10.1186/s12936-023-04729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND In malaria infection, apoptosis acts as an important immunomodulatory mechanism that leads to the elimination of parasitized cells, thus reducing the parasite density and controlling immune cell populations. Here, it was investigated the association of INDEL variants in apoptotic genes-rs10562972 (FAS), rs4197 (FADD), rs3834129 and rs59308963 (CASP8), rs61079693 (CASP9), rs4647655 (CASP3), rs11269260 (BCL-2), and rs17880560 (TP53)-and the influence of genetic ancestry with susceptibility to malaria and parasite density in an admixed population from the Brazilian Amazon. METHODS Total DNA was extracted from 126 malaria patients and 101 uninfected individuals for investigation of genetic ancestries and genotypic distribution of apoptosis-related variants by Multiplex PCR. Association analyses consisted of multivariate logistic regressions, considering the following comparisons: (i) DEL/DEL genotype vs. INS/DEL + INS/INS; and (ii) INS/INS vs. INS/DEL + DEL/DEL. RESULTS Individuals infected by Plasmodium falciparum had significantly higher African ancestry proportions in comparison to uninfected controls, Plasmodium vivax, and mixed infections. The INS/INS genotype of rs3834129 (CASP8) seemed to increase the risk for P. falciparum infection (P = 0.038; OR = 1.867; 95% CI 0.736-3.725), while the DEL/DEL genotype presented a significant protective effect against infection by P. falciparum (P = 0.049; OR = 0.446; 95% CI 0.185-0.944) and mixed infection (P = 0.026; OR = 0.545; 95% CI 0.281-0.996), and was associated with lower parasite density in P. falciparum malaria (P = 0.009; OR = 0.383; 95% CI 0.113-1.295). Additionally, the INS/INS genotype of rs10562972 (FAS) was more frequent among individuals infected with P. vivax compared to P. falciparum (P = 0.036; OR = 2.493; 95% CI 1.104-4.551), and the DEL/DEL genotype of rs17880560 (TP53) was significantly more present in patients with mono-infection by P. vivax than in individuals with mixed infection (P = 0.029; OR = 0.667; 95% CI 0.211-1.669). CONCLUSIONS In conclusion, variants in apoptosis genes are associated with malaria susceptibility and parasite density, indicating the role of apoptosis-related genetic profiles in immune responses against malaria infection.
Collapse
Affiliation(s)
- Camille Sena-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Giovanna C Cavalcante
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Diego Marques
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Caio S Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Milene Raiol de Moraes
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Pablo Pinto
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
- Laboratory of Dermatoimmunology, Federal University of Pará (UFPA), Marituba, Brazil
| | - Mayara Natália Santana-da-Silva
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | - Rafaella S Ferraz
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Ana Maria R Ventura
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Marinete M Póvoa
- Division of Parasitology, Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Maristela G Cunha
- Laboratory of Microbiology and Immunology, Federal University of Pará (UFPA), Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Program of Genetics and Molecular Biology, Federal University of Pará (UFPA), Belém, Brazil.
- Program of Oncology and Medical Sciences, Oncology Research Center, Belém, Brazil.
| |
Collapse
|
9
|
Bhardwaj J, Upadhye A, Gaskin EL, Doumbo S, Kayentao K, Ongoiba A, Traore B, Crompton PD, Tran TM. Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study. J Infect Dis 2023; 228:202-211. [PMID: 36961831 PMCID: PMC10345479 DOI: 10.1093/infdis/jiad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. METHODS p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. RESULTS Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. CONCLUSIONS These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
11
|
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D, Feng H. Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol 2023; 14:1107239. [PMID: 37063830 PMCID: PMC10102619 DOI: 10.3389/fimmu.2023.1107239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.
Collapse
Affiliation(s)
- Jian-Yong Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Xiang-Kun Yuan
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Rui-Zhen Luo
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Li-Xin Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing, China
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
13
|
Bao J, He Y, Yang C, Lu N, Li A, Gao S, Hosyanto FF, Tang J, Si J, Tang X, Fu H, Xu L. Inhibition of mycobacteria proliferation in macrophages by low cisplatin concentration through phosphorylated p53-related apoptosis pathway. PLoS One 2023; 18:e0281170. [PMID: 36719870 PMCID: PMC9888694 DOI: 10.1371/journal.pone.0281170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Drug resistance is a prominent problem in the treatment of tuberculosis, so it is urgent to develop new anti- tuberculosis drugs. Here, we investigated the effects and mechanisms of cisplatin (DDP) on intracellular Mycobacterium smegmatis to tap the therapeutic potential of DDP in mycobacterial infection. RESULTS Macrophages infected with Mycobacterium smegmatis were treated with DDP alone or combined with isoniazid or rifampicin. The results showed that the bacterial count in macrophages decreased significantly after DDP (≤ 6 μg/mL) treatment. When isoniazid or rifampicin was combined with DDP, the number of intracellular mycobacteria was also significantly lower than that of isoniazid or rifampicin alone. Apoptosis of infected cells increased after 24 h of DDP treatment, as shown by flow cytometry and transmission electron microscopy detection. Transcriptome sequencing showed that there were 1161 upregulated and 645 downregulated differentially expressed genes (DEGs) between the control group and DDP treatment group. A Trp53-centered protein interaction network was found based on the top 100 significant DEGs through STRING and Cytoscape software. The expression of phosphorylated p53, Bax, JAK, p38 MAPK and PI3K increased after DDP treatment, as shown by Western blot analysis. Inhibitors of JAK, PI3K or p38 MAPK inhibited the increase in cell apoptosis and the reduction in the intracellular bacterial count induced by DDP. The p53 promoter Kevetrin hydrochloride scavenges intracellular mycobacteria. If combined with DDP, Kevetrin hydrochloride could increase the effect of DDP on the elimination of intracellular mycobacteria. In conclusion, DDP at low concentrations could activate the JAK, p38 MAPK and PI3K pathways in infected macrophages, promote the phosphorylation of p53 protein, and increase the ratio of Bax to Bcl-2, leading to cell apoptosis, thus eliminating intracellular bacteria and reducing the spread of mycobacteria. CONCLUSION DDP may be a new host-directed therapy for tuberculosis treatment, as well as the p53 promoter Kevetrin hydrochloride.
Collapse
Affiliation(s)
- Jiajia Bao
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Hospital-Acquired Infection Control Department, First People’s Hospital of Jintang County, Chengdu, China
| | - Yonglin He
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chun Yang
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Nan Lu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Anlong Li
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Sijia Gao
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | | | - Jialing Tang
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Junzhuo Si
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xia Tang
- Clinical laboratory, People’s Hospital of Rongchang District, Chongqing, China
| | - Huichao Fu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lei Xu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
14
|
Afriat A, Zuzarte-Luís V, Bahar Halpern K, Buchauer L, Marques S, Chora ÂF, Lahree A, Amit I, Mota MM, Itzkovitz S. A spatiotemporally resolved single-cell atlas of the Plasmodium liver stage. Nature 2022; 611:563-569. [PMID: 36352220 DOI: 10.1038/s41586-022-05406-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
Malaria infection involves an obligatory, yet clinically silent liver stage1,2. Hepatocytes operate in repeating units termed lobules, exhibiting heterogeneous gene expression patterns along the lobule axis3, but the effects of hepatocyte zonation on parasite development at the molecular level remain unknown. Here we combine single-cell RNA sequencing4 and single-molecule transcript imaging5 to characterize the host and parasite temporal expression programmes in a zonally controlled manner for the rodent malaria parasite Plasmodium berghei ANKA. We identify differences in parasite gene expression in distinct zones, including potentially co-adaptive programmes related to iron and fatty acid metabolism. We find that parasites develop more rapidly in the pericentral lobule zones and identify a subpopulation of periportally biased hepatocytes that harbour abortive infections, reduced levels of Plasmodium transcripts and parasitophorous vacuole breakdown. These 'abortive hepatocytes', which appear predominantly with high parasite inoculum, upregulate immune recruitment and key signalling programmes. Our study provides a resource for understanding the liver stage of Plasmodium infection at high spatial resolution and highlights the heterogeneous behaviour of both the parasite and the host hepatocyte.
Collapse
Affiliation(s)
- Amichay Afriat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lisa Buchauer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sofia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ângelo Ferreira Chora
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Aparajita Lahree
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Dey S, Kaur H, Mazumder M, Brodsky E. Analysis of gene expression profiles to study malaria vaccine dose efficacy and immune response modulation. Genomics Inform 2022; 20:e32. [PMID: 36239109 PMCID: PMC9576474 DOI: 10.5808/gi.22049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/04/2022] [Indexed: 11/20/2022] Open
Abstract
Malaria is a life-threatening disease, and Africa is still one of the most affected endemic regions despite years of policy to limit infection and transmission rates. Further, studies into the variable efficacy of the vaccine are needed to provide a better understanding of protective immunity. Thus, the current study is designed to delineate the effect of each dose of vaccine on the transcriptional profiles of subjects to determine its efficacy and understand the molecular mechanisms underlying the protection this vaccine provides. Here, we used gene expression profiles of pre and post-vaccination patients after various doses of RTS,S based on samples collected from the Gene Expression Omnibus datasets. Subsequently, differential gene expression analysis using edgeR revealed the significantly (false discovery rate < 0.005) 158 downregulated and 61 upregulated genes between control vs. controlled human malaria infection samples. Further, enrichment analysis of significant genes delineated the involvement of CCL8, CXCL10, CXCL11, XCR1, CSF3, IFNB1, IFNE, IL12B, IL22, IL6, IL27, etc., genes which found to be upregulated after earlier doses but downregulated after the 3rd dose in cytokine-chemokine pathways. Notably, we identified 13 cytokine genes whose expression significantly varied during three doses. Eventually, these findings give insight into the dual role of cytokine responses in malaria pathogenesis. The variations in their expression patterns after various doses of vaccination are linked to the protection as it decreases the severe inflammatory effects in malaria patients. This study will be helpful in designing a better vaccine against malaria and understanding the functions of cytokine response as well.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
- Pine Biotech, New Orleans, LA 70112, USA
- Corresponding author: ,
| | | | | | | |
Collapse
|
16
|
Schroeder EA, Chirgwin ME, Derbyshire ER. Plasmodium's fight for survival: escaping elimination while acquiring nutrients. Trends Parasitol 2022; 38:544-557. [PMID: 35534377 PMCID: PMC9187605 DOI: 10.1016/j.pt.2022.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/10/2022] [Accepted: 04/10/2022] [Indexed: 01/08/2023]
Abstract
Plasmodium parasites extensively alter their host hepatocyte to evade host detection and support an unprecedented replication rate. Host cell manipulation includes association with the host early and late endomembrane systems, where Plasmodium accesses nutrients while suppressing cellular immune processes. Early endomembrane organelles provide an opportunity to sequester an abundance of lipids and proteins, but the association with late endomembrane organelles also risks autophagy-mediated elimination. While not all parasites survive, those that do benefit from a plethora of nutrients provided through this pathway. In this review, we discuss recent advances in our understanding of how Plasmodium parasites balance the need for host nutrients while avoiding elimination during the liver stage.
Collapse
Affiliation(s)
- Erin A Schroeder
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
17
|
Lahree A, Baptista SDJS, Marques S, Perschin V, Zuzarte-Luís V, Goel M, Choudhary HH, Mishra S, Stigloher C, Zerial M, Sundaramurthy V, Mota MM. Active APPL1 sequestration by Plasmodium favors liver-stage development. Cell Rep 2022; 39:110886. [PMID: 35649358 DOI: 10.1016/j.celrep.2022.110886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/10/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
Intracellular pathogens manipulate host cells to survive and thrive. Cellular sensing and signaling pathways are among the key host machineries deregulated to favor infection. In this study, we show that liver-stage Plasmodium parasites compete with the host to sequester a host endosomal-adaptor protein (APPL1) known to regulate signaling in response to endocytosis. The enrichment of APPL1 at the parasitophorous vacuole membrane (PVM) involves an atypical Plasmodium Rab5 isoform (Rab5b). Depletion of host APPL1 alters neither the infection nor parasite development; however, upon overexpression of a GTPase-deficient host Rab5 mutant (hRab5_Q79L), the parasites are smaller and their PVM is stripped of APPL1. Infection with the GTPase-deficient Plasmodium berghei Rab5b mutant (PbRab5b_Q91L) in this case rescues the PVM APPL1 signal and parasite size. In summary, we observe a robust correlation between the level of APPL1 retention at the PVM and parasite size during exoerythrocytic development.
Collapse
Affiliation(s)
- Aparajita Lahree
- Instituto de Medicina Molecular- João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; Departamento de Bioengenharia, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Sara de Jesus Santos Baptista
- Instituto de Medicina Molecular- João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular- João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular- João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Manisha Goel
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS), Bellary Road, Bangalore 560065, Karnataka, India
| | - Hadi Hasan Choudhary
- CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Satish Mishra
- CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Varadharajan Sundaramurthy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (NCBS), Bellary Road, Bangalore 560065, Karnataka, India
| | - Maria M Mota
- Instituto de Medicina Molecular- João Lobo Antunes (iMM-JLA), Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
18
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
19
|
Liu Y, Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ 2022; 29:895-910. [PMID: 35087226 PMCID: PMC9091200 DOI: 10.1038/s41418-022-00943-y] [Citation(s) in RCA: 315] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
Although the conventional activities of p53 such as cell cycle arrest, senescence, and apoptosis are well accepted as the major checkpoints in stress responses, accumulating evidence implicates the importance of other tumor suppression mechanisms. Among these unconventional activities, an iron-dependent form of non-apoptotic cell death, termed ferroptosis, attracts great interest. Unlike apoptotic cell death, activation of p53 alone is not sufficient to induce ferroptosis directly; instead, through its metabolic targets, p53 is able to modulate the ferroptosis response in the presence of ferroptosis inducers such as GPX4 inhibitors or high levels of ROS. Here, we review the role of ferroptosis in p53-mediated tumor suppression, with a focus on what cellular factors are critical for p53-dependent ferroptosis during tumor suppression and how p53 modulates both the canonical (GPX4-dependent) and the non-canonical (GPX4-independent) ferroptosis pathways. We also discuss the possibility of targeting p53-mediated ferroptotic responses for the treatment of human cancers and potentially, other diseases.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Yang S, Du X, Wang C, Zhang T, Xu S, Zhu Y, Lv Y, Zhao Y, Zhu M, Guo L, Zhao W. Coding and Noncoding RNA Expression Profiles of Spleen CD4 + T Lymphocytes in Mice with Echinococcosis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9742461. [PMID: 35480082 PMCID: PMC9012641 DOI: 10.1155/2022/9742461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Cystic echinococcosis (CE) is a severe and neglected zoonotic disease that poses health and socioeconomic hazards. So far, the prevention and treatment of CE are far from meeting people's ideal expectations. Therefore, to gain insight into the prevention and diagnosis of CE, we explored the changes in RNA molecules and the biological processes and pathways involved in these RNA molecules as E. granulosus infects the host. Interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17A, and tumor necrosis factor (TNF)-α levels in peripheral blood serum of E. granulosus infected and uninfected female BALB/c mice were measured using the cytometric bead array mouse Th1/Th2/Th17 cytokine kit. mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) profiles of spleen CD4+ T cells from the two groups of mice were analyzed using high-throughput sequencing and bioinformatics. The levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α were significantly higher in the serum of the CE mice than in control mice (P < 0.01). In total, 1,758 known mRNAs, 37 miRNAs, 175 lncRNAs, and 22 circRNAs were differentially expressed between infected and uninfected mice (|fold change| ≥ 0.585, P < 0.05). These differentially expressed molecules are involved in chromosome composition, DNA/RNA metabolism, and gene expression in cell composition, biological function, and cell function. Moreover, closely related to the JAK/STAT signaling pathways, mitogen-activated protein kinase signaling pathways, P53 signaling pathways, PI3K/AKT signaling pathways, cell cycle, and metabolic pathways. E. granulosus infection significantly increased the levels of IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17A, and TNF-α in mouse peripheral blood of mice and significantly changed expression levels of various coding and noncoding RNAs. Further study of these trends and pathways may help clarify the pathogenesis of CE and provide new insights into the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Songhao Yang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Xiancai Du
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Chan Wang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Tingrui Zhang
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Shimei Xu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yazhou Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yongxue Lv
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Yinqi Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Mingxing Zhu
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Lingna Guo
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Center of Scientific Technology of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| | - Wei Zhao
- Key Laboratory of Prevention and Control of Common Infectious Diseases of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region 750004, Yinchuan, China
- Department of Medical Genetics and Cell Biology, School of Basic Medical Science of Ningxia Medical University, Ningxia Hui Autonomous Region 750004, Yinchuan, China
| |
Collapse
|
21
|
Plasmodium berghei-Mediated NRF2 Activation in Infected Hepatocytes Enhances Parasite Survival. Cell Microbiol 2022. [DOI: 10.1155/2022/7647976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protozoan parasite Plasmodium, causative agent of malaria, initially invades and develops in hepatocytes where it resides in a parasitophorous vacuole (PV). A single invaded parasite develops into thousands of daughter parasites. Survival of the host cell is crucial for successful completion of liver stage development. Nuclear factor erythroid-derived 2-related factor 2 (NRF2) is a transcription factor known to induce transcription of cytoprotective genes when activated. Here we show that NRF2 is activated in Plasmodium berghei-infected hepatocytes. We observed that this NRF2 activation depends on PV membrane resident p62 recruiting KEAP1, the negative regulator of NRF2. Disrupting the NRF2 gene results in reduced parasite survival, indicating that NRF2 signaling is an important event for parasite development in hepatocytes. Together, our observations uncovered a novel mechanism of how Plasmodium parasites ensure host cell survival during liver stage development.
Collapse
|
22
|
Glennon EKK, Tongogara T, Primavera VI, Reeder SM, Wei L, Kaushansky A. Elucidating Spatially-Resolved Changes in Host Signaling During Plasmodium Liver-Stage Infection. Front Cell Infect Microbiol 2022; 11:804186. [PMID: 35111697 PMCID: PMC8801743 DOI: 10.3389/fcimb.2021.804186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
Upon transmission to the human host, Plasmodium sporozoites exit the skin, are taken up by the blood stream, and then travel to the liver where they infect and significantly modify a single hepatocyte. Low infection rates within the liver have made proteomic studies of infected hepatocytes challenging, particularly in vivo, and existing studies have been largely unable to consider how protein and phosphoprotein differences are altered at different spatial locations within the heterogeneous liver. Using digital spatial profiling, we characterized changes in host signaling during Plasmodium yoelii infection in vivo without disrupting the liver tissue. Moreover, we measured alterations in protein expression around infected hepatocytes and identified a subset of CD163+ Kupffer cells that migrate towards infected cells during infection. These data offer the first insight into the heterogeneous microenvironment that surrounds the infected hepatocyte and provide insights into how the parasite may alter its milieu to influence its survival and modulate immunity.
Collapse
Affiliation(s)
- Elizabeth K. K. Glennon
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Tinotenda Tongogara
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Grinnell College, Grinnell, IA, United States
| | - Veronica I. Primavera
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Sophia M. Reeder
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Ling Wei
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Alexis Kaushansky
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
- *Correspondence: Alexis Kaushansky,
| |
Collapse
|
23
|
Baeza Garcia A, Siu E, Du X, Leng L, Franke-Fayard B, Janse CJ, Howland SW, Rénia L, Lolis E, Bucala R. Suppression of Plasmodium MIF-CD74 signaling protects against severe malaria. FASEB J 2021; 35:e21997. [PMID: 34719814 DOI: 10.1096/fj.202101072r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/11/2022]
Abstract
The deadliest complication of infection by Plasmodium parasites, cerebral malaria, accounts for the majority of malarial fatalities. Although our understanding of the cellular and molecular mechanisms underlying the pathology remains incomplete, recent studies support the contribution of systemic and neuroinflammation as the cause of cerebral edema and blood-brain barrier (BBB) dysfunction. All Plasmodium species encode an orthologue of the innate cytokine, Macrophage Migration Inhibitory Factor (MIF), which functions in mammalian biology to regulate innate responses. Plasmodium MIF (PMIF) similarly signals through the host MIF receptor CD74, leading to an enhanced inflammatory response. We investigated the PMIF-CD74 interaction in the onset of experimental cerebral malaria (ECM) and liver stage Plasmodium development by using a combination of CD74 deficient (Cd74-/- ) hosts and PMIF deficient parasites. Cd74-/- mice were found to be protected from ECM and the protection was associated with the inability of brain microvessels to present parasite antigen to sequestered and pathogenic Plasmodium-specific CD8+ T cells. Infection of WT hosts with PMIF-deficient sporozoites or infection of Cd74-/- hosts with WT sporozoites impacted the survival of infected hepatocytes and subsequently reduced blood-stage associated inflammation, contributing to protection from ECM. We recapitulated these finding with a novel pharmacologic PMIF-selective antagonist that reduced PMIF/CD74 signaling and fully protected mice from ECM. These findings reveal a conserved mechanism for Plasmodium usurpation of host CD74 signaling and suggest a tractable approach for new pharmacologic intervention.
Collapse
Affiliation(s)
- Alvaro Baeza Garcia
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Edwin Siu
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xin Du
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci 2021; 22:ijms222111338. [PMID: 34768767 PMCID: PMC8583510 DOI: 10.3390/ijms222111338] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the energy center of the cell. They are found in the cell cytoplasm as dynamic networks where they adapt energy production based on the cell’s needs. They are also at the center of the proinflammatory response and have essential roles in the response against pathogenic infections. Mitochondria are a major site for production of Reactive Oxygen Species (ROS; or free radicals), which are essential to fight infection. However, excessive and uncontrolled production can become deleterious to the cell, leading to mitochondrial and tissue damage. Pathogens exploit the role of mitochondria during infection by affecting the oxidative phosphorylation mechanism (OXPHOS), mitochondrial network and disrupting the communication between the nucleus and the mitochondria. The role of mitochondria in these biological processes makes these organelle good targets for the development of therapeutic strategies. In this review, we presented a summary of the endosymbiotic origin of mitochondria and their involvement in the pathogen response, as well as the potential promising mitochondrial targets for the fight against infectious diseases and chronic inflammatory diseases.
Collapse
|
25
|
Abstract
Host-directed therapy (HDT) is gaining traction as a strategy to combat infectious diseases caused by viruses and intracellular bacteria, but its implementation in the context of parasitic diseases has received less attention. Here, we provide a brief overview of this field and advocate HDT as a promising strategy for antimalarial intervention based on untapped targets. HDT provides a basis from which repurposed drugs could be rapidly deployed and is likely to strongly limit the emergence of resistance. This strategy can be applied to any intracellular pathogen and is particularly well placed in situations in which rapid identification of treatments is needed, such as emerging infections and pandemics, as starkly illustrated by the current COVID-19 crisis.
Collapse
|
26
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
27
|
Chang CY, Wang J, Zhao Y, Liu J, Yang X, Yue X, Wang H, Zhou F, Inclan-Rico JM, Ponessa JJ, Xie P, Zhang L, Siracusa MC, Feng Z, Hu W. Tumor suppressor p53 regulates intestinal type 2 immunity. Nat Commun 2021; 12:3371. [PMID: 34099671 PMCID: PMC8184793 DOI: 10.1038/s41467-021-23587-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The role of p53 in tumor suppression has been extensively studied and well-established. However, the role of p53 in parasitic infections and the intestinal type 2 immunity is unclear. Here, we report that p53 is crucial for intestinal type 2 immunity in response to the infection of parasites, such as Tritrichomonas muris and Nippostrongylus brasiliensis. Mechanistically, p53 plays a critical role in the activation of the tuft cell-IL-25-type 2 innate lymphoid cell circuit, partly via transcriptional regulation of Lrmp in tuft cells. Lrmp modulates Ca2+ influx and IL-25 release, which are critical triggers of type 2 innate lymphoid cell response. Our results thus reveal a previously unrecognized function of p53 in regulating intestinal type 2 immunity to protect against parasitic infections, highlighting the role of p53 as a guardian of immune integrity.
Collapse
Affiliation(s)
- Chun-Yuan Chang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Xue Yang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Xuetian Yue
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Huaying Wang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan M Inclan-Rico
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - John J Ponessa
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Pathology, Penn Medicine Princeton Medical Center, Plainsboro, NJ, USA
| | - Mark C Siracusa
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Zhaohui Feng
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
28
|
Lasonder E, More K, Singh S, Haidar M, Bertinetti D, Kennedy EJ, Herberg FW, Holder AA, Langsley G, Chitnis CE. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Front Microbiol 2021; 12:684005. [PMID: 34108954 PMCID: PMC8183823 DOI: 10.3389/fmicb.2021.684005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Edwin Lasonder
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kunal More
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | | | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Sena-dos-Santos C, Braga-da-Silva C, Marques D, Azevedo dos Santos Pinheiro J, Ribeiro-dos-Santos Â, Cavalcante GC. Unraveling Cell Death Pathways during Malaria Infection: What Do We Know So Far? Cells 2021; 10:479. [PMID: 33672278 PMCID: PMC7926694 DOI: 10.3390/cells10020479] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a parasitic disease (caused by different Plasmodium species) that affects millions of people worldwide. The lack of effective malaria drugs and a vaccine contributes to this disease, continuing to cause major public health and socioeconomic problems, especially in low-income countries. Cell death is implicated in malaria immune responses by eliminating infected cells, but it can also provoke an intense inflammatory response and lead to severe malaria outcomes. The study of the pathophysiological role of cell death in malaria in mammalians is key to understanding the parasite-host interactions and design prophylactic and therapeutic strategies for malaria. In this work, we review malaria-triggered cell death pathways (apoptosis, autophagy, necrosis, pyroptosis, NETosis, and ferroptosis) and we discuss their potential role in the development of new approaches for human malaria therapies.
Collapse
Affiliation(s)
- Camille Sena-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Cíntia Braga-da-Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Diego Marques
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Jhully Azevedo dos Santos Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66.075-110, Brazil
| | - Giovanna C. Cavalcante
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| |
Collapse
|
30
|
Tajeri S, Langsley G. Theileria secretes proteins to subvert its host leukocyte. Biol Cell 2021; 113:220-233. [PMID: 33314227 DOI: 10.1111/boc.202000096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
Theileria parasites are classified in the phylum Apicomplexa that includes several genera of medical and veterinary importance such as Plasmodium, Babesia, Toxoplasma and Cryptosporidium. These protozoans have evolved subtle ways to reshape their intracellular niche for their own benefit and Theileria is no exception. This tick transmitted microorganism is unique among all eukaryotes in that its intracellular schizont stage is able to transform its mammalian host leukocytes into an immortalised highly disseminating cell that phenocopies tumour cells. Here, we describe what is known about secreted Theileria-encoded host cell manipulators.
Collapse
Affiliation(s)
- Shahin Tajeri
- INSERM U1016, CNRS UMR8104, Cochin Institute, Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes-Sorbonne Paris Cité, Paris, 75014, France.,Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Paris, 75013, France
| | - Gordon Langsley
- INSERM U1016, CNRS UMR8104, Cochin Institute, Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes-Sorbonne Paris Cité, Paris, 75014, France
| |
Collapse
|
31
|
Voorberg-van der Wel A, Kocken CHM, Zeeman AM. Modeling Relapsing Malaria: Emerging Technologies to Study Parasite-Host Interactions in the Liver. Front Cell Infect Microbiol 2021; 10:606033. [PMID: 33585277 PMCID: PMC7878928 DOI: 10.3389/fcimb.2020.606033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies of liver stage malaria parasite-host interactions have provided exciting new insights on the cross-talk between parasite and its mammalian (predominantly rodent) host. We review the latest state of the art and and zoom in on new technologies that will provide the tools necessary to investigate host-parasite interactions of relapsing parasites. Interactions between hypnozoites and hepatocytes are particularly interesting because the parasite can remain in a quiescent state for prolonged periods of time and triggers for reactivation have not been irrefutably identified. If we learn more about the cross-talk between hypnozoite and host we may be able to identify factors that encourage waking up these dormant parasite reservoirs and help to achieve the total eradication of malaria.
Collapse
Affiliation(s)
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
32
|
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR) is considered as a critical regulatory enzyme involved in essential signaling pathways affecting cell growth, cell proliferation, protein translation, regulation of cellular metabolism, and cytoskeletal structure. Also, mTOR signaling has crucial roles in cell homeostasis via processes such as autophagy. Autophagy prevents many pathogen infections and is involved on immunosurveillance and pathogenesis. Immune responses and autophagy are therefore key host responses and both are linked by complex mTOR regulatory mechanisms. In recent years, the mTOR pathway has been highlighted in different diseases such as diabetes, cancer, and infectious and parasitic diseases including leishmaniasis, toxoplasmosis, and malaria. The current review underlines the implications of mTOR signals and intricate networks on pathogen infections and the modulation of this master regulator by parasites. Parasitic infections are able to induce dynamic metabolic reprogramming leading to mTOR alterations in spite of many other ways impacting this regulatory network. Accordingly, the identification of parasite effects and interactions over such a complex modulation might reveal novel information regarding the biology of the abovementioned parasites and might allow the development of therapeutic strategies against parasitic diseases. In this sense, the effects of inhibiting the mTOR pathways are also considered in this context in the light of their potential for the prevention and treatment of parasitic diseases.
Collapse
|
33
|
Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
34
|
Wang B, Li Q, Wang J, Zhao S, Nashun B, Qin L, Chen X. Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model. Cell Commun Signal 2020; 18:157. [PMID: 32972437 PMCID: PMC7513281 DOI: 10.1186/s12964-020-00570-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in China. The lack of an effective treatment for this disease results in a high recurrence rate in patients who undergo radical tumor resection, and the 5-year survival rate of these patients remains low. Our previous studies demonstrated that Plasmodium infection provides a potent antitumor effect by inducing innate and adaptive immunity in a murine Lewis lung carcinoma (LLC) model. Methods This study aimed to investigate the inhibitory effect of Plasmodium infection on hepatocellular carcinoma in mice, and various techniques for gene expression analysis were used to identify possible signal regulation mechanisms. Results We found that Plasmodium infection efficiently inhibited tumor progression and prolonged survival in tumor-bearing mice, which served as a murine implanted hepatoma model. The inhibition of tumor progression by Plasmodium infection was related to suppression of tumor angiogenesis within the tumor tissue and decreased infiltration of tumor-associated macrophages (TAMs). Further study demonstrated that matrix metalloprotease 9 (MMP-9) produced by TAMs contributed to tumor angiogenesis in the tumor tissue and that the parasite-induced reduction in MMP-9 expression in TAMs resulted in the suppression of tumor angiogenesis. A mechanistic study revealed that the Plasmodium-derived hemozoin (HZ) that accumulated in TAMs inhibited IGF-1 signaling through the PI3-K and MAPK signaling pathways and thereby decreased the expression of MMP-9 in TAMs. Conclusions Our study suggests that this novel approach of inhibiting tumor angiogenesis by Plasmodium infection is of high importance for the development of new therapies for cancer patients. Video abstract
Collapse
Affiliation(s)
- Benfan Wang
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Qinyan Li
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyan Wang
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Siting Zhao
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,CAS-Lamvac Biotech Co., Ltd, Guangzhou, 510530, China
| | - Bayaer Nashun
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Li Qin
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,CAS-Lamvac Biotech Co., Ltd, Guangzhou, 510530, China.
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,CAS-Lamvac Biotech Co., Ltd, Guangzhou, 510530, China.
| |
Collapse
|
35
|
Glennon EKK, Austin LS, Arang N, Kain HS, Mast FD, Vijayan K, Aitchison JD, Kappe SHI, Kaushansky A. Alterations in Phosphorylation of Hepatocyte Ribosomal Protein S6 Control Plasmodium Liver Stage Infection. Cell Rep 2020; 26:3391-3399.e4. [PMID: 30893610 DOI: 10.1016/j.celrep.2019.02.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/11/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Plasmodium parasites are highly selective when infecting hepatocytes and induce many changes within the host cell upon infection. While several host cell factors have been identified that are important for liver infection, our understanding of what facilitates the maintenance of infection remains incomplete. Here, we describe a role for phosphorylated ribosomal protein S6 (Ser235/236) (p-RPS6) in Plasmodium yoelii-infected hepatocytes. Blocking RPS6 phosphorylation prior to infection decreases the number of liver stage parasites within 24 h. Infected hepatocytes exhibit elevated levels of p-RPS6 while simultaneously abrogating the induction of phosphorylation of RPS6 in response to insulin stimulation. This is in contrast with the regulation of p-RPS6 by Toxoplasma gondii, which elevates levels of p-RPS6 after infection but does not alter the response to insulin. Our data support a model in which RPS6 phosphorylation is uncoupled from canonical regulators in Plasmodium-infected hepatocytes and is relied on by the parasite to maintain infection.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA
| | - Laura S Austin
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Nadia Arang
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Heather S Kain
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Fred D Mast
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Seattle Children's Research Institute, Seattle, WA 98109, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Kamalakannan Vijayan
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - John D Aitchison
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Seattle Children's Research Institute, Seattle, WA 98109, USA; Institute for Systems Biology, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Sharma M, Prasher P. An epigrammatic status of the ' azole'-based antimalarial drugs. RSC Med Chem 2020; 11:184-211. [PMID: 33479627 PMCID: PMC7536834 DOI: 10.1039/c9md00479c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
The development of multidrug resistance in the malarial parasite has sabotaged majority of the eradication efforts by restraining the inhibition profile of first line as well as second line antimalarial drugs, thus necessitating the development of novel pharmaceutics constructed on appropriate scaffolds with superior potency against the drug-resistant and drug-susceptible Plasmodium parasite. Over the past decades, the infectious malarial parasite has developed resistance against most of the contemporary therapeutics, thus necessitating the rational development of novel approaches principally focused on MDR malaria. This review presents an epigrammatic collation of the epidemiology and the contemporary antimalarial therapeutics based on the 'azole' motif.
Collapse
Affiliation(s)
- Mousmee Sharma
- Department of Chemistry , Uttaranchal University , Dehradun 248007 , India
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| | - Parteek Prasher
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
37
|
Singh KS, Leu JIJ, Barnoud T, Vonteddu P, Gnanapradeepan K, Lin C, Liu Q, Barton JC, Kossenkov AV, George DL, Murphy ME, Dotiwala F. African-centric TP53 variant increases iron accumulation and bacterial pathogenesis but improves response to malaria toxin. Nat Commun 2020; 11:473. [PMID: 31980600 PMCID: PMC6981190 DOI: 10.1038/s41467-019-14151-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
A variant at amino acid 47 in human TP53 exists predominantly in individuals of African descent. P47S human and mouse cells show increased cancer risk due to defective ferroptosis. Here, we show that this ferroptotic defect causes iron accumulation in P47S macrophages. This high iron content alters macrophage cytokine profiles, leads to higher arginase level and activity, and decreased nitric oxide synthase activity. This leads to more productive intracellular bacterial infections but is protective against malarial toxin hemozoin. Proteomics of macrophages reveal decreased liver X receptor (LXR) activation, inflammation and antibacterial defense in P47S macrophages. Both iron chelators and LXR agonists improve the response of P47S mice to bacterial infection. African Americans with elevated saturated transferrin and serum ferritin show higher prevalence of the P47S variant (OR = 1.68 (95%CI 1.07–2.65) p = 0.023), suggestive of its role in iron accumulation in humans. This altered macrophage phenotype may confer an advantage in malaria-endemic sub-Saharan Africa. A polymorphism in human TP53 (P47S) that predominantly exists in individuals of African descent affects ferroptosis. Here, the authors show that this results in iron accumulation in macrophages leading to more productive infection by intracellular bacteria but improved anti-inflammatory response to the malarial toxin hemozoin.
Collapse
Affiliation(s)
- Kumar Sachin Singh
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Julia I-Ju Leu
- Department of Genetics, The Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Prashanthi Vonteddu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, 19104, USA.,Graduate Group in Biochemistry and Molecular Biophysics, The Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cindy Lin
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - James C Barton
- Southern Iron Disorders Center, Birmingham AL 35209 USA and Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew V Kossenkov
- Bioinformatics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Donna L George
- Department of Genetics, The Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, 19104, USA.
| | - Farokh Dotiwala
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Reeder SM, Reuschel EL, Bah MA, Yun K, Tursi NJ, Kim KY, Chu J, Zaidi FI, Yilmaz I, Hart RJ, Perrin B, Xu Z, Humeau L, Weiner DB, Aly ASI. Synthetic DNA Vaccines Adjuvanted with pIL-33 Drive Liver-Localized T Cells and Provide Protection from Plasmodium Challenge in a Mouse Model. Vaccines (Basel) 2020; 8:vaccines8010021. [PMID: 31936739 PMCID: PMC7157753 DOI: 10.3390/vaccines8010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
The need for a malaria vaccine is indisputable. A single vaccine for Plasmodium pre-erythrocytic stages targeting the major sporozoite antigen circumsporozoite protein (CSP) has had partial success. Additionally, CD8+ T cells targeting liver-stage (LS) antigens induced by live attenuated sporozoite vaccines were associated with protection in human challenge experiments. To further evaluate protection mediated by LS antigens, we focused on exported pre-erythrocytic proteins (exported protein 1 (EXP1), profilin (PFN), exported protein 2 (EXP2), inhibitor of cysteine proteases (ICP), transmembrane protein 21 (TMP21), and upregulated in infective sporozoites-3 (UIS3)) expressed in all Plasmodium species and designed optimized, synthetic DNA (synDNA) immunogens. SynDNA antigen cocktails were tested with and without the molecular adjuvant plasmid IL-33. Immunized animals developed robust T cell responses including induction of antigen-specific liver-localized CD8+ T cells, which were enhanced by the co-delivery of plasmid IL-33. In total, 100% of mice in adjuvanted groups and 71%–88% in non-adjuvanted groups were protected from blood-stage disease following Plasmodium yoelii sporozoite challenge. This study supports the potential of synDNA LS antigens as vaccine components for malaria parasite infection.
Collapse
Affiliation(s)
- Sophia M. Reeder
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma L. Reuschel
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Mamadou A. Bah
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Kun Yun
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kevin Y. Kim
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacqueline Chu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Faraz I. Zaidi
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ilknur Yilmaz
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
| | - Robert J. Hart
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Benjamin Perrin
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Ziyang Xu
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - David B. Weiner
- The Vaccine Center, Wistar Institute, Philadelphia, PA 19104, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| | - Ahmed S. I. Aly
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkey
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (D.B.W.); (A.S.I.A.)
| |
Collapse
|
39
|
Bhardwaj N, Ahmed MZ, Sharma S, Srivastava B, Pande V, Anvikar AR. Clinicopathological study of potential biomarkers of Plasmodium falciparum malaria severity and complications. INFECTION GENETICS AND EVOLUTION 2020; 77:104046. [DOI: 10.1016/j.meegid.2019.104046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022]
|
40
|
Vera IM, Grilo Ruivo MT, Lemos Rocha LF, Marques S, Bhatia SN, Mota MM, Mancio-Silva L. Targeting liver stage malaria with metformin. JCI Insight 2019; 4:127441. [PMID: 31852843 DOI: 10.1172/jci.insight.127441] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise in antiparasite drug resistance. Alternative approaches are urgently needed. Repurposing of available, approved drugs with distinct modes of action are being considered as viable and immediate adjuncts to standard antimicrobial treatment. Such strategies may be well suited to the obligatory and clinically silent first phase of Plasmodium infection, where massive parasite replication occurs within hepatocytes in the liver. Here, we report that the widely used antidiabetic drug, metformin, impairs parasite liver stage development of both rodent-infecting Plasmodium berghei and human-infecting P. falciparum parasites. Prophylactic treatment with metformin curtails parasite intracellular growth in vitro. An additional effect was observed in mice with a decrease in the numbers of infected hepatocytes. Moreover, metformin provided in combination with conventional liver- or blood-acting antimalarial drugs further reduced the total burden of P. berghei infection and substantially lessened disease severity in mice. Together, our findings indicate that repurposing of metformin in a prophylactic regimen could be considered for malaria chemoprevention.
Collapse
Affiliation(s)
- Iset Medina Vera
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Margarida T Grilo Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Leonardo F Lemos Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Cambridge, Masschusetts, USA
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Liliana Mancio-Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Tran TM, Guha R, Portugal S, Skinner J, Ongoiba A, Bhardwaj J, Jones M, Moebius J, Venepally P, Doumbo S, DeRiso EA, Li S, Vijayan K, Anzick SL, Hart GT, O'Connell EM, Doumbo OK, Kaushansky A, Alter G, Felgner PL, Lorenzi H, Kayentao K, Traore B, Kirkness EF, Crompton PD. A Molecular Signature in Blood Reveals a Role for p53 in Regulating Malaria-Induced Inflammation. Immunity 2019; 51:750-765.e10. [PMID: 31492649 DOI: 10.1016/j.immuni.2019.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 06/19/2019] [Accepted: 08/08/2019] [Indexed: 01/15/2023]
Abstract
Immunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment, upregulation of T helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses, and p53 activation associated with control of malarial fever and coordinated with Pf-specific immunoglobulin G (IgG) and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.
Collapse
Affiliation(s)
- Tuan M Tran
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA; Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Rajan Guha
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Silvia Portugal
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA; Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Jyoti Bhardwaj
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marcus Jones
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Jacqueline Moebius
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Pratap Venepally
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Elizabeth A DeRiso
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Kamalakannan Vijayan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Sarah L Anzick
- Rocky Mountain Laboratories, Genomics Unit, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Geoffrey T Hart
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA; Division of Infectious Disease and International Medicine, Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elise M O'Connell
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ogobara K Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Phillip L Felgner
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Hernan Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, BP 1805, Point G, Bamako, Mali
| | - Ewen F Kirkness
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA.
| |
Collapse
|
42
|
Penha-Gonçalves C. Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Front Immunol 2019; 10:1771. [PMID: 31417551 PMCID: PMC6682681 DOI: 10.3389/fimmu.2019.01771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Despite significant progress in combating malaria in recent years the burden of severe disease and death due to Plasmodium infections remains a global public health concern. Only a fraction of infected people develops severe clinical syndromes motivating a longstanding search for genetic determinants of malaria severity. Strong genetic effects have been repeatedly ascribed to mutations and allelic variants of proteins expressed in red blood cells but the role of inflammatory response genes in disease pathogenesis has been difficult to discern. We revisited genetic evidence provided by inflammatory response genes that have been repeatedly associated to malaria, namely TNF, NOS2, IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants having opposing roles in the development of distinct malaria clinical outcomes and unveiled diverse levels of genetic heterogeneity that shaped the complex association landscape of inflammatory response genes with malaria. However, scrutinizing genetic effects of individual variants corroborates a pathogenesis model where pro-inflammatory genetic variants acting in early infection stages contribute to resolve infection but at later stages confer increased vulnerability to severe organ dysfunction driven by tissue inflammation. Human genetics studies are an invaluable tool to find genes and molecular pathways involved in the inflammatory response to malaria but their precise roles in disease pathogenesis are still unexploited. Genome editing in malaria experimental models and novel genotyping-by-sequencing techniques are promising approaches to delineate the relevance of inflammatory response gene variants in the natural history of infection thereby will offer new rational angles on adjuvant therapeutics for prevention and clinical management of severe malaria.
Collapse
|
43
|
Bonilla-Ramírez L, Galiano S, Quiliano M, Aldana I, Pabón A. Primaquine-quinoxaline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species. Malar J 2019; 18:201. [PMID: 31217011 PMCID: PMC6582477 DOI: 10.1186/s12936-019-2825-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background The challenge in anti-malarial chemotherapy is based on the emergence of resistance to drugs and the search for medicines against all stages of the life cycle of Plasmodium spp. as a therapeutic target. Nowadays, many molecules with anti-malarial activity are reported. However, few studies about the cellular and molecular mechanisms to understand their mode of action have been explored. Recently, new primaquine-based hybrids as new molecules with potential multi-acting anti-malarial activity were reported and two hybrids of primaquine linked to quinoxaline 1,4-di-N-oxide (PQ–QdNO) were identified as the most active against erythrocytic, exoerythrocytic and sporogonic stages. Methods To further understand the anti-malarial mode of action (MA) of these hybrids, hepg2-CD81 were infected with Plasmodium yoelii 17XNL and treated with PQ–QdNO hybrids during 48 h. After were evaluated the production of ROS, the mitochondrial depolarization, the total glutathione content, the DNA damage and proteins related to oxidative stress and death cell. Results In a preliminary analysis as tissue schizonticidals, these hybrids showed a mode of action dependent on peroxides production, but independent of the activation of transcription factor p53, mitochondrial depolarization and arrest cell cycle. Conclusions Primaquine–quinoxaline 1,4-di-N-oxide hybrids exert their antiplasmodial activity in the exoerythrocytic phase by generating high levels of oxidative stress which promotes the increase of total glutathione levels, through oxidation stress sensor protein DJ-1. In addition, the role of HIF1a in the mode of action of quinoxaline 1,4-di-N-oxide is independent of biological activity.
Collapse
Affiliation(s)
- Leonardo Bonilla-Ramírez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia.,GIEPRONAL, Escuela de Ciencias Básicas Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Medellín, 050012, Colombia
| | - Silvia Galiano
- Institute of Tropical Health (ISTUN), Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain.,Department of Organic and Pharmaceutical Chemistry, Universidad de Navarra, Facultad de Farmacia y Nutrición, Campus Universitario, 31008, Pamplona, Spain
| | - Miguel Quiliano
- Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), 15023, Lima, Peru
| | - Ignacio Aldana
- Institute of Tropical Health (ISTUN), Universidad de Navarra, Campus Universitario, 31008, Pamplona, Spain.,Department of Organic and Pharmaceutical Chemistry, Universidad de Navarra, Facultad de Farmacia y Nutrición, Campus Universitario, 31008, Pamplona, Spain
| | - Adriana Pabón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia (UdeA), Sede de Investigación Universitaria (SIU), Medellín, Colombia.
| |
Collapse
|
44
|
Kain HS, Glennon EKK, Vijayan K, Arang N, Douglass AN, Fortin CL, Zuck M, Lewis AJ, Whiteside SL, Dudgeon DR, Johnson JS, Aderem A, Stevens KR, Kaushansky A. Liver stage malaria infection is controlled by host regulators of lipid peroxidation. Cell Death Differ 2019; 27:44-54. [PMID: 31065106 PMCID: PMC7206113 DOI: 10.1038/s41418-019-0338-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
The facets of host control during Plasmodium liver infection remain largely unknown. We find that the SLC7a11-GPX4 pathway, which has been associated with the production of reactive oxygen species, lipid peroxidation, and a form of cell death called ferroptosis, plays a critical role in control of Plasmodium liver stage infection. Specifically, blocking GPX4 or SLC7a11 dramatically reduces Plasmodium liver stage parasite infection. In contrast, blocking negative regulators of this pathway, NOX1 and TFR1, leads to an increase in liver stage infection. We have shown previously that increased levels of P53 reduces Plasmodium LS burden in an apoptosis-independent manner. Here, we demonstrate that increased P53 is unable to control parasite burden during NOX1 or TFR1 knockdown, or in the presence of ROS scavenging or when lipid peroxidation is blocked. Additionally, SLC7a11 inhibitors Erastin and Sorafenib reduce infection. Thus, blocking the host SLC7a11-GPX4 pathway serves to selectively elevate lipid peroxides in infected cells, which localize within the parasite and lead to the elimination of liver stage parasites.
Collapse
Affiliation(s)
- Heather S Kain
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Elizabeth K K Glennon
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| | - Kamalakannan Vijayan
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| | - Nadia Arang
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Department of Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alyse N Douglass
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Pathobiology Program, University of Washington, Seattle, WA, USA
| | - Chelsea L Fortin
- Departments of Bioengineering & Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Meghan Zuck
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| | - Adam J Lewis
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Samantha L Whiteside
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| | - Denali R Dudgeon
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Jarrod S Johnson
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Alan Aderem
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kelly R Stevens
- Departments of Bioengineering & Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, Seattle Biomedical Research Institute, Seattle, WA, USA. .,Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
45
|
Raphemot R, Eubanks AL, Toro-Moreno M, Geiger RA, Hughes PF, Lu KY, Haystead TAJ, Derbyshire ER. Plasmodium PK9 Inhibitors Promote Growth of Liver-Stage Parasites. Cell Chem Biol 2018; 26:411-419.e7. [PMID: 30595530 DOI: 10.1016/j.chembiol.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/02/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022]
Abstract
There is a scarcity of pharmacological tools to interrogate protein kinase function in Plasmodium parasites, the causative agent of malaria. Among Plasmodium's protein kinases, those characterized as atypical represent attractive drug targets as they lack sequence similarity to human proteins. Here, we describe takinib as a small molecule to bind the atypical P. falciparum protein kinase 9 (PfPK9). PfPK9 phosphorylates the Plasmodium E2 ubiquitin-conjugating enzyme PfUBC13, which mediates K63-linkage-specific polyubiquitination. Takinib is a potent human TAK1 inhibitor, thus we developed the Plasmodium-selective takinib analog HS220. We demonstrate that takinib and HS220 decrease K63-linked ubiquitination in P. falciparum, suggesting PfPK9 inhibition in cells. Takinib and HS220 induce a unique phenotype where parasite size in hepatocytes increases, yet high compound concentrations decrease the number of parasites. Our studies highlight the role of PK9 in regulating parasite development and the potential of targeting Plasmodium kinases for malaria control.
Collapse
Affiliation(s)
- Rene Raphemot
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Amber Leigh Eubanks
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Maria Toro-Moreno
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Rechel Anne Geiger
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Philip Floyd Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| | - Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Timothy Arthur James Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| | - Emily Rose Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Nordor AV, Bellet D, Siwo GH. Cancer-malaria: hidden connections. Open Biol 2018; 8:rsob.180127. [PMID: 30381365 PMCID: PMC6223206 DOI: 10.1098/rsob.180127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer and malaria exemplify two maladies historically assigned to separated research spaces. Cancer, on the one hand, ranks among the top priorities in the research agenda of developed countries. Its rise is mostly explained by the ageing of these populations and linked to environment and lifestyle. Malaria, on the other hand, represents a major health burden for developing countries in the Southern Hemisphere. These two diseases also belong to separate fields of medicine: non-communicable diseases for cancer and communicable diseases for malaria.
Collapse
Affiliation(s)
- Akpéli V Nordor
- Institut Curie, PSL Research University, Département de Recherche Translationnelle, 75005 Paris, France
| | - Dominique Bellet
- Institut Curie, PSL Research University, Hôpital René Huguenin, Laboratoire d'Oncobiologie, Pôle Pathologie-Génétique-Immunologie-Hémobiologie, 92210 Saint-Cloud, France
| | - Geoffrey H Siwo
- IBM Research Africa, Johannesburg, South Africa .,Center for Research Computing, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46656, USA
| |
Collapse
|
47
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Du W, Li X, Wilson AF, Pang Q. A small molecule p53 activator attenuates Fanconi anemia leukemic stem cell proliferation. Stem Cell Res Ther 2018; 9:145. [PMID: 29784053 PMCID: PMC5963145 DOI: 10.1186/s13287-018-0882-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/12/2022] Open
Abstract
Although p53 mutations are common in solid tumors, such mutations are found at a lower frequency in hematologic malignancies. In the genetic disorder Fanconi anemia (FA), p53 has been proposed as an important pathophysiological factor for two important hematologic hallmarks of the disease: bone marrow failure and leukemogenesis. Here we show that low levels of the p53 protein enhance the capacity of leukemic stem cells from FA patients to repopulate immunodeficient mice. Furthermore, boosting p53 protein levels with the use of the small molecule Nutlin-3 reduced leukemia burden in recipient mice. These results demonstrate that the level of p53 protein plays a crucial role in FA leukemogenesis.
Collapse
Affiliation(s)
- Wei Du
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26506, USA.
| | - Xiaoli Li
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Andrew F Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
49
|
Agop-Nersesian C, Niklaus L, Wacker R, Theo Heussler V. Host cell cytosolic immune response during Plasmodium liver stage development. FEMS Microbiol Rev 2018; 42:324-334. [PMID: 29529207 PMCID: PMC5995216 DOI: 10.1093/femsre/fuy007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Recent years have witnessed a great gain in knowledge regarding parasite-host cell interactions during Plasmodium liver stage development. It is now an accepted fact that a large percentage of sporozoites invading hepatocytes fail to form infectious merozoites. There appears to be a delicate balance between parasite survival and elimination and we now start to understand why this is so. Plasmodium liver stage parasites replicate within the parasitophorous vacuole (PV), formed during invasion by invagination of the host cell plasma membrane. The main interface between the parasite and hepatocyte is the parasitophorous vacuole membrane (PVM) that surrounds the PV. Recently, it was shown that autophagy marker proteins decorate the PVM of Plasmodium liver stage parasites and eliminate a proportion of them by an autophagy-like mechanism. Successfully developing Plasmodium berghei parasites are initially also labeled but in the course of development, they are able to control this host defense mechanism by shedding PVM material into the tubovesicular network (TVN), an extension of the PVM that releases vesicles into the host cell cytoplasm. Better understanding of the molecular events at the PVM/TVN during parasite elimination could be the basis of new antimalarial measures.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, MA 02118, USA
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Volker Theo Heussler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| |
Collapse
|
50
|
Merselis DG, Lirman D, Rodriguez-Lanetty M. Symbiotic immuno-suppression: is disease susceptibility the price of bleaching resistance? PeerJ 2018; 6:e4494. [PMID: 29682405 PMCID: PMC5909685 DOI: 10.7717/peerj.4494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Accelerating anthropogenic climate change threatens to destroy coral reefs worldwide through the processes of bleaching and disease. These major contributors to coral mortality are both closely linked with thermal stress intensified by anthropogenic climate change. Disease outbreaks typically follow bleaching events, but a direct positive linkage between bleaching and disease has been debated. By tracking 152 individual coral ramets through the 2014 mass bleaching in a South Florida coral restoration nursery, we revealed a highly significant negative correlation between bleaching and disease in the Caribbean staghorn coral, Acropora cervicornis. To explain these results, we propose a mechanism for transient immunological protection through coral bleaching: removal of Symbiodinium during bleaching may also temporarily eliminate suppressive symbiont modulation of host immunological function. We contextualize this hypothesis within an ecological perspective in order to generate testable predictions for future investigation.
Collapse
Affiliation(s)
- Daniel G Merselis
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | | |
Collapse
|