1
|
Shuai Y, Sammons M, Sterne GR, Hibbard KL, Yang H, Yang CP, Managan C, Siwanowicz I, Lee T, Rubin GM, Turner GC, Aso Y. Driver lines for studying associative learning in Drosophila. eLife 2025; 13:RP94168. [PMID: 39879130 PMCID: PMC11778931 DOI: 10.7554/elife.94168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The mushroom body (MB) is the center for associative learning in insects. In Drosophila, intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines. Here we describe a new collection of over 800 split-GAL4 and split-LexA drivers that cover approximately 300 cell types, including sugar sensory neurons, putative nociceptive ascending neurons, olfactory and thermo-/hygro-sensory projection neurons, interneurons connected with the MB-extrinsic neurons, and various other cell types. We characterized activation phenotypes for a subset of these lines and identified a sugar sensory neuron line most suitable for reward substitution. Leveraging the thousands of confocal microscopy images associated with the collection, we analyzed neuronal morphological stereotypy and discovered that one set of mushroom body output neurons, MBON08/MBON09, exhibits striking individuality and asymmetry across animals. In conjunction with the EM connectome maps, the driver lines reported here offer a powerful resource for functional dissection of neural circuits for associative learning in adult Drosophila.
Collapse
Affiliation(s)
- Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - He Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Managan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
2
|
Rozenfeld E, Parnas M. Neuronal circuit mechanisms of competitive interaction between action-based and coincidence learning. SCIENCE ADVANCES 2024; 10:eadq3016. [PMID: 39642217 PMCID: PMC11623277 DOI: 10.1126/sciadv.adq3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
How information is integrated across different forms of learning is crucial to understanding higher cognitive functions. Animals form classic or operant associations between cues and their outcomes. It is believed that a prerequisite for operant conditioning is the formation of a classical association. Thus, both memories coexist and are additive. However, the two memories can result in opposing behavioral responses, which can be disadvantageous. We show that Drosophila classical and operant olfactory conditioning rely on distinct neuronal pathways leading to different behavioral responses. Plasticity in both pathways cannot be formed simultaneously. If plasticity occurs at both pathways, interference between them occurs and learning is disrupted. Activity of the navigation center is required to prevent plasticity in the classical pathway and enable it in the operant pathway. These findings fundamentally challenge hierarchical views of operant and classical learning and show that active processes prevent coexistence of the two memories.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Farnworth MS, Loupasaki T, Couto A, Montgomery SH. Mosaic evolution of a learning and memory circuit in Heliconiini butterflies. Curr Biol 2024; 34:5252-5262.e5. [PMID: 39426379 DOI: 10.1016/j.cub.2024.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
How do neural circuits accommodate changes that produce cognitive variation? We explore this question by analyzing the evolutionary dynamics of an insect learning and memory circuit centered within the mushroom body. Mushroom bodies are composed of a conserved wiring logic, mainly consisting of Kenyon cells, dopaminergic neurons, and mushroom body output neurons. Despite this conserved makeup, there is huge diversity in mushroom body size and shape across insects. However, empirical data on how evolution modifies the function and architecture of this circuit are largely lacking. To address this, we leverage the recent radiation of a Neotropical tribe of butterflies, the Heliconiini (Nymphalidae), which show extensive variation in mushroom body size over comparatively short phylogenetic timescales, linked to specific changes in foraging ecology, life history, and cognition. To understand how such an extensive increase in size is accommodated through changes in lobe circuit architecture, we combined immunostainings of structural markers, neurotransmitters, and neural injections to generate new, quantitative anatomies of the Nymphalid mushroom body lobe. Our comparative analyses across Heliconiini demonstrate that some Kenyon cell sub-populations expanded at higher rates than others in Heliconius and identify an additional increase in GABA-ergic feedback neurons, which are essential for non-elemental learning and sparse coding. Taken together, our results demonstrate mosaic evolution of functionally related neural systems and cell types and identify that evolutionary malleability in an architecturally conserved parallel circuit guides adaptation in cognitive ability.
Collapse
Affiliation(s)
- Max S Farnworth
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Theodora Loupasaki
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Antoine Couto
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
4
|
Lin YC, Wu T, Wu CL. The Neural Correlations of Olfactory Associative Reward Memories in Drosophila. Cells 2024; 13:1716. [PMID: 39451234 PMCID: PMC11506542 DOI: 10.3390/cells13201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Advancing treatment to resolve human cognitive disorders requires a comprehensive understanding of the molecular signaling pathways underlying learning and memory. While most organ systems evolved to maintain homeostasis, the brain developed the capacity to perceive and adapt to environmental stimuli through the continuous modification of interactions within a gene network functioning within a broader neural network. This distinctive characteristic enables significant neural plasticity, but complicates experimental investigations. A thorough examination of the mechanisms underlying behavioral plasticity must integrate multiple levels of biological organization, encompassing genetic pathways within individual neurons, interactions among neural networks providing feedback on gene expression, and observable phenotypic behaviors. Model organisms, such as Drosophila melanogaster, which possess more simple and manipulable nervous systems and genomes than mammals, facilitate such investigations. The evolutionary conservation of behavioral phenotypes and the associated genetics and neural systems indicates that insights gained from flies are pertinent to understanding human cognition. Rather than providing a comprehensive review of the entire field of Drosophila memory research, we focus on olfactory associative reward memories and their related neural circuitry in fly brains, with the objective of elucidating the underlying neural mechanisms, thereby advancing our understanding of brain mechanisms linked to cognitive systems.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Pribbenow C, Owald D. Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila. Learn Mem 2024; 31:a053919. [PMID: 38876487 PMCID: PMC11199954 DOI: 10.1101/lm.053919.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Animal brains need to store information to construct a representation of their environment. Knowledge of what happened in the past allows both vertebrates and invertebrates to predict future outcomes by recalling previous experience. Although invertebrate and vertebrate brains share common principles at the molecular, cellular, and circuit-architectural levels, there are also obvious differences as exemplified by the use of acetylcholine versus glutamate as the considered main excitatory neurotransmitters in the respective central nervous systems. Nonetheless, across central nervous systems, synaptic plasticity is thought to be a main substrate for memory storage. Therefore, how brain circuits and synaptic contacts change following learning is of fundamental interest for understanding brain computations tied to behavior in any animal. Recent progress has been made in understanding such plastic changes following olfactory associative learning in the mushroom bodies (MBs) of Drosophila A current framework of memory-guided behavioral selection is based on the MB skew model, in which antagonistic synaptic pathways are selectively changed in strength. Here, we review insights into plasticity at dedicated Drosophila MB output pathways and update what is known about the plasticity of both pre- and postsynaptic compartments of Drosophila MB neurons.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
6
|
Suárez-Grimalt R, Grunwald Kadow IC, Scheunemann L. An integrative sensor of body states: how the mushroom body modulates behavior depending on physiological context. Learn Mem 2024; 31:a053918. [PMID: 38876486 PMCID: PMC11199956 DOI: 10.1101/lm.053918.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 06/16/2024]
Abstract
The brain constantly compares past and present experiences to predict the future, thereby enabling instantaneous and future behavioral adjustments. Integration of external information with the animal's current internal needs and behavioral state represents a key challenge of the nervous system. Recent advancements in dissecting the function of the Drosophila mushroom body (MB) at the single-cell level have uncovered its three-layered logic and parallel systems conveying positive and negative values during associative learning. This review explores a lesser-known role of the MB in detecting and integrating body states such as hunger, thirst, and sleep, ultimately modulating motivation and sensory-driven decisions based on the physiological state of the fly. State-dependent signals predominantly affect the activity of modulatory MB input neurons (dopaminergic, serotoninergic, and octopaminergic), but also induce plastic changes directly at the level of the MB intrinsic and output neurons. Thus, the MB emerges as a tightly regulated relay station in the insect brain, orchestrating neuroadaptations due to current internal and behavioral states leading to short- but also long-lasting changes in behavior. While these adaptations are crucial to ensure fitness and survival, recent findings also underscore how circuit motifs in the MB may reflect fundamental design principles that contribute to maladaptive behaviors such as addiction or depression-like symptoms.
Collapse
Affiliation(s)
- Raquel Suárez-Grimalt
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Lisa Scheunemann
- Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
7
|
Larnerd C, Kachewar N, Wolf FW. Drosophila learning and memory centers and the actions of drugs of abuse. Learn Mem 2024; 31:a053815. [PMID: 38862166 PMCID: PMC11199947 DOI: 10.1101/lm.053815.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
| | - Neha Kachewar
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Health Sciences Research Institute, University of California, Merced, California 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
8
|
Davidson AM, Hige T. Roles of feedback and feed-forward networks of dopamine subsystems: insights from Drosophila studies. Learn Mem 2024; 31:a053807. [PMID: 38862171 PMCID: PMC11199952 DOI: 10.1101/lm.053807.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/10/2023] [Indexed: 06/13/2024]
Abstract
Across animal species, dopamine-operated memory systems comprise anatomically segregated, functionally diverse subsystems. Although individual subsystems could operate independently to support distinct types of memory, the logical interplay between subsystems is expected to enable more complex memory processing by allowing existing memory to influence future learning. Recent comprehensive ultrastructural analysis of the Drosophila mushroom body revealed intricate networks interconnecting the dopamine subsystems-the mushroom body compartments. Here, we review the functions of some of these connections that are beginning to be understood. Memory consolidation is mediated by two different forms of network: A recurrent feedback loop within a compartment maintains sustained dopamine activity required for consolidation, whereas feed-forward connections across compartments allow short-term memory formation in one compartment to open the gate for long-term memory formation in another compartment. Extinction and reversal of aversive memory rely on a similar feed-forward circuit motif that signals omission of punishment as a reward, which triggers plasticity that counteracts the original aversive memory trace. Finally, indirect feed-forward connections from a long-term memory compartment to short-term memory compartments mediate higher-order conditioning. Collectively, these emerging studies indicate that feedback control and hierarchical connectivity allow the dopamine subsystems to work cooperatively to support diverse and complex forms of learning.
Collapse
Affiliation(s)
- Andrew M Davidson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
9
|
Yu J, Chen H, He J, Zeng X, Lei H, Liu J. Dual roles of dopaminergic pathways in olfactory learning and memory in the oriental fruit fly, Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105825. [PMID: 38582589 PMCID: PMC10998931 DOI: 10.1016/j.pestbp.2024.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024]
Abstract
Dopamine (DA) is a key regulator of associative learning and memory in both vertebrates and invertebrates, and it is widely believed that DA plays a key role in aversive conditioning in invertebrates. However, the idea that DA is involved only in aversive conditioning has been challenged in recent studies on the fruit fly (Drosophila melanogaster), ants and crabs, suggesting diverse functions of DA modulation on associative plasticity. Here, we present the results of DA modulation in aversive olfactory conditioning with DEET punishment and appetitive olfactory conditioning with sucrose reward in the oriental fruit fly, Bactrocera dorsalis. Injection of DA receptor antagonist fluphenazine or chlorpromazine into these flies led to impaired aversive learning, but had no effect on the appetitive learning. DA receptor antagonists impaired both aversive and appetitive long-term memory retention. Interestingly, the impairment on appetitive memory was rescued not only by DA but also by octopamine (OA). Blocking the OA receptors also impaired the appetitive memory retention, but this impairment could only be rescued by OA, not by DA. Thus, we conclude that in B. dorsalis, OA and DA pathways mediate independently the appetitive and aversive learning, respectively. These two pathways, however, are organized in series in mediating appetitive memory retrieval with DA pathway being at upstream. Thus, OA and DA play dual roles in associative learning and memory retrieval, but their pathways are organized differently in these two cognitive processes - parallel organization for learning acquisition and serial organization for memory retrieval.
Collapse
Affiliation(s)
- Jinxin Yu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huiling Chen
- College of Art and Design, Hunan Applied Technology University, Changde, Hunan 415100, China
| | - Jiayi He
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
10
|
Wang CM, Wu CY, Lin CE, Hsu MC, Lin JC, Huang CC, Lien TY, Lin HK, Chang TW, Chiang HC. Forgotten memory storage and retrieval in Drosophila. Nat Commun 2023; 14:7153. [PMID: 37935667 PMCID: PMC10630420 DOI: 10.1038/s41467-023-42753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Inaccessibility of stored memory in ensemble cells through the forgetting process causes animals to be unable to respond to natural recalling cues. While accumulating evidence has demonstrated that reactivating memory-stored cells can switch cells from an inaccessible state to an accessible form and lead to recall of previously learned information, the underlying cellular and molecular mechanisms remain elusive. The current study used Drosophila as a model to demonstrate that the memory of one-trial aversive olfactory conditioning, although inaccessible within a few hours after learning, is stored in KCαβ and retrievable after mild retraining. One-trial aversive conditioning triggers protein synthesis to form a long-lasting cellular memory trace, approximately 20 days, via creb in KCαβ, and a transient cellular memory trace, approximately one day, via orb in MBON-α3. PPL1-α3 negatively regulates forgotten one-trial conditioning memory retrieval. The current study demonstrated that KCαβ, PPL1-α3, and MBON-α3 collaboratively regulate the formation of forgotten one-cycle aversive conditioning memory formation and retrieval.
Collapse
Affiliation(s)
- Chih-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chun-Yuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chen-En Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Ming-Chi Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Jing-Chun Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Chuan-Chin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ting-Yu Lien
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Hsin-Kai Lin
- Department of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC
| | - Ting-Wei Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hsueh-Cheng Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
11
|
Lin S. Internal-state-dependent modulation of olfactory responses: a tale of dopamine neurons in the adult Drosophila mushroom body. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101104. [PMID: 37611806 DOI: 10.1016/j.cois.2023.101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Olfaction is a vital sense that insects use to forage and interact with each other. When an insect smells an odor, its nervous system processes the odor information and transforms it into an appropriate behavioral decision. Olfactory processing and transformation are not label-lined, but instead are modulated by internal states. The vinegar fly, Drosophila melanogaster, has become a primary model organism for studying this modulation. It has been observed that internal state modulates olfactory behaviors in multiple sites of the fly brain. In this review article, I focus on the mushroom body, a computational center in the fly brain, and discuss how the dopamine system in this brain region mediates internal-state signals and shapes olfactory responses in adult flies.
Collapse
Affiliation(s)
- Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
12
|
Wu L, Liu C. Integrated neural circuits of sleep and memory regulation in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101105. [PMID: 37625641 DOI: 10.1016/j.cois.2023.101105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Sleep and memory are highly intertwined, yet the integrative neural network of these two fundamental physiological behaviors remains poorly understood. Multiple cell types and structures of the Drosophila brain have been shown involved in the regulation of sleep and memory, and recent efforts are focusing on bridging them at molecular and circuit levels. Here, we briefly review 1) identified neurons as key nodes of olfactory-associative memory circuits involved in different memory processes; 2) how neurons of memory circuits participate in sleep regulation; and 3) other cell types and circuits besides the mushroom body in linking sleep and memory. We also attempt to provide the remaining gaps of circuitry integration of sleep and memory, which may spark some new thinking for future efforts.
Collapse
Affiliation(s)
- Litao Wu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Chang Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| |
Collapse
|
13
|
Aso Y, Yamada D, Bushey D, Hibbard KL, Sammons M, Otsuna H, Shuai Y, Hige T. Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement. eLife 2023; 12:e85756. [PMID: 37721371 PMCID: PMC10588983 DOI: 10.7554/elife.85756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign a valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After formation of appetitive memory, UpWiNs acquire enhanced response to reward-predicting odors as the response of the inhibitory presynaptic MBON undergoes depression. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was terminated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daichi Yamada
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel HillChapel HillUnited States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
14
|
Davis RL. Learning and memory using Drosophila melanogaster: a focus on advances made in the fifth decade of research. Genetics 2023; 224:iyad085. [PMID: 37212449 PMCID: PMC10411608 DOI: 10.1093/genetics/iyad085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
In the last decade, researchers using Drosophila melanogaster have made extraordinary progress in uncovering the mysteries underlying learning and memory. This progress has been propelled by the amazing toolkit available that affords combined behavioral, molecular, electrophysiological, and systems neuroscience approaches. The arduous reconstruction of electron microscopic images resulted in a first-generation connectome of the adult and larval brain, revealing complex structural interconnections between memory-related neurons. This serves as substrate for future investigations on these connections and for building complete circuits from sensory cue detection to changes in motor behavior. Mushroom body output neurons (MBOn) were discovered, which individually forward information from discrete and non-overlapping compartments of the axons of mushroom body neurons (MBn). These neurons mirror the previously discovered tiling of mushroom body axons by inputs from dopamine neurons and have led to a model that ascribes the valence of the learning event, either appetitive or aversive, to the activity of different populations of dopamine neurons and the balance of MBOn activity in promoting avoidance or approach behavior. Studies of the calyx, which houses the MBn dendrites, have revealed a beautiful microglomeruluar organization and structural changes of synapses that occur with long-term memory (LTM) formation. Larval learning has advanced, positioning it to possibly lead in producing new conceptual insights due to its markedly simpler structure over the adult brain. Advances were made in how cAMP response element-binding protein interacts with protein kinases and other transcription factors to promote the formation of LTM. New insights were made on Orb2, a prion-like protein that forms oligomers to enhance synaptic protein synthesis required for LTM formation. Finally, Drosophila research has pioneered our understanding of the mechanisms that mediate permanent and transient active forgetting, an important function of the brain along with acquisition, consolidation, and retrieval. This was catalyzed partly by the identification of memory suppressor genes-genes whose normal function is to limit memory formation.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
15
|
Shen P, Wan X, Wu F, Shi K, Li J, Gao H, Zhao L, Zhou C. Neural circuit mechanisms linking courtship and reward in Drosophila males. Curr Biol 2023; 33:2034-2050.e8. [PMID: 37160122 DOI: 10.1016/j.cub.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Courtship has evolved to achieve reproductive success in animal species. However, whether courtship itself has a positive value remains unclear. In the present work, we report that courtship is innately rewarding and can induce the expression of appetitive short-term memory (STM) and long-term memory (LTM) in Drosophila melanogaster males. Activation of male-specific P1 neurons is sufficient to mimic courtship-induced preference and memory performance. Surprisingly, P1 neurons functionally connect to a large proportion of dopaminergic neurons (DANs) in the protocerebral anterior medial (PAM) cluster. The acquisition of STM and LTM depends on two distinct subsets of PAM DANs that convey the courtship-reward signal to the restricted regions of the mushroom body (MB) γ and α/β lobes through two dopamine receptors, D1-like Dop1R1 and D2-like Dop2R. Furthermore, the retrieval of STM stored in the MB α'/β' lobes and LTM stored in the MB α/β lobe relies on two distinct MB output neurons. Finally, LTM consolidation requires two subsets of PAM DANs projecting to the MB α/β lobe and corresponding MB output neurons. Taken together, our findings demonstrate that courtship is a potent rewarding stimulus and reveal the underlying neural circuit mechanisms linking courtship and reward in Drosophila males.
Collapse
Affiliation(s)
- Peng Shen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolu Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Hongjiang Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
16
|
Hafez OA, Escribano B, Ziegler RL, Hirtz JJ, Niebur E, Pielage J. The cellular architecture of memory modules in Drosophila supports stochastic input integration. eLife 2023; 12:e77578. [PMID: 36916672 PMCID: PMC10069864 DOI: 10.7554/elife.77578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The ability to associate neutral stimuli with valence information and to store these associations as memories forms the basis for decision making. To determine the underlying computational principles, we build a realistic computational model of a central decision module within the Drosophila mushroom body (MB), the fly's center for learning and memory. Our model combines the electron microscopy-based architecture of one MB output neuron (MBON-α3), the synaptic connectivity of its 948 presynaptic Kenyon cells (KCs), and its membrane properties obtained from patch-clamp recordings. We show that this neuron is electrotonically compact and that synaptic input corresponding to simulated odor input robustly drives its spiking behavior. Therefore, sparse innervation by KCs can efficiently control and modulate MBON activity in response to learning with minimal requirements on the specificity of synaptic localization. This architecture allows efficient storage of large numbers of memories using the flexible stochastic connectivity of the circuit.
Collapse
Affiliation(s)
- Omar A Hafez
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Benjamin Escribano
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Rouven L Ziegler
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Jan J Hirtz
- Physiology of Neuronal Networks Group, Department of Biology, University of KaiserslauternKaiserslauternGermany
| | - Ernst Niebur
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreUnited States
- Solomon Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Jan Pielage
- Division of Neurobiology and Zoology, Department of Biology, University of KaiserslauternKaiserslauternGermany
| |
Collapse
|
17
|
Yamada D, Bushey D, Li F, Hibbard KL, Sammons M, Funke J, Litwin-Kumar A, Hige T, Aso Y. Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila. eLife 2023; 12:e79042. [PMID: 36692262 PMCID: PMC9937650 DOI: 10.7554/elife.79042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective 'teacher' by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the 'student' compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel HillChapel HillUnited States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
18
|
Gkanias E, McCurdy LY, Nitabach MN, Webb B. An incentive circuit for memory dynamics in the mushroom body of Drosophila melanogaster. eLife 2022; 11:e75611. [PMID: 35363138 PMCID: PMC8975552 DOI: 10.7554/elife.75611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Insects adapt their response to stimuli, such as odours, according to their pairing with positive or negative reinforcements, such as sugar or shock. Recent electrophysiological and imaging findings in Drosophila melanogaster allow detailed examination of the neural mechanisms supporting the acquisition, forgetting, and assimilation of memories. We propose that this data can be explained by the combination of a dopaminergic plasticity rule that supports a variety of synaptic strength change phenomena, and a circuit structure (derived from neuroanatomy) between dopaminergic and output neurons that creates different roles for specific neurons. Computational modelling shows that this circuit allows for rapid memory acquisition, transfer from short term to long term, and exploration/exploitation trade-off. The model can reproduce the observed changes in the activity of each of the identified neurons in conditioning paradigms and can be used for flexible behavioural control.
Collapse
Affiliation(s)
- Evripidis Gkanias
- Institute of Perception Action and Behaviour, School of Informatics, University of EdinburghEdinburghUnited Kingdom
| | - Li Yan McCurdy
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Barbara Webb
- Institute of Perception Action and Behaviour, School of Informatics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
19
|
Stahl A, Noyes NC, Boto T, Botero V, Broyles CN, Jing M, Zeng J, King LB, Li Y, Davis RL, Tomchik SM. Associative learning drives longitudinally graded presynaptic plasticity of neurotransmitter release along axonal compartments. eLife 2022; 11:e76712. [PMID: 35285796 PMCID: PMC8956283 DOI: 10.7554/elife.76712] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022] Open
Abstract
Anatomical and physiological compartmentalization of neurons is a mechanism to increase the computational capacity of a circuit, and a major question is what role axonal compartmentalization plays. Axonal compartmentalization may enable localized, presynaptic plasticity to alter neuronal output in a flexible, experience-dependent manner. Here, we show that olfactory learning generates compartmentalized, bidirectional plasticity of acetylcholine release that varies across the longitudinal compartments of Drosophila mushroom body (MB) axons. The directionality of the learning-induced plasticity depends on the valence of the learning event (aversive vs. appetitive), varies linearly across proximal to distal compartments following appetitive conditioning, and correlates with learning-induced changes in downstream mushroom body output neurons (MBONs) that modulate behavioral action selection. Potentiation of acetylcholine release was dependent on the CaV2.1 calcium channel subunit cacophony. In addition, contrast between the positive conditioned stimulus and other odors required the inositol triphosphate receptor, which maintained responsivity to odors upon repeated presentations, preventing adaptation. Downstream from the MB, a set of MBONs that receive their input from the γ3 MB compartment were required for normal appetitive learning, suggesting that they represent a key node through which reward learning influences decision-making. These data demonstrate that learning drives valence-correlated, compartmentalized, bidirectional potentiation, and depression of synaptic neurotransmitter release, which rely on distinct mechanisms and are distributed across axonal compartments in a learning circuit.
Collapse
Affiliation(s)
- Aaron Stahl
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Nathaniel C Noyes
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Tamara Boto
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Valentina Botero
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Connor N Broyles
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Miao Jing
- Chinese Institute for Brain ResearchBeijingChina
| | - Jianzhi Zeng
- Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- State Key Laboratory of Membrane Biology, Peking University School of Life SciencesBeijingChina
- PKU IDG/McGovern Institute for Brain ResearchBeijingChina
| | - Lanikea B King
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Yulong Li
- Chinese Institute for Brain ResearchBeijingChina
- Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- State Key Laboratory of Membrane Biology, Peking University School of Life SciencesBeijingChina
- PKU IDG/McGovern Institute for Brain ResearchBeijingChina
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| | - Seth M Tomchik
- Department of Neuroscience, The Scripps Research InstituteJupiterUnited States
| |
Collapse
|
20
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Pribbenow C, Chen YC, Heim MM, Laber D, Reubold S, Reynolds E, Balles I, Fernández-d V Alquicira T, Suárez-Grimalt R, Scheunemann L, Rauch C, Matkovic T, Rösner J, Lichtner G, Jagannathan SR, Owald D. Postsynaptic plasticity of cholinergic synapses underlies the induction and expression of appetitive and familiarity memories in Drosophila. eLife 2022; 11:80445. [PMID: 36250621 PMCID: PMC9733945 DOI: 10.7554/elife.80445] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
In vertebrates, several forms of memory-relevant synaptic plasticity involve postsynaptic rearrangements of glutamate receptors. In contrast, previous work indicates that Drosophila and other invertebrates store memories using presynaptic plasticity of cholinergic synapses. Here, we provide evidence for postsynaptic plasticity at cholinergic output synapses from the Drosophila mushroom bodies (MBs). We find that the nicotinic acetylcholine receptor (nAChR) subunit α5 is required within specific MB output neurons for appetitive memory induction but is dispensable for aversive memories. In addition, nAChR α2 subunits mediate memory expression and likely function downstream of α5 and the postsynaptic scaffold protein discs large (Dlg). We show that postsynaptic plasticity traces can be induced independently of the presynapse, and that in vivo dynamics of α2 nAChR subunits are changed both in the context of associative and non-associative (familiarity) memory formation, underlying different plasticity rules. Therefore, regardless of neurotransmitter identity, key principles of postsynaptic plasticity support memory storage across phyla.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Yi-chun Chen
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - M-Marcel Heim
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Desiree Laber
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Silas Reubold
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Eric Reynolds
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Isabella Balles
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Tania Fernández-d V Alquicira
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Raquel Suárez-Grimalt
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Einstein Center for Neurosciences BerlinBerlinGermany
| | - Lisa Scheunemann
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,NeuroCure, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Institut für Biologie, Freie Universität BerlinBerlinGermany
| | - Carolin Rauch
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Tanja Matkovic
- Institut für Biologie, Freie Universität BerlinBerlinGermany
| | - Jörg Rösner
- NWFZ, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthGreifswaldGermany
| | - Gregor Lichtner
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Universitätsmedizin Greifswald, Department of Anesthesia, Critical Care, Emergency and Pain MedicineGreifswaldGermany
| | - Sridhar R Jagannathan
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - David Owald
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany,Einstein Center for Neurosciences BerlinBerlinGermany,NeuroCure, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
22
|
Croteau-Chonka EC, Clayton MS, Venkatasubramanian L, Harris SN, Jones BMW, Narayan L, Winding M, Masson JB, Zlatic M, Klein KT. High-throughput automated methods for classical and operant conditioning of Drosophila larvae. eLife 2022; 11:70015. [PMID: 36305588 PMCID: PMC9678368 DOI: 10.7554/elife.70015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/26/2022] [Indexed: 02/02/2023] Open
Abstract
Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i.e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i.e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.
Collapse
Affiliation(s)
- Elise C Croteau-Chonka
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | | | | | | | - Lakshmi Narayan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael Winding
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jean-Baptiste Masson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States,Decision and Bayesian Computation, Neuroscience Department & Computational Biology Department, Institut PasteurParisFrance
| | - Marta Zlatic
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States,MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Kristina T Klein
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom,Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
23
|
Adel M, Griffith LC. The Role of Dopamine in Associative Learning in Drosophila: An Updated Unified Model. Neurosci Bull 2021; 37:831-852. [PMID: 33779893 PMCID: PMC8192648 DOI: 10.1007/s12264-021-00665-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/25/2020] [Indexed: 10/21/2022] Open
Abstract
Learning to associate a positive or negative experience with an unrelated cue after the presentation of a reward or a punishment defines associative learning. The ability to form associative memories has been reported in animal species as complex as humans and as simple as insects and sea slugs. Associative memory has even been reported in tardigrades [1], species that diverged from other animal phyla 500 million years ago. Understanding the mechanisms of memory formation is a fundamental goal of neuroscience research. In this article, we work on resolving the current contradictions between different Drosophila associative memory circuit models and propose an updated version of the circuit model that predicts known memory behaviors that current models do not. Finally, we propose a model for how dopamine may function as a reward prediction error signal in Drosophila, a dopamine function that is well-established in mammals but not in insects [2, 3].
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, 02454-9110, USA.
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, 02454-9110, USA
| |
Collapse
|
24
|
Bennett JEM, Philippides A, Nowotny T. Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat Commun 2021; 12:2569. [PMID: 33963189 PMCID: PMC8105414 DOI: 10.1038/s41467-021-22592-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/16/2021] [Indexed: 02/03/2023] Open
Abstract
Effective decision making in a changing environment demands that accurate predictions are learned about decision outcomes. In Drosophila, such learning is orchestrated in part by the mushroom body, where dopamine neurons signal reinforcing stimuli to modulate plasticity presynaptic to mushroom body output neurons. Building on previous mushroom body models, in which dopamine neurons signal absolute reinforcement, we propose instead that dopamine neurons signal reinforcement prediction errors by utilising feedback reinforcement predictions from output neurons. We formulate plasticity rules that minimise prediction errors, verify that output neurons learn accurate reinforcement predictions in simulations, and postulate connectivity that explains more physiological observations than an experimentally constrained model. The constrained and augmented models reproduce a broad range of conditioning and blocking experiments, and we demonstrate that the absence of blocking does not imply the absence of prediction error dependent learning. Our results provide five predictions that can be tested using established experimental methods.
Collapse
Affiliation(s)
- James E. M. Bennett
- grid.12082.390000 0004 1936 7590Department of Informatics, University of Sussex, Brighton, UK
| | - Andrew Philippides
- grid.12082.390000 0004 1936 7590Department of Informatics, University of Sussex, Brighton, UK
| | - Thomas Nowotny
- grid.12082.390000 0004 1936 7590Department of Informatics, University of Sussex, Brighton, UK
| |
Collapse
|
25
|
Roselli C, Ramaswami M, Boto T, Cervantes-Sandoval I. The Making of Long-Lasting Memories: A Fruit Fly Perspective. Front Behav Neurosci 2021; 15:662129. [PMID: 33859556 PMCID: PMC8042140 DOI: 10.3389/fnbeh.2021.662129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information. In other words, these changes affect the weight of specific nodes within a neural network. We know that these plastic reorganizations require de novo protein synthesis in the context of Long-term memory (LTM). This process depends on neural activity triggered by the learned experience. The use of model organisms like Drosophila melanogaster has been proven essential for advancing our knowledge in the field of neuroscience. Flies offer an optimal combination of a more straightforward nervous system, composed of a limited number of cells, and while still displaying complex behaviors. Studies in Drosophila neuroscience, which expanded over several decades, have been critical for understanding the cellular and molecular mechanisms leading to the synaptic and behavioral plasticity occurring in the context of learning and memory. This is possible thanks to sophisticated technical approaches that enable precise control of gene expression in the fruit fly as well as neural manipulation, like chemogenetics, thermogenetics, or optogenetics. The search for the identity of genes expressed as a result of memory acquisition has been an active interest since the origins of behavioral genetics. From screenings of more or less specific candidates to broader studies based on transcriptome analysis, our understanding of the genetic control behind LTM has expanded exponentially in the past years. Here we review recent literature regarding how the formation of memories induces a rapid, extensive and, in many cases, transient wave of transcriptional activity. After a consolidation period, transcriptome changes seem more stable and likely represent the synthesis of new proteins. The complexity of the circuitry involved in memory formation and consolidation is such that there are localized changes in neural activity, both regarding temporal dynamics and the nature of neurons and subcellular locations affected, hence inducing specific temporal and localized changes in protein expression. Different types of neurons are recruited at different times into memory traces. In LTM, the synthesis of new proteins is required in specific subsets of cells. This de novo translation can take place in the somatic cytoplasm and/or locally in distinct zones of compartmentalized synaptic activity, depending on the nature of the proteins and the plasticity-inducing processes that occur. We will also review recent advances in understanding how localized changes are confined to the relevant synapse. These recent studies have led to exciting discoveries regarding proteins that were not previously involved in learning and memory processes. This invaluable information will lead to future functional studies on the roles that hundreds of new molecular actors play in modulating neural activity.
Collapse
Affiliation(s)
- Camilla Roselli
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.,National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Tamara Boto
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
26
|
Zhang Y, Zhou Y, Zhang X, Wang L, Zhong Y. Clock neurons gate memory extinction in Drosophila. Curr Biol 2021; 31:1337-1343.e4. [PMID: 33545046 DOI: 10.1016/j.cub.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/15/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Memory forms when a previously neutral stimulus (CS+) becomes competent to predict a biologically potent stimulus (US). However, if the CS+ is repeatedly presented without the US after the memory formation, this memory will be suppressed by newly formed extinction memory.1,2 The striking feature of extinction learning is that it requires repeated trials to robustly form extinction. Extended repetition only yields memories that remain transient in nature,3 thus imposing challenges in understanding the underlying mechanisms of extinction learning. Here, we took advantage of the versatile genetic tools4 and the well-characterized circadian system of Drosophila5,6 to link these unique features to clock neurons. We report that inhibiting the activity of clock neurons blocks the formation of extinction memory. Further investigation attributes this role to a subset of cryptochrome-positive dorsal neurons 1 (DN1s) and their downstream SIFamide neurons. The requirement of clock neurons from a gating mechanism of extinction for a single extinction learning trial robustly causes typical extinction when coupled with acute activation of DN1s, as marked by the initially enhanced but eventually diminished memory suppression. Accordingly, we detected specific neural responses to extinction training in a few DN1s via calcium imaging fulfilled by the TRIC tool,7 but not in dorsal neurons 2 or dorsolateral neurons. Based on these findings, we propose that in extinction of appetitive long-term memory, multiple trials of extinction learning robustly activate DN1 clock neurons to open the gate of extinction, which may contribute to the transient nature of extinction memory.
Collapse
Affiliation(s)
- Yunchuan Zhang
- School of Life Science, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yinzhong Zhou
- School of Life Science, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuchen Zhang
- School of Life Science, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Lingling Wang
- School of Life Science, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Yi Zhong
- School of Life Science, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
27
|
McCurdy LY, Sareen P, Davoudian PA, Nitabach MN. Dopaminergic mechanism underlying reward-encoding of punishment omission during reversal learning in Drosophila. Nat Commun 2021; 12:1115. [PMID: 33602917 PMCID: PMC7893153 DOI: 10.1038/s41467-021-21388-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
Animals form and update learned associations between otherwise neutral sensory cues and aversive outcomes (i.e., punishment) to predict and avoid danger in changing environments. When a cue later occurs without punishment, this unexpected omission of aversive outcome is encoded as reward via activation of reward-encoding dopaminergic neurons. How such activation occurs remains unknown. Using real-time in vivo functional imaging, optogenetics, behavioral analysis and synaptic reconstruction from electron microscopy data, we identify the neural circuit mechanism through which Drosophila reward-encoding dopaminergic neurons are activated when an olfactory cue is unexpectedly no longer paired with electric shock punishment. Reduced activation of punishment-encoding dopaminergic neurons relieves depression of olfactory synaptic inputs to cholinergic neurons. Synaptic excitation by these cholinergic neurons of reward-encoding dopaminergic neurons increases their odor response, thus decreasing aversiveness of the odor. These studies reveal how an excitatory cholinergic relay from punishment- to reward-encoding dopaminergic neurons encodes the absence of punishment as reward, revealing a general circuit motif for updating aversive memories that could be present in mammals.
Collapse
Affiliation(s)
- Li Yan McCurdy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Preeti Sareen
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Pasha A Davoudian
- Department of Neuroscience, Yale University, New Haven, CT, USA
- MD/PhD Program, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Michael N Nitabach
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Ichinose T, Kanno M, Wu H, Yamagata N, Sun H, Abe A, Tanimoto H. Mushroom body output differentiates memory processes and distinct memory-guided behaviors. Curr Biol 2021; 31:1294-1302.e4. [PMID: 33476556 DOI: 10.1016/j.cub.2020.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
The mushroom body (MB) of Drosophila melanogaster has multiple functions in controlling memory and behavior.1-9 However, circuit mechanisms that generate this functional diversity are largely unclear. Here, we systematically probed the behavioral contribution of each type of MB output neuron (MBON) by blocking during acquisition, retention, or retrieval of reward or punishment memories. We evaluated the contribution using two conditioned responses: memory-guided odor choice and odor source attraction. Quantitative analysis revealed that these conditioned odor responses are controlled by different sets of MBONs. We found that the valence of memory, rather than the transition of memory steps, has a larger impact on the patterns of required MBONs. Moreover, we found that the glutamatergic MBONs forming recurrent circuits commonly contribute to appetitive memory acquisition, suggesting a pivotal role of this circuit motif for reward processing. Our results provide principles how the MB output circuit processes associative memories of different valence and controls distinct memory-guided behaviors.
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan; Center for Transdisciplinary Research, Niigata University, Niigata 950-2181, Japan; Department of Neuropharmacology, Nagoya City University, Nagoya 467-8603, Japan.
| | - Mai Kanno
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hongyang Wu
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nobuhiro Yamagata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Huan Sun
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Ayako Abe
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
29
|
Felsenberg J. Changing memories on the fly: the neural circuits of memory re-evaluation in Drosophila melanogaster. Curr Opin Neurobiol 2020; 67:190-198. [PMID: 33373859 DOI: 10.1016/j.conb.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Associative learning leads to modifications in neural networks to assign valence to sensory cues. These changes not only allow the expression of learned behavior but also modulate subsequent learning events. In the brain of the adult fruit fly, Drosophila melanogaster, olfactory memories are established as dopamine-driven plasticity in the output of a highly recurrent network, the mushroom body. Recent findings have highlighted how these changes in the network can steer the strengthening, weakening and formation of parallel memories when flies are exposed to subsequent training trials, conflicting situations or the reversal of contingencies. Together, these processes provide an initial understanding of how learned information can be used to guide the re-evaluation of memories.
Collapse
|
30
|
Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, Stark I, Bates AS, Pleijzier MW, Schlegel P, Nern A, Takemura SY, Eckstein N, Yang T, Francis A, Braun A, Parekh R, Costa M, Scheffer LK, Aso Y, Jefferis GSXE, Abbott LF, Litwin-Kumar A, Waddell S, Rubin GM. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 2020; 9:e62576. [PMID: 33315010 PMCID: PMC7909955 DOI: 10.7554/elife.62576] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.
Collapse
Affiliation(s)
- Feng Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jack W Lindsey
- Department of Neuroscience, Columbia University, Zuckerman InstituteNew YorkUnited States
| | - Elizabeth C Marin
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Nils Otto
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Centre for Neural Circuits & Behaviour, University of OxfordOxfordUnited Kingdom
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Georgia Dempsey
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Ildiko Stark
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tansy Yang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Audrey Francis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Amalia Braun
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Larry F Abbott
- Department of Neuroscience, Columbia University, Zuckerman InstituteNew YorkUnited States
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, Zuckerman InstituteNew YorkUnited States
| | - Scott Waddell
- Centre for Neural Circuits & Behaviour, University of OxfordOxfordUnited Kingdom
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
31
|
Wu Y, Funato Y, Meschi E, Jovanoski KD, Miki H, Waddell S. Magnesium efflux from Drosophila Kenyon cells is critical for normal and diet-enhanced long-term memory. eLife 2020; 9:61339. [PMID: 33242000 PMCID: PMC7843133 DOI: 10.7554/elife.61339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary magnesium (Mg2+) supplementation can enhance memory in young and aged rats. Memory-enhancing capacity was largely ascribed to increases in hippocampal synaptic density and elevated expression of the NR2B subunit of the NMDA-type glutamate receptor. Here we show that Mg2+ feeding also enhances long-term memory in Drosophila. Normal and Mg2+-enhanced fly memory appears independent of NMDA receptors in the mushroom body and instead requires expression of a conserved CNNM-type Mg2+-efflux transporter encoded by the unextended (uex) gene. UEX contains a putative cyclic nucleotide-binding homology domain and its mutation separates a vital role for uex from a function in memory. Moreover, UEX localization in mushroom body Kenyon cells (KCs) is altered in memory-defective flies harboring mutations in cAMP-related genes. Functional imaging suggests that UEX-dependent efflux is required for slow rhythmic maintenance of KC Mg2+. We propose that regulated neuronal Mg2+ efflux is critical for normal and Mg2+-enhanced memory. The proverbial saying ‘you are what you eat’ perfectly summarizes the concept that our diet can influence both our mental and physical health. We know that foods that are good for the heart, such as nuts, oily fish and berries, are also good for the brain. We know too that vitamins and minerals are essential for overall good health. But is there any evidence that increasing your intake of specific vitamins or minerals could help boost your brain power? While it might sound almost too good to be true, there is some evidence that this is the case for at least one mineral, magnesium. Studies in rodents have shown that adding magnesium supplements to food improves how well the animals perform on memory tasks. Both young and old animals benefit from additional magnesium. Even elderly rodents with a condition similar to Alzheimer’s disease show less memory loss when given magnesium supplements. But what about other species? Wu et al. now show that magnesium supplements also boost memory performance in fruit flies. One group of flies was fed with standard cornmeal for several days, while the other group received cornmeal supplemented with magnesium. Both groups were then trained to associate an odor with a food reward. Flies that had received the extra magnesium showed better memory for the odor when tested 24 hours after training. Wu et al. show that magnesium improves memory in the flies via a different mechanism to that reported previously for rodents. In rodents, magnesium increased levels of a receptor protein for a brain chemical called glutamate. In fruit flies, by contrast, the memory boost depended on a protein that transports magnesium out of neurons. Mutant flies that lacked this transporter showed memory impairments. Unlike normal flies, those without the transporter showed no memory improvement after eating magnesium-enriched food. The results suggest that the transporter may help adjust magnesium levels inside brain cells in response to neural activity. Humans produce four variants of this magnesium transporter, each encoded by a different gene. One of these transporters has already been implicated in brain development. The findings of Wu et al. suggest that the transporters may also act in the adult brain to influence cognition. Further studies are needed to test whether targeting the magnesium transporter could ultimately hold promise for treating memory impairments.
Collapse
Affiliation(s)
- Yanying Wu
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Eleonora Meschi
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Kristijan D Jovanoski
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Oxford, United Kingdom
| |
Collapse
|
32
|
Cervantes-Sandoval I, Davis RL, Berry JA. Rac1 Impairs Forgetting-Induced Cellular Plasticity in Mushroom Body Output Neurons. Front Cell Neurosci 2020; 14:258. [PMID: 33061890 PMCID: PMC7477079 DOI: 10.3389/fncel.2020.00258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Abstract
Active memory forgetting is a well-regulated biological process thought to be adaptive and to allow proper cognitive functions. Recent efforts have elucidated several molecular players involved in the regulation of olfactory forgetting in Drosophila, including the small G protein Rac1, the dopamine receptor DAMB, and the scaffold protein Scribble. Similarly, we recently reported that dopaminergic neurons mediate both learning- and forgetting-induced plasticity in the mushroom body output neuron MBON-γ2α′1. Two open questions remain: how does forgetting affect plasticity in other, highly plastic, mushroom body compartments and how do genes that regulate forgetting affect this cellular plasticity? Here, we show that forgetting reverses short-term synaptic depression induced by aversive conditioning in the highly plastic mushroom body output neuron MBON-γ1pedc>α/β. In addition, our results indicate that genetic tampering with normal forgetting by inhibition of small G protein Rac1 impairs restoration of depressed odor responses to learned odor by intrinsic forgetting through time passing and forgetting induced acutely by shock stimulation after conditioning or reversal learning. These data further indicate that some forms of forgetting truly erase physiological changes generated by memory encoding.
Collapse
Affiliation(s)
- Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Jacob A Berry
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| |
Collapse
|
33
|
Schleyer M, Weiglein A, Thoener J, Strauch M, Hartenstein V, Kantar Weigelt M, Schuller S, Saumweber T, Eichler K, Rohwedder A, Merhof D, Zlatic M, Thum AS, Gerber B. Identification of Dopaminergic Neurons That Can Both Establish Associative Memory and Acutely Terminate Its Behavioral Expression. J Neurosci 2020; 40:5990-6006. [PMID: 32586949 PMCID: PMC7392503 DOI: 10.1523/jneurosci.0290-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 05/19/2020] [Indexed: 02/01/2023] Open
Abstract
An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search was successful is important to all animals. Here we study the neuronal circuitry that allows larval Drosophila melanogaster of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM data-based analyses of synaptic organization. We find that optogenetic activation of the dopaminergic neuron DAN-i1 can both establish memory during training and acutely terminate learned search behavior in a subsequent recall test. Its activation leaves innate behavior unaffected, however. Specifically, DAN-i1 activation can establish associative memories of opposite valence after paired and unpaired training with odor, and its activation during the recall test can terminate the search behavior resulting from either of these memories. Our results further suggest that in its behavioral significance DAN-i1 activation resembles, but does not equal, sugar reward. Dendrogram analyses of all the synaptic connections between DAN-i1 and its two main targets, the Kenyon cells and the mushroom body output neuron MBON-i1, further suggest that the DAN-i1 signals during training and during the recall test could be delivered to the Kenyon cells and to MBON-i1, respectively, within previously unrecognized, locally confined branching structures. This would provide an elegant circuit motif to terminate search on its successful completion.SIGNIFICANCE STATEMENT In the struggle for survival, animals have to explore their environment in search of food. Once food is found, however, it is adaptive to prioritize exploiting it over continuing a search that would now be as pointless as searching for the glasses you are wearing. This exploration-exploitation trade-off is important for animals and humans, as well as for technical search devices. We investigate which of the only 10,000 neurons of a fruit fly larva can tip the balance in this trade-off, and identify a single dopamine neuron called DAN-i1 that can do so. Given the similarities in dopamine neuron function across the animal kingdom, this may reflect a general principle of how search is terminated once it is successful.
Collapse
Affiliation(s)
- Michael Schleyer
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Juliane Thoener
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Martin Strauch
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095-1606
| | - Melisa Kantar Weigelt
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Sarah Schuller
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Timo Saumweber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
| | - Katharina Eichler
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
- Institute of Neurobiology, University of Puerto Rico Medical Science Campus, Old San Juan, Puerto Rico 00901
| | - Astrid Rohwedder
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Marta Zlatic
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Andreas S Thum
- University of Konstanz, Institute for Biology, 78464 Konstanz, Germany
- University Leipzig, Institute for Biology, 04103 Leipzig, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department Genetics of Learning and Memory, 39118 Magdeburg, Germany
- Centre for Behavioural Brain Sciences, 39108 Magdeburg, Germany
- Institute for Biology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
34
|
Boto T, Stahl A, Zhang X, Louis T, Tomchik SM. Independent Contributions of Discrete Dopaminergic Circuits to Cellular Plasticity, Memory Strength, and Valence in Drosophila. Cell Rep 2020; 27:2014-2021.e2. [PMID: 31091441 PMCID: PMC6585410 DOI: 10.1016/j.celrep.2019.04.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 01/13/2023] Open
Abstract
Dopaminergic neurons play a key role in encoding associative memories, but little is known about how these circuits modulate memory strength. Here we report that different sets of dopaminergic neurons projecting to the Drosophila mushroom body (MB) differentially regulate valence and memory strength. PPL2 neurons increase odor-evoked calcium re- sponses to a paired odor in the MB and enhance behavioral memory strength when activated during olfactory classical conditioning. When paired with odor alone, they increase MB responses to the paired odor but do not drive behavioral approach or avoidance, suggesting that they increase the salience of the odor without encoding strong valence. This contrasts with the role of dopaminergic PPL1 neurons, which drive behavioral reinforcement but do not alter odor-evoked calcium responses in the MB when stimulated. These data suggest that different sets of dopaminergic neurons modulate olfactory valence and memory strength via independent actions on a memory-encoding brain region. Boto et al. investigated the roles of two sets of dopaminergic neurons that converge on a memory-encoding brain region in flies. While one set, PPL1, drives aversive reinforcement (valence), PPL2 neurons enhance memory strength via modulation of Ca2+ response plasticity in memory-encoding mushroom body neurons.
Collapse
Affiliation(s)
- Tamara Boto
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Aaron Stahl
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaofan Zhang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thierry Louis
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Seth M Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
35
|
Jacob PF, Waddell S. Spaced Training Forms Complementary Long-Term Memories of Opposite Valence in Drosophila. Neuron 2020; 106:977-991.e4. [PMID: 32289250 PMCID: PMC7302427 DOI: 10.1016/j.neuron.2020.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/25/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Forming long-term memory (LTM) often requires repetitive experience spread over time. Studies in Drosophila suggest aversive olfactory LTM is optimal after spaced training, multiple trials of differential odor conditioning with rest intervals. Memory after spaced training is frequently compared to that after the same number of trials without intervals. Here we show that, after spaced training, flies acquire additional information and form an aversive memory for the shock-paired odor and a slowly emerging and more persistent "safety-memory" for the explicitly unpaired odor. Safety-memory acquisition requires repetition, order, and spacing of the training trials and relies on triggering specific rewarding dopaminergic neurons. Co-existence of aversive and safety memories is evident as depression of odor-specific responses at different combinations of junctions in the mushroom body output network; combining two outputs appears to signal relative safety. Having complementary aversive and safety memories augments LTM performance after spaced training by making the odor preference more certain.
Collapse
Affiliation(s)
- Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
36
|
Modi MN, Shuai Y, Turner GC. The Drosophila Mushroom Body: From Architecture to Algorithm in a Learning Circuit. Annu Rev Neurosci 2020; 43:465-484. [PMID: 32283995 DOI: 10.1146/annurev-neuro-080317-0621333] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Drosophila brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for Drosophila learning and revealed the following key operations: a) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; b) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; c) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and d) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.
Collapse
Affiliation(s)
- Mehrab N Modi
- Janelia Research Campus, Ashburn, Virginia 20147, USA;
| | - Yichun Shuai
- Janelia Research Campus, Ashburn, Virginia 20147, USA;
| | | |
Collapse
|
37
|
Chia J, Scott K. Activation of specific mushroom body output neurons inhibits proboscis extension and sucrose consumption. PLoS One 2020; 15:e0223034. [PMID: 31990947 PMCID: PMC6986700 DOI: 10.1371/journal.pone.0223034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
The ability to modify behavior based on prior experience is essential to an animal's survival. For example, animals may become attracted to a previously neutral odor or reject a previously appetitive food source based on previous encounters. In Drosophila, the mushroom bodies (MBs) are critical for olfactory associative learning and conditioned taste aversion, but how the output of the MBs affects specific behavioral responses is unresolved. In conditioned taste aversion, Drosophila shows a specific behavioral change upon learning: proboscis extension to sugar is reduced after a sugar stimulus is paired with an aversive stimulus. While studies have identified MB output neurons (MBONs) that drive approach or avoidance behavior, whether the same MBONs impact innate proboscis extension behavior is unknown. Here, we tested the role of MB pathways in altering proboscis extension and identified MBONs that synapse onto multiple MB compartments that upon activation significantly decreased proboscis extension to sugar. Activating several of these lines also decreased sugar consumption, revealing that these MBONs have a general role in modifying feeding behavior beyond proboscis extension. The MBONs that decreased proboscis extension and ingestion are different from those that drive avoidance behavior in another context. These studies provide insight into how activation of MB output neurons decreases proboscis extension to taste compounds.
Collapse
Affiliation(s)
- Justine Chia
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Amin H, Lin AC. Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:9-17. [PMID: 31280185 DOI: 10.1016/j.cois.2019.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Olfaction allows animals to adapt their behavior in response to different chemical cues in their environment. How does the brain efficiently discriminate different odors to drive appropriate behavior, and how does it flexibly assign value to odors to adjust behavior according to experience? This review traces neuronal mechanisms underlying these processes in adult Drosophila melanogaster from olfactory receptors to higher brain centers. We highlight neural circuit principles such as lateral inhibition, segregation and integration of olfactory channels, temporal accumulation of sensory evidence, and compartmentalized synaptic plasticity underlying associative memory.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
39
|
Aso Y, Ray RP, Long X, Bushey D, Cichewicz K, Ngo TT, Sharp B, Christoforou C, Hu A, Lemire AL, Tillberg P, Hirsh J, Litwin-Kumar A, Rubin GM. Nitric oxide acts as a cotransmitter in a subset of dopaminergic neurons to diversify memory dynamics. eLife 2019; 8:49257. [PMID: 31724947 PMCID: PMC6948953 DOI: 10.7554/elife.49257] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso and Rubin, 2016). Here, we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO's effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Robert P Ray
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Xi Long
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Karol Cichewicz
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Teri-Tb Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brandi Sharp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | | | - Amy Hu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Paul Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
40
|
Thane M, Viswanathan V, Meyer TC, Paisios E, Schleyer M. Modulations of microbehaviour by associative memory strength in Drosophila larvae. PLoS One 2019; 14:e0224154. [PMID: 31634372 PMCID: PMC6802848 DOI: 10.1371/journal.pone.0224154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
Finding food is a vital skill and a constant task for any animal, and associative learning of food-predicting cues gives an advantage in this daily struggle. The strength of the associations between cues and food depends on a number of parameters, such as the salience of the cue, the strength of the food reward and the number of joint cue-food experiences. We investigate what impact the strength of an associative odour-sugar memory has on the microbehaviour of Drosophila melanogaster larvae. We find that larvae form stronger memories with increasing concentrations of sugar or odour, and that these stronger memories manifest themselves in stronger modulations of two aspects of larval microbehaviour, the rate and the direction of lateral reorientation manoeuvres (so-called head casts). These two modulations of larval behaviour are found to be correlated to each other in every experiment performed, which is in line with a model that assumes that both modulations are controlled by a common motor output. Given that the Drosophila larva is a genetically tractable model organism that is well suited to the study of simple circuits at the single-cell level, these analyses can guide future research into the neuronal circuits underlying the translation of associative memories of different strength into behaviour, and may help to understand how these processes are organised in more complex systems.
Collapse
Affiliation(s)
- Michael Thane
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Vignesh Viswanathan
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Tessa Christin Meyer
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Emmanouil Paisios
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology (LIN), Department Genetics of Learning and Memory, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
41
|
Separate But Interactive Parallel Olfactory Processing Streams Governed by Different Types of GABAergic Feedback Neurons in the Mushroom Body of a Basal Insect. J Neurosci 2019; 39:8690-8704. [PMID: 31548236 DOI: 10.1523/jneurosci.0088-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022] Open
Abstract
The basic organization of the olfactory system has been the subject of extensive studies in vertebrates and invertebrates. In many animals, GABA-ergic neurons inhibit spike activities of higher-order olfactory neurons and help sparsening of their odor representations. In the cockroach, two different types of GABA-immunoreactive interneurons (calyceal giants [CGs]) mainly project to the base and lip regions of the calyces (input areas) of the mushroom body (MB), a second-order olfactory center. The base and lip regions receive axon terminals of two different types of projection neurons, which receive synapses from different classes of olfactory sensory neurons (OSNs), and receive dendrites of different classes of Kenyon cells, MB intrinsic neurons. We performed intracellular recordings from pairs of CGs and MB output neurons (MBONs) of male American cockroaches, the latter receiving synapses from Kenyon cells, and we found that a CG receives excitatory synapses from an MBON and that odor responses of the MBON are changed by current injection into the CG. Such feedback effects, however, were often weak or absent in pairs of neurons that belong to different streams, suggesting parallel organization of the recurrent pathways, although interactions between different streams were also evident. Cross-covariance analysis of the spike activities of CGs and MBONs suggested that odor stimulation produces synchronized spike activities in MBONs and then in CGs. We suggest that there are separate but interactive parallel streams to process odors detected by different OSNs throughout the olfactory processing system in cockroaches.SIGNIFICANCE STATEMENT Organizational principles of the olfactory system have been the subject of extensive studies. In cockroaches, signals from olfactory sensory neurons (OSNs) in two different classes of sensilla are sent to two different classes of projection neurons, which terminate in different areas of the mushroom body (MB), each area having dendrites of different classes of MB intrinsic neurons (Kenyon cells) and terminations of different classes of GABAergic neurons. Physiological and morphological assessments derived from simultaneous intracellular recordings/stainings from GABAergic neurons and MB output neurons suggested that GABAergic neurons play feedback roles and that odors detected by OSNs are processed in separate but interactive processing streams throughout the central olfactory system.
Collapse
|
42
|
Sayin S, De Backer JF, Siju KP, Wosniack ME, Lewis LP, Frisch LM, Gansen B, Schlegel P, Edmondson-Stait A, Sharifi N, Fisher CB, Calle-Schuler SA, Lauritzen JS, Bock DD, Costa M, Jefferis GSXE, Gjorgjieva J, Grunwald Kadow IC. A Neural Circuit Arbitrates between Persistence and Withdrawal in Hungry Drosophila. Neuron 2019; 104:544-558.e6. [PMID: 31471123 PMCID: PMC6839618 DOI: 10.1016/j.neuron.2019.07.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 07/22/2019] [Indexed: 01/24/2023]
Abstract
In pursuit of food, hungry animals mobilize significant energy resources and overcome exhaustion and fear. How need and motivation control the decision to continue or change behavior is not understood. Using a single fly treadmill, we show that hungry flies persistently track a food odor and increase their effort over repeated trials in the absence of reward suggesting that need dominates negative experience. We further show that odor tracking is regulated by two mushroom body output neurons (MBONs) connecting the MB to the lateral horn. These MBONs, together with dopaminergic neurons and Dop1R2 signaling, control behavioral persistence. Conversely, an octopaminergic neuron, VPM4, which directly innervates one of the MBONs, acts as a brake on odor tracking by connecting feeding and olfaction. Together, our data suggest a function for the MB in internal state-dependent expression of behavior that can be suppressed by external inputs conveying a competing behavioral drive. Hunger motivates persistent food odor tracking even without reward Two synaptically connected MBONs, -γ1pedc>αβ and -α2sc, regulate odor tracking Octopamine neurons connect feeding and counteract MBON and odor tracking Dopaminergic neurons and Dop1R2 signaling promote persistent tracking
Collapse
Affiliation(s)
- Sercan Sayin
- Technical University of Munich, School of Life Sciences, 85354 Freising, Germany
| | | | - K P Siju
- Technical University of Munich, School of Life Sciences, 85354 Freising, Germany
| | - Marina E Wosniack
- Technical University of Munich, School of Life Sciences, 85354 Freising, Germany; Max Planck Institute for Brain Research, Computation in Neural Circuits Group, 60438 Frankfurt, Germany
| | - Laurence P Lewis
- Max Planck Institute of Neurobiology, Chemosensory Coding Group, 82152 Martinsried, Germany
| | - Lisa-Marie Frisch
- Technical University of Munich, School of Life Sciences, 85354 Freising, Germany
| | - Benedikt Gansen
- Technical University of Munich, School of Life Sciences, 85354 Freising, Germany
| | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Amelia Edmondson-Stait
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | | | | | | | - Davi D Bock
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory S X E Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julijana Gjorgjieva
- Technical University of Munich, School of Life Sciences, 85354 Freising, Germany; Max Planck Institute for Brain Research, Computation in Neural Circuits Group, 60438 Frankfurt, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, 85354 Freising, Germany; ZIEL - Institute for food and health, 85354 Freising, Germany; Max Planck Institute of Neurobiology, Chemosensory Coding Group, 82152 Martinsried, Germany.
| |
Collapse
|
43
|
Musso PY, Junca P, Jelen M, Feldman-Kiss D, Zhang H, Chan RC, Gordon MD. Closed-loop optogenetic activation of peripheral or central neurons modulates feeding in freely moving Drosophila. eLife 2019; 8:45636. [PMID: 31322499 PMCID: PMC6668987 DOI: 10.7554/elife.45636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Manipulating feeding circuits in freely moving animals is challenging, in part because the timing of sensory inputs is affected by the animal's behavior. To address this challenge in Drosophila, we developed the Sip-Triggered Optogenetic Behavior Enclosure ('STROBE'). The STROBE is a closed-looped system for real-time optogenetic activation of feeding flies, designed to evoke neural excitation coincident with food contact. We previously demonstrated the STROBE's utility in probing the valence of fly sensory neurons (Jaeger et al., 2018). Here we provide a thorough characterization of the STROBE system, demonstrate that STROBE-driven behavior is modified by hunger and the presence of taste ligands, and find that mushroom body dopaminergic input neurons and their respective post-synaptic partners drive opposing feeding behaviors following activation. Together, these results establish the STROBE as a new tool for dissecting fly feeding circuits and suggest a role for mushroom body circuits in processing naïve taste responses.
Collapse
Affiliation(s)
- Pierre-Yves Musso
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Pierre Junca
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Meghan Jelen
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Damian Feldman-Kiss
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Han Zhang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Rachel Cw Chan
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
44
|
Yamazaki D, Hiroi M, Abe T, Shimizu K, Minami-Ohtsubo M, Maeyama Y, Horiuchi J, Tabata T. Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation. Cell Rep 2019; 22:2346-2358. [PMID: 29490271 DOI: 10.1016/j.celrep.2018.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/13/2017] [Accepted: 02/01/2018] [Indexed: 11/15/2022] Open
Abstract
During olfactory associative learning in Drosophila, odors activate specific subsets of intrinsic mushroom body (MB) neurons. Coincident exposure to either rewards or punishments is thought to activate extrinsic dopaminergic neurons, which modulate synaptic connections between odor-encoding MB neurons and MB output neurons to alter behaviors. However, here we identify two classes of intrinsic MB γ neurons based on cAMP response element (CRE)-dependent expression, γCRE-p and γCRE-n, which encode aversive and appetitive valences. γCRE-p and γCRE-n neurons act antagonistically to maintain neutral valences for neutral odors. Activation or inhibition of either cell type upsets this balance, toggling odor preferences to either positive or negative values. The mushroom body output neurons, MBON-γ5β'2a/β'2mp and MBON-γ2α'1, mediate the actions of γCRE-p and γCRE-n neurons. Our data indicate that MB neurons encode valence information, as well as odor information, and this information is integrated through a process involving MBONs to regulate learning and memory.
Collapse
Affiliation(s)
- Daisuke Yamazaki
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan.
| | - Makoto Hiroi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Takashi Abe
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Kazumichi Shimizu
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Maki Minami-Ohtsubo
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Yuko Maeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, Japan
| | - Tetsuya Tabata
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan.
| |
Collapse
|
45
|
Widmer YF, Fritsch C, Jungo MM, Almeida S, Egger B, Sprecher SG. Multiple neurons encode CrebB dependent appetitive long-term memory in the mushroom body circuit. eLife 2018; 7:39196. [PMID: 30346271 PMCID: PMC6234028 DOI: 10.7554/elife.39196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/19/2018] [Indexed: 11/28/2022] Open
Abstract
Lasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM. We edited the CrebB locus to create a GFP-tagged CrebB conditional knockout allele, allowing us to generate mutant, post-mitotic neurons with high spatial and temporal precision. Investigating CrebB-dependence within the mushroom body (MB) circuit we show that MB α/β and α’/β’ neurons as well as MBON α3, but not in dopaminergic neurons require CrebB for LTM. Thus, transcriptional memory traces occur in different neurons within the same neural circuit. Our brains can store different types of memories. You may have forgotten what you had for lunch yesterday, but still be able to remember a song from your childhood. Short-term memories and long-term memories form via different mechanisms. To establish long-term memories, the brain must produce new proteins, many of which are common to all members of the animal kingdom. By studying these proteins in organisms such as fruit flies, we can learn more about their role in our own memories. Widmer et al. used this approach to explore how a protein called CrebB helps fruit flies to remember for several days that a specific odor is associated with a sugary reward. These odor-reward memories form in a brain region called the mushroom body, which has three lobes. Input neurons supply information about the odor and the reward to the region, while output neurons pass on information to other parts of the fly brain. CrebB regulates the production of new proteins required to form these long-term odor-reward memories: but where exactly does CrebB act during this process? Using a gene editing technique called CRISPR, Widmer et al. generated mutant flies. In these insects CrebB could be easily deactivated ‘at will’ in either the entire brain, the whole mushroom body, each of the three lobes or in specific output neurons. The flies were then trained on the odor-reward task, and their memory tested 24 hours later. The results revealed that for the memories to form, CrebB is only required in two of the three lobes of the mushroom body, and in certain output neurons. Future studies can now focus on the cells shown to need CrebB to create long-term memories, and identify the other proteins involved in this process. In humans, defects in CrebB are associated with intellectual disability, addiction and depression. The mutant fly created by Widmer et al. could be a useful model in which to investigate how the protein may play a role in these conditions.
Collapse
Affiliation(s)
- Yves F Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Magali M Jungo
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Silvia Almeida
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
46
|
Berry JA, Phan A, Davis RL. Dopamine Neurons Mediate Learning and Forgetting through Bidirectional Modulation of a Memory Trace. Cell Rep 2018; 25:651-662.e5. [PMID: 30332645 PMCID: PMC6239218 DOI: 10.1016/j.celrep.2018.09.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/23/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
It remains unclear how memory engrams are altered by experience, such as new learning, to cause forgetting. Here, we report that short-term aversive memory in Drosophila is encoded by and retrieved from the mushroom body output neuron MBOn-γ2α'1. Pairing an odor with aversive electric shock creates a robust depression in the calcium response of MBOn-γ2α'1 and increases avoidance to the paired odor. Electric shock after learning, which activates the cognate dopamine neuron DAn-γ2α'1, restores the response properties of MBOn-γ2α'1 and causes behavioral forgetting. Conditioning with a second odor restores the responses of MBOn-γ2α'1 to a previously learned odor while depressing responses to the newly learned odor, showing that learning and forgetting can occur simultaneously. Moreover, optogenetic activation of DAn-γ2α'1 is sufficient for the bidirectional modulation of MBOn-γ2α'1 response properties. Thus, a single DAn can drive both learning and forgetting by bidirectionally modulating a cellular memory trace.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| | - Anna Phan
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
47
|
Pavlowsky A, Schor J, Plaçais PY, Preat T. A GABAergic Feedback Shapes Dopaminergic Input on the Drosophila Mushroom Body to Promote Appetitive Long-Term Memory. Curr Biol 2018; 28:1783-1793.e4. [PMID: 29779874 PMCID: PMC5988562 DOI: 10.1016/j.cub.2018.04.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 03/02/2018] [Accepted: 04/13/2018] [Indexed: 01/11/2023]
Abstract
Memory consolidation is a crucial step for long-term memory (LTM) storage. However, we still lack a clear picture of how memory consolidation is regulated at the neuronal circuit level. Here, we took advantage of the well-described anatomy of the Drosophila olfactory memory center, the mushroom body (MB), to address this question in the context of appetitive LTM. The MB lobes, which are made by the fascicled axons of the MB intrinsic neurons, are organized into discrete anatomical modules, each covered by the terminals of a defined type of dopaminergic neuron (DAN) and the dendrites of a corresponding type of MB output neuron (MBON). We previously revealed the essential role of one DAN, the MP1 neuron, in the formation of appetitive LTM. The MP1 neuron is anatomically matched to the GABAergic MBON MVP2, which has been attributed feedforward inhibitory functions recently. Here, we used behavior experiments and in vivo imaging to challenge the existence of MP1-MVP2 synapses and investigate their role in appetitive LTM consolidation. We show that MP1 and MVP2 neurons form an anatomically and functionally recurrent circuit, which features a feedback inhibition that regulates consolidation of appetitive memory. This circuit involves two opposite type 1 and type 2 dopamine receptors in MVP2 neurons and the metabotropic GABAB-R1 receptor in MP1 neurons. We propose that this dual-receptor feedback supports a bidirectional self-regulation of MP1 input to the MB. This mechanism displays striking similarities with the mammalian reward system, in which modulation of the dopaminergic signal is primarily assigned to inhibitory neurons.
Collapse
Affiliation(s)
- Alice Pavlowsky
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Johann Schor
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
48
|
Landayan D, Feldman DS, Wolf FW. Satiation state-dependent dopaminergic control of foraging in Drosophila. Sci Rep 2018; 8:5777. [PMID: 29636522 PMCID: PMC5893590 DOI: 10.1038/s41598-018-24217-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Hunger evokes stereotypic behaviors that favor the discovery of nutrients. The neural pathways that coordinate internal and external cues to motivate foraging behaviors are only partly known. Drosophila that are food deprived increase locomotor activity, are more efficient in locating a discrete source of nutrition, and are willing to overcome adversity to obtain food. We developed a simple open field assay that allows flies to freely perform multiple steps of the foraging sequence, and we show that two distinct dopaminergic neural circuits regulate measures of foraging behaviors. One group, the PAM neurons, functions in food deprived flies while the other functions in well fed flies, and both promote foraging. These satiation state-dependent circuits converge on dopamine D1 receptor-expressing Kenyon cells of the mushroom body, where neural activity promotes foraging independent of satiation state. These findings provide evidence for active foraging in well-fed flies that is separable from hunger-driven foraging.
Collapse
Affiliation(s)
- Dan Landayan
- Quantitative & Systems Biology, University of California, Merced, Merced, CA, 95343, USA
| | - David S Feldman
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Fred W Wolf
- Quantitative & Systems Biology, University of California, Merced, Merced, CA, 95343, USA.
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.
| |
Collapse
|
49
|
Cognigni P, Felsenberg J, Waddell S. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Curr Opin Neurobiol 2018; 49:51-58. [PMID: 29258011 PMCID: PMC5981003 DOI: 10.1016/j.conb.2017.12.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/02/2022]
Abstract
When animals learn, plasticity in brain networks that respond to specific cues results in a change in the behavior that these cues elicit. Individual network components in the mushroom bodies of the fruit fly Drosophila melanogaster represent cues, learning signals and behavioral outcomes of learned experience. Recent findings have highlighted the importance of dopamine-driven plasticity and activity in feedback and feedforward connections, between various elements of the mushroom body neural network. These computational motifs have been shown to be crucial for long term olfactory memory consolidation, integration of internal states, re-evaluation and updating of learned information. The often recurrent circuit anatomy and a prolonged requirement for activity in parts of these underlying networks, suggest that self-sustained and precisely timed activity is a fundamental feature of network computations in the insect brain. Together these processes allow flies to continuously adjust the content of their learned knowledge and direct their behavior in a way that best represents learned expectations and serves their most pressing current needs.
Collapse
Affiliation(s)
- Paola Cognigni
- Centre for Neural Circuit and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, United Kingdom
| | - Johannes Felsenberg
- Centre for Neural Circuit and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, United Kingdom
| | - Scott Waddell
- Centre for Neural Circuit and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, United Kingdom.
| |
Collapse
|
50
|
Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 2018; 9:1104. [PMID: 29549237 PMCID: PMC5856778 DOI: 10.1038/s41467-018-03130-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023] Open
Abstract
The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.
Collapse
|