1
|
Wei Y, Zhao L, Wei J, Yu X, Wei L, Ni R, Li T. Hippocampal transcriptome analysis in ClockΔ19 mice identifies pathways associated with glial cell differentiation and myelination. J Affect Disord 2025; 376:280-293. [PMID: 39855567 DOI: 10.1016/j.jad.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND ClockΔ19 mice demonstrate behavioral characteristics and neurobiological changes that closely resemble those observed in bipolar disorder (BD). Notably, abnormalities in the hippocampus have been observed in patients with BD, yet direct molecular investigation of human hippocampal tissue remains challenging due to its limited accessibility. METHODS To model BD, ClockΔ19 mice were employed. Weighted gene co-expression network analysis (WGCNA) was utilized to identify mutation-related modules, and changes in cell populations were determined using the computational deconvolution CIBERSORTx. Furthermore, GeneMANIA and protein-protein interactions (PPIs) were leveraged to construct a comprehensive interaction network. RESULTS 174 differentially expressed genes (DEGs) were identified, revealing abnormalities in rhythmic processes, mitochondrial metabolism, and various cell functions including morphology, differentiation, and receptor activity. Analysis identified 5 modules correlated with the mutation, with functional enrichment highlighting disturbances in rhythmic processes and neural cell differentiation due to the mutation. Furthermore, a decrease in neural stem cells (NSC), and an increase in astrocyte-restricted precursors (ARP), ependymocytes (EPC), and hemoglobin-expressing vascular cells (Hb-VC) in the mutant mice were observed. A network comprising 12 genes that link rhythmic processes to neural cell differentiation in the hippocampus was also identified. LIMITATIONS This study focused on the hippocampus of mice, hence the applicability of these findings to human patients warrants further exploration. CONCLUSION The ClockΔ19 mutation may disrupt circadian rhythm, myelination, and the differentiation of neural stem cells (NSCs) into glial cells. These abnormalities are linked to altered expression of key genes, including DPB, CIART, NR1D1, GFAP, SLC20A2, and KL. Furthermore, interactions between SLC20A2 and KL might provide a connection between circadian rhythm regulation and cell type transitions.
Collapse
Affiliation(s)
- Yingying Wei
- Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liansheng Zhao
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinxue Wei
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueli Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Long Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rongjun Ni
- Mental Health Center and Institute of Psychiatry, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Hodova V, Maresova V, Radic R, Kubikova L. A daily rhythm of cell proliferation in a songbird brain. Sci Rep 2025; 15:4685. [PMID: 39920170 PMCID: PMC11806105 DOI: 10.1038/s41598-025-88957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Neurogenesis is an active process of creating new neurons in the neurogenic zone. It is influenced by many factors, including the circadian system, which is synchronized by light. Neurogenesis in laboratory rodents peaks at night, and the rodents are nocturnal, contrary to humans that are active during the day. Here, we studied whether proliferation and apoptosis exhibit a daily rhythm in the brain of the diurnal songbird zebra finch (Taeniopygia guttata) and whether the cell proliferation peaks during the dark phase of the day, as in rodents. We injected the birds with the cell proliferation marker 5-ethynyl-2´-deoxyuridine (EdU; thymidine analog), quantified the number of dividing cells in the neurogenic ventricular zone (VZ), and measured mRNA expression of clock genes as well as genes indicating cell proliferation or apoptosis. First, we confirmed the daily rhythms of the clock genes. Next we found that proliferation along the whole VZ did not exhibit a daily rhythm. However, proliferation in the central ventral part of the VZ, i.e. "the hot-spot" area, showed a daily rhythm of proliferation. The highest number of newborn cells was detected in the dark phase of the day. The relative expression of the apoptotic genes caspase 3, Bcl-2, and Bax as well as the proliferating cell nuclear antigen (PCNA) did not show any rhythm. In summary, our results show that cell proliferation in the "hot-spot" region of the VZ in diurnal songbirds shows rhythmic activity over a period of 24 h and that the maximum cell proliferation occurs in the passive phase. This study may have implications for understanding the mechanisms underlying the daily regulation of brain cell proliferation in different species.
Collapse
Affiliation(s)
- Vladimira Hodova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | - Valentina Maresova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | - Rebecca Radic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia
| | - Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005, Bratislava, Slovakia.
| |
Collapse
|
3
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Mishra A, Lin H, Singla R, Le N, Oraebosi M, Liu D, Cao R. Circadian desynchrony in early life leads to enduring autistic-like behavioral changes in adulthood. Commun Biol 2024; 7:1485. [PMID: 39528720 PMCID: PMC11555041 DOI: 10.1038/s42003-024-07131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Circadian rhythm regulates a variety of biological processes in almost all living organisms. Modern lifestyles, e.g. transmeridian travel, night shift, light at night, etc., frequently disrupt people's regular sleep-wake cycles and create a misalignment (circadian desynchrony) between the natural environment and the endogenous body clock, and between different circadian oscillators within the body. The long-term consequences of circadian desynchrony on neurodevelopment and adult behavior remain elusive. Increasing clinical evidence supports a correlation between the disruption of the circadian system and neurodevelopmental disorders, such as autism spectrum disorders. Despite clinical correlations, experimental evidence is yet to establish a link between circadian disturbance in early life and adult behavioral changes. Here, using a "short day" (SD) mouse model, in which mice were exposed to an 8 h/8 h light/dark (LD) cycle mimicking a "shift work" schedule from gestation day 1 to postnatal day 21, we performed a battery of behavioral tests to assess changes in adult behaviors, including sociability, affective behaviors, stereotypy, cognition and locomotor functions. In contrast to the control mice kept in a 12 h/12 h LD cycle, the adult SD mice entrained to the 8 h/8 h LD cycle, but their free running rhythms remained normal in constant darkness. Interestingly, however, the SD mice displayed diminished sociability, a reduced preference for social novelty, excessive repetitive behaviors, and compromised cognitive functions, all of which resemble characteristics of autism-like behavioral alterations. In addition, the SD mice exhibited significant anxiety- and depressive-like behaviors and impaired motor functions. By western blotting and immunostaining analyses, hyperactivation of the mTORC1/S6K1 pathway was detected in multiple forebrain regions of SD mice. These findings underscore the enduring impact of early-life circadian disruption on neurochemical signaling and behavioral patterns into adulthood, highlighting a pivotal role for circadian regulation in neurodevelopment.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Lin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Rubal Singla
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Nam Le
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Michael Oraebosi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Dong Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
- Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Saibro-Girardi C, Scheibel IM, Santos L, Bittencourt RR, Fröhlich NT, Dos Reis Possa L, Moreira JCF, Gelain DP. Bexarotene drives the self-renewing proliferation of adult neural stem cells, promotes neuron-glial fate shift, and regulates late neuronal differentiation. J Neurochem 2024; 168:1527-1545. [PMID: 37984072 DOI: 10.1111/jnc.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.
Collapse
Affiliation(s)
- Carolina Saibro-Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Nicole Taís Fröhlich
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Luana Dos Reis Possa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Sung CYW, Li M, Jonjic S, Sanchez V, Britt WJ. Cytomegalovirus infection lengthens the cell cycle of granule cell precursors during postnatal cerebellar development. JCI Insight 2024; 9:e175525. [PMID: 38855871 PMCID: PMC11382886 DOI: 10.1172/jci.insight.175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection in infants infected in utero can lead to a variety of neurodevelopmental disorders. However, mechanisms underlying altered neurodevelopment in infected infants remain poorly understood. We have previously described a murine model of congenital HCMV infection in which murine CMV (MCMV) spreads hematogenously and establishes a focal infection in all regions of the brain of newborn mice, including the cerebellum. Infection resulted in disruption of cerebellar cortical development characterized by reduced cerebellar size and foliation. This disruption was associated with altered cell cycle progression of the granule cell precursors (GCPs), which are the progenitors that give rise to granule cells (GCs), the most abundant neurons in the cerebellum. In the current study, we have demonstrated that MCMV infection leads to prolonged GCP cell cycle, premature exit from the cell cycle, and reduced numbers of GCs resulting in cerebellar hypoplasia. Treatment with TNF-α neutralizing antibody partially normalized the cell cycle alterations of GCPs and altered cerebellar morphogenesis induced by MCMV infection. Collectively, our results argue that virus-induced inflammation altered the cell cycle of GCPs resulting in a reduced numbers of GCs and cerebellar cortical hypoplasia, thus providing a potential mechanism for altered neurodevelopment in fetuses infected with HCMV.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Mao Li
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - Stipan Jonjic
- Department of Histology and Embryology and
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Veronica Sanchez
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Pediatrics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
- Department of Neurobiology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Liu Q, Luo X, Liang Z, Qin D, Xu M, Wang M, Guo W. Coordination between circadian neural circuit and intracellular molecular clock ensures rhythmic activation of adult neural stem cells. Proc Natl Acad Sci U S A 2024; 121:e2318030121. [PMID: 38346182 PMCID: PMC10895264 DOI: 10.1073/pnas.2318030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The circadian clock throughout the day organizes the activity of neural stem cells (NSCs) in the dentate gyrus (DG) of adult hippocampus temporally. However, it is still unclear whether and how circadian signals from the niches contribute to daily rhythmic variation of NSC activation. Here, we show that norepinephrinergic (NEergic) projections from the locus coeruleus (LC), a brain arousal system, innervate into adult DG, where daily rhythmic release of norepinephrine (NE) from the LC NEergic neurons controlled circadian variation of NSC activation through β3-adrenoceptors. Disrupted circadian rhythmicity by acute sleep deprivation leads to transient NSC overactivation and NSC pool exhaustion over time, which is effectively ameliorated by the inhibition of the LC NEergic neuronal activity or β3-adrenoceptors-mediated signaling. Finally, we demonstrate that NE/β3-adrenoceptors-mediated signaling regulates NSC activation through molecular clock BMAL1. Therefore, our study unravels that adult NSCs precisely coordinate circadian neural circuit and intrinsic molecular circadian clock to adapt their cellular behavior across the day.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| |
Collapse
|
9
|
Yáñez-Gómez F, Gálvez-Melero L, Ledesma-Corvi S, Bis-Humbert C, Hernández-Hernández E, Salort G, García-Cabrerizo R, García-Fuster MJ. Evaluating the daily modulation of FADD and related molecular markers in different brain regions in male rats. J Neurosci Res 2024; 102:e25296. [PMID: 38361411 DOI: 10.1002/jnr.25296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Fas-Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non-apoptotic functions, is dysregulated in post-mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24-h regulation of FADD (and linked molecular partners: p-ERK/t-ERK ratio, Cdk-5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights-on or inactive period; ZT12, lights-off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p-ERK/t-ERK ratios regulation. Both Cdk-5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24-h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.
Collapse
Affiliation(s)
- Fernando Yáñez-Gómez
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - Laura Gálvez-Melero
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Elena Hernández-Hernández
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Glòria Salort
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
10
|
de Lima Cavalcanti TYV, Lima MC, Bargi-Souza P, Franca RFO, Peliciari-Garcia RA. Zika Virus Infection Alters the Circadian Clock Expression in Human Neuronal Monolayer and Neurosphere Cultures. Cell Mol Neurobiol 2023; 44:10. [PMID: 38141078 PMCID: PMC11407173 DOI: 10.1007/s10571-023-01445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Rhythmic regulations are virtually described in all physiological processes, including central nervous system development and immunologic responses. Zika virus (ZIKV), a neurotropic arbovirus, has been recently linked to a series of birth defects and neurodevelopmental disorders. Given the well-characterized role of the intrinsic cellular circadian clock within neurogenesis, cellular metabolism, migration, and differentiation among other processes, this study aimed to characterize the influence of ZIKV infection in the circadian clock expression in human neuronal cells. For this, in vitro models of human-induced neuroprogenitor cells (hiNPCs) and neuroblastoma cell line SH-SY5Y, cultured as monolayer and neurospheres, were infected by ZIKV, followed by RNA-Seq and RT-qPCR investigation, respectively. Targeted circadian clock components presented mRNA oscillations only after exogenous synchronizing stimuli (Forskolin) in SH-SY5Y monolayer culture. Interestingly, when these cells were grown as 3D-arranged neurospheres, an intrinsic oscillatory expression pattern was observed for some core clock components without any exogenous stimulation. The ZIKV infection significantly disturbed the mRNA expression pattern of core clock components in both neuroblastoma cell culture models, which was also observed in hiNPCs infected with different strains of ZIKV. The ZIKV-mediated desynchronization of the circadian clock expression in human cells might further contribute to the virus impairment of neuronal metabolism and function observed in adults and ZIKV-induced congenital syndrome. In vitro models of Zika virus (ZIKV) neuronal infection. Human neuroprogenitor cells were cultured as monolayer and neurospheres and infected by ZIKV. Monolayer-cultured cells received forskolin (FSK) as a coupling factor for the circadian clock rhythmicity, while 3D-arranged neurospheres showed an intrinsic oscillatory pattern in the circadian clock expression. The ZIKV infection affected the mRNA expression pattern of core clock components in both cell culture models. The ZIKV-mediated desynchronization of the circadian clock machinery might contribute to the impairment of neuronal metabolism and function observed in both adults (e.g., Guillain-Barré syndrome) and ZIKV-induced congenital syndrome (microcephaly). The graphical abstract has been created with Canva at the canva.com website.
Collapse
Affiliation(s)
- Thaíse Yasmine Vasconcelos de Lima Cavalcanti
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Morganna Costa Lima
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael Freitas Oliveira Franca
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, CEP 09913-030, Brazil.
| |
Collapse
|
11
|
Gabarró‐Solanas R, Davaatseren A, Kleifeld J, Kepčija T, Köcher T, Giralt A, Crespo‐Enríquez I, Urbán N. Adult neural stem cells and neurogenesis are resilient to intermittent fasting. EMBO Rep 2023; 24:e57268. [PMID: 37987220 PMCID: PMC10702802 DOI: 10.15252/embr.202357268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Intermittent fasting (IF) is a promising strategy to counteract ageing shown to increase the number of adult-born neurons in the dentate gyrus of mice. However, it is unclear which steps of the adult neurogenesis process are regulated by IF. The number of adult neural stem cells (NSCs) decreases with age in an activation-dependent manner and, to counteract this loss, adult NSCs are found in a quiescent state which ensures their long-term maintenance. We aimed to determine if and how IF affects adult NSCs in the hippocampus. To identify the effects of every-other-day IF on NSCs and all following steps in the neurogenic lineage, we combined fasting with lineage tracing and label retention assays. We show here that IF does not affect NSC activation or maintenance and, that contrary to previous reports, IF does not increase neurogenesis. The same results are obtained regardless of strain, sex, diet length, tamoxifen administration or new-born neuron identification method. Our data suggest that NSCs maintain homeostasis upon IF and that this intervention is not a reliable strategy to increase adult neurogenesis.
Collapse
Affiliation(s)
- Rut Gabarró‐Solanas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Amarbayasgalan Davaatseren
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Justus Kleifeld
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Tatjana Kepčija
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | | | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health ScienceUniversity of BarcelonaBarcelonaSpain
| | - Iván Crespo‐Enríquez
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
12
|
de Leeuw M, Verhoeve SI, van der Wee NJA, van Hemert AM, Vreugdenhil E, Coomans CP. The role of the circadian system in the etiology of depression. Neurosci Biobehav Rev 2023; 153:105383. [PMID: 37678570 DOI: 10.1016/j.neubiorev.2023.105383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Circadian rhythms have evolved in almost all organisms enabling them to anticipate alternating changes in the environment. As a consequence, the circadian clock controls a broad range of bodily functions including appetite, sleep, activity and cortisol levels. The circadian clock synchronizes itself to the external world mainly by environmental light cues and can be disturbed by a variety of factors, including shift-work, jet-lag, stress, ageing and artificial light at night. Interestingly, mood has also been shown to follow a diurnal rhythm. Moreover, circadian disruption has been associated with various mood disorders and patients suffering from depression have irregular biological rhythms in sleep, appetite, activity and cortisol levels suggesting that circadian rhythmicity is crucially involved in the etiology and pathophysiology of depression. The aim of the present review is to give an overview and discuss recent findings in both humans and rodents linking a disturbed circadian rhythm to depression. Understanding the relation between a disturbed circadian rhythm and the etiology of depression may lead to novel therapeutic and preventative strategies.
Collapse
Affiliation(s)
- Max de Leeuw
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands; Mental Health Care Rivierduinen, Bipolar Disorder Outpatient Clinic, PO Box 405, Leiden 2300 AK, the Netherlands.
| | - Sanne I Verhoeve
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Albert M van Hemert
- Department of Psychiatry, Leiden University Medical Center, Postal Zone B1-P, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Erno Vreugdenhil
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| | - Claudia P Coomans
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, Leiden 2300 RC, the Netherlands
| |
Collapse
|
13
|
Draijer S, Timmerman R, Pannekeet J, van Harten A, Farshadi EA, Kemmer J, van Gilst D, Chaves I, Hoekman MFM. FoxO3 Modulates Circadian Rhythms in Neural Stem Cells. Int J Mol Sci 2023; 24:13662. [PMID: 37686468 PMCID: PMC10563086 DOI: 10.3390/ijms241713662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis.
Collapse
Affiliation(s)
- Swip Draijer
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Raissa Timmerman
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Jesse Pannekeet
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Alexandra van Harten
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| | - Elham Aida Farshadi
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Julius Kemmer
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Demy van Gilst
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Marco F. M. Hoekman
- Swammerdam Institute of Life Sciences, University of Amsterdam, 1018 WB Amsterdam, The Netherlands (M.F.M.H.)
| |
Collapse
|
14
|
Mishra HK, Wei H, Rohr KE, Ko I, Nievergelt CM, Maihofer AX, Shilling PD, Alda M, Berrettini WH, Brennand KJ, Calabrese JR, Coryell WH, Frye M, Gage F, Gershon E, McInnis MG, Nurnberger J, Oedegaard KJ, Zandi PP, Kelsoe JR, McCarthy MJ. Contributions of circadian clock genes to cell survival in fibroblast models of lithium-responsive bipolar disorder. Eur Neuropsychopharmacol 2023; 74:1-14. [PMID: 37126998 PMCID: PMC11801370 DOI: 10.1016/j.euroneuro.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Bipolar disorder (BD) is characterized by mood episodes, disrupted circadian rhythms and gray matter reduction in the brain. Lithium is an effective pharmacotherapy for BD, but not all patients respond to treatment. Lithium has neuroprotective properties and beneficial effects on circadian rhythms that may distinguish lithium responders (Li-R) from non-responders (Li-NR). The circadian clock regulates molecular pathways involved in apoptosis and cell survival, but how this overlap impacts BD and/or lithium responsiveness is unknown. In primary fibroblasts from Li-R/Li-NR BD patients and controls, we found patterns of co-expression among circadian clock and cell survival genes that distinguished BD vs. control, and Li-R vs. Li-NR cells. In cellular models of apoptosis using staurosporine (STS), lithium preferentially protected fibroblasts against apoptosis in BD vs. control samples, regardless of Li-R/Li-NR status. When examining the effects of lithium treatment of cells in vitro, caspase activation by lithium correlated with period alteration, but the relationship differed in control, Li-R and Li-NR samples. Knockdown of Per1 and Per3 in mouse fibroblasts altered caspase activity, cell death and circadian rhythms in an opposite manner. In BD cells, genetic variation in PER1 and PER3 predicted sensitivity to apoptosis in a manner consistent with knockdown studies. We conclude that distinct patterns of coordination between circadian clock and cell survival genes in BD may help predict lithium response.
Collapse
Affiliation(s)
- Himanshu K Mishra
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Heather Wei
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Kayla E Rohr
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Insu Ko
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Paul D Shilling
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University Halifax, Canada
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen J Brennand
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mt Sinai, USA
| | - Joseph R Calabrese
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark Frye
- Department of Psychiatry, Mayo Clinic Rochester, MN, USA
| | - Fred Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elliot Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - John Nurnberger
- Department of Psychiatry, Indiana University, Indianapolis, IN, USA
| | - Ketil J Oedegaard
- Section for Psychiatry, University of Bergen and Norment and KG Jebsen Centre for Neuropsychiatry, Division of Psychiatry Haukeland University Hospital, Bergen, Norway
| | - Peter P Zandi
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Michael J McCarthy
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
16
|
Liu W, Ma R, Sun C, Xu Y, Liu Y, Hu J, Ma Y, Wang D, Wen D, Yu Y. Implications from proteomic studies investigating circadian rhythm disorder-regulated neurodegenerative disease pathology. Sleep Med Rev 2023; 70:101789. [PMID: 37253318 DOI: 10.1016/j.smrv.2023.101789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Neurodegenerative diseases (NDs) affect 15% of the world's population and are becoming an increasingly common cause of morbidity and mortality worldwide. Circadian rhythm disorders (CRDs) have been reported to be involved in the pathogenic regulation of various neurologic diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis. Proteomic technology is helpful to explore treatment targets for CRDs in patients with NDs. Here, we review the key differentially expressed (DE) proteins identified in previous proteomic studies investigating NDs, CRDs and associated models and the related pathways identified by enrichment analysis. Furthermore, we summarize the advantages and disadvantages of the above studies and propose new proteomic technologies for the precise study of circadian disorder-mediated regulation of ND pathology. This review provides a theoretical and technical reference for the precise study of circadian disorder-mediated regulation of ND pathology.
Collapse
Affiliation(s)
- Weiwei Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Ruze Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Chen Sun
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yingxi Xu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yang Liu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Jiajin Hu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China
| | - Yanan Ma
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China; Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Deliang Wen
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
17
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
18
|
Bahiru MS, Bittman EL. Adult Neurogenesis Is Altered by Circadian Phase Shifts and the Duper Mutation in Female Syrian Hamsters. eNeuro 2023; 10:ENEURO.0359-22.2023. [PMID: 36878716 PMCID: PMC10062491 DOI: 10.1523/eneuro.0359-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Cell birth and survival in the adult hippocampus are regulated by a circadian clock. Rotating shift work and jet lag disrupt circadian rhythms and aggravate disease. Internal misalignment, a state in which abnormal phase relationships prevail between and within organs, is proposed to account for adverse effects of circadian disruption. This hypothesis has been difficult to test because phase shifts of the entraining cycle inevitably lead to transient desynchrony. Thus, it remains possible that phase shifts, regardless of internal desynchrony, account for adverse effects of circadian disruption and alter neurogenesis and cell fate. To address this question, we examined cell birth and differentiation in the duper Syrian hamster (Mesocricetus auratus), a Cry1-null mutant in which re-entrainment of locomotor rhythms is greatly accelerated. Adult females were subjected to alternating 8 h advances and delays at eight 16 d intervals. BrdU, a cell birth marker, was given midway through the experiment. Repeated phase shifts decreased the number of newborn non-neuronal cells in WT, but not in duper hamsters. The duper mutation increased the number of BrdU-IR cells that stained for NeuN, which marks neuronal differentiation. Immunocytochemical staining for proliferating cell nuclear antigen indicated no overall effect of genotype or repeated shifts on cell division rates after 131 days. Cell differentiation, assessed by doublecortin, was higher in duper hamsters but was not significantly altered by repeated phase shifts. Our results support the internal misalignment hypothesis and indicate that Cry1 regulates cell differentiation. Phase shifts may determine neuronal stem cell survival and time course of differentiation after cell birth. Figure created with BioRender.
Collapse
Affiliation(s)
- Michael Seifu Bahiru
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003
| | - Eric L Bittman
- Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
19
|
Mormone E, Iorio EL, Abate L, Rodolfo C. Sirtuins and redox signaling interplay in neurogenesis, neurodegenerative diseases, and neural cell reprogramming. Front Neurosci 2023; 17:1073689. [PMID: 36816109 PMCID: PMC9929468 DOI: 10.3389/fnins.2023.1073689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of Neural Stem Cells (NSCs) there are still mechanism to be clarified, such as the role of mitochondrial metabolism in the regulation of endogenous adult neurogenesis and its implication in neurodegeneration. Although stem cells require glycolysis to maintain their stemness, they can perform oxidative phosphorylation and it is becoming more and more evident that mitochondria are central players, not only for ATP production but also for neuronal differentiation's steps regulation, through their ability to handle cellular redox state, intracellular signaling, epigenetic state of the cell, as well as the gut microbiota-brain axis, upon dietary influences. In this scenario, the 8-oxoguanine DNA glycosylase (OGG1) repair system would link mitochondrial DNA integrity to the modulation of neural differentiation. On the other side, there is an increasing interest in NSCs generation, from induced pluripotent stem cells, as a clinical model for neurodegenerative diseases (NDs), although this methodology still presents several drawbacks, mainly related to the reprogramming process. Indeed, high levels of reactive oxygen species (ROS), associated with telomere shortening, genomic instability, and defective mitochondrial dynamics, lead to pluripotency limitation and reprogramming efficiency's reduction. Moreover, while a physiological or moderate ROS increase serves as a signaling mechanism, to activate differentiation and suppress self-renewal, excessive oxidative stress is a common feature of NDs and aging. This ROS-dependent regulatory effect might be modulated by newly identified ROS suppressors, including the NAD+-dependent deacetylase enzymes family called Sirtuins (SIRTs). Recently, the importance of subcellular localization of NAD synthesis has been coupled to different roles for NAD in chromatin stability, DNA repair, circadian rhythms, and longevity. SIRTs have been described as involved in the control of both telomere's chromatin state and expression of nuclear gene involved in the regulation of mitochondrial gene expression, as well as in several NDs and aging. SIRTs are ubiquitously expressed in the mammalian brain, where they play important roles. In this review we summarize the current knowledge on how SIRTs-dependent modulation of mitochondrial metabolism could impact on neurogenesis and neurodegeneration, focusing mainly on ROS function and their role in SIRTs-mediated cell reprogramming and telomere protection.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Elisabetta Mormone, ;
| | | | - Lucrezia Abate
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy,Department of Paediatric Onco-Haematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy,Carlo Rodolfo,
| |
Collapse
|
20
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
21
|
Ravichandran S, Suhasini R, Madheswaran Deepa S, Selvaraj DB, Vergil Andrews JF, Thiagarajan V, Kandasamy M. Intertwining Neuropathogenic Impacts of Aberrant Circadian Rhythm and Impaired Neuroregenerative Plasticity in Huntington’s Disease: Neurotherapeutic Significance of Chemogenetics. JOURNAL OF MOLECULAR PATHOLOGY 2022; 3:355-371. [DOI: 10.3390/jmp3040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by abnormal progressive involuntary movements, cognitive deficits, sleep disturbances, and psychiatric symptoms. The onset and progression of the clinical symptoms have been linked to impaired adult neurogenesis in the brains of subjects with HD, due to the reduced neurogenic potential of neural stem cells (NSCs). Among various pathogenic determinants, an altered clock pathway appears to induce the dysregulation of neurogenesis in neurodegenerative disorders. Notably, gamma-aminobutyric acid (GABA)-ergic neurons that express the vasoactive intestinal peptide (VIP) in the brain play a key role in the regulation of circadian rhythm and neuroplasticity. While an abnormal clock gene pathway has been associated with the inactivation of GABAergic VIP neurons, recent studies suggest the activation of this neuronal population in the brain positively contributes to neuroplasticity. Thus, the activation of GABAergic VIP neurons in the brain might help rectify the irregular circadian rhythm in HD. Chemogenetics refers to the incorporation of genetically engineered receptors or ion channels into a specific cell population followed by its activation using desired chemical ligands. The recent advancement of chemogenetic-based approaches represents a potential scientific tool to rectify the aberrant circadian clock pathways. Considering the facts, the defects in the circadian rhythm can be rectified by the activation of VIP-expressing GABAergic neurons using chemogenetics approaches. Thus, the chemogenetic-based rectification of an abnormal circadian rhythm may facilitate the neurogenic potentials of NSCs to restore the neuroregenerative plasticity in HD. Eventually, the increased neurogenesis in the brain can be expected to mitigate neuronal loss and functional deficits.
Collapse
Affiliation(s)
- Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramalingam Suhasini
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sudhiksha Madheswaran Deepa
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Viruthachalam Thiagarajan
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
22
|
Abstract
The molecular mechanisms that maintain circadian rhythms in mammalian as well as non-mammalian systems are well documented in neuronal populations but comparatively understudied in glia. Glia are highly dynamic in form and function, and the circadian clock provides broad dynamic ranges for the maintenance of this homeostasis, thus glia are key to understanding the role of circadian biology in brain function. Here, we highlight the implications of the molecular circadian clock on the homeodynamic nature of glia, underscoring the current gap in understanding the role of the circadian system in oligodendroglia lineage cells and subsequent myelination. Through this perspective, we will focus on the intersection of circadian and glial biology and how it interfaces with global circadian rhythm maintenance associated with normative and aberrant brain function.
Collapse
Affiliation(s)
- Daniela Rojo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anna Badner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M. Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA,Corresponding Author: Erin M. Gibson, PhD, 3165 Porter Drive, #2178, Palo Alto, CA 94304, (650)725-6659,
| |
Collapse
|
23
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2022; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Tung Foundation Biomedical Sciences Centre, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
24
|
Valeri J, O’Donovan SM, Wang W, Sinclair D, Bollavarapu R, Gisabella B, Platt D, Stockmeier C, Pantazopoulos H. Altered expression of somatostatin signaling molecules and clock genes in the hippocampus of subjects with substance use disorder. Front Neurosci 2022; 16:903941. [PMID: 36161151 PMCID: PMC9489843 DOI: 10.3389/fnins.2022.903941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders are a debilitating group of psychiatric disorders with a high degree of comorbidity with major depressive disorder. Sleep and circadian rhythm disturbances are commonly reported in people with substance use disorder and major depression and associated with increased risk of relapse. Hippocampal somatostatin signaling is involved in encoding and consolidation of contextual memories which contribute to relapse in substance use disorder. Somatostatin and clock genes also have been implicated in depression, suggesting that these molecules may represent key converging pathways involved in contextual memory processing in substance use and major depression. We used hippocampal tissue from a cohort of subjects with substance use disorder (n = 20), subjects with major depression (n = 20), subjects with comorbid substance use disorder and major depression (n = 24) and psychiatrically normal control subjects (n = 20) to test the hypothesis that expression of genes involved in somatostatin signaling and clock genes is altered in subjects with substance use disorder. We identified decreased expression of somatostatin in subjects with substance use disorder and in subjects with major depression. We also observed increased somatostatin receptor 2 expression in subjects with substance use disorder with alcohol in the blood at death and decreased expression in subjects with major depression. Expression of the clock genes Arntl, Nr1d1, Per2 and Cry2 was increased in subjects with substance use disorder. Arntl and Nr1d1 expression in comparison was decreased in subjects with major depression. We observed decreased expression of Gsk3β in subjects with substance use disorder. Subjects with comorbid substance use disorder and major depression displayed minimal changes across all outcome measures. Furthermore, we observed a significant increase in history of sleep disturbances in subjects with substance use disorder. Our findings represent the first evidence for altered somatostatin and clock gene expression in the hippocampus of subjects with substance use disorder and subjects with major depression. Altered expression of these molecules may impact memory consolidation and contribute to relapse risk.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sinead M. O’Donovan
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Wei Wang
- Department of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - David Sinclair
- Department of Neuroscience, University of Toledo Medical Center, Toledo, OH, United States
| | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Donna Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Craig Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Harry Pantazopoulos,
| |
Collapse
|
25
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
26
|
Shimozaki K. REV-ERB Agonist SR9009 Regulates the Proliferation and Neurite Outgrowth/Suppression of Cultured Rat Adult Hippocampal Neural Stem/Progenitor Cells in a Concentration-Dependent Manner. Cell Mol Neurobiol 2022; 42:1765-1776. [PMID: 33599915 PMCID: PMC11421744 DOI: 10.1007/s10571-021-01053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/01/2021] [Indexed: 01/06/2023]
Abstract
REV-ERBs are heme-binding nuclear receptors that regulate the circadian rhythm and play important roles in the regulation of proliferation and the neuronal differentiation process in neuronal stem/progenitor cells in the adult brain. However, the effects of REV-ERB activation in the adult brain remain unclear. In this study, SR9009, a synthetic REV-ERB agonist that produces anxiolytic effects in mice, was used to treat undifferentiated and neuronally differentiated cultured rat adult hippocampal neural stem/progenitor cells (AHPs). The expression of Rev-erbβ was upregulated during neurogenesis in cultured rat AHPs, and Rev-erbβ knockdown analysis indicated that REV-ERBβ regulates the proliferation and neurite outgrowth of cultured rat AHPs. The application of a low concentration (0.1 µM) of the REV-ERB agonist SR9009 enhanced neurite outgrowth during neurogenesis in cultured rat AHPs, whereas the addition of a high concentration (2.5 µM) of SR9009 suppressed neurite outgrowth. Further examination of the SR9009 regulatory mechanism showed that the expressions of downstream target genes of REV-ERBβ, including Ccna2 and Sez6, were modulated by SR9009. The results of this study indicated that REV-ERBβ activity in cultured rat AHPs was regulated by SR9009 in a concentration-dependent manner. Furthermore, SR9009 inhibited the growth of cultured rat AHPs through various pathways, which may provide insight into the multifunctional mechanisms of action associated with SR9009. The findings of this study may provide an improved understanding of proliferation and neuronal maturation mechanisms in cultured rat AHPs through SR9009-regulated REV-ERBβ signaling pathways.
Collapse
Affiliation(s)
- Koji Shimozaki
- Division of Functional Genomics, Life Science Support Center, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
27
|
Malik A, Nalluri S, De A, Beligala D, Geusz ME. The Relevance of Circadian Clocks to Stem Cell Differentiation and Cancer Progression. NEUROSCI 2022; 3:146-165. [PMID: 39483369 PMCID: PMC11523739 DOI: 10.3390/neurosci3020012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2024] Open
Abstract
The molecular mechanism of circadian clocks depends on transcription-translation feedback loops (TTFLs) that have known effects on key cellular processes. However, the distinct role of circadian TTFLs in mammalian stem cells and other less differentiated cells remains poorly understood. Neural stem cells (NSCs) of the brain generate neurons and glia postnatally but also may become cancer stem cells (CSCs), particularly in astrocytomas. Evidence indicates clock TTFL impairment is needed for tumor growth and progression; although, this issue has been examined primarily in more differentiated cancer cells rather than CSCs. Similarly, few studies have examined circadian rhythms in NSCs. After decades of research, it is now well recognized that tumors consist of CSCs and a range of other cancer cells along with noncancerous stromal cells. The circadian properties of these many contributors to tumor properties and treatment outcome are being widely explored. New molecular tools and ones in development will likely enable greater discrimination of important circadian and non-circadian cells within malignancies at multiple stages of cancer progression and following therapy. Here, we focus on adult NSCs and glioma CSCs to address how cells at different stages of differentiation may harbor unique states of the molecular circadian clock influencing differentiation and cell fate.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Arpan De
- Department of Neurosurgery and Brain Tumor Center, Unit 1004, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Dilshan Beligala
- Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Michael E Geusz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
| |
Collapse
|
28
|
Goldbeter A, Yan J. Multi-synchronization and other patterns of multi-rhythmicity in oscillatory biological systems. Interface Focus 2022; 12:20210089. [PMID: 35450278 PMCID: PMC9016794 DOI: 10.1098/rsfs.2021.0089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
While experimental and theoretical studies have established the prevalence of rhythmic behaviour at all levels of biological organization, less common is the coexistence between multiple oscillatory regimes (multi-rhythmicity), which has been predicted by a variety of models for biological oscillators. The phenomenon of multi-rhythmicity involves, most commonly, the coexistence between two (birhythmicity) or three (trirhythmicity) distinct regimes of self-sustained oscillations. Birhythmicity has been observed experimentally in a few chemical reactions and in biological examples pertaining to cardiac cell physiology, neurobiology, human voice patterns and ecology. The present study consists of two parts. We first review the mechanisms underlying multi-rhythmicity in models for biochemical and cellular oscillations in which the phenomenon was investigated over the years. In the second part, we focus on the coupling of the cell cycle and the circadian clock and show how an additional source of multi-rhythmicity arises from the bidirectional coupling of these two cellular oscillators. Upon bidirectional coupling, the two oscillatory networks generally synchronize in a unique manner characterized by a single, common period. In some conditions, however, the two oscillators may synchronize in two or three different ways characterized by distinct waveforms and periods. We refer to this type of multi-rhythmicity as ‘multi-synchronization’.
Collapse
Affiliation(s)
- Albert Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Jie Yan
- Center for Systems Biology, School of Mathematical Sciences, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
29
|
Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2022; 47:805-816. [PMID: 34837078 PMCID: PMC8626287 DOI: 10.1038/s41386-021-01241-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
A growing number of epidemiological and experimental studies has established that circadian disruption is strongly associated with psychiatric disorders, including major depressive disorder (MDD). This association is becoming increasingly relevant considering that modern lifestyles, social zeitgebers (time cues) and genetic variants contribute to disrupting circadian rhythms that may lead to psychiatric disorders. Circadian abnormalities associated with MDD include dysregulated rhythms of sleep, temperature, hormonal secretions, and mood which are modulated by the molecular clock. Rapid-acting antidepressants such as subanesthetic ketamine and sleep deprivation therapy can improve symptoms within 24 h in a subset of depressed patients, in striking contrast to conventional treatments, which generally require weeks for a full clinical response. Importantly, animal data show that sleep deprivation and ketamine have overlapping effects on clock gene expression. Furthermore, emerging data implicate the circadian system as a critical component involved in rapid antidepressant responses via several intracellular signaling pathways such as GSK3β, mTOR, MAPK, and NOTCH to initiate synaptic plasticity. Future research on the relationship between depression and the circadian clock may contribute to the development of novel therapeutic strategies for depression-like symptoms. In this review we summarize recent evidence describing: (1) how the circadian clock is implicated in depression, (2) how clock genes may contribute to fast-acting antidepressants, and (3) the mechanistic links between the clock genes driving circadian rhythms and neuroplasticity.
Collapse
|
30
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
31
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|
32
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
33
|
Abstract
This review summarizes the available data about genetic factors which can link ischemic stroke and sleep. Sleep patterns (subjective and objective measures) are characterized by heritability and comprise up to 38-46%. According to Mendelian randomization analysis, genetic liability for short sleep duration and frequent insomnia symptoms is associated with ischemic stroke (predominantly of large artery subtype). The potential genetic links include variants of circadian genes, genes encoding components of neurotransmitter systems, common cardiovascular risk factors, as well as specific genetic factors related to certain sleep disorders.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Str., Saint Petersburg, 197341, Russia.
| |
Collapse
|
34
|
Cai YD, Chiu JC. Timeless in animal circadian clocks and beyond. FEBS J 2021; 289:6559-6575. [PMID: 34699674 PMCID: PMC9038958 DOI: 10.1111/febs.16253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
TIMELESS (TIM) was first identified as a molecular cog in the Drosophila circadian clock. Almost three decades of investigations have resulted in an insightful model describing the critical role of Drosophila TIM (dTIM) in circadian timekeeping in insects, including its function in mediating light entrainment and temperature compensation of the molecular clock. Furthermore, exciting discoveries on its sequence polymorphism and thermosensitive alternative RNA splicing have also established its role in regulating seasonal biology. Although mammalian TIM (mTIM), its mammalian paralog, was first identified as a potential circadian clock component in 1990s due to sequence similarity to dTIM, its role in clock regulation has been more controversial. Mammalian TIM has now been characterized as a DNA replication fork component and has been shown to promote fork progression and participate in cell cycle checkpoint signaling in response to DNA damage. Despite defective circadian rhythms displayed by mtim mutants, it remains controversial whether the regulation of circadian clocks by mTIM is direct, especially given the interconnection between the cell cycle and circadian clocks. In this review, we provide a historical perspective on the identification of animal tim genes, summarize the roles of TIM proteins in biological timing and genomic stability, and draw parallels between dTIM and mTIM despite apparent functional divergence.
Collapse
Affiliation(s)
- Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, CA, USA
| |
Collapse
|
35
|
Börner JH, Rawashdeh O, Rami A. Exacerbated Age-Related Hippocampal Alterations of Microglia Morphology, β-Amyloid and Lipofuscin Deposition and Presenilin Overexpression in Per1-/--Mice. Antioxidants (Basel) 2021; 10:antiox10091330. [PMID: 34572962 PMCID: PMC8469021 DOI: 10.3390/antiox10091330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
In humans, alterations of circadian rhythms and autophagy are linked to metabolic, cardiovascular and neurological dysfunction. Autophagy constitutes a specific form of cell recycling in many eukaryotic cells. Aging is the principal risk factor for the development of neurodegenerative diseases. Thus, we assume that both the circadian clock and autophagy are indispensable to counteract aging. We have previously shown that the hippocampus of Per1−/−-mice exhibits a reduced autophagy and higher neuronal susceptibility to ischemic insults compared to wild type (WT). Therefore, we chose to study the link between aging and loss of clock gene Per1−/−-mice. Young and aged C3H- and Per1−/−-mice were used as models to analyze the hippocampal distribution of Aβ42, lipofuscin, presenilin, microglia, synaptophysin and doublecortin. We detected several changes in the hippocampus of aged Per1−/−-mice compared to their wild type littermates. Our results show significant alterations of microglia morphology, an increase in Aβ42 deposition, overexpression of presenilin, decrease in synaptophysin levels and massive accumulation of lipofuscin in the hippocampus of 24-month-old Per1−/−-mice, without alteration of adult neurogenesis. We suggest that the marked lipofuscin accumulation, Aβ42 deposition, and overexpression of presenilin-2 observed in our experiments may be some of the consequences of the slowed autophagy in the hippocampus of aged Per1−/−-mice. This may lead during aging to excessive accumulation of misfolded proteins which may, consequently, result in higher neuronal vulnerability.
Collapse
Affiliation(s)
- Jan Hendrik Börner
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Oliver Rawashdeh
- Chronobiology & Sleep Lab, Faculty of Medicine, School of Biomedical Sciences, The University of Queensland Brisbane, Brisbane 4072, Australia;
| | - Abdelhaq Rami
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
- Correspondence:
| |
Collapse
|
36
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
37
|
Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies. Mol Psychiatry 2021; 26:3383-3394. [PMID: 33674753 PMCID: PMC8418615 DOI: 10.1038/s41380-021-01048-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) is a neuropsychiatric illness defined by recurrent episodes of mania/hypomania, depression and circadian rhythm abnormalities. Lithium is an effective drug for BD, but 30-40% of patients fail to respond adequately to treatment. Previous work has demonstrated that lithium affects the expression of "clock genes" and that lithium responders (Li-R) can be distinguished from non-responders (Li-NR) by differences in circadian rhythms. However, circadian rhythms have not been evaluated in BD patient neurons from Li-R and Li-NR. We used induced pluripotent stem cells (iPSCs) to culture neuronal precursor cells (NPC) and glutamatergic neurons from BD patients characterized for lithium responsiveness and matched controls. We identified strong circadian rhythms in Per2-luc expression in NPCs and neurons from controls and Li-R, but NPC rhythms in Li-R had a shorter circadian period. Li-NR rhythms were low amplitude and profoundly weakened. In NPCs and neurons, expression of PER2 was higher in both BD groups compared to controls. In neurons, PER2 protein levels were higher in BD than controls, especially in Li-NR samples. In single cells, NPC and neuron rhythms in both BD groups were desynchronized compared to controls. Lithium lengthened period in Li-R and control neurons but failed to alter rhythms in Li-NR. In contrast, temperature entrainment increased amplitude across all groups, and partly restored rhythms in Li-NR neurons. We conclude that neuronal circadian rhythm abnormalities are present in BD and most pronounced in Li-NR. Rhythm deficits in BD may be partly reversible through stimulation of entrainment pathways.
Collapse
|
38
|
Ahnaou A, Drinkenburg WHIM. Sleep, neuronal hyperexcitability, inflammation and neurodegeneration: Does early chronic short sleep trigger and is it the key to overcoming Alzheimer's disease? Neurosci Biobehav Rev 2021; 129:157-179. [PMID: 34214513 DOI: 10.1016/j.neubiorev.2021.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023]
Abstract
Evidence links neuroinflammation to Alzheimer's disease (AD); however, its exact contribution to the onset and progression of the disease is poorly understood. Symptoms of AD can be seen as the tip of an iceberg, consisting of a neuropathological build-up in the brain of extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated aggregates of Tau (pTau), which are thought to stem from an imbalance between its production and clearance resulting in loss of synaptic health and dysfunctional cortical connectivity. The glymphatic drainage system, which is particularly active during sleep, plays a key role in the clearance of proteinopathies. Poor sleep can cause hyperexcitability and promote Aβ and tau pathology leading to systemic inflammation. The early neuronal hyperexcitability of γ-aminobutyric acid (GABA)-ergic inhibitory interneurons and impaired inhibitory control of cortical pyramidal neurons lie at the crossroads of excitatory/inhibitory imbalance and inflammation. We outline, with a prospective framework, a possible vicious spiral linking early chronic short sleep, neuronal hyperexcitability, inflammation and neurodegeneration. Understanding the early predictors of AD, through an integrative approach, may hold promise for reducing attrition in the late stages of neuroprotective drug development.
Collapse
Affiliation(s)
- A Ahnaou
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium.
| | - W H I M Drinkenburg
- Dept. of Neuroscience Discovery, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, B-2340, Belgium
| |
Collapse
|
39
|
Toledo EM, Yang S, Gyllborg D, van Wijk KE, Sinha I, Varas-Godoy M, Grigsby CL, Lönnerberg P, Islam S, Steffensen KR, Linnarsson S, Arenas E. Srebf1 Controls Midbrain Dopaminergic Neurogenesis. Cell Rep 2021; 31:107601. [PMID: 32375051 DOI: 10.1016/j.celrep.2020.107601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Liver X receptors (LXRs) and their ligands are potent regulators of midbrain dopaminergic (mDA) neurogenesis and differentiation. However, the molecular mechanisms by which LXRs control these functions remain to be elucidated. Here, we perform a combined transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analysis of midbrain cells after LXR activation, followed by bioinformatic analysis to elucidate the transcriptional networks controlling mDA neurogenesis. Our results identify the basic helix-loop-helix transcription factor sterol regulatory element binding protein 1 (SREBP1) as part of a cluster of proneural transcription factors in radial glia and as a regulator of transcription factors controlling mDA neurogenesis, such as Foxa2. Moreover, loss- and gain-of-function experiments in vitro and in vivo demonstrate that Srebf1 is both required and sufficient for mDA neurogenesis. Our data, thus, identify Srebf1 as a central player in mDA neurogenesis.
Collapse
Affiliation(s)
- Enrique M Toledo
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Shanzheng Yang
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Daniel Gyllborg
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Kim E van Wijk
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Indranil Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Manuel Varas-Godoy
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Christopher L Grigsby
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden; Division of Biomaterials, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Peter Lönnerberg
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Saiful Islam
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Knut R Steffensen
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Sten Linnarsson
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden
| | - Ernest Arenas
- Laboratory for Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Biomedicum, Solnavägen 9, 17177 Stockholm, Sweden.
| |
Collapse
|
40
|
Ruby CL, Major RJ, Hinrichsen RD. Regulation of tissue regeneration by the circadian clock. Eur J Neurosci 2021; 53:3576-3597. [PMID: 33893679 DOI: 10.1111/ejn.15244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Circadian rhythms are regulated by a highly conserved transcriptional/translational feedback loop that maintains approximately 24-hr periodicity from cellular to organismal levels. Much research effort is being devoted to understanding how the outputs of the master clock affect peripheral oscillators, and in turn, numerous biological processes. Recent studies have revealed roles for circadian timing in the regulation of numerous cellular behaviours in support of complex tissue regeneration. One such role involves the interaction between the circadian clockwork and the cell cycle. The molecular mechanisms that control the cell cycle create a system of regulation that allows for high fidelity DNA synthesis, mitosis and apoptosis. In recent years, it has become clear that clock gene products are required for proper DNA synthesis and cell cycle progression, and conversely, elements of the cell cycle cascade feedback to influence molecular circadian timing mechanisms. It is through this crosstalk that the circadian system orchestrates stem cell proliferation, niche exit and control of the signalling pathways that govern differentiation and self-renewal. In this review, we discuss the evidence for circadian control of tissue homeostasis and repair and suggest new avenues for research.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Robert J Major
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | | |
Collapse
|
41
|
Lee SB, Park J, Kwak Y, Park YU, Nhung TTM, Suh BK, Woo Y, Suh Y, Cho E, Cho S, Park SK. Disrupted-in-schizophrenia 1 enhances the quality of circadian rhythm by stabilizing BMAL1. Transl Psychiatry 2021; 11:110. [PMID: 33542182 PMCID: PMC7862247 DOI: 10.1038/s41398-021-01212-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 11/27/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a scaffold protein that has been implicated in multiple mental disorders. DISC1 is known to regulate neuronal proliferation, signaling, and intracellular calcium homeostasis, as well as neurodevelopment. Although DISC1 was linked to sleep-associated behaviors, whether DISC1 functions in the circadian rhythm has not been determined yet. In this work, we revealed that Disc1 expression exhibits daily oscillating pattern and is regulated by binding of circadian locomotor output cycles kaput (CLOCK) and Brain and muscle Arnt-like protein-1 (BMAL1) heterodimer to E-box sequences in its promoter. Interestingly, Disc1 deficiency increases the ubiquitination of BMAL1 and de-stabilizes it, thereby reducing its protein levels. DISC1 inhibits the activity of GSK3β, which promotes BMAL1 ubiquitination, suggesting that DISC1 regulates BMAL1 stability by inhibiting its ubiquitination. Moreover, Disc1-deficient cells and mice show reduced expression of other circadian genes. Finally, Disc1-LI (Disc1 knockout) mice exhibit damped circadian physiology and behaviors. Collectively, these findings demonstrate that the oscillation of DISC1 expression is under the control of CLOCK and BMAL1, and that DISC1 contributes to the core circadian system by regulating BMAL1 stability.
Collapse
Affiliation(s)
- Su Been Lee
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihyun Park
- grid.289247.20000 0001 2171 7818Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yongdo Kwak
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.507563.2Present Address: SK biopharmaceuticals Ltd, Seongnam-Si, Republic of Korea
| | - Young-Un Park
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.49606.3d0000 0001 1364 9317Present Address: Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Truong Thi My Nhung
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bo Kyoung Suh
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngsik Woo
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeongjun Suh
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eunbyul Cho
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sehyung Cho
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
42
|
Gengatharan A, Malvaut S, Marymonchyk A, Ghareghani M, Snapyan M, Fischer-Sternjak J, Ninkovic J, Götz M, Saghatelyan A. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 2021; 184:709-722.e13. [PMID: 33482084 DOI: 10.1016/j.cell.2020.12.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.
Collapse
Affiliation(s)
- Archana Gengatharan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alina Marymonchyk
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marina Snapyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Judith Fischer-Sternjak
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Department of Cell Biology and Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, BioMedical Center, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
43
|
Huang S, Choi MH, Huang H, Wang X, Chang YC, Kim JY. Demyelination Regulates the Circadian Transcription Factor BMAL1 to Signal Adult Neural Stem Cells to Initiate Oligodendrogenesis. Cell Rep 2020; 33:108394. [PMID: 33207207 DOI: 10.1016/j.celrep.2020.108394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 10/22/2022] Open
Abstract
Circadian clocks are endogenous oscillators that generate cell-autonomous rhythms that govern cellular processes and are synchronized by external cues in the local macro- and micro-environments. Demyelination, a common brain pathology with variable degrees of recovery, changes the microenvironment via damaged myelin and activation of glial cells. How these microenvironmental changes affect local circadian clocks and with what consequences is mostly unknown. Here, we show that within demyelinating lesions, astrocyte circadian clocks produce the Wnt inhibitors SFRP1 and SFRP5. Unexpectedly, SFRP1 and SFRP5 signal to the subventricular zone (SVZ) to reduce the circadian transcription factor BMAL1. This sequence of events causes adult neural stem cells in the SVZ to differentiate into oligodendrocyte lineage cells, which are then supplied to demyelinated lesions. Our findings show that circadian clocks in demyelinating lesions respond to microenvironmental changes and communicate with the SVZ to enhance a natural repair system of spontaneous remyelination.
Collapse
Affiliation(s)
- Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ming Ho Choi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hao Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
44
|
Bedont JL, Iascone DM, Sehgal A. The Lineage Before Time: Circadian and Nonclassical Clock Influences on Development. Annu Rev Cell Dev Biol 2020; 36:469-509. [PMID: 33021821 PMCID: PMC10826104 DOI: 10.1146/annurev-cellbio-100818-125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.
Collapse
Affiliation(s)
- Joseph Lewis Bedont
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Daniel Maxim Iascone
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- The Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, Levine JD, Hensch TK. Critical period regulation across multiple timescales. Proc Natl Acad Sci U S A 2020; 117:23242-23251. [PMID: 32503914 PMCID: PMC7519216 DOI: 10.1073/pnas.1820836117] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brain plasticity is dynamically regulated across the life span, peaking during windows of early life. Typically assessed in the physiological range of milliseconds (real time), these trajectories are also influenced on the longer timescales of developmental time (nurture) and evolutionary time (nature), which shape neural architectures that support plasticity. Properly sequenced critical periods of circuit refinement build up complex cognitive functions, such as language, from more primary modalities. Here, we consider recent progress in the biological basis of critical periods as a unifying rubric for understanding plasticity across multiple timescales. Notably, the maturation of parvalbumin-positive (PV) inhibitory neurons is pivotal. These fast-spiking cells generate gamma oscillations associated with critical period plasticity, are sensitive to circadian gene manipulation, emerge at different rates across brain regions, acquire perineuronal nets with age, and may be influenced by epigenetic factors over generations. These features provide further novel insight into the impact of early adversity and neurodevelopmental risk factors for mental disorders.
Collapse
Affiliation(s)
- Rebecca K Reh
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian G Dias
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, GA 30322
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329
| | - Charles A Nelson
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Graduate School of Education, Harvard University, Cambridge, MA 02138
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Janet F Werker
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Takao K Hensch
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115;
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA 02138
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
| |
Collapse
|
46
|
Chakrabarti S, Michor F. Circadian clock effects on cellular proliferation: Insights from theory and experiments. Curr Opin Cell Biol 2020; 67:17-26. [PMID: 32771864 DOI: 10.1016/j.ceb.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
Oscillations of the cellular circadian clock have emerged as an important regulator of many physiological processes, both in health and in disease. One such process, cellular proliferation, is being increasingly recognized to be affected by the circadian clock. Here, we review how a combination of experimental and theoretical work has furthered our understanding of the way circadian clocks couple to the cell cycle and play a role in tissue homeostasis and cancer. Finally, we discuss recently introduced methods for modeling coupling of clocks based on techniques from survival analysis and machine learning and highlight their potential importance for future studies.
Collapse
Affiliation(s)
- Shaon Chakrabarti
- Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology Biology, Harvard University, Cambridge, MA, USA.
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology Biology, Harvard University, Cambridge, MA, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Ludwig Center at Harvard, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
47
|
Chang YC, Kim JY. Therapeutic implications of circadian clocks in neurodegenerative diseases. J Neurosci Res 2020; 98:1095-1113. [PMID: 31833091 DOI: 10.1002/jnr.24572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Circadian clocks, endogenous oscillators generating daily biological rhythms, have important roles in the nervous system to control diverse cellular processes-not only in the suprachiasmatic nucleus (SCN), where the master clocks reside to synchronize all circadian clocks in the body but also in other non-SCN areas. Accumulating evidence has shown relationships between circadian abnormalities (e.g., sleep disturbances and abnormal rest-activity rhythms) and disease progressions in various neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's (PD) disease. Although circadian abnormalities were frequently considered as consequences of disease onsets, recent studies suggest altered circadian clocks as risk factors to develop neurodegenerative diseases via altered production or clearance rates of toxic metabolites like amyloid β. In this review, we will summarize circadian clock-related pathologies in the most common neurodegenerative diseases in the central nervous system, AD and PD. Then, we will introduce the current clinical trials to rescue circadian abnormalities in AD and PD patients. Finally, a discussion about how to improve targeting circadian clocks to increase treatment efficiencies and specificities will be followed. This discussion will provide insight into circadian clocks as potential therapeutic targets to attenuate onsets and progressions of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Chen Chang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
48
|
Benitah SA, Welz PS. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 2020; 26:817-831. [DOI: 10.1016/j.stem.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Boda E, Rigamonti AE, Bollati V. Understanding the effects of air pollution on neurogenesis and gliogenesis in the growing and adult brain. Curr Opin Pharmacol 2020; 50:61-66. [DOI: 10.1016/j.coph.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023]
|
50
|
Horsey EA, Maletta T, Turner H, Cole C, Lehmann H, Fournier NM. Chronic Jet Lag Simulation Decreases Hippocampal Neurogenesis and Enhances Depressive Behaviors and Cognitive Deficits in Adult Male Rats. Front Behav Neurosci 2020; 13:272. [PMID: 31969809 PMCID: PMC6960209 DOI: 10.3389/fnbeh.2019.00272] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
There is a long history that protracted periods of circadian disruption, such as through frequent transmeridian travel or rotating shift work, can have a significant impact on brain function and health. In addition, several studies have shown that chronic periods of circadian misalignment can be a significant risk factor for the development of depression and anxiety in some individuals with a history of psychiatric illness. In animal models, circadian disruption can be introduced through either phase advances or delays in the light-dark cycle. However, the impact of chronic phase shifts on affective behavior in rats has not been well-studied. In the present study, male rats were subjected to either weekly 6 h phase advances (e.g., traveling eastbound from New York to Paris) or 6 h phase delays (e.g., traveling westbound from New York to Hawaii) in their light/dark cycle for 8 weeks. The effect of chronic phase shifts was then examined on a range of emotional and cognitive behaviors. We found that rats exposed to frequent phase advances, which mirror conditions of chronic jet lag in humans, exhibited impairments in object recognition memory and showed signature symptoms of depression, including anhedonia, increased anxiety behavior, and higher levels of immobility in the forced swim test. In addition, rats housed on the phase advance schedule also had lower levels of hippocampal neurogenesis and immature neurons showed reduced dendritic complexity compared to controls. These behavioral and neurogenic changes were direction-specific and were not observed after frequent phase delays. Taken together, these findings support the view that circadian disruption through chronic jet lag exposure can suppress hippocampal neurogenesis, which can have a significant impact on memory and mood-related behaviors.
Collapse
Affiliation(s)
- Emily A Horsey
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Teresa Maletta
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Holly Turner
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Chantel Cole
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON, Canada
| |
Collapse
|