1
|
Zhang ZH, Pei YH, Duan ZH, Gao T, Feng SL, Tang ZZ, Chen YE, Hu SL, Yuan S, Wang W, Yan XR, Pu YY, Yuan M. Harnessing the power of ginger leaf polysaccharide: A potential strategy to combat Aβ-induced toxicity through the Wnt/β-catenin pathway. Int J Biol Macromol 2025; 303:140692. [PMID: 39914550 DOI: 10.1016/j.ijbiomac.2025.140692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/19/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) is prevalent in the elderly, with amyloid-β (Aβ) playing a critical role in its progression. Polysaccharides have garnered increasing attention due to their low toxicity and diverse applications in alleviating AD-like symptoms. However, the potential of ginger leaf polysaccharide in mitigating AD-like symptoms has been rarely investigated. In this study, we isolated a polysaccharide (GLP1) from ginger leaf and evaluated its efficacy and underlying mechanisms in alleviating AD-like symptoms using Caenorhabditis elegans and PC12 cells. GLP1 ameliorated AD-like symptoms in C. elegans, as evidenced by a 41.50 % increase in head thrashing frequency and an 87.13 % increase in body bending frequency. Furthermore, GLP1 mitigated cognitive decline by 76.51 %. Additionally, GLP1 enhanced the activity of acetylcholinesterase in C. elegans and maintained the integrity of neural system function. Moreover, GLP1 improved the survival rate of PC12 cells under Aβ induction by activating the Wnt/β-catenin pathway, which also resulted in a reduction in the release of inflammatory factors, specifically IL-1β by 21.15 %, IL-6 by 39.98 %, and TNF-α by 19.66 %. Notably, FITC-labeled GLP1 could be absorbed by PC12 cells. These compelling findings underscored the therapeutic potential of GLP1 in alleviating Aβ-induced AD-like symptoms and supported the advancement of ginger leaf resource utilization.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Ying-Hong Pei
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Zhi-Hao Duan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Tao Gao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Shi-Ling Feng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Zi-Zhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Wei Wang
- Dazhu County Science and Technology Information Research Institute, 635000, Sichuan Province, China
| | | | - Ya-Ying Pu
- Yaan People's Hospital, Yaan 625099, China.
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan Province, China.
| |
Collapse
|
2
|
Noort RJ, Zhu H, Flemmer RT, Moore CS, Belbin TJ, Esseltine JL. Apically localized PANX1 impacts neuroepithelial expansion in human cerebral organoids. Cell Death Discov 2024; 10:22. [PMID: 38212304 PMCID: PMC10784521 DOI: 10.1038/s41420-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Dysfunctional paracrine signaling through Pannexin 1 (PANX1) channels is linked to several adult neurological pathologies and emerging evidence suggests that PANX1 plays an important role in human brain development. It remains unclear how early PANX1 influences brain development, or how loss of PANX1 alters the developing human brain. Using a cerebral organoid model of early human brain development, we find that PANX1 is expressed at all stages of organoid development from neural induction through to neuroepithelial expansion and maturation. Interestingly, PANX1 cellular distribution and subcellular localization changes dramatically throughout cerebral organoid development. During neural induction, PANX1 becomes concentrated at the apical membrane domain of neural rosettes where it co-localizes with several apical membrane adhesion molecules. During neuroepithelial expansion, PANX1-/- organoids are significantly smaller than control and exhibit significant gene expression changes related to cell adhesion, WNT signaling and non-coding RNAs. As cerebral organoids mature, PANX1 expression is significantly upregulated and is primarily localized to neuronal populations outside of the ventricular-like zones. Ultimately, PANX1 protein can be detected in all layers of a 21-22 post conception week human fetal cerebral cortex. Together, these results show that PANX1 is dynamically expressed by numerous cell types throughout embryonic and early fetal stages of human corticogenesis and loss of PANX1 compromises neuroepithelial expansion due to dysregulation of cell-cell and cell-matrix adhesion, perturbed intracellular signaling, and changes to gene regulation.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Hanrui Zhu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Robert T Flemmer
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Thomas J Belbin
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
- Discipline of Oncology, Faculty of sp. Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada.
| |
Collapse
|
3
|
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases 2023; 11:89. [PMID: 37489441 PMCID: PMC10366863 DOI: 10.3390/diseases11030089] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Wnt/β-catenin (WβC) signaling pathway is an important signaling pathway for the maintenance of cellular homeostasis from the embryonic developmental stages to adulthood. The canonical pathway of WβC signaling is essential for neurogenesis, cell proliferation, and neurogenesis, whereas the noncanonical pathway (WNT/Ca2+ and WNT/PCP) is responsible for cell polarity, calcium maintenance, and cell migration. Abnormal regulation of WβC signaling is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and spinal muscular atrophy (SMA). Hence, the alteration of WβC signaling is considered a potential therapeutic target for the treatment of neurodegenerative disease. In the present review, we have used the bibliographical information from PubMed, Google Scholar, and Scopus to address the current prospects of WβC signaling role in the abovementioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Lakshmi Vineela Nalla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Dumala Naresh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, India
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Guntupalli Chakravarthy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Sajusha Duguluri
- Department of Biotechnology, Bharathi Institute of Higher Education and Research, Chennai 600073, India
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Veer Singh
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". J Biol Chem 2023:104916. [PMID: 37315786 PMCID: PMC10362152 DOI: 10.1016/j.jbc.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. To test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents previously validated in non-neuronal cells. Striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of staining. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. It would be interesting to identify the actual target for this neuronal Golgi phenotype. Cell type-specific off-target phenotypes therefore likely occur in neurons, necessitating re-validation of reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall 3226, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Berryer MH, Rizki G, Nathanson A, Klein JA, Trendafilova D, Susco SG, Lam D, Messana A, Holton KM, Karhohs KW, Cimini BA, Pfaff K, Carpenter AE, Rubin LL, Barrett LE. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 2023; 12:80168. [PMID: 37083703 PMCID: PMC10121225 DOI: 10.7554/elife.80168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.
Collapse
Affiliation(s)
- Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Gizem Rizki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jenny A Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kristina M Holton
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Kyle W Karhohs
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kathleen Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lee L Rubin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
6
|
Yap CC, Digilio L, McMahon L, Winckler B. "Disruption of Golgi markers by two RILP-directed shRNAs in neurons: a new role for RILP or a neuron-specific off-target phenotype?". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531742. [PMID: 36945482 PMCID: PMC10028860 DOI: 10.1101/2023.03.08.531742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. In order to test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents which had been previously validated in non-neuronal cells. We found that striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of markers. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. Different approaches will be needed to test if RILP is required for late endosomal transport in dendrites. Cell type-specific off-target phenotypes therefore likely occur in neurons, making it prudent to re-validate reagents that were previously validated in other cell types.
Collapse
Affiliation(s)
- Chan Choo Yap
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| | | | | | - Bettina Winckler
- Corresponding authors: Bettina Winckler and Chan Choo Yap, Phone: (434)924-5528/5526. ,
| |
Collapse
|
7
|
Jones ME, Büchler J, Dufor T, Palomer E, Teo S, Martin-Flores N, Boroviak K, Metzakopian E, Gibb A, Salinas PC. A genetic variant of the Wnt receptor LRP6 accelerates synapse degeneration during aging and in Alzheimer's disease. SCIENCE ADVANCES 2023; 9:eabo7421. [PMID: 36638182 PMCID: PMC10624429 DOI: 10.1126/sciadv.abo7421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Synapse loss strongly correlates with cognitive decline in Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Deficient Wnt signaling contributes to synapse dysfunction and loss in AD. Consistently, a variant of the LRP6 receptor, (LRP6-Val), with reduced Wnt signaling, is linked to late-onset AD. However, the impact of LRP6-Val on the healthy and AD brain has not been examined. Knock-in mice, generated by gene editing, carrying this Lrp6 variant develop normally. However, neurons from Lrp6-val mice do not respond to Wnt7a, a ligand that promotes synaptic assembly through the Frizzled-5 receptor. Wnt7a stimulates the formation of the low-density lipoprotein receptor-related protein 6 (LRP6)-Frizzled-5 complex but not if LRP6-Val is present. Lrp6-val mice exhibit structural and functional synaptic defects that become pronounced with age. Lrp6-val mice present exacerbated synapse loss around plaques when crossed to the NL-G-F AD model. Our findings uncover a previously unidentified role for Lrp6-val in synapse vulnerability during aging and AD.
Collapse
Affiliation(s)
- Megan E. Jones
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Johanna Büchler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Samuel Teo
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Martin-Flores
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Katharina Boroviak
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0AH, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Saunders A, Huang KW, Vondrak C, Hughes C, Smolyar K, Sen H, Philson AC, Nemesh J, Wysoker A, Kashin S, Sabatini BL, McCarroll SA. Ascertaining cells' synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nat Commun 2022; 13:6993. [PMID: 36384944 PMCID: PMC9668842 DOI: 10.1038/s41467-022-34334-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
Brain function depends on synaptic connections between specific neuron types, yet systematic descriptions of synaptic networks and their molecular properties are not readily available. Here, we introduce SBARRO (Synaptic Barcode Analysis by Retrograde Rabies ReadOut), a method that uses single-cell RNA sequencing to reveal directional, monosynaptic relationships based on the paths of a barcoded rabies virus from its "starter" postsynaptic cell to that cell's presynaptic partners. Thousands of these partner relationships can be ascertained in a single experiment, alongside genome-wide RNAs. We use SBARRO to describe synaptic networks formed by diverse mouse brain cell types in vitro, finding that different cell types have presynaptic networks with differences in average size and cell type composition. Patterns of RNA expression suggest that functioning synapses are critical for rabies virus uptake. By tracking individual rabies clones across cells, SBARRO offers new opportunities to map the synaptic organization of neural circuits.
Collapse
Affiliation(s)
- Arpiar Saunders
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA ,grid.5288.70000 0000 9758 5690Vollum Institute, Oregon Health & Science University, Portland, OR 97239 USA
| | - Kee Wui Huang
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Cassandra Vondrak
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Christina Hughes
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Karina Smolyar
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Harsha Sen
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Adrienne C. Philson
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - James Nemesh
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Alec Wysoker
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Seva Kashin
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Bernardo L. Sabatini
- grid.38142.3c000000041936754XHoward Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Steven A. McCarroll
- grid.38142.3c000000041936754XDepartment of Genetics, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
9
|
Age-dependent changes in Wnt signaling components and synapse number are differentially affected between brain regions. Exp Gerontol 2022; 165:111854. [DOI: 10.1016/j.exger.2022.111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 01/14/2023]
|
10
|
Lei J, Deng Y, Ma S. Downregulation of TGIF2 is possibly correlated with neuronal apoptosis and autism-like symptoms in mice. Brain Behav 2022; 12:e2610. [PMID: 35592894 PMCID: PMC9226810 DOI: 10.1002/brb3.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 04/24/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND TGFB-induced factor homeobox 2 (TGIF2) has been reported to exert essential functions in brain development. This study aimed to elucidate the correlation of TGIF2 with autism, a neurodevelopmental condition which presents with severe communication problems. METHODS An autism-related gene expression dataset GSE36315 was used to analyze aberrantly expressed genes in autistic brain tissues. Maternal mice were treated with valproate (VPA), and their offspring were selected as model mice with autism. The functions of TGIF2 in autism-like symptoms in mice were examined by behavioral tests and histological examination of their hippocampal tissues. Mouse hippocampal neurons were extracted for in vitro studies. A gene set enrichment analysis was performed to analyze the signaling pathways involved, and the upstream factors influencing TGIF2 expression were explored in the ENCODE database and validated by ChIP-qPCR assays. RESULTS TGIF2 was poorly expressed in autistic patients in the GSE36315 dataset as well as in the temporal cortex tissues of autistic mice. Adenovirus-mediated overexpression of TGIF2 suppressed autism-like symptoms and neuronal apoptosis in autistic mice. TGIF2 activated the Wnt/β-catenin signaling pathway. TGIF2 could be regulated by monomethylation of histone H3 Lys4 (H3K4me1). The histone demethylase LSD1 was highly expressed in the tissues of autistic mice and bound to TGIF2 promoter, which was possibly responsible for TGIF2 downregulation. CONCLUSION This research suggests that the downregulation of TGIF2, possibly regulated by LSD1/H3K4me1, is correlated with neuronal apoptosis and development of autism in mice through the inactivation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jing Lei
- Department of the Ninth Pediatrics, Hunan Provincial People's Hospital (the First-Affiliated Hospital of Hunan Normal University), Changsha, P. R. China
| | - Yijue Deng
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Songdong Ma
- Hunan Provincial Key Laboratory of Pediatric Respirology, Hunan Provincial People's Hospital (the First-Affiliated Hospital of Hunan Normal University), Changsha, P. R. China
| |
Collapse
|
11
|
Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, De Ferrari GV. Wnt/β-Catenin-Dependent Transcription in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:764756. [PMID: 34858139 PMCID: PMC8632544 DOI: 10.3389/fnmol.2021.764756] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by synaptic dysfunction and defects in dendritic spine morphology. In the past decade, an extensive list of genes associated with ASD has been identified by genome-wide sequencing initiatives. Several of these genes functionally converge in the regulation of the Wnt/β-catenin signaling pathway, a conserved cascade essential for stem cell pluripotency and cell fate decisions during development. Here, we review current information regarding the transcriptional program of Wnt/β-catenin signaling in ASD. First, we discuss that Wnt/β-catenin gain and loss of function studies recapitulate brain developmental abnormalities associated with ASD. Second, transcriptomic approaches using patient-derived induced pluripotent stem cells (iPSC) cells, featuring mutations in high confidence ASD genes, reveal a significant dysregulation in the expression of Wnt signaling components. Finally, we focus on the activity of chromatin-remodeling proteins and transcription factors considered high confidence ASD genes, including CHD8, ARID1B, ADNP, and TBR1, that regulate Wnt/β-catenin-dependent transcriptional activity in multiple cell types, including pyramidal neurons, interneurons and oligodendrocytes, cells which are becoming increasingly relevant in the study of ASD. We conclude that the level of Wnt/β-catenin signaling activation could explain the high phenotypical heterogeneity of ASD and be instrumental in the development of new diagnostics tools and therapies.
Collapse
Affiliation(s)
- Mario O. Caracci
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Miguel E. Avila
- Faculty of Veterinary Medicine and Agronomy, Nucleus of Applied Research in Veterinary and Agronomic Sciences (NIAVA), Institute of Natural Sciences, Universidad de Las Américas, Santiago, Chile
| | - Francisca A. Espinoza-Cavieres
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Héctor R. López
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giorgia D. Ugarte
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giancarlo V. De Ferrari
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
12
|
Jeong W, Jho EH. Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Front Cell Dev Biol 2021; 9:714330. [PMID: 34589484 PMCID: PMC8473786 DOI: 10.3389/fcell.2021.714330] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Wnt signaling plays crucial roles in development and tissue homeostasis, and its dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is initiated when the glycoprotein Wnt binds to and forms a ternary complex with the Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms governing how LRP6 senses Wnt and transduces downstream signaling cascades are still being deciphered. Due to its role as one of the main Wnt signaling components, the dysregulation or mutation of LRP6 is implicated in several diseases such as cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will review how LRP6 is activated by Wnt stimulation and explore the various regulatory mechanisms involved. The participation of LRP6 in other signaling pathways will also be discussed. Finally, the relationship between LRP6 dysregulation and disease will be examined in detail.
Collapse
Affiliation(s)
- Wonyoung Jeong
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
13
|
Fell CW, Nagy V. Cellular Models and High-Throughput Screening for Genetic Causality of Intellectual Disability. Trends Mol Med 2021; 27:220-230. [PMID: 33397633 DOI: 10.1016/j.molmed.2020.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Intellectual disabilities (ID) are a type of neurodevelopmental disorder (NDD). They can have a genetic cause, including an emerging class of ID centring around Rho GTPases, such as Ras-related C3 botulinum toxin substrate 1 (RAC1). Guidelines for establishing genetic causality include the use of cellular models, which often have morphological aberrations, a long-standing hallmark of ID. Disease cellular models can facilitate high-throughput screening (HTS) of chemical or genetic perturbations, which can provide translatable biological insight. Here, we discuss a class of IDs centring around RAC1. We review novel and established cellular models of ID, including mouse and human primary cells and reprogrammed or induced neurons. Finally, we review progress and remaining challenges in the adoption of HTS methodologies by the community studying neurological disorders.
Collapse
Affiliation(s)
- Christopher W Fell
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria.
| |
Collapse
|
14
|
The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Transl Psychiatry 2020; 10:400. [PMID: 33199680 PMCID: PMC7669888 DOI: 10.1038/s41398-020-01086-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Intellectual abilities and their clinical presentations are extremely heterogeneous in autism spectrum disorder (ASD). The main causes of ASD remain unclear. ASD is frequently associated with sleep disorders. Biologic rhythms are complex systems interacting with the environment and controlling several physiological pathways, including brain development and behavioral processes. Recent findings have shown that the deregulation of the core clock neurodevelopmental signaling is correlated with ASD clinical presentation. One of the main pathways involved in developmental cognitive disorders is the canonical WNT/β-catenin pathway. Circadian clocks have a main role in some tissues by driving circadian expression of genes involved in physiologic and metabolic functions. In ASD, the increase of the canonical WNT/β-catenin pathway is enhancing by the dysregulation of circadian rhythms. ASD progression is associated with a major metabolic reprogramming, initiated by aberrant WNT/β-catenin pathway, the aerobic glycolysis. This review focuses on the interest of circadian rhythms dysregulation in metabolic reprogramming in ASD through the aberrant upregulation of the canonical WNT/β-catenin pathway.
Collapse
|
15
|
Verstraelen P, Garcia-Diaz Barriga G, Verschuuren M, Asselbergh B, Nuydens R, Larsen PH, Timmermans JP, De Vos WH. Systematic Quantification of Synapses in Primary Neuronal Culture. iScience 2020; 23:101542. [PMID: 33083769 PMCID: PMC7516133 DOI: 10.1016/j.isci.2020.101542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Most neurological disorders display impaired synaptic connectivity. Hence, modulation of synapse formation may have therapeutic relevance. However, the high density and small size of synapses complicate their quantification. To improve synapse-oriented screens, we analyzed the labeling performance of synapse-targeting antibodies on neuronal cell cultures using segmentation-independent image analysis based on sliding window correlation. When assessing pairwise colocalization, a common readout for mature synapses, overlap was incomplete and confounded by spurious signals. To circumvent this, we implemented a proximity ligation-based approach that only leads to a signal when two markers are sufficiently close. We applied this approach to different marker combinations and demonstrate its utility for detecting synapse density changes in healthy and compromised cultures. Thus, segmentation-independent analysis and exploitation of resident protein proximity increases the sensitivity of synapse quantifications in neuronal cultures and represents a valuable extension to the analytical toolset for in vitro synapse screens.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | | | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Rony Nuydens
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Antwerp 2340, Belgium
| | - Peter H. Larsen
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Beerse, Antwerp 2340, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Wilrijk, Antwerp 2610, Belgium
| |
Collapse
|
16
|
Draxin-mediated Regulation of Granule Cell Progenitor Differentiation in the Postnatal Hippocampal Dentate Gyrus. Neuroscience 2020; 431:184-192. [PMID: 32081722 DOI: 10.1016/j.neuroscience.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/03/2023]
Abstract
The hippocampus is characterized by the presence of life-long neurogenesis. To elucidate the molecular mechanism regulating hippocampal neurogenesis, we studied the functions of the chemorepellent Draxin in neuronal proliferation and differentiation in the postnatal dentate gyrus. The present in vivo cell labeling and fate tracking analyses revealed enhanced differentiation of hippocampal neural stem and progenitor cells (hNSPCs) in the subgranular zone (SGZ) of Draxin-deficient mice. We observed a reduction in the number of BrdU-pulse labeled or Ki-67 immunopositive SGZ cells in the mutant mice. However, Draxin deficiency did not affect cell cycle duration of SGZ cells. In situ hybridization analysis indicated that the receptor component of the canonical Wnt pathway, Lrp6, is expressed in SGZ cells, including Nestin and Sox2 double-positive hNSPCs. Taken together with the previous finding that Draxin interacts physically with Lrp6, we postulate that Draxin plays a pivotal role in the regulation of Wnt-driven hNSPC differentiation to modulate the rate of neuronal differentiation in the progenitor population.
Collapse
|
17
|
Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019; 12:104. [PMID: 31801553 PMCID: PMC6894260 DOI: 10.1186/s13041-019-0525-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia. Wnt/β-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes including cell survival. In brain, Wnt/β-catenin signaling is not only crucial for neuronal survival and neurogenesis, but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover, activation of Wnt/β-catenin signaling inhibits amyloid-β production and tau protein hyperphosphorylation in the brain. Critically, Wnt/β-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As such, restoring Wnt/β-catenin signaling represents a unique opportunity for the rational design of novel AD therapies.
Collapse
Affiliation(s)
- Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
18
|
Green MV, Pengo T, Raybuck JD, Naqvi T, McMullan HM, Hawkinson JE, Marron Fernandez de Velasco E, Muntean BS, Martemyanov KA, Satterfield R, Young SM, Thayer SA. Automated Live-Cell Imaging of Synapses in Rat and Human Neuronal Cultures. Front Cell Neurosci 2019; 13:467. [PMID: 31680875 PMCID: PMC6811609 DOI: 10.3389/fncel.2019.00467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/01/2019] [Indexed: 01/10/2023] Open
Abstract
Synapse loss and dendritic damage correlate with cognitive decline in many neurodegenerative diseases, underlie neurodevelopmental disorders, and are associated with environmental and drug-induced CNS toxicities. However, screening assays designed to measure loss of synaptic connections between live cells are lacking. Here, we describe the design and validation of automated synaptic imaging assay (ASIA), an efficient approach to label, image, and analyze synapses between live neurons. Using viral transduction to express fluorescent proteins that label synapses and an automated computer-controlled microscope, we developed a method to identify agents that regulate synapse number. ASIA is compatible with both confocal and wide-field microscopy; wide-field image acquisition is faster but requires a deconvolution step in the analysis. Both types of images feed into batch processing analysis software that can be run on ImageJ, CellProfiler, and MetaMorph platforms. Primary analysis endpoints are the number of structural synapses and cell viability. Thus, overt cell death is differentiated from subtle changes in synapse density, an important distinction when studying neurodegenerative processes. In rat hippocampal cultures treated for 24 h with 100 μM 2-bromopalmitic acid (2-BP), a compound that prevents clustering of postsynaptic density 95 (PSD95), ASIA reliably detected loss of postsynaptic density 95-enhanced green fluorescent protein (PSD95-eGFP)-labeled synapses in the absence of cell death. In contrast, treatment with 100 μM glutamate produced synapse loss and significant cell death, determined from morphological changes in a binary image created from co-expressed mCherry. Treatment with 3 mM lithium for 24 h significantly increased the number of fluorescent puncta, showing that ASIA also detects synaptogenesis. Proof of concept studies show that cell-specific promoters enable the selective study of inhibitory or principal neurons and that alternative reporter constructs enable quantification of GABAergic or glutamatergic synapses. ASIA can also be used to study synapse loss between human induced pluripotent stem cell (iPSC)-derived cortical neurons. Significant synapse loss in the absence of cell death was detected in the iPSC-derived neuronal cultures treated with either 100 μM 2-BP or 100 μM glutamate for 24 h, while 300 μM glutamate produced synapse loss and cell death. ASIA shows promise for identifying agents that evoke synaptic toxicities and screening for compounds that prevent or reverse synapse loss.
Collapse
Affiliation(s)
- Matthew V. Green
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Thomas Pengo
- Informatics Institute, University of Minnesota, Minneapolis, MN, United States
| | - Jonathan D. Raybuck
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tahmina Naqvi
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, United States
| | - Hannah M. McMullan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Jon E. Hawkinson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, United States
| | | | - Brian S. Muntean
- Department of Neuroscience, Scripps Research Institute, Jupiter, FL, United States
| | | | - Rachel Satterfield
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Samuel M. Young
- Department of Anatomy and Cell Biology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
19
|
Tian R, Gachechiladze MA, Ludwig CH, Laurie MT, Hong JY, Nathaniel D, Prabhu AV, Fernandopulle MS, Patel R, Abshari M, Ward ME, Kampmann M. CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. Neuron 2019; 104:239-255.e12. [PMID: 31422865 DOI: 10.1016/j.neuron.2019.07.014] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/25/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
Abstract
CRISPR/Cas9-based functional genomics have transformed our ability to elucidate mammalian cell biology. However, most previous CRISPR-based screens were conducted in cancer cell lines rather than healthy, differentiated cells. Here, we describe a CRISPR interference (CRISPRi)-based platform for genetic screens in human neurons derived from induced pluripotent stem cells (iPSCs). We demonstrate robust and durable knockdown of endogenous genes in such neurons and present results from three complementary genetic screens. First, a survival-based screen revealed neuron-specific essential genes and genes that improved neuronal survival upon knockdown. Second, a screen with a single-cell transcriptomic readout uncovered several examples of genes whose knockdown had strikingly cell-type-specific consequences. Third, a longitudinal imaging screen detected distinct consequences of gene knockdown on neuronal morphology. Our results highlight the power of unbiased genetic screens in iPSC-derived differentiated cell types and provide a platform for systematic interrogation of normal and disease states of neurons. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ruilin Tian
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Connor H Ludwig
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Matthew T Laurie
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Y Hong
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Diane Nathaniel
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anika V Prabhu
- National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | | - Rajan Patel
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Mehrnoosh Abshari
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA.
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
20
|
Verschuuren M, Verstraelen P, García-Díaz Barriga G, Cilissen I, Coninx E, Verslegers M, Larsen PH, Nuydens R, De Vos WH. High-throughput microscopy exposes a pharmacological window in which dual leucine zipper kinase inhibition preserves neuronal network connectivity. Acta Neuropathol Commun 2019; 7:93. [PMID: 31164177 PMCID: PMC6549294 DOI: 10.1186/s40478-019-0741-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic developments for neurodegenerative disorders are redirecting their focus to the mechanisms that contribute to neuronal connectivity and the loss thereof. Using a high-throughput microscopy pipeline that integrates morphological and functional measurements, we found that inhibition of dual leucine zipper kinase (DLK) increased neuronal connectivity in primary cortical cultures. This neuroprotective effect was not only observed in basal conditions but also in cultures depleted from antioxidants and in cultures in which microtubule stability was genetically perturbed. Based on the morphofunctional connectivity signature, we further showed that the effects were limited to a specific dose and time range. Thus, our results illustrate that profiling microscopy images with deep coverage enables sensitive interrogation of neuronal connectivity and allows exposing a pharmacological window for targeted treatments. In doing so, we revealed a broad-spectrum neuroprotective effect of DLK inhibition, which may have relevance to pathological conditions that ar.e associated with compromised neuronal connectivity.
Collapse
|
21
|
Vallée A, Vallée JN, Lecarpentier Y. PPARγ agonists: potential treatment for autism spectrum disorder by inhibiting the canonical WNT/β-catenin pathway. Mol Psychiatry 2019; 24:643-652. [PMID: 30104725 DOI: 10.1038/s41380-018-0131-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. No curative treatments are available for ASD. Pharmacological treatments do not address the core ASD behaviors, but target comorbid symptoms. Dysregulation of the core neurodevelopmental pathways is associated with the clinical presentation of ASD, and the canonical WNT/β-catenin pathway is one of the major pathways involved. The canonical WNT/β-catenin pathway participates in the development of the central nervous system, and its dysregulation involves developmental cognitive disorders. In numerous tissues, the canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) act in an opposed manner. In ASD, the canonical WNT/β-catenin pathway is increased while PPARγ seems to be decreased. PPARγ agonists present a beneficial effect in treatment for ASD children through their anti-inflammatory role. Moreover, they induce the inhibition of the canonical WNT/β-catenin pathway in several pathophysiological states. We focus this review on the hypothesis of an opposed interplay between PPARγ and the canonical WNT/β-catenin pathway in ASD and the potential role of PPARγ agonists as treatment for ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Paris-Descartes University; Diagnosis and Therapeutic Center, Hôtel-Dieu Hospital; AP-HP, Paris, France. .,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054, Amiens, France.,Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100, Meaux, France
| |
Collapse
|
22
|
Buechler J, Salinas PC. Deficient Wnt Signaling and Synaptic Vulnerability in Alzheimer's Disease: Emerging Roles for the LRP6 Receptor. Front Synaptic Neurosci 2018; 10:38. [PMID: 30425633 PMCID: PMC6218458 DOI: 10.3389/fnsyn.2018.00038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Synapse dysfunction and loss represent critical early events in the pathophysiology of Alzheimer’s disease (AD). While extensive research has elucidated the direct synaptotoxic effects of Amyloid-β (Aβ) oligomers, less is known about how signaling pathways at the synapse are affected by Aβ. A better understanding of the cellular and molecular mechanisms underlying synaptic vulnerability in AD is key to illuminating the determinants of AD susceptibility and will unveil novel therapeutic avenues. Canonical Wnt signaling through the Wnt co-receptor LRP6 has a critical role in maintaining the structural and functional integrity of synaptic connections in the adult brain. Accumulating evidence suggests that deficient Wnt signaling may contribute to AD pathology. In particular, LRP6 deficiency compromises synaptic function and stability, and contributes to Aß production and plaque formation. Here, we review the role of Wnt signaling for synaptic maintenance in the adult brain and the contribution of aberrant Wnt signaling to synaptic degeneration in AD. We place a focus on emerging evidence implicating the LRP6 receptor as an important modulator of AD risk and pathology.
Collapse
Affiliation(s)
- Johanna Buechler
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
23
|
He Y, Li W, Tian Y, Chen X, Cheng K, Xu K, Li C, Wang H, Qu C, Wang C, Li P, Chen H, Xie P. iTRAQ-based proteomics suggests LRP6, NPY and NPY2R perturbation in the hippocampus involved in CSDS may induce resilience and susceptibility. Life Sci 2018; 211:102-117. [DOI: 10.1016/j.lfs.2018.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
|
24
|
Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans JP, De Vos WH. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Front Neurosci 2018; 12:389. [PMID: 29997468 PMCID: PMC6028601 DOI: 10.3389/fnins.2018.00389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Michiel Van Dyck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Cell Systems and Imaging, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 2018; 8:45. [PMID: 29503438 PMCID: PMC5835496 DOI: 10.1038/s41398-018-0093-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/30/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Synaptic abnormalities have been described in individuals with autism spectrum disorders (ASD). The cell-adhesion molecule Neuroligin-3 (Nlgn3) has an essential role in the function and maturation of synapses and NLGN3 ASD-associated mutations disrupt hippocampal and cortical function. Here we show that Wnt/β-catenin signaling increases Nlgn3 mRNA and protein levels in HT22 mouse hippocampal cells and primary cultures of rat hippocampal neurons. We characterized the activity of mouse and rat Nlgn3 promoter constructs containing conserved putative T-cell factor/lymphoid enhancing factor (TCF/LEF)-binding elements (TBE) and found that their activity is significantly augmented in Wnt/β-catenin cell reporter assays. Chromatin immunoprecipitation (ChIP) assays and site-directed mutagenesis experiments revealed that endogenous β-catenin binds to novel TBE consensus sequences in the Nlgn3 promoter. Moreover, activation of the signaling cascade increased Nlgn3 clustering and co- localization with the scaffold PSD-95 protein in dendritic processes of primary neurons. Our results directly link Wnt/β-catenin signaling to the transcription of the Nlgn3 gene and support a functional role for the signaling pathway in the dysregulation of excitatory/inhibitory neuronal activity, as is observed in animal models of ASD.
Collapse
|
26
|
Vallée A, Vallée JN. Warburg effect hypothesis in autism Spectrum disorders. Mol Brain 2018; 11:1. [PMID: 29301575 PMCID: PMC5753567 DOI: 10.1186/s13041-017-0343-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease which is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. In altered cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In ASD, the canonical WNT/β-catenin pathway is upregulated. We focus this review on the hypothesis of Warburg effect stimulated by the overexpression of the canonical WNT/β-catenin pathway in ASD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism might promote cell deregulation and progression of ASD. Warburg effect regulation could be an attractive target for developing therapeutic interventions in ASD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, CHU Poitiers, University of Poitiers, Poitiers, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, University of Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
27
|
Spicer TP, Hubbs C, Vaissiere T, Collia D, Rojas C, Kilinc M, Vick K, Madoux F, Baillargeon P, Shumate J, Martemyanov KA, Page DT, Puthanveettil S, Hodder P, Davis R, Miller CA, Scampavia L, Rumbaugh G. Improved Scalability of Neuron-Based Phenotypic Screening Assays for Therapeutic Discovery in Neuropsychiatric Disorders. MOLECULAR NEUROPSYCHIATRY 2017; 3:141-150. [PMID: 29594133 DOI: 10.1159/000481731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 02/05/2023]
Abstract
There is a pressing need to improve approaches for drug discovery related to neuropsychiatric disorders (NSDs). Therapeutic discovery in neuropsychiatric disorders would benefit from screening assays that can measure changes in complex phenotypes linked to disease mechanisms. However, traditional assays that track complex neuronal phenotypes, such as neuronal connectivity, exhibit poor scalability and are not compatible with high-throughput screening (HTS) procedures. Therefore, we created a neuronal phenotypic assay platform that focused on improving the scalability and affordability of neuron-based assays capable of tracking disease-relevant phenotypes. First, using inexpensive laboratory-level automation, we industrialized primary neuronal culture production, which enabled the creation of scalable assays within functioning neural networks. We then developed a panel of phenotypic assays based on culturing of primary neurons from genetically modified mice expressing HTS-compatible reporters that capture disease-relevant phenotypes. We demonstrated that a library of 1,280 compounds was quickly screened against both assays using only a few litters of mice in a typical academic laboratory setting. Finally, we implemented one assay in a fully automated high-throughput academic screening facility, illustrating the scalability of assays designed using this platform. These methodological improvements simplify the creation of highly scalable neuron-based phenotypic assays designed to improve drug discovery in CNS disorders.
Collapse
Affiliation(s)
| | - Christopher Hubbs
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Thomas Vaissiere
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Camilo Rojas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Murat Kilinc
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Kyle Vick
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA.,Department of Aerie Pharmaceuticals, Durham, NC, USA
| | - Franck Madoux
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Amgen, Thousand Oaks, CA, USA
| | | | | | | | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Peter Hodder
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Amgen, Thousand Oaks, CA, USA
| | - Ronald Davis
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Courtney A Miller
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | | - Gavin Rumbaugh
- Department of Molecular Medicine, Jupiter, FL, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
28
|
Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. Int J Mol Sci 2017; 18:ijms18040828. [PMID: 28420080 PMCID: PMC5412412 DOI: 10.3390/ijms18040828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/26/2022] Open
Abstract
In recent decades it has become clear that Autism Spectrum Disorder (ASD) possesses a diverse and heterogeneous genetic etiology. Aberrations in hundreds of genes have been associated with ASD so far, which include both rare and common variations. While one may expect that these genes converge on specific common molecular pathways, which drive the development of the core ASD characteristics, the task of elucidating these common molecular pathways has been proven to be challenging. Several studies have combined genetic analysis with bioinformatical techniques to uncover molecular mechanisms that are specifically targeted by autism-associated genetic aberrations. Recently, several analysis have suggested that particular signaling mechanisms, including the Wnt and Ca2+/Calmodulin-signaling pathways are often targeted by autism-associated mutations. In this review, we discuss several studies that determine specific molecular pathways affected by autism-associated mutations, and then discuss more in-depth into the biological roles of a few of these pathways, and how they may be involved in the development of ASD. Considering that these pathways may be targeted by specific pharmacological intervention, they may prove to be important therapeutic targets for the treatment of ASD.
Collapse
|
29
|
Abstract
Experience-driven synaptic plasticity is believed to underlie adaptive behavior by rearranging the way neuronal circuits process information. We have previously discovered that O-GlcNAc transferase (OGT), an enzyme that modifies protein function by attaching β-N-acetylglucosamine (GlcNAc) to serine and threonine residues of intracellular proteins (O-GlcNAc), regulates food intake by modulating excitatory synaptic function in neurons in the hypothalamus. However, how OGT regulates excitatory synapse function is largely unknown. Here we demonstrate that OGT is enriched in the postsynaptic density of excitatory synapses. In the postsynaptic density, O-GlcNAcylation on multiple proteins increased upon neuronal stimulation. Knockout of the OGT gene decreased the synaptic expression of the AMPA receptor GluA2 and GluA3 subunits, but not the GluA1 subunit. The number of opposed excitatory presynaptic terminals was sharply reduced upon postsynaptic knockout of OGT. There were also fewer and less mature dendritic spines on OGT knockout neurons. These data identify OGT as a molecular mechanism that regulates synapse maturity.
Collapse
|
30
|
Callif BL, Maunze B, Krueger NL, Simpson MT, Blackmore MG. The application of CRISPR technology to high content screening in primary neurons. Mol Cell Neurosci 2017; 80:170-179. [PMID: 28110021 DOI: 10.1016/j.mcn.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022] Open
Abstract
Axon growth is coordinated by multiple interacting proteins that remain incompletely characterized. High content screening (HCS), in which manipulation of candidate genes is combined with rapid image analysis of phenotypic effects, has emerged as a powerful technique to identify key regulators of axon outgrowth. Here we explore the utility of a genome editing approach referred to as CRISPR (Clustered Regularly Interspersed Palindromic Repeats) for knockout screening in primary neurons. In the CRISPR approach a DNA-cleaving Cas enzyme is guided to genomic target sequences by user-created guide RNA (sgRNA), where it initiates a double-stranded break that ultimately results in frameshift mutation and loss of protein production. Using electroporation of plasmid DNA that co-expresses Cas9 enzyme and sgRNA, we first verified the ability of CRISPR targeting to achieve protein-level knockdown in cultured postnatal cortical neurons. Targeted proteins included NeuN (RbFox3) and PTEN, a well-studied regulator of axon growth. Effective knockdown lagged at least four days behind transfection, but targeted proteins were eventually undetectable by immunohistochemistry in >80% of transfected cells. Consistent with this, anti-PTEN sgRNA produced no changes in neurite outgrowth when assessed three days post-transfection. When week-long cultures were replated, however, PTEN knockdown consistently increased neurite lengths. These CRISPR-mediated PTEN effects were achieved using multi-well transfection and automated phenotypic analysis, indicating the suitability of PTEN as a positive control for future CRISPR-based screening efforts. Combined, these data establish an example of CRISPR-mediated protein knockdown in primary cortical neurons and its compatibility with HCS workflows.
Collapse
Affiliation(s)
- Ben L Callif
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | - Brian Maunze
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | - Nick L Krueger
- Department of Biomedical Sciences, Marquette University, 53201, USA
| | | | | |
Collapse
|
31
|
Early Transcriptional Changes Induced by Wnt/ β-Catenin Signaling in Hippocampal Neurons. Neural Plast 2016; 2016:4672841. [PMID: 28116168 PMCID: PMC5223035 DOI: 10.1155/2016/4672841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023] Open
Abstract
Wnt/β-catenin signaling modulates brain development and function and its deregulation underlies pathological changes occurring in neurodegenerative and neurodevelopmental disorders. Since one of the main effects of Wnt/β-catenin signaling is the modulation of target genes, in the present work we examined global transcriptional changes induced by short-term Wnt3a treatment (4 h) in primary cultures of rat hippocampal neurons. RNAseq experiments allowed the identification of 170 differentially expressed genes, including known Wnt/β-catenin target genes such as Notum, Axin2, and Lef1, as well as novel potential candidates Fam84a, Stk32a, and Itga9. Main biological processes enriched with differentially expressed genes included neural precursor (GO:0061364, p-adjusted = 2.5 × 10−7), forebrain development (GO:0030900, p-adjusted = 7.3 × 10−7), and stem cell differentiation (GO:0048863 p-adjusted = 7.3 × 10−7). Likewise, following activation of the signaling cascade, the expression of a significant number of genes with transcription factor activity (GO:0043565, p-adjusted = 4.1 × 10−6) was induced. We also studied molecular networks enriched upon Wnt3a activation and detected three highly significant expression modules involved in glycerolipid metabolic process (GO:0046486, p-adjusted = 4.5 × 10−19), learning or memory (GO:0007611, p-adjusted = 4.0 × 10−5), and neurotransmitter secretion (GO:0007269, p-adjusted = 5.3 × 10−12). Our results indicate that Wnt/β-catenin mediated transcription controls multiple biological processes related to neuronal structure and activity that are affected in synaptic dysfunction disorders.
Collapse
|
32
|
Improved detection of soma location and morphology in fluorescence microscopy images of neurons. J Neurosci Methods 2016; 274:61-70. [PMID: 27688018 DOI: 10.1016/j.jneumeth.2016.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. NEW METHOD In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. RESULTS Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. COMPARISON WITH EXISTING METHODS We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. CONCLUSIONS Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community.
Collapse
|
33
|
Marzo A, Galli S, Lopes D, McLeod F, Podpolny M, Segovia-Roldan M, Ciani L, Purro S, Cacucci F, Gibb A, Salinas PC. Reversal of Synapse Degeneration by Restoring Wnt Signaling in the Adult Hippocampus. Curr Biol 2016; 26:2551-2561. [PMID: 27593374 PMCID: PMC5070786 DOI: 10.1016/j.cub.2016.07.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer’s disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secreted Wnt antagonist Dickkopf-1 (Dkk1), which is elevated in AD, contributes to amyloid-β-mediated synaptic failure. However, the impact of Dkk1 at the circuit level and the mechanism by which synapses disassemble have not yet been explored. Using a transgenic mouse model that inducibly expresses Dkk1 in the hippocampus, we demonstrate that Dkk1 triggers synapse loss, impairs long-term potentiation, enhances long-term depression, and induces learning and memory deficits. We decipher the mechanism involved in synapse loss induced by Dkk1 as it can be prevented by combined inhibition of the Gsk3 and RhoA-Rock pathways. Notably, after loss of synaptic connectivity, reactivation of the Wnt pathway by cessation of Dkk1 expression completely restores synapse number, synaptic plasticity, and long-term memory. These findings demonstrate the remarkable capacity of adult neurons to regenerate functional circuits and highlight Wnt signaling as a targetable pathway for neuronal circuit recovery after synapse degeneration. Wnt signaling is required for synapse integrity in the adult hippocampus Dkk1 induces synapse loss and deficits in synaptic plasticity and long-term memory Dkk1 disassembles synapses by activating the Gsk3 and Rock pathways Synapse loss and memory defects are reversible by reactivation of the Wnt pathway
Collapse
Affiliation(s)
- Aude Marzo
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Soledad Galli
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Douglas Lopes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Faye McLeod
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marina Podpolny
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Lorenza Ciani
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Silvia Purro
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Alasdair Gibb
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
34
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
35
|
Lu C, Chen Q, Zhou T, Bozic D, Fu Z, Pan JQ, Feng G. Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3. Mol Psychiatry 2016; 21:159-68. [PMID: 26598066 DOI: 10.1038/mp.2015.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/27/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023]
Abstract
Numerous risk genes have recently been implicated in susceptibility to autism and schizophrenia. Translating such genetic findings into disease-relevant neurobiological mechanisms is challenging due to the lack of throughput assays that can be used to assess their functions on an appropriate scale. To address this issue, we explored the feasibility of using a micro-electrode array (MEA) as a potentially scalable assay to identify the electrical network phenotypes associated with risk genes. We first characterized local and global network firing in cortical neurons with MEAs, and then developed methods to analyze the alternation between the network active period (NAP) and the network inactive period (NIP), each of which lasts tens of seconds. We then evaluated the electric phenotypes of neurons derived from Shank3 knockout (KO) mice. Cortical neurons cultured on MEAs displayed a rich repertoire of spontaneous firing, and Shank3 deletion led to reduced firing activity. Enhancing excitation with CX546 rescued the deficit in the spike rate in the Shank3 KO network. In addition, the Shank3 KO network produced a shorter NIP, and this altered network firing pattern was normalized by clonazepam, a positive modulator of the GABAA receptor. MEA recordings revealed electric phenotypes that displayed altered excitation and inhibition in the network lacking Shank3. Thus, our study highlights MEAs as an experimental framework for measuring multiple robust neurobiological end points in dynamic networks and as an assay system that could be used to identify electric phenotypes in cultured neuronal networks and to analyze additional risk genes identified in psychiatric genetics.
Collapse
Affiliation(s)
- C Lu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Q Chen
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - T Zhou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - D Bozic
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Z Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - G Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
36
|
Synaptic Wnt/GSK3β Signaling Hub in Autism. Neural Plast 2016; 2016:9603751. [PMID: 26881141 PMCID: PMC4736967 DOI: 10.1155/2016/9603751] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Hundreds of genes have been associated with autism spectrum disorders (ASDs) and the interaction of weak and de novo variants derive from distinct autistic phenotypes thus making up the “spectrum.” The convergence of these variants in networks of genes associated with synaptic function warrants the study of cell signaling pathways involved in the regulation of the synapse. The Wnt/β-catenin signaling pathway plays a central role in the development and regulation of the central nervous system and several genes belonging to the cascade have been genetically associated with ASDs. In the present paper, we review basic information regarding the role of Wnt/β-catenin signaling in excitatory/inhibitory balance (E/I balance) through the regulation of pre- and postsynaptic compartments. Furthermore, we integrate information supporting the role of the glycogen synthase kinase 3β (GSK3β) in the onset/development of ASDs through direct modulation of Wnt/β-catenin signaling. Finally, given GSK3β activity as key modulator of synaptic plasticity, we explore the potential of this kinase as a therapeutic target for ASD.
Collapse
|
37
|
Smafield T, Pasupuleti V, Sharma K, Huganir RL, Ye B, Zhou J. Automatic Dendritic Length Quantification for High Throughput Screening of Mature Neurons. Neuroinformatics 2015; 13:443-58. [PMID: 25854493 PMCID: PMC4600005 DOI: 10.1007/s12021-015-9267-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-throughput automated fluorescent imaging and screening are important for studying neuronal development, functions, and pathogenesis. An automatic approach of analyzing images acquired in automated fashion, and quantifying dendritic characteristics is critical for making such screens high-throughput. However, automatic and effective algorithms and tools, especially for the images of mature mammalian neurons with complex arbors, have been lacking. Here, we present algorithms and a tool for quantifying dendritic length that is fundamental for analyzing growth of neuronal network. We employ a divide-and-conquer framework that tackles the challenges of high-throughput images of neurons and enables the integration of multiple automatic algorithms. Within this framework, we developed algorithms that adapt to local properties to detect faint branches. We also developed a path search that can preserve the curvature change to accurately measure dendritic length with arbor branches and turns. In addition, we proposed an ensemble strategy of three estimation algorithms to further improve the overall efficacy. We tested our tool on images for cultured mouse hippocampal neurons immunostained with a dendritic marker for high-throughput screen. Results demonstrate the effectiveness of our proposed method when comparing the accuracy with previous methods. The software has been implemented as an ImageJ plugin and available for use.
Collapse
Affiliation(s)
- Timothy Smafield
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Venkat Pasupuleti
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kamal Sharma
- Department of Neuroscience, John Hopkins University, Baltimore, MD, 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, John Hopkins University, Baltimore, MD, 21205, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL, 60115, USA.
| |
Collapse
|
38
|
Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1. Nat Commun 2015; 6:8302. [PMID: 26400647 PMCID: PMC4667432 DOI: 10.1038/ncomms9302] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
The functional assembly of the synaptic release machinery is well understood; however, how signalling factors modulate this process remains unknown. Recent studies suggest that Wnts play a role in presynaptic function. To examine the mechanisms involved, we investigated the interaction of release machinery proteins with Dishevelled-1 (Dvl1), a scaffold protein that determines the cellular locale of Wnt action. Here we show that Dvl1 directly interacts with Synaptotagmin-1 (Syt-1) and indirectly with the SNARE proteins SNAP25 and Syntaxin (Stx-1). Importantly, the interaction of Dvl1 with Syt-1, which is regulated by Wnts, modulates neurotransmitter release. Moreover, presynaptic terminals from Wnt signalling-deficient mice exhibit reduced release probability and are unable to sustain high-frequency release. Consistently, the readily releasable pool size and formation of SNARE complexes are reduced. Our studies demonstrate that Wnt signalling tunes neurotransmitter release and identify Syt-1 as a target for modulation by secreted signalling proteins.
Collapse
|
39
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
40
|
Ozcan B, Negi P, Laezza F, Papadakis M, Labate D. Automated detection of soma location and morphology in neuronal network cultures. PLoS One 2015; 10:e0121886. [PMID: 25853656 PMCID: PMC4390318 DOI: 10.1371/journal.pone.0121886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/04/2015] [Indexed: 01/05/2023] Open
Abstract
Automated identification of the primary components of a neuron and extraction of its sub-cellular features are essential steps in many quantitative studies of neuronal networks. The focus of this paper is the development of an algorithm for the automated detection of the location and morphology of somas in confocal images of neuronal network cultures. This problem is motivated by applications in high-content screenings (HCS), where the extraction of multiple morphological features of neurons on large data sets is required. Existing algorithms are not very efficient when applied to the analysis of confocal image stacks of neuronal cultures. In addition to the usual difficulties associated with the processing of fluorescent images, these types of stacks contain a small number of images so that only a small number of pixels are available along the z-direction and it is challenging to apply conventional 3D filters. The algorithm we present in this paper applies a number of innovative ideas from the theory of directional multiscale representations and involves the following steps: (i) image segmentation based on support vector machines with specially designed multiscale filters; (ii) soma extraction and separation of contiguous somas, using a combination of level set method and directional multiscale filters. We also present an approach to extract the soma's surface morphology using the 3D shearlet transform. Extensive numerical experiments show that our algorithms are computationally efficient and highly accurate in segmenting the somas and separating contiguous ones. The algorithms presented in this paper will facilitate the development of a high-throughput quantitative platform for the study of neuronal networks for HCS applications.
Collapse
Affiliation(s)
- Burcin Ozcan
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Pooran Negi
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Fernanda Laezza
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Manos Papadakis
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Demetrio Labate
- Dept. of Mathematics, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Finkbeiner S, Frumkin M, Kassner PD. Cell-based screening: extracting meaning from complex data. Neuron 2015; 86:160-74. [PMID: 25856492 PMCID: PMC4457442 DOI: 10.1016/j.neuron.2015.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 09/23/2014] [Accepted: 01/22/2015] [Indexed: 01/23/2023]
Abstract
Unbiased discovery approaches have the potential to uncover neurobiological insights into CNS disease and lead to the development of therapies. Here, we review lessons learned from imaging-based screening approaches and recent advances in these areas, including powerful new computational tools to synthesize complex data into more useful knowledge that can reliably guide future research and development.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Director of the Taube/Koret Center for Neurodegenerative Disease and the Hellman Family Foundation Program in Alzheimer's Disease Research, Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Michael Frumkin
- Director of Engineering, Research, Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
| | - Paul D Kassner
- Director of Research, Amgen, Inc., 1120 Veterans Boulevard South, San Francisco, CA 94080, USA
| |
Collapse
|