1
|
Rondeau NC, Raup-Collado J, Kogan HV, Cho R, Lovinger N, Wague F, Lopatkin AJ, Texeira NG, Flores ME, Rovnyak D, Snow JW. Remodeling of Cellular Respiration and Insulin Signaling Are Part of a Shared Stress Response in Divergent Bee Species. INSECTS 2025; 16:300. [PMID: 40266798 PMCID: PMC11942726 DOI: 10.3390/insects16030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
The honey bee (Apis mellifera) is of paramount importance to human activities through the pollination services they provide in agricultural settings. Honey bee colonies in the United States have suffered from an increased rate of annual die-off in recent years, stemming from a complex set of interacting stressors that remain poorly described. Defining the cellular responses that are perturbed by divergent stressors represents a key step in understanding these synergies. We found that multiple model stressors induce upregulated expression of the lactate dehydrogenase (Ldh) gene in the midgut of the eusocial honey bee and that the Ldh gene family is expanded in diverse bee species. Alterations in Ldh expression were concomitant with changes in the expression of other genes involved in cellular respiration and genes encoding insulin/insulin-like growth factor signaling (IIS) pathway components. Additionally, changes in metabolites in the midgut after stress, including increased levels of lactate, linked metabolic changes with the observed changes in gene expression. Select transcriptional changes in response to stress were similarly observed in the solitary alfalfa leafcutting bee (Megachile rotundata). Thus, increased Ldh expression may be part of a core stress response remodeling cellular respiration and insulin signaling. These findings suggest that a conserved cellular response that regulates metabolic demands under diverse stressful conditions may play a protective role in bees regardless of life history.
Collapse
Affiliation(s)
- Nicole C. Rondeau
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| | - Joanna Raup-Collado
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA; (J.R.-C.); (D.R.)
| | - Helen V. Kogan
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| | - Rachel Cho
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| | - Natalie Lovinger
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| | - Fatoumata Wague
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| | - Allison J. Lopatkin
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14642, USA;
| | - Noelle G. Texeira
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| | - Melissa E. Flores
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| | - David Rovnyak
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA; (J.R.-C.); (D.R.)
| | - Jonathan W. Snow
- Biology Department, Barnard College, New York, NY 10027, USA; (N.C.R.); (H.V.K.); (M.E.F.)
| |
Collapse
|
2
|
Kamiyama T, Shimada-Niwa Y, Mori H, Tani N, Takemata-Kawabata H, Fujii M, Takasu A, Katayama M, Kuwabara T, Seike K, Matsuda-Imai N, Senda T, Katsuma S, Nakamura A, Niwa R. Parasitoid wasp venoms degrade Drosophila imaginal discs for successful parasitism. SCIENCE ADVANCES 2025; 11:eadq8771. [PMID: 39879297 PMCID: PMC11777187 DOI: 10.1126/sciadv.adq8771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Parasitoid wasps, one of the most diverse and species-rich animal groups on Earth, produce venoms that manipulate host development and physiology to exploit resources. However, mechanisms of actions of these venoms remain poorly understood. Here, we discovered that the endoparasitoid wasp, Asobara japonica, induces apoptosis, autophagy, and mitotic arrest in the adult tissue precursors of its host Drosophila larvae. We termed this phenomenon imaginal disc degradation (IDD). A multi-omics approach facilitated identification of two venom proteins of A. japonica necessary for IDD, which is critical for parasitism success. Our study highlights a venom-mediated hijacking strategy of the parasitoid wasp that allows the host larvae to grow, but ultimately prevents their metamorphosis.
Collapse
Affiliation(s)
- Takumi Kamiyama
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Hitoha Mori
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Naoki Tani
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hitomi Takemata-Kawabata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mitsuki Fujii
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Akira Takasu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Minami Katayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Takayoshi Kuwabara
- College of Biological Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazuki Seike
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Noriko Matsuda-Imai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
- Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), Tsukuba 305-0801, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Susumu Katsuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
Hunt LC, Curley M, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala VR, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D maintains a youthful proteome and ensures protein quality control during aging by sustaining proteasome activity. PLoS Biol 2025; 23:e3002998. [PMID: 39879147 PMCID: PMC11778781 DOI: 10.1371/journal.pbio.3002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for protein turnover and quality control via ubiquitination. Some E2s also physically interact with the proteasome, but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Mechanistically, UBE2D/eff is necessary to maintain optimal proteasome function: UBE2D/eff knockdown reduces the proteolytic activity of the proteasome, and this is rescued by transgenic expression of human UBE2D2, an eff homolog. Likewise, human UBE2D2 partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi and re-establishes the physiological levels of effRNAi-regulated proteins. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. However, some of the proteins that are concertedly up-regulated by aging and effRNAi are proteostasis regulators (e.g., chaperones and Pomp) that are transcriptionally induced presumably as part of an adaptive stress response to the loss of proteostasis. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Vishwajeeth R. Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
4
|
Kogan HV, Macleod SG, Rondeau NC, Raup-Collado J, Cordero VA, Rovnyak D, Marshalleck CA, Mallapan M, Flores ME, Snow JW. Transcriptional control of a metabolic switch regulating cellular methylation reactions is part of a common response to stress in divergent bee species. J Exp Biol 2024; 227:jeb246894. [PMID: 38736357 DOI: 10.1242/jeb.246894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Recent global declines in bee health have elevated the need for a more complete understanding of the cellular stress mechanisms employed by diverse bee species. We recently uncovered the biomarker lethal (2) essential for life [l(2)efl] genes as part of a shared transcriptional program in response to a number of cell stressors in the western honey bee (Apis mellifera). Here, we describe another shared stress-responsive gene, glycine N-methyltransferase (Gnmt), which is known as a key metabolic switch controlling cellular methylation reactions. We observed Gnmt induction by both abiotic and biotic stressors. We also found increased levels of the GNMT reaction product sarcosine in the midgut after stress, linking metabolic changes with the observed changes in gene regulation. Prior to this study, Gnmt upregulation had not been associated with cellular stress responses in other organisms. To determine whether this novel stress-responsive gene would behave similarly in other bee species, we first characterized the cellular response to endoplasmic reticulum (ER) stress in lab-reared adults of the solitary alfalfa leafcutting bee (Megachile rotundata) and compared this with age-matched honey bees. The novel stress gene Gnmt was induced in addition to a number of canonical gene targets induced in both bee species upon unfolded protein response (UPR) activation, suggesting that stress-induced regulation of cellular methylation reactions is a common feature of bees. Therefore, this study suggests that the honey bee can serve as an important model for bee biology more broadly, although studies on diverse bee species will be required to fully understand global declines in bee populations.
Collapse
Affiliation(s)
- Helen V Kogan
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | | | | | | | - David Rovnyak
- Department of Chemistry, Bucknell University, Lewisburg, PA 17837, USA
| | | | - Meghna Mallapan
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA
| |
Collapse
|
5
|
Xiao Y, Han C, Li X, Zhu X, Li S, Jiang N, Yu C, Liu Y, Liu F. S-Adenosylmethionine (SAM) diet promotes innate immunity via histone H3K4me3 complex. Int Immunopharmacol 2024; 131:111837. [PMID: 38471365 DOI: 10.1016/j.intimp.2024.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
S-adenosylmethionine (SAM) was a methyl donor for modifying histones, which had crucial roles in lipid accumulation, tissue injury, and immune responses. SAM fluctuation might be linked to variations in histone methylation. However, the underlying molecular mechanisms of whether the SAM diet influenced the immune response via histone modification remained obscure. In this study, we utilized the Caenorhabditis elegans as a model to investigate the role of SAM diet in innate immunity. We found that 50 μM SAM increased resistance to Gram-negative pathogen Pseudomonas aeruginosa PA14 by reducing the bacterial burden in the intestine. Furthermore, through the genetic screening in C. elegans, we found that SAM functioned in germline to enhance innate immunity via an H3K4 methyltransferase complex to upregulate the immune response genes, including irg-1 and T24B8.5. Intriguingly, SAM also protected mice from P. aeruginosa PA14 infection by reducing the bacterial burden in lung. These findings provided insight into the mechanisms of molecular connections among SAM diet, histone modifications and innate immunity.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Chao Han
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xiaocong Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Jiang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China; Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
6
|
Hunt LC, Nyamkondiwa K, Stephan A, Jiao J, Kavdia K, Pagala V, Peng J, Demontis F. The ubiquitin-conjugating enzyme UBE2D/eff maintains a youthful proteome and ensures protein quality control during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571303. [PMID: 38168249 PMCID: PMC10759998 DOI: 10.1101/2023.12.12.571303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ubiquitin-conjugating enzymes (E2s) are key for regulating protein function and turnover via ubiquitination but it remains undetermined which E2s maintain proteostasis during aging. Here, we find that E2s have diverse roles in handling a model aggregation-prone protein (huntingtin-polyQ) in the Drosophila retina: while some E2s mediate aggregate assembly, UBE2D/effete (eff) and other E2s are required for huntingtin-polyQ degradation. UBE2D/eff is key for proteostasis also in skeletal muscle: eff protein levels decline with aging, and muscle-specific eff knockdown causes an accelerated buildup in insoluble poly-ubiquitinated proteins (which progressively accumulate with aging) and shortens lifespan. Transgenic expression of human UBE2D2, homologous to eff, partially rescues the lifespan and proteostasis deficits caused by muscle-specific effRNAi by re-establishing the physiological levels of effRNAi-regulated proteins, which include several regulators of proteostasis. Interestingly, UBE2D/eff knockdown in young age reproduces part of the proteomic changes that normally occur in old muscles, suggesting that the decrease in UBE2D/eff protein levels that occurs with aging contributes to reshaping the composition of the muscle proteome. Altogether, these findings indicate that UBE2D/eff is a key E2 ubiquitin-conjugating enzyme that ensures protein quality control and helps maintain a youthful proteome composition during aging.
Collapse
Affiliation(s)
- Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kudzai Nyamkondiwa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins‐Beebee PN, Pabon MA, Miščević M, Nickel E, Merrill CB, Rodan AR, Rothenfluh A. Large analysis of genetic manipulations reveals an inverse correlation between initial alcohol resistance and rapid tolerance phenotypes. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12884. [PMID: 38968320 PMCID: PMC10825885 DOI: 10.1111/gbb.12884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/07/2024]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce identical behavioral effects. Tolerance is not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we analyzed our own, as well as data published by other labs to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes, thus classifying such mutants as 'secondary' tolerance mutants. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. These residuals provide predictive insight into the likelihood of a mutant being a 'primary' tolerance mutant, where a tolerance phenotype is not solely a consequence of initial resistance, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Alexandra Seguin
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Iris Titos
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Pearl N. Cummins‐Beebee
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Maša Miščević
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Present address:
Department of Neuroscience, Physiological Sciences Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Emily Nickel
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Collin B. Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Division of Nephrology, Department of Internal Medicine, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Medical ServiceVeterans Affairs Salt Lake City Health Care SystemSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Neuroscience Graduate ProgramUniversity of UtahSalt Lake CityUtahUSA
- Molecular Medicine Program, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Human Genetics, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
- Department of Neurobiology, School of MedicineUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
8
|
Chen J, Cui L, Lu S, Xu S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis 2024; 15:42. [PMID: 38218942 PMCID: PMC10787762 DOI: 10.1038/s41419-024-06435-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Amino acid metabolism plays important roles in tumor biology and tumor therapy. Accumulating evidence has shown that amino acids contribute to tumorigenesis and tumor immunity by acting as nutrients, signaling molecules, and could also regulate gene transcription and epigenetic modification. Therefore, targeting amino acid metabolism will provide new ideas for tumor treatment and become an important therapeutic approach after surgery, radiotherapy, and chemotherapy. In this review, we systematically summarize the recent progress of amino acid metabolism in malignancy and their interaction with signal pathways as well as their effect on tumor microenvironment and epigenetic modification. Collectively, we also highlight the potential therapeutic application and future expectation.
Collapse
Affiliation(s)
- Jie Chen
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Likun Cui
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Shaoteng Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
9
|
Kosakamoto H, Obata F, Kuraishi J, Aikawa H, Okada R, Johnstone JN, Onuma T, Piper MDW, Miura M. Early-adult methionine restriction reduces methionine sulfoxide and extends lifespan in Drosophila. Nat Commun 2023; 14:7832. [PMID: 38052797 PMCID: PMC10698029 DOI: 10.1038/s41467-023-43550-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Methionine restriction (MetR) extends lifespan in various organisms, but its mechanistic understanding remains incomplete. Whether MetR during a specific period of adulthood increases lifespan is not known. In Drosophila, MetR is reported to extend lifespan only when amino acid levels are low. Here, by using an exome-matched holidic medium, we show that decreasing Met levels to 10% extends Drosophila lifespan with or without decreasing total amino acid levels. MetR during the first four weeks of adult life only robustly extends lifespan. MetR in young flies induces the expression of many longevity-related genes, including Methionine sulfoxide reductase A (MsrA), which reduces oxidatively-damaged Met. MsrA induction is foxo-dependent and persists for two weeks after cessation of the MetR diet. Loss of MsrA attenuates lifespan extension by early-adulthood MetR. Our study highlights the age-dependency of the organismal response to specific nutrients and suggests that nutrient restriction during a particular period of life is sufficient for healthspan extension.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Junpei Kuraishi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hide Aikawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Rina Okada
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Joshua N Johnstone
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Taro Onuma
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
10
|
Nemoto K, Masuko K, Fuse N, Kurata S. Dilp8 and its candidate receptor, Drl, are involved in the transdetermination of the Drosophila imaginal disc. Genes Cells 2023; 28:857-867. [PMID: 37817293 DOI: 10.1111/gtc.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Drosophila imaginal disc cells can change their identity under stress conditions through transdetermination (TD). Research on TD can help elucidate the in vivo process of cell fate conversion. We previously showed that the overexpression of winged eye (wge) induces eye-to-wing TD in the eye disc and that an insulin-like peptide, Dilp8, is then highly expressed in the disc. Although Dilp8 is known to mediate systemic developmental delay via the Lgr3 receptor, its role in TD remains unknown. This study showed that Dilp8 is expressed in specific cells that do not express eye or wing fate markers during Wge-mediated TD and that the loss of Dilp8 impairs the process of eye-to-wing transition. Thus, Dilp8 plays a pivotal role in the cell fate conversion under wge overexpression. Furthermore, we found that instead of Lgr3, another candidate receptor, Drl, is involved in Wge-mediated TD and acts locally in the eye disc cells. We propose a model in which Dilp8-Drl signaling organizes cell fate conversion in the imaginal disc during TD.
Collapse
Grants
- Japan Science Society
- Tohoku University Advanced Graduate School Pioneering Research Support Project
- 15J03403 JSPS KAKENHI
- 22J10423 JSPS KAKENHI
- 22KJ0220 JSPS KAKENHI
- 18016001 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 18055003 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20052004 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 25670019 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Kazuya Nemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Keita Masuko
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins-Beebe PN, Pabon MA, Miscevic M, Nickel EA, Merrill CB, Rodan AR, Rothenfluh A. Large genetic analysis of alcohol resistance and tolerance reveals an inverse correlation and suggests 'true' tolerance mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561599. [PMID: 37873285 PMCID: PMC10592763 DOI: 10.1101/2023.10.09.561599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Tolerance occurs when, following an initial experience with a substance, more of the substance is required subsequently to induce the same behavioral effects. Tolerance is historically not well-understood, and numerous researchers have turned to model organisms, particularly Drosophila melanogaster, to unravel its mechanisms. Flies have high translational relevance for human alcohol responses, and there is substantial overlap in disease-causing genes between flies and humans, including those associated with Alcohol Use Disorder. Numerous Drosophila tolerance mutants have been described; however, approaches used to identify and characterize these mutants have varied across time and between labs and have mostly disregarded any impact of initial resistance/sensitivity to ethanol on subsequent tolerance development. Here, we have analyzed a large amount of data - our own published and unpublished data and data published by other labs - to uncover an inverse correlation between initial ethanol resistance and tolerance phenotypes. This inverse correlation suggests that initial resistance phenotypes can explain many 'perceived' tolerance phenotypes. Additionally, we show that tolerance should be measured as a relative increase in time to sedation between an initial and second exposure rather than an absolute change in time to sedation. Finally, based on our analysis, we provide a method for using a linear regression equation to assess the residuals of potential tolerance mutants. We show that these residuals provide predictive insight into the likelihood of a mutant being a 'true' tolerance mutant, and we offer a framework for understanding the relationship between initial resistance and tolerance.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Alexandra Seguin
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Daniel R. Lathen
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Iris Titos
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Pearl N Cummins-Beebe
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
| | - Miguel A. Pabon
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Masa Miscevic
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Emily A. Nickel
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
| | - Collin B Merrill
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
| | - Aylin R. Rodan
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Division of Nephrology, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, School of Medicine, University of Utah, Salt Lake City, USA
- Neuroscience Graduate Program, University of Utah, Salt Lake City, USA
- Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Neurobiology, School of Medicine, University of Utah, Salt Lake City, USA
| |
Collapse
|
12
|
Galasso A, Xu DC, Hill C, Iakovleva D, Stefana MI, Baena‐Lopez LA. Non-apoptotic caspase activation ensures the homeostasis of ovarian somatic stem cells. EMBO Rep 2023; 24:e51716. [PMID: 37039000 PMCID: PMC10240206 DOI: 10.15252/embr.202051716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Current evidence has associated caspase activation with the regulation of basic cellular functions without causing apoptosis. Malfunction of non-apoptotic caspase activities may contribute to specific neurological disorders, metabolic diseases, autoimmune conditions and cancers. However, our understanding of non-apoptotic caspase functions remains limited. Here, we show that non-apoptotic caspase activation prevents the intracellular accumulation of the Patched receptor in autophagosomes and the subsequent Patched-dependent induction of autophagy in Drosophila follicular stem cells. These events ultimately sustain Hedgehog signalling and the physiological properties of ovarian somatic stem cells and their progeny under moderate thermal stress. Importantly, our key findings are partially conserved in ovarian somatic cells of human origin. These observations attribute to caspases a pro-survival role under certain cellular conditions.
Collapse
Affiliation(s)
- Alessia Galasso
- Faculty of Medicine CentreImperial College London, South Kensington CampusLondonUK
| | - Derek Cui Xu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Claire Hill
- School of Medicine, Dentistry and Biomedical SciencesQueen's University Belfast MedicineBelfastUK
| | - Daria Iakovleva
- Center for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | | | | |
Collapse
|
13
|
Nakano S, Kashio S, Nishimura K, Takeishi A, Kosakamoto H, Obata F, Kuranaga E, Chihara T, Yamauchi Y, Isobe T, Miura M. Damage sensing mediated by serine proteases Hayan and Persephone for Toll pathway activation in apoptosis-deficient flies. PLoS Genet 2023; 19:e1010761. [PMID: 37319131 DOI: 10.1371/journal.pgen.1010761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
The mechanisms by which the innate immune system senses damage have been extensively explored in multicellular organisms. In Drosophila, various types of tissue damage, including epidermal injury, tumor formation, cell competition, and apoptosis deficiency, induce sterile activation of the Toll pathway, a process that requires the use of extracellular serine protease (SP) cascades. Upon infection, the SP Spätzle (Spz)-processing enzyme (SPE) cleaves and activates the Toll ligand Spz downstream of two paralogous SPs, Hayan and Persephone (Psh). However, upon tissue damage, it is not fully understood which SPs establish Spz activation cascades nor what damage-associated molecules can activate SPs. In this study, using newly generated uncleavable spz mutant flies, we revealed that Spz cleavage is required for the sterile activation of the Toll pathway, which is induced by apoptosis-deficient damage of wing epidermal cells in adult Drosophila. Proteomic analysis of hemolymph, followed by experiments with Drosophila Schneider 2 (S2) cells, revealed that among hemolymph SPs, both SPE and Melanization Protease 1 (MP1) have high capacities to cleave Spz. Additionally, in S2 cells, MP1 acts downstream of Hayan and Psh in a similar manner to SPE. Using genetic analysis, we found that the upstream SPs Hayan and Psh contributes to the sterile activation of the Toll pathway. While SPE/MP1 double mutants show more impairment of Toll activation upon infection than SPE single mutants, Toll activation is not eliminated in these apoptosis-deficient flies. This suggests that Hayan and Psh sense necrotic damage, inducing Spz cleavage by SPs other than SPE and MP1. Furthermore, hydrogen peroxide, a representative damage-associated molecule, activates the Psh-Spz cascade in S2 cells overexpressing Psh. Considering that reactive oxygen species (ROS) were detected in apoptosis-deficient wings, our findings highlight the importance of ROS as signaling molecules that induce the activation of SPs such as Psh in response to damage.
Collapse
Affiliation(s)
- Shotaro Nakano
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Nishimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asuka Takeishi
- Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team, RIKEN Center for Brain Science, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Hina Kosakamoto
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumiaki Obata
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Erina Kuranaga
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takahiro Chihara
- Program of Biomedical Science and Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Kuo KL, Chiang CW, Chen YMA, Yu CC, Lee TS. Folic Acid Ameliorates Renal Injury in Experimental Obstructive Nephropathy: Role of Glycine N-Methyltransferase. Int J Mol Sci 2023; 24:ijms24076859. [PMID: 37047834 PMCID: PMC10095475 DOI: 10.3390/ijms24076859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Folic acid exerts both anti-inflammatory and antifibrotic effects. Glycine N-methyltransferase (GNMT), the major folic acid-binding protein in the liver, is a crucial enzyme that regulates the cellular methylation process by maintaining S-adenosylmethionine levels. However, as yet neither the therapeutic effects of folic acid in renal fibrosis nor whether GNMT is involved in these folic acid-associated mechanisms has been investigated. First, the expression of GNMT was examined in human kidneys with or without obstructive nephropathy. Later, wild-type and GNMT knockout (GNMT-/-) mice were subjected to unilateral ureteral obstruction (UUO) and then treated with either folic acid or vehicle for 14 days. Renal tubular injury, inflammation, fibrosis, and autophagy were evaluated by histological analysis and Western blotting. We observed increased expression of GNMT in humans with obstructive nephropathy. Furthermore, UUO significantly increased the expression of GNMT in mice; in addition, it caused renal injury as well as the development of both hydronephrosis and tubular injury. These were all alleviated by folic acid treatment. In contrast, GNMT-/- mice exhibited exacerbated UUO-induced renal injury, but the protective effect of folic acid was not observed in GNMT-/- mice. We propose a novel role for folic acid in the treatment of renal fibrosis, which indicates that GNMT may be a therapeutic target.
Collapse
Affiliation(s)
- Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231405, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 97004, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chin-Wei Chiang
- Department of Physiology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ming Arthur Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Chih-Chin Yu
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231405, Taiwan
- College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Tzong-Shyuan Lee
- Graduate Institute, Department of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
15
|
Livelo C, Guo Y, Abou Daya F, Rajasekaran V, Varshney S, Le HD, Barnes S, Panda S, Melkani GC. Time-restricted feeding promotes muscle function through purine cycle and AMPK signaling in Drosophila obesity models. Nat Commun 2023; 14:949. [PMID: 36810287 PMCID: PMC9944249 DOI: 10.1038/s41467-023-36474-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Obesity caused by genetic and environmental factors can lead to compromised skeletal muscle function. Time-restricted feeding (TRF) has been shown to prevent muscle function decline from obesogenic challenges; however, its mechanism remains unclear. Here we demonstrate that TRF upregulates genes involved in glycine production (Sardh and CG5955) and utilization (Gnmt), while Dgat2, involved in triglyceride synthesis is downregulated in Drosophila models of diet- and genetic-induced obesity. Muscle-specific knockdown of Gnmt, Sardh, and CG5955 lead to muscle dysfunction, ectopic lipid accumulation, and loss of TRF-mediated benefits, while knockdown of Dgat2 retains muscle function during aging and reduces ectopic lipid accumulation. Further analyses demonstrate that TRF upregulates the purine cycle in a diet-induced obesity model and AMPK signaling-associated pathways in a genetic-induced obesity model. Overall, our data suggest that TRF improves muscle function through modulations of common and distinct pathways under different obesogenic challenges and provides potential targets for obesity treatments.
Collapse
Affiliation(s)
- Christopher Livelo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Farah Abou Daya
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shweta Varshney
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
16
|
Fat Quality Impacts the Effect of a High-Fat Diet on the Fatty Acid Profile, Life History Traits and Gene Expression in Drosophila melanogaster. Cells 2022; 11:cells11244043. [PMID: 36552807 PMCID: PMC9776686 DOI: 10.3390/cells11244043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Feeding a high-fat diet (HFD) has been shown to alter phenotypic and metabolic parameters in Drosophila melanogaster. However, the impact of fat quantity and quality remains uncertain. We first used butterfat (BF) as an example to investigate the effects of increasing dietary fat content (3-12%) on male and female fruit flies. Although body weight and body composition were not altered by any BF concentration, health parameters, such as lifespan, fecundity and larval development, were negatively affected in a dose-dependent manner. When fruit flies were fed various 12% HFDs (BF, sunflower oil, olive oil, linseed oil, fish oil), their fatty acid profiles shifted according to the dietary fat qualities. Moreover, fat quality was found to determine the effect size of the response to an HFD for traits, such as lifespan, climbing activity, or fertility. Consistently, we also found a highly fat quality-specific transcriptional response to three exemplary HFD qualities with a small overlap of only 30 differentially expressed genes associated with the immune/stress response and fatty acid metabolism. In conclusion, our data indicate that not only the fat content but also the fat quality is a crucial factor in terms of life-history traits when applying an HFD in D. melanogaster.
Collapse
|
17
|
Vaibhvi V, Künzel S, Roeder T. Hemocytes and fat body cells, the only professional immune cell types in Drosophila, show strikingly different responses to systemic infections. Front Immunol 2022; 13:1040510. [PMID: 36505446 PMCID: PMC9726733 DOI: 10.3389/fimmu.2022.1040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The fruit fly Drosophila is an excellent model to study the response of different immunocompetent organs during systemic infection. In the present study, we intended to test the hypothesis that the only professional immune organs of the fly, the fat body and hemocytes, show substantial similarities in their responses to systemic infection. However, comprehensive transcriptome analysis of isolated organs revealed highly divergent transcript signatures, with the few commonly regulated genes encoding mainly classical immune effectors from the antimicrobial peptide family. The fat body and the hemocytes each have specific reactions that are not present in the other organ. Fat body-specific responses comprised those enabling an improved peptide synthesis and export. This reaction is accompanied by transcriptomic shifts enabling the use of the energy resources of the fat body more efficiently. Hemocytes, on the other hand, showed enhanced signatures related to phagocytosis. Comparing immune-induced signatures of both cell types with those of whole-body responses showed only a minimal correspondence, mostly restricted again to antimicrobial peptide genes. In summary, the two major immunocompetent cell types of Drosophila show highly specific responses to infection, which are closely linked to the primary function of the respective organ in the landscape of the systemic immune response.
Collapse
Affiliation(s)
- Vaibhvi Vaibhvi
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology Institute, Kiel University, Kiel, Germany,German Center for Lung Research, Airway Research Center North, Kiel, Germany,*Correspondence: Thomas Roeder,
| |
Collapse
|
18
|
Yang S, Tian M, Dai Y, Feng S, Wang Y, Chhangani D, Ou T, Li W, Yang Z, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a brain-muscle signaling axis that regulates muscle performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.12.20.423533. [PMID: 33398283 PMCID: PMC7781322 DOI: 10.1101/2020.12.20.423533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show a number of non-neural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood, so we developed three models to investigate the impact of neuroinflammation on muscle performance. We found that bacterial infection, COVID-like viral infection, and expression of a neurotoxic protein associated with Alzheimer' s disease promoted the accumulation of reactive oxygen species (ROS) in the brain. Excessive ROS induces the expression of the cytokine Unpaired 3 (Upd3) in insects, or its orthologue IL-6 in mammals, and CNS-derived Upd3/IL-6 activates the JAK/Stat pathway in skeletal muscle. In response to JAK/Stat signaling, mitochondrial function is impaired and muscle performance is reduced. Our work uncovers a brain-muscle signaling axis in which infections and chronic diseases induce cytokine-dependent changes in muscle performance, suggesting IL-6 could be a therapeutic target to treat muscle weakness caused by neuroinflammation.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Shengyong Feng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Tongji Medical College of Huazhong University of Science and Technology, Department of Forensic Medicine, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Ze Yang
- The Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E. Rincon-Limas
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Wanbo Tai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Lead corresponding author
| |
Collapse
|
19
|
Chou C, Mohanty S, Kang HA, Kong L, Avila‐Pacheco J, Joshi SR, Ueda I, Devine L, Raddassi K, Pierce K, Jeanfavre S, Bullock K, Meng H, Clish C, Santori FR, Shaw AC, Xavier RJ. Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell 2022; 21:e13682. [PMID: 35996998 PMCID: PMC9470889 DOI: 10.1111/acel.13682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 01/25/2023] Open
Abstract
Seasonal influenza causes mild to severe respiratory infections and significant morbidity, especially in older adults. Transcriptomic analysis in populations across multiple flu seasons has provided insights into the molecular determinants of vaccine response. Still, the metabolic changes that underlie the immune response to influenza vaccination remain poorly characterized. We performed untargeted metabolomics to analyze plasma metabolites in a cohort of younger and older subjects before and after influenza vaccination to identify vaccine-induced molecular signatures. Metabolomic and transcriptomic data were combined to define networks of gene and metabolic signatures indicative of high and low antibody response in these individuals. We observed age-related differences in metabolic baselines and signatures of antibody response to influenza vaccination and the abundance of α-linolenic and linoleic acids, sterol esters, fatty-acylcarnitines, and triacylglycerol metabolism. We identified a metabolomic signature associated with age-dependent vaccine response, finding increased tryptophan and decreased polyunsaturated fatty acids (PUFAs) in young high responders (HRs), while fatty acid synthesis and cholesteryl esters accumulated in older HRs. Integrated metabolomic and transcriptomic analysis shows that depletion of PUFAs, which are building blocks for prostaglandins and other lipid immunomodulators, in young HR subjects at Day 28 is related to a robust immune response to influenza vaccination. Increased glycerophospholipid levels were associated with an inflammatory response in older HRs to flu vaccination. This multi-omics approach uncovered age-related molecular markers associated with influenza vaccine response and provides insight into vaccine-induced metabolic responses that may help guide development of more effective influenza vaccines.
Collapse
Affiliation(s)
- Chih‐Hung Chou
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Subhasis Mohanty
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | | | - Lingjia Kong
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | | | - Samit R. Joshi
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Ikuyo Ueda
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Lesley Devine
- Department of Laboratory MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Khadir Raddassi
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Kerry Pierce
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | | | - Kevin Bullock
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Hailong Meng
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Clary Clish
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Fabio R. Santori
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Ramnik J. Xavier
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Klarman Cell ObservatoryBroad Institute of Harvard and MITCambridgeMassachusettsUSA
- Center for Computational and Integrative Biology and Department of Molecular BiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
20
|
Deshpande R, Lee B, Grewal SS. Enteric bacterial infection in Drosophila induces whole-body alterations in metabolic gene expression independently of the immune deficiency signaling pathway. G3 GENES|GENOMES|GENETICS 2022; 12:6628587. [PMID: 35781508 PMCID: PMC9635644 DOI: 10.1093/g3journal/jkac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022]
Abstract
When infected by intestinal pathogenic bacteria, animals initiate both local and systemic defence responses. These responses are required to reduce pathogen burden and also to alter host physiology and behavior to promote infection tolerance, and they are often mediated through alterations in host gene expression. Here, we have used transcriptome profiling to examine gene expression changes induced by enteric infection with the Gram-negative bacteria Pseudomonas entomophila in adult female Drosophila. We find that infection induces a strong upregulation of metabolic gene expression, including gut and fat body-enriched genes involved in lipid transport, lipolysis, and beta-oxidation, as well as glucose and amino acid metabolism genes. Furthermore, we find that the classic innate immune deficiency (Imd)/Relish/NF-KappaB pathway is not required for, and in some cases limits, these infection-mediated increases in metabolic gene expression. We also see that enteric infection with Pseudomonas entomophila downregulates the expression of many transcription factors and cell–cell signaling molecules, particularly those previously shown to be involved in gut-to-brain and neuronal signaling. Moreover, as with the metabolic genes, these changes occurred largely independent of the Imd pathway. Together, our study identifies many metabolic, signaling, and transcription factor gene expression changes that may contribute to organismal physiological and behavioral responses to enteric pathogen infection.
Collapse
Affiliation(s)
- Rujuta Deshpande
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, University of Calgary , Alberta T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology Calgary, University of Calgary , Alberta T2N 4N1, Canada
| |
Collapse
|
21
|
Müller-Eigner A, Sanz-Moreno A, de-Diego I, Venkatasubramani AV, Langhammer M, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Klein-Rodewald T, Calzada-Wack J, Becker L, Palma-Vera S, Gille B, Forne I, Imhof A, Meng C, Ludwig C, Koch F, Heiker JT, Kuhla A, Caton V, Brenmoehl J, Reyer H, Schoen J, Fuchs H, Gailus-Durner V, Hoeflich A, de Angelis MH, Peleg S. Dietary intervention improves health metrics and life expectancy of the genetically obese Titan mouse. Commun Biol 2022; 5:408. [PMID: 35505192 PMCID: PMC9065075 DOI: 10.1038/s42003-022-03339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/04/2022] [Indexed: 01/02/2023] Open
Abstract
Suitable animal models are essential for translational research, especially in the case of complex, multifactorial conditions, such as obesity. The non-inbred mouse (Mus musculus) line Titan, also known as DU6, is one of the world’s longest selection experiments for high body mass and was previously described as a model for metabolic healthy (benign) obesity. The present study further characterizes the geno- and phenotypes of this non-inbred mouse line and tests its suitability as an interventional obesity model. In contrast to previous findings, our data suggest that Titan mice are metabolically unhealthy obese and short-lived. Line-specific patterns of genetic invariability are in accordance with observed phenotypic traits. Titan mice also show modifications in the liver transcriptome, proteome, and epigenome linked to metabolic (dys)regulations. Importantly, dietary intervention partially reversed the metabolic phenotype in Titan mice and significantly extended their life expectancy. Therefore, the Titan mouse line is a valuable resource for translational and interventional obesity research. This study further characterizes the non-inbred Titan (also known as DU6) mouse line, which could be a useful model for obesity research.
Collapse
Affiliation(s)
- Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Irene de-Diego
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | | | - Martina Langhammer
- Institute Genetics and Biometry, Lab Animal Facility, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Sergio Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Benedikt Gille
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Ignasi Forne
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354, Freising, Germany
| | - Franziska Koch
- Institute of Nutritional Physiology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Vanessa Caton
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Henry Reyer
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.,Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany. .,Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao, China.
| |
Collapse
|
22
|
Xu DC, Wang L, Yamada KM, Baena-Lopez LA. Non-apoptotic activation of Drosophila caspase-2/9 modulates JNK signaling, the tumor microenvironment, and growth of wound-like tumors. Cell Rep 2022; 39:110718. [PMID: 35443185 PMCID: PMC9082238 DOI: 10.1016/j.celrep.2022.110718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Resistance to apoptosis due to caspase deregulation is considered one of the main hallmarks of cancer. However, the discovery of novel non-apoptotic caspase functions has revealed unknown intricacies about the interplay between these enzymes and tumor progression. To investigate this biological problem, we capitalized on a Drosophila tumor model with human relevance based on the simultaneous overactivation of the EGFR and the JAK/STAT signaling pathways. Our data indicate that widespread non-apoptotic activation of initiator caspases limits JNK signaling and facilitates cell fate commitment in these tumors, thus preventing the overgrowth and exacerbation of malignant features of transformed cells. Intriguingly, caspase activity also reduces the presence of macrophage-like cells with tumor-promoting properties in the tumor microenvironment. These findings assign tumor-suppressing activities to caspases independent of apoptosis, while providing molecular details to better understand the contribution of these enzymes to tumor progression.
Collapse
Affiliation(s)
- Derek Cui Xu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA; Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.
| | | |
Collapse
|
23
|
PI3K-regulated Glycine N-methyltransferase is required for the development of prostate cancer. Oncogenesis 2022; 11:10. [PMID: 35197445 PMCID: PMC8866399 DOI: 10.1038/s41389-022-00382-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Glycine N-Methyltransferase (GNMT) is a metabolic enzyme that integrates metabolism and epigenetic regulation. The product of GNMT, sarcosine, has been proposed as a prostate cancer biomarker. This enzyme is predominantly expressed in the liver, brain, pancreas, and prostate tissue, where it exhibits distinct regulation. Whereas genetic alterations in GNMT have been associated to prostate cancer risk, its causal contribution to the development of this disease is limited to cell line-based studies and correlative human analyses. Here we integrate human studies, genetic mouse modeling, and cellular systems to characterize the regulation and function of GNMT in prostate cancer. We report that this enzyme is repressed upon activation of the oncogenic Phosphoinositide-3-kinase (PI3K) pathway, which adds complexity to its reported dependency on androgen signaling. Importantly, we demonstrate that expression of GNMT is required for the onset of invasive prostate cancer in a genetic mouse model. Altogether, our results provide further support of the heavy oncogenic signal-dependent regulation of GNMT in prostate cancer.
Collapse
|
24
|
A genetic model of methionine restriction extends Drosophila health- and lifespan. Proc Natl Acad Sci U S A 2021; 118:2110387118. [PMID: 34588310 DOI: 10.1073/pnas.2110387118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Loss of metabolic homeostasis is a hallmark of aging and is characterized by dramatic metabolic reprogramming. To analyze how the fate of labeled methionine is altered during aging, we applied 13C5-Methionine labeling to Drosophila and demonstrated significant changes in the activity of different branches of the methionine metabolism as flies age. We further tested whether targeted degradation of methionine metabolism components would "reset" methionine metabolism flux and extend the fly lifespan. Specifically, we created transgenic flies with inducible expression of Methioninase, a bacterial enzyme capable of degrading methionine and revealed methionine requirements for normal maintenance of lifespan. We also demonstrated that microbiota-derived methionine is an alternative and important source in addition to food-derived methionine. In this genetic model of methionine restriction (MetR), we also demonstrate that either whole-body or tissue-specific Methioninase expression can dramatically extend Drosophila health- and lifespan and exerts physiological effects associated with MetR. Interestingly, while previous dietary MetR extended lifespan in flies only in low amino acid conditions, MetR from Methioninase expression extends lifespan independently of amino acid levels in the food. Finally, because impairment of the methionine metabolism has been previously associated with the development of Alzheimer's disease, we compared methionine metabolism reprogramming between aging flies and a Drosophila model relevant to Alzheimer's disease, and found that overexpression of human Tau caused methionine metabolism flux reprogramming similar to the changes found in aged flies. Altogether, our study highlights Methioninase as a potential agent for health- and lifespan extension.
Collapse
|
25
|
Buhlman LM, Krishna G, Jones TB, Thomas TC. Drosophila as a model to explore secondary injury cascades after traumatic brain injury. Biomed Pharmacother 2021; 142:112079. [PMID: 34463269 PMCID: PMC8458259 DOI: 10.1016/j.biopha.2021.112079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Drosophilae are emerging as a valuable model to study traumatic brain injury (TBI)-induced secondary injury cascades that drive persisting neuroinflammation and neurodegenerative pathology that imposes significant risk for long-term neurological deficits. As in mammals, TBI in Drosophila triggers axonal injury, metabolic crisis, oxidative stress, and a robust innate immune response. Subsequent neurodegeneration stresses quality control systems and perpetuates an environment for neuroprotection, regeneration, and delayed cell death via highly conserved cell signaling pathways. Fly injury models continue to be developed and validated for both whole-body and head-specific injury to isolate, evaluate, and modulate these parallel pathways. In conjunction with powerful genetic tools, the ability for longitudinal evaluation, and associated neurological deficits that can be tested with established behavioral tasks, Drosophilae are an attractive model to explore secondary injury cascades and therapeutic intervention after TBI. Here, we review similarities and differences between mammalian and fly pathophysiology and highlight strategies for their use in translational neurotrauma research.
Collapse
Affiliation(s)
- Lori M Buhlman
- Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA.
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - T Bucky Jones
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| |
Collapse
|
26
|
Quantitative Proteomic and Metabolomic Profiling Reveals Altered Mitochondrial Metabolism and Folate Biosynthesis Pathways in the Aging Drosophila Eye. Mol Cell Proteomics 2021; 20:100127. [PMID: 34332122 PMCID: PMC8385154 DOI: 10.1016/j.mcpro.2021.100127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
Aging is associated with increased risk of ocular disease, suggesting that age-associated molecular changes in the eye increase its vulnerability to damage. Although there are common pathways involved in aging at an organismal level, different tissues and cell types exhibit specific changes in gene expression with advanced age. Drosophila melanogaster is an established model system for studying aging and neurodegenerative disease that also provides a valuable model for studying age-associated ocular disease. Flies, like humans, exhibit decreased visual function and increased risk of retinal degeneration with age. Here, we profiled the aging proteome and metabolome of the Drosophila eye and compared these data with age-associated transcriptomic changes from both eyes and photoreceptors to identify alterations in pathways that could lead to age-related phenotypes in the eye. Of note, the proteomic and metabolomic changes observed in the aging eye are distinct from those observed in the head or whole fly, suggesting that tissue-specific changes in protein abundance and metabolism occur in the aging fly. Our integration of the proteomic, metabolomic, and transcriptomic data reveals that changes in metabolism, potentially due to decreases in availability of B vitamins, together with chronic activation of the immune response, may underpin many of the events observed in the aging Drosophila eye. We propose that targeting these pathways in the genetically tractable Drosophila system may help to identify potential neuroprotective approaches for neurodegenerative and age-related ocular diseases. Data are available via ProteomeXchange with identifier PXD027090. Tissue-specific changes in protein abundance occur in the aging Drosophila eye. Increase in mitochondrial metabolism enzyme abundance in the aging eye. Decrease in corneal lens protein abundance and calcium buffering in the aging eye. Dysregulated metabolism impacts vitamin B and methionine metabolism in the aging eye.
Collapse
|
27
|
Yamashita K, Oi A, Kosakamoto H, Yamauchi T, Kadoguchi H, Kuraishi T, Miura M, Obata F. Activation of innate immunity during development induces unresolved dysbiotic inflammatory gut and shortens lifespan. Dis Model Mech 2021; 14:271978. [PMID: 34448472 PMCID: PMC8405880 DOI: 10.1242/dmm.049103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Early-life inflammatory response is associated with risks of age-related pathologies. How transient immune signalling activity during animal development influences life-long fitness is not well understood. Using Drosophila as a model, we find that activation of innate immune pathway IMD signalling in the developing larvae increases adult starvation resistance, decreases food intake, and shortens organismal lifespan. Interestingly, lifespan is shortened by the IMD activation in the larval gut and fat body, while starvation resistance and food intake are altered by that in neurons. The adult flies developed with IMD activation show sustained IMD activity in the gut, despite complete tissue renewal during metamorphosis. The larval IMD activation increases an immuno-stimulative bacterial species Gluconobacter sp. in the gut microbiome, and this dysbiosis is persistent to adulthood. Removing gut microbiota by antibiotics in adult mitigates intestinal immune activation and rescues the shortened lifespan. This study demonstrates that early-life immune activation triggers long-term physiological changes as highlighted as an irreversible gut microbiota alteration, prolonged inflammatory intestine, and concomitant shortening of the organismal lifespan.
Collapse
Affiliation(s)
- Kyoko Yamashita
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ayano Oi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Toshitaka Yamauchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hibiki Kadoguchi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Shizenken, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Shizenken, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2021; 13:877-919. [PMID: 34050894 PMCID: PMC9243210 DOI: 10.1007/s13238-021-00846-7] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Collapse
Affiliation(s)
- Linchong Sun
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China. .,CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
29
|
Zatsepina OG, Nikitina EA, Shilova VY, Chuvakova LN, Sorokina S, Vorontsova JE, Tokmacheva EV, Funikov SY, Rezvykh AP, Evgen'ev MB. Hsp70 affects memory formation and behaviorally relevant gene expression in Drosophila melanogaster. Cell Stress Chaperones 2021; 26:575-594. [PMID: 33829398 PMCID: PMC8065088 DOI: 10.1007/s12192-021-01203-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins, in particular Hsp70, play a central role in proteostasis in eukaryotic cells. Due to its chaperone properties, Hsp70 is involved in various processes after stress and under normal physiological conditions. In contrast to mammals and many Diptera species, inducible members of the Hsp70 family in Drosophila are constitutively synthesized at a low level and undergo dramatic induction after temperature elevation or other forms of stress. In the courtship suppression paradigm used in this study, Drosophila males that have been repeatedly rejected by mated females during courtship are less likely than naive males to court other females. Although numerous genes with known function were identified to play important roles in long-term memory, there is, to the best of our knowledge, no direct evidence implicating Hsp70 in this process. To elucidate a possible role of Hsp70 in memory formation, we used D. melanogaster strains containing different hsp70 copy numbers, including strains carrying a deletion of all six hsp70 genes. Our investigations exploring the memory of courtship rejection paradigm demonstrated that a low constitutive level of Hsp70 is apparently required for learning and the formation of short and long-term memories in males. The performed transcriptomic studies demonstrate that males with different hsp70 copy numbers differ significantly in the expression of a few definite groups of genes involved in mating, reproduction, and immunity in response to rejection. Specifically, our analysis reveals several major pathways that depend on the presence of hsp70 in the genome and participate in memory formation and consolidation, including the cAMP signaling cascade.
Collapse
Affiliation(s)
- O G Zatsepina
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - E A Nikitina
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University, St. Petersburg, Russia
| | - V Y Shilova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S Sorokina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - J E Vorontsova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - E V Tokmacheva
- Department of Neurogenetics, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
30
|
Kosakamoto H, Yamauchi T, Akuzawa-Tokita Y, Nishimura K, Soga T, Murakami T, Mori H, Yamamoto K, Miyazaki R, Koto A, Miura M, Obata F. Local Necrotic Cells Trigger Systemic Immune Activation via Gut Microbiome Dysbiosis in Drosophila. Cell Rep 2021; 32:107938. [PMID: 32698005 DOI: 10.1016/j.celrep.2020.107938] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Necrotic cells elicit an inflammatory response through their endogenous factors with damage-associated molecular patterns. Blocking apoptosis in Drosophila wings leads to the necrosis-driven systemic immune response by unknown mechanisms. Here, we demonstrate that immune activation in response to necrotic cells is mediated by commensal gut microbiota. Removing the microbiome attenuates hyperactivation of the innate immune signaling IMD pathway in necrosis-induced flies. Necrotic cells in wings trigger Gluconobacter expansion in the gut. An isolated Gluconobacter sp. strain is sufficient for pathological IMD activation in necrosis-induced flies, while it is not inflammatory for control animals. In addition, bacterial colonization shifts the host metabolome and shortens the lifespan of necrosis-induced flies. This study shows that local necrosis triggers a pathological systemic inflammatory response through interaction between the host and the dysbiotic gut microbiome.
Collapse
Affiliation(s)
- Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshitaka Yamauchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoriko Akuzawa-Tokita
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei Nishimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoyoshi Soga
- Institute for Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Takumi Murakami
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
| | - Akiko Koto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
31
|
Crtc modulates fasting programs associated with 1-C metabolism and inhibition of insulin signaling. Proc Natl Acad Sci U S A 2021; 118:2024865118. [PMID: 33723074 DOI: 10.1073/pnas.2024865118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fasting in mammals promotes increases in circulating glucagon and decreases in circulating insulin that stimulate catabolic programs and facilitate a transition from glucose to lipid burning. The second messenger cAMP mediates effects of glucagon on fasting metabolism, in part by promoting the phosphorylation of CREB and the dephosphorylation of the cAMP-regulated transcriptional coactivators (CRTCs) in hepatocytes. In Drosophila, fasting also triggers activation of the single Crtc homolog in neurons, via the PKA-mediated phosphorylation and inhibition of salt-inducible kinases. Crtc mutant flies are more sensitive to starvation and oxidative stress, although the underlying mechanism remains unclear. Here we use RNA sequencing to identify Crtc target genes that are up-regulated in response to starvation. We found that Crtc stimulates a subset of fasting-inducible genes that have conserved CREB binding sites. In keeping with its role in the starvation response, Crtc was found to induce the expression of genes that inhibit insulin secretion (Lst) and insulin signaling (Impl2). In parallel, Crtc also promoted the expression of genes involved in one-carbon (1-C) metabolism. Within the 1-C pathway, Crtc stimulated the expression of enzymes that encode modulators of S-adenosyl-methionine metabolism (Gnmt and Sardh) and purine synthesis (ade2 and AdSl) Collectively, our results point to an important role for the CREB/CRTC pathway in promoting energy balance in the context of nutrient stress.
Collapse
|
32
|
Papakyrikos AM, Kim MJ, Wang X. Drosophila PTPMT1 Has a Function in Tracheal Air Filling. iScience 2020; 23:101285. [PMID: 32629421 PMCID: PMC7334580 DOI: 10.1016/j.isci.2020.101285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 01/02/2023] Open
Abstract
The fly trachea is the equivalent of the mammalian lung and is a useful model for human respiratory diseases. However, little is known about the molecular mechanisms underlying tracheal air filling during larval development. In this study, we discover that PTPMT1 has a function in tracheal air filling. PTPMT1 is a widely conserved, ubiquitously expressed mitochondrial phosphatase. To reveal PTPMT1's functions in genetically tractable invertebrates and whether those functions are tissue specific, we generate a Drosophila model of PTPMT1 depletion. We find that fly PTPMT1 mutants show impairments in tracheal air filling and subsequent activation of innate immune responses. On a cellular level, these defects are preceded by aggregation of mitochondria within the tracheal epithelial cells. Our work demonstrates a cell-type-specific role for PTPMT1 in fly tracheal epithelial cells to support air filling and to prevent immune activation. The establishment of this model will facilitate exploration of PTPMT1's physiological functions in vivo.
Collapse
Affiliation(s)
- Amanda M Papakyrikos
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate Program in Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Min Joo Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Chen L, Chang R, Pan S, Xu J, Cao Q, Su G, Zhou C, Kijlstra A, Yang P. Plasma metabolomics study of Vogt-Koyanagi-Harada disease identifies potential diagnostic biomarkers. Exp Eye Res 2020; 196:108070. [PMID: 32439397 DOI: 10.1016/j.exer.2020.108070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022]
Abstract
Vogt-Koyanagi-Harada (VKH) disease is a common type of uveitis in China, but the diagnosis criteria of VKH disease is controversial. The aim of this study was to investigate potential diagnostic plasma biomarkers for VKH disease. A case-control study including 55 VKH patients (28 active patients and 27 inactive VKH patients) and 30 healthy controls in a tertiary referral center was performed. The metabolic phenotype of VKH patients showed a significant difference compared to healthy controls. Fifteen differentially expressed metabolites (DEMs) were identified between active VKH patients and healthy controls and nine DEMs were found between inactive VKH patients and healthy controls after controlling variable importance in the projection (VIP) value > 1 and false discovery rate (FDR) < 0.05. D-mannose, stearic acid and L-lysine were shown to be potential diagnostic biomarkers which can discriminate active VKH patients from healthy controls with a diagnostic performance with AUC = 0.965, 0.936 and 0.910 respectively in independent diagnosis and an AUC = 0.999 when combined. Sarcosine was recognized as an independent potential biomarker which could distinguish inactive VKH patients from healthy controls. This study reveals a significant difference of plasma metabolic phenotype and identifies diagnostic biomarkers for VKH disease. Changes in the metabolic profile may provide clues towards the pathophysiology of VKH disease.
Collapse
Affiliation(s)
- Lin Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Su Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China.
| |
Collapse
|
34
|
Tain LS, Jain C, Nespital T, Froehlich J, Hinze Y, Grönke S, Partridge L. Longevity in response to lowered insulin signaling requires glycine N-methyltransferase-dependent spermidine production. Aging Cell 2020; 19:e13043. [PMID: 31721422 PMCID: PMC6974722 DOI: 10.1111/acel.13043] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/24/2019] [Accepted: 08/30/2019] [Indexed: 11/27/2022] Open
Abstract
Reduced insulin/IGF signaling (IIS) extends lifespan in multiple organisms. Different processes in different tissues mediate this lifespan extension, with a set of interplays that remain unclear. We here show that, in Drosophila, reduced IIS activity modulates methionine metabolism, through tissue-specific regulation of glycine N-methyltransferase (Gnmt), and that this regulation is required for full IIS-mediated longevity. Furthermore, fat body-specific expression of Gnmt was sufficient to extend lifespan. Targeted metabolomics showed that reducing IIS activity led to a Gnmt-dependent increase in spermidine levels. We also show that both spermidine treatment and reduced IIS activity are sufficient to extend the lifespan of Drosophila, but only in the presence of Gnmt. This extension of lifespan was associated with increased levels of autophagy. Finally, we found that increased expression of Gnmt occurs in the liver of liver-specific IRS1 KO mice and is thus an evolutionarily conserved response to reduced IIS. The discovery of Gnmt and spermidine as tissue-specific modulators of IIS-mediated longevity may aid in developing future therapeutic treatments to ameliorate aging and prevent disease.
Collapse
Affiliation(s)
- Luke S. Tain
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | - Chirag Jain
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | | | | | - Yvonne Hinze
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | | | - Linda Partridge
- Max‐Planck Institute for Biology of AgeingCologneGermany
- Institute of Healthy Ageing, and GEEUCLLondonUK
| |
Collapse
|
35
|
Dronc-independent basal executioner caspase activity sustains Drosophila imaginal tissue growth. Proc Natl Acad Sci U S A 2019; 116:20539-20544. [PMID: 31548372 PMCID: PMC6789915 DOI: 10.1073/pnas.1904647116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caspase is the enzyme involved in cell death, and its activation via the apoptosome is thought to represent irreversible cellular destruction. Furthermore, accumulating evidence suggests increasingly diverse functions of caspase beyond apoptosis. Here, using Drosophila wing as a model, we reveal that the specific executioner caspases, Dcp-1 and Decay, promote, rather than suppress by inducing apoptosis, tissue growth. These executioner caspases act independently of initiator caspase Dronc and apoptosis. We further show that the caspase-mediated cleavage of Acinus is important for sustaining tissue growth. Our research highlights the importance of executioner caspase-mediated basal proteolytic cleavage of substrates during tissue growth, and the findings hint at the original function of caspase—not apoptosis, but basal proteolytic cleavages for cell vigor. Caspase is best known as an enzyme involved in programmed cell death, which is conserved among multicellular organisms. In addition to its role in cell death, caspase is emerging as an indispensable enzyme in a wide range of cellular functions, which have recently been termed caspase-dependent nonlethal cellular processes (CDPs). In this study, we examined the involvement of cell death signaling in tissue-size determination using Drosophila wing as a model. We found that the Drosophila executioner caspases Dcp-1 and Decay, but not Drice, promoted wing growth independently of apoptosis. Most of the reports on CDPs argue the importance of the spatiotemporal regulation of the initiator caspase, Dronc; however, this sublethal caspase function was independent of Dronc, suggesting a more diverse array of CDP regulatory mechanisms. Tagging of TurboID, an improved promiscuous biotin ligase that biotinylates neighboring proteins, to the C terminus of caspases revealed the differences among the neighbors of executioner caspases. Furthermore, we found that the cleavage of Acinus, a substrate of the executioner caspase, was important in promoting wing growth. These results demonstrate the importance of executioner caspase-mediated basal proteolytic cleavage of substrates in sustaining tissue growth. Given the existence of caspase-like DEVDase activity in a unicellular alga, our results likely highlight the original function of caspase—not cell death, but basal proteolytic cleavages for cell vigor.
Collapse
|
36
|
Serefidou M, Venkatasubramani AV, Imhof A. The Impact of One Carbon Metabolism on Histone Methylation. Front Genet 2019; 10:764. [PMID: 31555321 PMCID: PMC6722216 DOI: 10.3389/fgene.2019.00764] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The effect of one carbon metabolism on DNA methylation has been well described, bridging nutrition, metabolism, and epigenetics. This modification is mediated by the metabolite S-adenosyl methionine (SAM), which is also the methyl-donating substrate of histone methyltransferases. Therefore, SAM levels that are influenced by several nutrients, enzymes, and metabolic cofactors also have a potential impact on histone methylation. Although this modification plays a major role in chromatin accessibility and subsequently in gene expression in healthy or diseased states, its role in translating nutritional changes in chromatin structure has not been extensively studied. Here, we aim to review the literature of known mechanistic links between histone methylation and the central one carbon metabolism.
Collapse
Affiliation(s)
- Magdalini Serefidou
- Biomedical Center Munich, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Axel Imhof
- Biomedical Center Munich, Department of Molecular Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
37
|
Galenza A, Foley E. Immunometabolism: Insights from the Drosophila model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:22-34. [PMID: 30684503 DOI: 10.1016/j.dci.2019.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Multicellular organisms inhabit an environment that includes a mix of essential nutrients and large numbers of potentially harmful microbes. Germline-encoded receptors scan the environment for microbe associated molecular patterns, and, upon engagement, activate powerful defenses to protect the host from infection. At the same time, digestive enzymes and transporter molecules sieve through ingested material for building blocks and energy sources necessary for survival, growth, and reproduction. We tend to view immune responses as a potent array of destructive forces that overwhelm potentially harmful agents. In contrast, we view metabolic processes as essential, constructive elements in the maintenance and propagation of life. However, there is considerable evidence of functional overlap between the two processes, and disruptions to one frequently modify outputs of the other. Studies of immunometabolism, or interactions between immunity and metabolism, have increased in prominence with the discovery of inflammatory components to metabolic diseases such as type two diabetes. In this review, we will focus on contributions of studies with the fruit fly, Drosophila melanogaster, to our understanding of immunometabolism. Drosophila is widely used to study immune signaling, and to understand the regulation of metabolism in vivo, and this insect has considerable potential as a tool to build our understanding of the molecular and cellular bridges that connect immune and metabolic pathways.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada.
| |
Collapse
|
38
|
Everman ER, McNeil CL, Hackett JL, Bain CL, Macdonald SJ. Dissection of Complex, Fitness-Related Traits in Multiple Drosophila Mapping Populations Offers Insight into the Genetic Control of Stress Resistance. Genetics 2019; 211:1449-1467. [PMID: 30760490 PMCID: PMC6456312 DOI: 10.1534/genetics.119.301930] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
We leverage two complementary Drosophila melanogaster mapping panels to genetically dissect starvation resistance-an important fitness trait. Using >1600 genotypes from the multiparental Drosophila Synthetic Population Resource (DSPR), we map numerous starvation stress QTL that collectively explain a substantial fraction of trait heritability. Mapped QTL effects allowed us to estimate DSPR founder phenotypes, predictions that were correlated with the actual phenotypes of these lines. We observe a modest phenotypic correlation between starvation resistance and triglyceride level, traits that have been linked in previous studies. However, overlap among QTL identified for each trait is low. Since we also show that DSPR strains with extreme starvation phenotypes differ in desiccation resistance and activity level, our data imply multiple physiological mechanisms contribute to starvation variability. We additionally exploited the Drosophila Genetic Reference Panel (DGRP) to identify sequence variants associated with starvation resistance. Consistent with prior work these sites rarely fall within QTL intervals mapped in the DSPR. We were offered a unique opportunity to directly compare association mapping results across laboratories since two other groups previously measured starvation resistance in the DGRP. We found strong phenotypic correlations among studies, but extremely low overlap in the sets of genomewide significant sites. Despite this, our analyses revealed that the most highly associated variants from each study typically showed the same additive effect sign in independent studies, in contrast to otherwise equivalent sets of random variants. This consistency provides evidence for reproducible trait-associated sites in a widely used mapping panel, and highlights the polygenic nature of starvation resistance.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Casey L McNeil
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Jennifer L Hackett
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Clint L Bain
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
39
|
Stobdan T, Sahoo D, Azad P, Hartley I, Heinrichsen E, Zhou D, Haddad GG. High fat diet induces sex-specific differential gene expression in Drosophila melanogaster. PLoS One 2019; 14:e0213474. [PMID: 30861021 PMCID: PMC6413938 DOI: 10.1371/journal.pone.0213474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
Currently about 2 billion adults globally are estimated to be overweight and ~13% of them are obese. High fat diet (HFD) is one of the major contributing factor to obesity, heart disease, diabetes and cancer. Recent findings on the role of HFD in inducing abnormalities in neurocognition and susceptibility to Alzheimer’s disease are highly intriguing. Since fundamental molecular pathways are often conserved across species, studies involving Drosophila melanogaster as a model organism can provide insight into the molecular mechanisms involving human disease. In order to study some of such mechanisms in the central nervous system as well in the rest of the body, we investigated the effect of HFD on the transcriptome in the heads and bodies of male and female flies kept on either HFD or regular diet (RD). Using comprehensive genomic analyses which include high-throughput transcriptome sequencing, pathway enrichment and gene network analyses, we found that HFD induces a number of responses that are sexually dimorphic in nature. There was a robust transcriptional response consisting of a downregulation of stress-related genes in the heads and glycoside hydrolase activity genes in the bodies of males. In the females, the HFD led to an increased transcriptional change in lipid metabolism. A strong correlation also existed between the takeout gene and hyperphagic behavior in both males and females. We conclude that a) HFD induces a differential transcriptional response between males and females, in heads and bodies and b) the non-dimorphic transcriptional response that we identified was associated with hyperphagia. Therefore, our data on the transcriptional responses in flies to HFD provides potentially relevant information to human conditions including obesity.
Collapse
Affiliation(s)
- Tsering Stobdan
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Priti Azad
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Iain Hartley
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Erilynn Heinrichsen
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dan Zhou
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Gabriel G. Haddad
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Rady Children's Hospital, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Fujisawa Y, Kosakamoto H, Chihara T, Miura M. Non-apoptotic function of Drosophila caspase activation in epithelial thorax closure and wound healing. Development 2019; 146:146/4/dev169037. [DOI: 10.1242/dev.169037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Non-apoptotic caspase activation involves multiple cellular events. However, the link between visible non-apoptotic caspase activation and its function in living organisms has not yet been revealed. Here, we visualized sub-lethal activation of apoptotic signaling with the combination of a sensitive indicator for caspase 3 activation and in vivo live-imaging analysis of Drosophila. During thorax closure in pupal development, caspase 3 activation was specifically observed at the leading edge cells, with no signs of apoptosis. Inhibition of caspase activation led to an increase in thorax closing speed, which suggests a role of non-apoptotic caspase activity in cell motility. Importantly, sub-lethal activation of caspase 3 was also observed during wound closure at the fusion sites at which thorax closure had previously taken place. Further genetic analysis revealed that the activation of the initiator caspase Dronc is coupled with the generation of reactive oxygen species. The activation of Dronc also regulates myosin levels and delays wound healing. Our findings suggest a possible function for non-apoptotic caspase activation in the fine-tuning of cell migratory behavior during epithelial closure.
Collapse
Affiliation(s)
- Yuya Fujisawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Kant R, Yen CH, Hung JH, Lu CK, Tung CY, Chang PC, Chen YH, Tyan YC, Chen YMA. Induction of GNMT by 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside through proteasome-independent MYC downregulation in hepatocellular carcinoma. Sci Rep 2019; 9:1968. [PMID: 30760754 PMCID: PMC6374375 DOI: 10.1038/s41598-018-37292-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/02/2018] [Indexed: 01/26/2023] Open
Abstract
Glycine-N-methyl transferase (GNMT) a tumor suppressor for hepatocellular carcinoma (HCC) plays a crucial role in liver homeostasis. Its expression is downregulated in almost all the tumor tissues of HCC while the mechanism of this downregulation is not yet fully understood. Recently, we identified 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside (PGG) as a GNMT promoter enhancer compound in HCC. In this study, we aimed to delineate the mechanism by which PGG enhances GNMT expression and to investigate its effect on GNMT suppression in HCC. Microarray and pathway enrichment analysis revealed that MYC was a major target of PGG. PGG suppressed MYC mRNA and protein expression in Huh7 and Hep G2 cells in a dose- and time-dependent fashion. Furthermore, MYC expression was also reduced in xenograft tumors in PGG treated mice. Moreover, shRNA-mediated knocked-down or pharmacological inhibition of MYC resulted in a significant induction of GNMT promoter activity and endogenous GNMT mRNA expression in Huh7 cells. In contrast, overexpression of MYC significantly inhibited GNMT promoter activity and endogenous GNMT protein expression. In addition, antibodies against MYC effectively precipitated the human GNMT promoter in a chromatin immunoprecipitation assay. Lastly, GNMT expression was negatively correlated with MYC expression in human HCC samples. Interestingly, PGG not only inhibited MYC gene expression but also promoted MYC protein degradation through proteasome-independent pathways. This work reveals a novel anticancer mechanism of PGG via downregulation of MYC expression and establishes a therapeutic rationale for treatment of MYC overexpressing cancers using PGG. Our data also provide a novel mechanistic understanding of GNMT regulation through MYC in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Rajni Kant
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural products and Drug Development (CHY), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Hsien Hung
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department and Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Taipei, Taiwan.,Department of Life Sciences and Institute of Genome Sciences, College of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Chang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Hao Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chang Tyan
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
42
|
Obata F, Tsuda-Sakurai K, Yamazaki T, Nishio R, Nishimura K, Kimura M, Funakoshi M, Miura M. Nutritional Control of Stem Cell Division through S-Adenosylmethionine in Drosophila Intestine. Dev Cell 2018; 44:741-751.e3. [PMID: 29587144 DOI: 10.1016/j.devcel.2018.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/26/2017] [Accepted: 02/21/2018] [Indexed: 02/01/2023]
Abstract
The intestine has direct contact with nutritional information. The mechanisms by which particular dietary molecules affect intestinal homeostasis are not fully understood. In this study, we identified S-adenosylmethionine (SAM), a universal methyl donor synthesized from dietary methionine, as a critical molecule that regulates stem cell division in Drosophila midgut. Depletion of either dietary methionine or SAM synthesis reduces division rate of intestinal stem cells. Genetic screening for putative SAM-dependent methyltransferases has identified protein synthesis as a regulator of the stem cells, partially through a unique diphthamide modification on eukaryotic elongation factor 2. In contrast, SAM in nutrient-absorptive enterocytes controls the interleukin-6-like protein Unpaired 3, which is required for rapid division of the stem cells after refeeding. Our study sheds light upon a link between diet and intestinal homeostasis and highlights the key metabolite SAM as a mediator of cell-type-specific starvation response.
Collapse
Affiliation(s)
- Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kayoko Tsuda-Sakurai
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Yamazaki
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Nishio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kei Nishimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Kimura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masabumi Funakoshi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
43
|
Hwang I, Oh H, Santo E, Kim DY, Chen JW, Bronson RT, Locasale JW, Na Y, Lee J, Reed S, Toth M, Yu WH, Muller FL, Paik J. FOXO protects against age-progressive axonal degeneration. Aging Cell 2018; 17. [PMID: 29178390 PMCID: PMC5771393 DOI: 10.1111/acel.12701] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2017] [Indexed: 12/16/2022] Open
Abstract
Neurodegeneration resulting in cognitive and motor impairment is an inevitable consequence of aging. Little is known about the genetic regulation of this process despite its overriding importance in normal aging. Here, we identify the Forkhead Box O (FOXO) transcription factor 1, 3, and 4 isoforms as a guardian of neuronal integrity by inhibiting age-progressive axonal degeneration in mammals. FOXO expression progressively increased in aging human and mouse brains. The nervous system-specific deletion of Foxo transcription factors in mice accelerates aging-related axonal tract degeneration, which is followed by motor dysfunction. This accelerated neurodegeneration is accompanied by levels of white matter astrogliosis and microgliosis in middle-aged Foxo knockout mice that are typically only observed in very old wild-type mice and other aged mammals, including humans. Mechanistically, axonal degeneration in nerve-specific Foxo knockout mice is associated with elevated mTORC1 activity and accompanying proteotoxic stress due to decreased Sestrin3 expression. Inhibition of mTORC1 by rapamycin treatment mimics FOXO action and prevented axonal degeneration in Foxo knockout mice with accelerated nervous system aging. Defining this central role for FOXO in neuroprotection during mammalian aging offers an invaluable window into the aging process itself.
Collapse
Affiliation(s)
- Inah Hwang
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| | - Hwanhee Oh
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| | - Evan Santo
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| | - Do-Yeon Kim
- Department of Pharmacology; School of Dentistry; Kyungpook National University; Daegu Korea
| | - John W. Chen
- Center for Systems Biology and the Division of Neuroradiology; Department of Radiology; Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| | - Roderick T. Bronson
- Department of Microbiology and Immunobiology; Harvard Medical School; Boston MA USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology; Duke University School of Medicine; Durham NC USA
| | - Yoonmi Na
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| | - Jaclyn Lee
- Department of Medical Oncology; Dana Farber Cancer Institute; Boston MA USA
| | - Stewart Reed
- Department of Medical Oncology; Dana Farber Cancer Institute; Boston MA USA
| | - Miklos Toth
- Department of Pharmacology; Weill Cornell Medicine; New York NY USA
| | - Wai H. Yu
- Department of Pathology and Cell Biology; Columbia University; New York NY USA
| | - Florian L. Muller
- Cancer Systems Imaging; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| |
Collapse
|
44
|
Kenmoku H, Hori A, Kuraishi T, Kurata S. A novel mode of induction of the humoral innate immune response in Drosophila larvae. Dis Model Mech 2017; 10:271-281. [PMID: 28250052 PMCID: PMC5374318 DOI: 10.1242/dmm.027102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Hiroyuki Kenmoku
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aki Hori
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-1192, Japan
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan .,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa 920-1192, Japan.,PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
45
|
Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach. Chem Biol Interact 2017; 275:196-209. [PMID: 28807745 DOI: 10.1016/j.cbi.2017.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Abstract
Recently carbon nanotubes (CNTs) showed promising potentials in different biomedical applications but their safe use in humans and probable toxicities are still challenging. The aim of this study was to determine the acute toxicity of functionalized single walled carbon nanotubes (SWCNTs). In this project, PEGylated and Tween functionalized SWCNTs were prepared. BALB/c mice were randomly divided into nine groups, including PEGylated SWCNTs (75,150μg/mouse) and PEG, Tween80 suspended SWCNTs, Tween 80 and a control group (intact mice). One or 7 days after intravenous injection, the mice were killed and serum and livers were collected. The oxidative stress markers, biochemical and histopathological changes were studied. Subsequently, proteomics approach was used to investigate the alterations of protein expression profiles in the liver. Results showed that there were not any significant differences in malondealdehyde (MDA), glutathione (GSH) levels and biochemical enzymes (ALT and AST) between groups, while the histopathological observations of livers showed some injuries. The results of proteomics analysis revealed indolethylamine N-Methyltransferase (INMT), glycine N-Methyltransferase (GNMT), selenium binding protein (Selenbp), thioredoxin peroxidase (TPx), TNF receptor associated protein 1(Trap1), peroxiredoxin-6 (Prdx6), electron transport flavoprotein (Etf-α), regucalcin (Rgn) and ATP5b proteins were differentially expressed in functionalized SWCNTs groups. Western blot analyses confirmed that the changes in Prdx6 were consistent with 2-DE gel analysis. In summary, acute toxicological study on two functionalized SWCNTs did not show any significant toxicity at selected doses. Proteomics analysis also showed that following exposure to functionalized SWCNTs, the expression of some proteins with antioxidant activity and detoxifying properties were increased in liver tissue.
Collapse
|
46
|
Cox JE, Thummel CS, Tennessen JM. Metabolomic Studies in Drosophila. Genetics 2017; 206:1169-1185. [PMID: 28684601 PMCID: PMC5500124 DOI: 10.1534/genetics.117.200014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research.
Collapse
Affiliation(s)
- James E Cox
- Department of Biochemistry and
- The Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
47
|
Abstract
Living organisms experience tissue damage from both, the surrounding environment and from inside their bodies. Tissue repair/regeneration is triggered by local tissue injury to restore an injured, or lost, part of the body. Tissue damage results in a series of responses, not only locally but also systemically in distant tissues. In our recent publication, we established a "dual system" that induces spatiotemporal tissue damage simultaneously with gene manipulation in surrounding tissues. With this system, we demonstrated that appropriate regulation of methionine metabolism in the fat body is required for tissue repair in Drosophila wing discs, thus highlighting the importance of systemic damage response (SDR) in tissue repair. This "Extra View" aims to discuss our recent reports that propose methionine metabolism to be an essential part of SDR, together with related topics in several model organisms.
Collapse
Affiliation(s)
- Soshiro Kashio
- a Department of Genetics , Graduate School of Pharmaceutical Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| | - Fumiaki Obata
- a Department of Genetics , Graduate School of Pharmaceutical Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan.,b The Francis Crick Institute , The Ridgeway, Mill Hill, London , United Kingdom
| | - Masayuki Miura
- a Department of Genetics , Graduate School of Pharmaceutical Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan.,c Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development , Chiyoda-ku, Tokyo , Japan
| |
Collapse
|
48
|
Molecular characterization of Tps1 and Treh genes in Drosophila and their role in body water homeostasis. Sci Rep 2016; 6:30582. [PMID: 27469628 PMCID: PMC4965777 DOI: 10.1038/srep30582] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
In insects, trehalose serves as the main sugar component of haemolymph. Trehalose is also recognized as a mediator of desiccation survival due to its proposed ability to stabilize membranes and proteins. Although the physiological role of trehalose in insects has been documented for decades, genetic evidence to support the importance of trehalose metabolism remains incomplete. We here show on the basis of genetic and biochemical evidence that the trehalose synthesis enzyme Tps1 is solely responsible for the de novo synthesis of trehalose in Drosophila. Conversely, a lack of the gene for the trehalose hydrolyzing enzyme Treh causes an accumulation of trehalose that is lethal during the pupal period, as is observed with Tps1 mutants. Lack of either Tps1 or Treh results in a significant reduction in circulating glucose, suggesting that the maintenance of glucose levels requires a continuous turnover of trehalose. Furthermore, changes in trehalose levels are positively correlated with the haemolymph water volume. In addition, both Tps1 and Treh mutant larvae exhibit a high lethality after desiccation stress. These results demonstrate that the regulation of trehalose metabolism is essential for normal development, body water homeostasis, and desiccation tolerance in Drosophila.
Collapse
|
49
|
Potential Metabolic Biomarkers to Identify Interstitial Lung Abnormalities. Int J Mol Sci 2016; 17:ijms17071148. [PMID: 27438829 PMCID: PMC4964521 DOI: 10.3390/ijms17071148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Determining sensitive biomarkers in the peripheral blood to identify interstitial lung abnormalities (ILAs) is essential for the simple early diagnosis of ILAs. This study aimed to determine serum metabolic biomarkers of ILAs and the corresponding pathogenesis. Three groups of subjects undergoing health screening, including healthy subjects, subjects with ILAs, and subjects who were healthy initially and with ILAs one year later (Healthy→ILAs), were recruited for this study. The metabolic profiles of all of the subjects’ serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. The metabolic characteristics of the ILAs subjects were discovered, and the corresponding biomarkers were predicted. The metabolomic data from the Healthy→ILAs subjects were collected for further verification. The results indicated that five serum metabolite alterations (up-regulated phosphatidylcholine, phosphatidic acid, betaine aldehyde and phosphatidylethanolamine, as well as down-regulated 1-acylglycerophosphocholine) were sensitive and reliable biomarkers for identifying ILAs. Perturbation of the corresponding biological pathways (RhoA signaling, mTOR/P70S6K signaling and phospholipase C signaling) might be at least partially responsible for the pathogenesis of ILAs. This study may provide a good template for determining the early diagnostic markers of subclinical disease status and for obtaining a better understanding of their pathogenesis.
Collapse
|
50
|
von Wyschetzki K, Lowack H, Heinze J. Transcriptomic response to injury sheds light on the physiological costs of reproduction in ant queens. Mol Ecol 2016; 25:1972-85. [PMID: 26880273 DOI: 10.1111/mec.13588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 01/04/2023]
Abstract
The trade-off between reproduction and longevity is widespread among multicellular organisms. As an important exception, the reproductive females of perennial social insects (ants, honeybees, termites) are simultaneously highly fertile and very long-lived relative to their nonreproductive nestmates. The observation that increased fecundity is not coupled with decreased lifespan suggests that social insect queens do not have to reallocate resources between reproduction and self-maintenance. If queens have to compensate for the costs of reproduction on the level of the individual, the activation of other energy-demanding physiological processes might force them to reduce the production of eggs. To test this hypothesis in ant queens, we increased immunity costs by injury and measured the effect of this treatment on egg-laying rates and genomewide gene expression. Amputation of both middle legs led to a temporary decrease in egg-laying rates and affected the expression of 947 genes corresponding to 9% of the transcriptome. The changes comprised the upregulation of the immune and wound healing response on the one hand, and the downregulation of germ cell development, central nervous system development and learning ability on the other hand. Injury strongly influenced metabolism by inducing catabolism and repressing amino acid and nitrogen compound metabolism. By comparing our results to similar transcriptomic studies in insects, we found a highly consistent upregulation of immune genes due to sterile and septic wounding. The gene expression changes, complemented by the temporary decline of egg-laying rates, clearly reveal a trade-off between reproduction and the immune response in social insect queens.
Collapse
Affiliation(s)
- Katharina von Wyschetzki
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Helena Lowack
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Jürgen Heinze
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| |
Collapse
|