1
|
Dzaki N, Alenius M. A cilia-bound unconventional secretory pathway for Drosophila odorant receptors. BMC Biol 2024; 22:84. [PMID: 38610043 PMCID: PMC11015608 DOI: 10.1186/s12915-024-01877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Post-translational transport is a vital process which ensures that each protein reaches its site of function. Though most do so via an ordered ER-to-Golgi route, an increasing number of proteins are now shown to bypass this conventional secretory pathway. RESULTS In the Drosophila olfactory sensory neurons (OSNs), odorant receptors (ORs) are trafficked from the ER towards the cilia. Here, we show that Or22a, a receptor of various esters and alcoholic compounds, reaches the cilia partially through unconventional means. Or22a frequently present as puncta at the somatic cell body exit and within the dendrite prior to the cilia base. These rarely coincide with markers of either the intermediary ER-Golgi-intermediate-compartment (ERGIC) or Golgi structures. ERGIC and Golgi also displayed axonal localization biases, a further indication that at least some measure of OR transport may occur independently of their involvement. Additionally, neither the loss of several COPII genes involved in anterograde trafficking nor ERGIC itself affected puncta formation or Or22a transport to the cilium. Instead, we observed the consistent colocalization of Or22a puncta with Grasp65, the sole Drosophila homolog of mammalian GRASP55/Grh1, a marker of the unconventional pathway. The numbers of both Or22a and Grasp65-positive puncta were furthermore increased upon nutritional starvation, a condition known to enhance Golgi-bypassing secretory activity. CONCLUSIONS Our results demonstrate an alternative route of Or22a transport, thus expanding the repertoire of unconventional secretion mechanisms in neurons.
Collapse
Affiliation(s)
- Najat Dzaki
- Department of Molecular Biology, Umeå University, Umeå, 901 87, SE, Sweden
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, Umeå, 901 87, SE, Sweden.
| |
Collapse
|
2
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
3
|
Zhang X, Zhou J, Wang X, Geng J, Chen Y, Sun Y. IFT140 +/K14 + cells function as stem/progenitor cells in salivary glands. Int J Oral Sci 2022; 14:49. [PMID: 36216809 PMCID: PMC9550827 DOI: 10.1038/s41368-022-00200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Stem/progenitor cells are important for salivary gland development, homeostasis maintenance, and regeneration following injury. Keratin-14+ (K14+) cells have been recognized as bona fide salivary gland stem/progenitor cells. However, K14 is also expressed in terminally differentiated myoepithelial cells; therefore, more accurate molecular markers for identifying salivary stem/progenitor cells are required. The intraflagellar transport (IFT) protein IFT140 is a core component of the IFT system that functions in signaling transduction through the primary cilia. It is reportedly expressed in mesenchymal stem cells and plays a role in bone formation. In this study, we demonstrated that IFT140 was intensively expressed in K14+ stem/progenitor cells during the developmental period and early regeneration stage following ligation-induced injuries in murine submandibular glands. In addition, we demonstrated that IFT140+/ K14+ could self-renew and differentiate into granular duct cells at the developmental stage in vivo. The conditional deletion of Ift140 from K14+ cells caused abnormal epithelial structure and function during salivary gland development and inhibited regeneration. IFT140 partly coordinated the function of K14+ stem/progenitor cells by modulating ciliary membrane trafficking. Our investigation identified a combined marker, IFT140+/K14+, for salivary gland stem/progenitor cells and elucidated the essential role of IFT140 and cilia in regulating salivary stem/progenitor cell differentiation and gland regeneration.
Collapse
Affiliation(s)
- Xueming Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, YanChang Middle Road, Shanghai, China
| | - Ji Zhou
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, YanChang Middle Road, Shanghai, China
| | - Xinyu Wang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, YanChang Middle Road, Shanghai, China
| | - Jiangyu Geng
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, YanChang Middle Road, Shanghai, China
| | - Yubei Chen
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, YanChang Middle Road, Shanghai, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, YanChang Middle Road, Shanghai, China.
| |
Collapse
|
4
|
Nguyen TD, Truong ME, Reiter JF. The Intimate Connection Between Lipids and Hedgehog Signaling. Front Cell Dev Biol 2022; 10:876815. [PMID: 35757007 PMCID: PMC9222137 DOI: 10.3389/fcell.2022.876815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 01/19/2023] Open
Abstract
Hedgehog (HH) signaling is an intercellular communication pathway involved in directing the development and homeostasis of metazoans. HH signaling depends on lipids that covalently modify HH proteins and participate in signal transduction downstream. In many animals, the HH pathway requires the primary cilium, an organelle with a specialized protein and lipid composition. Here, we review the intimate connection between HH signaling and lipids. We highlight how lipids in the primary cilium can create a specialized microenvironment to facilitate signaling, and how HH and components of the HH signal transduction pathway use lipids to communicate between cells.
Collapse
Affiliation(s)
- Thi D. Nguyen
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa E. Truong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
5
|
Zhou Y, Huang J, Jin B, He S, Dang Y, Zhao T, Jin Z. The Emerging Role of Hedgehog Signaling in Viral Infections. Front Microbiol 2022; 13:870316. [PMID: 35464958 PMCID: PMC9023792 DOI: 10.3389/fmicb.2022.870316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The hedgehog (HH) signaling pathway is one of the key pathways that is indispensable for many developmental processes and postnatal tissue homeostasis. Dysregulated HH signaling could lead to developmental disorders and tumorigenesis in a variety of tissues via inherited or sporadic mutation, gene overexpression, and crosstalk with other signaling pathways. Recently, accumulating evidence has shown that HH signaling is targeted by viruses to facilitate viral transcription, immune evasion, and uncontrolled growth, leading to effective viral replication and pathogenesis. In this study, we will summarize recent advances in functional interaction between HH signaling and different types of viruses, particularly focusing on the pathological role of HH signaling in viral infections and related diseases.
Collapse
|
6
|
Agarwal NK, Kim CH, Kunkalla K, Vaghefi A, Sanchez S, Manuel S, Bilbao D, Vega F, Landgraf R. Smoothened (SMO) regulates insulin-like growth factor 1 receptor (IGF1R) levels and protein kinase B (AKT) localization and signaling. J Transl Med 2022; 102:401-410. [PMID: 34893758 PMCID: PMC8969180 DOI: 10.1038/s41374-021-00702-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
The oncoprotein Smoothened (SMO), a Frizzled-class-G-protein-coupled receptor, is the central transducer of hedgehog (Hh) signaling. While canonical SMO signaling is best understood in the context of cilia, evidence suggests that SMO has other functions in cancer biology that are unrelated to canonical Hh signaling. Herein, we provided evidence that elevated levels of human SMO show a strong correlation with elevated levels of insulin-like growth factor 1 receptor (IGF1R) and reduced survival in diffuse large B-cell lymphoma (DLBCL). As an integral component of raft microdomains, SMO plays a fundamental role in maintaining the levels of IGF1R in lymphoma and breast cancer cells as well IGF1R-associated activation of protein kinase B (AKT). Silencing of SMO increases lysosomal degradation and favors a localization of IGF1R to late endosomal compartments instead of early endosomal compartments from which much of the receptor would normally recycle. In addition, loss of SMO interferes with the lipid raft localization and retention of the remaining IGF1R and AKT, thereby disrupting the primary signaling context for IGF1R/AKT. This activity of SMO is independent of its canonical signaling and represents a novel and clinically relevant contribution to signaling by the highly oncogenic IGF1R/AKT signaling axis.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX
| | - Chae-Hwa Kim
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Kranthi Kunkalla
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Amineh Vaghefi
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Sandra Sanchez
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Samantha Manuel
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Francisco Vega
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA.
| | - Ralf Landgraf
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
Jafari S, Alenius M. Odor response adaptation in Drosophila-a continuous individualization process. Cell Tissue Res 2021; 383:143-148. [PMID: 33492517 PMCID: PMC7873105 DOI: 10.1007/s00441-020-03384-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023]
Abstract
Olfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biology, New York University, New York, NY, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, 901 87, Umeå, SE, Sweden.
| |
Collapse
|
8
|
Niyaz M, Khan MS, Wani RA, Shah OJ, Mudassar S. Sonic Hedgehog Protein is Frequently Up-Regulated in Pancreatic Cancer Compared to Colorectal Cancer. Pathol Oncol Res 2020; 26:551-557. [PMID: 30539521 DOI: 10.1007/s12253-018-00564-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (SHH) is a secreted protein which functions in autocrine or paracrine fashion on target cells to activate hedgehog (HH) signalling cascade responsible for growth and proliferation. This study is an attempt to understand the expression dynamics of SHH protein in colon, rectal and pancreatic cancers. Protein expression of SHH was studied by Western Blotting in the histologically confirmed colon, rectum and pancreatic cancer tissue samples along with their adjacent normal tissues. Only 31.4% (11 of 35) and 26.9% (7 of 26) of colon and rectal cancer cases respectively showed an increase in SHH expression in tumours compared to 72.7% (24 of 33) of the pancreatic cancer cases when compared with their adjacent normal tissues. Our results suggest that SHH may have a strong role in the predisposition of Pancreatic cancer and could possibly be used as a diagnostic or prognostic biomarker.
Collapse
Affiliation(s)
- Madiha Niyaz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
| | - Mosin S Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, 190011, India
| | - Rauf A Wani
- Department of General and Minimal Invasive Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Omar J Shah
- Department of Surgical Gastroenterology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, 190011, India.
| |
Collapse
|
9
|
Zhang X, Feng L, Qiao N, Liu Y, Zhang DC, Yin H. Cloning, expression pattern and functional characterization of fused, an important kinase of the Hedgehog signalling pathway from Locusta migratoria(Orthoptera: Acridoidea). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1637781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Xiaohong Zhang
- College of Life Sciences and the Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, P. R. China
| | - Li Feng
- College of Life Sciences and the Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, P. R. China
| | - Ning Qiao
- College of Life Sciences and the Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, P. R. China
| | - Yachao Liu
- College of Life Sciences and the Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, P. R. China
| | - Dao Chuan Zhang
- College of Life Sciences and the Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, P. R. China
| | - Hong Yin
- College of Life Sciences and the Key Laboratory of Zoological Systematics and Application, Hebei University, Baoding, Hebei, P. R. China
| |
Collapse
|
10
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
11
|
Yue Y, Blasius TL, Zhang S, Jariwala S, Walker B, Grant BJ, Cochran JC, Verhey KJ. Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. J Cell Biol 2018; 217:1319-1334. [PMID: 29351996 PMCID: PMC5881503 DOI: 10.1083/jcb.201708179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
Kinesin-4 motors play important roles in cell division, microtubule organization, and signaling. Understanding how motors perform their functions requires an understanding of their mechanochemical and motility properties. We demonstrate that KIF27 can influence microtubule dynamics, suggesting a conserved function in microtubule organization across the kinesin-4 family. However, kinesin-4 motors display dramatically different motility characteristics: KIF4 and KIF21 motors are fast and processive, KIF7 and its Drosophila melanogaster homologue Costal2 (Cos2) are immotile, and KIF27 is slow and processive. Neither KIF7 nor KIF27 can cooperate for fast processive transport when working in teams. The mechanistic basis of immotile KIF7 behavior arises from an inability to release adenosine diphosphate in response to microtubule binding, whereas slow processive KIF27 behavior arises from a slow adenosine triphosphatase rate and a high affinity for both adenosine triphosphate and microtubules. We suggest that evolutionarily selected sequence differences enable immotile KIF7 and Cos2 motors to function not as transporters but as microtubule-based tethers of signaling complexes.
Collapse
Affiliation(s)
- Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - T Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie Zhang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Benjamin Walker
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Barry J Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Jared C Cochran
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
12
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
13
|
Hedgehog signaling regulates ciliary localization of mouse odorant receptors. Proc Natl Acad Sci U S A 2017; 114:E9386-E9394. [PMID: 29078327 DOI: 10.1073/pnas.1708321114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ciliary localization of odorant receptors (ORs) is evolutionary conserved and essential for olfactory transduction. However, how the transport of ORs is regulated in mammalian olfactory sensory neurons is poorly understood. Here we demonstrate that odorant responsiveness and OR transport is regulated by the Hedgehog pathway. OR transport is inhibited by conditional gene inactivation of the Hedgehog signal mediator Smoothened (Smo) as well as by systemic administration of the Smo inhibitor vismodegib, a clinically used anticancer drug reported to distort smell perception in patients. The ciliary phenotype of Smo inhibition is haploinsufficient, cell autonomous, and correlates with the accumulation of OR-containing putative transport vesicles in the cytosol. The Smo-dependent OR transport route works in parallel with a low basal transport of vesicle containing both ORs and other olfactory transduction components. These findings both define a physiological function of Hedgehog signaling in olfaction and provide an important evolutionary link between olfaction and the requirement of a ciliary compartment for Hedgehog signaling.
Collapse
|
14
|
Zhao L, Wang L, Chi C, Lan W, Su Y. The emerging roles of phosphatases in Hedgehog pathway. Cell Commun Signal 2017; 15:35. [PMID: 28931407 PMCID: PMC5607574 DOI: 10.1186/s12964-017-0191-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 01/12/2023] Open
Abstract
Hedgehog signaling is evolutionarily conserved and plays a pivotal role in cell fate determination, embryonic development, and tissue renewal. As aberrant Hedgehog signaling is tightly associated with a broad range of human diseases, its activities must be precisely controlled. It has been known that several core components of Hedgehog pathway undergo reversible phosphorylations mediated by protein kinases and phosphatases, which acts as an effective regulatory mechanism to modulate Hedgehog signal activities. In contrast to kinases that have been extensively studied in these phosphorylation events, phosphatases were thought to function in an unspecific manner, thus obtained much less emphasis in the past. However, in recent years, increasing evidence has implicated that phosphatases play crucial and specific roles in the context of developmental signaling, including Hedgehog signaling. In this review, we present a summary of current progress on phosphatase studies in Hedgehog pathway, emphasizing the multiple employments of protein serine/threonine phosphatases during the transduction of morphogenic Hedgehog signal in both Drosophila and vertebrate systems, all of which provide insights into the importance of phosphatases in the specific regulation of Hedgehog signaling.
Collapse
Affiliation(s)
- Long Zhao
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Liguo Wang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chunli Chi
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wenwen Lan
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
15
|
Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017; 56:2543-2557. [PMID: 28574612 DOI: 10.1002/mc.22690] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs.
Collapse
Affiliation(s)
- Anshika Bakshi
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Sandeep C Chaudhary
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mehtab Rana
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Edelbusch C, Cindrić S, Dougherty GW, Loges NT, Olbrich H, Rivlin J, Wallmeier J, Pennekamp P, Amirav I, Omran H. Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum Mutat 2017; 38:964-969. [PMID: 28543983 DOI: 10.1002/humu.23261] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a genetic condition of impaired ciliary beating, characterized by chronic infections of the upper and lower airways and progressive lung failure. Defects of the outer dynein arms are the most common cause of PCD. In about half of the affected individuals, PCD occurs with situs inversus (Kartagener syndrome). A minor PCD subgroup including defects of the radial spokes (RS) and central pair (CP) is hallmarked by the absence of laterality defects, subtle beating abnormalities, and unequivocally apparent ultrastructural defects of the ciliary axoneme, making their diagnosis challenging. We identified homozygous loss-of-function mutations in STK36 in one PCD-affected individual with situs solitus. Transmission electron microscopy analysis demonstrates that STK36 is required for cilia orientation in human respiratory epithelial cells, with a probable localization of STK36 between the RS and CP. STK36 screening can now be included for this rare and difficult to diagnose PCD subgroup.
Collapse
Affiliation(s)
- Christine Edelbusch
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Sandra Cindrić
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Joseph Rivlin
- Department of Pediatrics, Carmel Medical Center, Haifa, Israel
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Israel Amirav
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
17
|
He M, Agbu S, Anderson KV. Microtubule Motors Drive Hedgehog Signaling in Primary Cilia. Trends Cell Biol 2017; 27:110-125. [PMID: 27765513 PMCID: PMC5258846 DOI: 10.1016/j.tcb.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/05/2023]
Abstract
The mammalian Hedgehog (Hh) signaling pathway is required for development and for maintenance of adult stem cells, and overactivation of the pathway can cause tumorigenesis. All responses to Hh family ligands in mammals require the primary cilium, an ancient microtubule-based organelle that extends from the cell surface. Genetic studies in mice and humans have defined specific functions for cilium-associated microtubule motor proteins: they act in the construction and disassembly of the primary cilium, they control ciliary length and stability, and some have direct roles in mammalian Hh signal transduction. These studies highlight how integrated genetic and cell biological studies can define the molecular mechanisms that underlie cilium-associated health and disease.
Collapse
Affiliation(s)
- Mu He
- Department of Physiology and Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephanie Agbu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Biochemistry, Cell, and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
Hong CJ, Hamilton BA. Zfp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function. PLoS Genet 2016; 12:e1006357. [PMID: 27727273 PMCID: PMC5065120 DOI: 10.1371/journal.pgen.1006357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022] Open
Abstract
Zfp423 encodes a 30-zinc finger transcription factor that intersects several canonical signaling pathways. Zfp423 mutations result in ciliopathy-related phenotypes, including agenesis of the cerebellar vermis in mice and Joubert syndrome (JBTS19) and nephronophthisis (NPHP14) in humans. Unlike most ciliopathy genes, Zfp423 encodes a nuclear protein and its developmental expression is complex, leading to alternative proposals for cellular mechanisms. Here we show that Zfp423 is expressed by cerebellar granule cell precursors, that loss of Zfp423 in these precursors leads to cell-intrinsic reduction in proliferation, loss of response to Shh, and primary cilia abnormalities that include diminished frequency of both Smoothened and IFT88 localization. Loss of Zfp423 alters expression of several genes encoding key cilium components, including increased expression of Tulp3. Tulp3 is a direct binding target of Zfp423 and reducing the overexpression of Tulp3 in Zfp423-deficient cells suppresses Smoothened translocation defects. These results define Zfp423 deficiency as a bona fide ciliopathy, acting upstream of Shh signaling, and indicate a mechanism intrinsic to granule cell precursors for the resulting cerebellar hypoplasia.
Collapse
Affiliation(s)
- Chen-Jei Hong
- Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Institute for Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Bruce A Hamilton
- Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Moores UCSD Cancer Center, University of California, San Diego School of Medicine, La Jolla, California, United States of America.,Institute for Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| |
Collapse
|
19
|
Control of Hedgehog Signalling by the Cilia-Regulated Proteasome. J Dev Biol 2016; 4:jdb4030027. [PMID: 29615591 PMCID: PMC5831775 DOI: 10.3390/jdb4030027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog signalling pathway is evolutionarily highly conserved and essential for embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall syndrome. Due to this great importance for human health, the focus of numerous research groups is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today, it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of proteasome which is essential for proper Hedgehog signalling. This review article will cover this novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities provided by future investigations on this topic.
Collapse
|
20
|
Rab23 activities and human cancer—emerging connections and mechanisms. Tumour Biol 2016; 37:12959-12967. [DOI: 10.1007/s13277-016-5207-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/13/2016] [Indexed: 12/19/2022] Open
|
21
|
Jana SC, Bettencourt-Dias M, Durand B, Megraw TL. Drosophila melanogaster as a model for basal body research. Cilia 2016; 5:22. [PMID: 27382461 PMCID: PMC4932733 DOI: 10.1186/s13630-016-0041-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is one of the most extensively studied organisms in biological research and has centrioles/basal bodies and cilia that can be modelled to investigate their functions in animals generally. Centrioles are nine-fold symmetrical microtubule-based cylindrical structures required to form centrosomes and also to nucleate the formation of cilia and flagella. When they function to template cilia, centrioles transition into basal bodies. The fruit fly has various types of basal bodies and cilia, which are needed for sensory neuron and sperm function. Genetics, cell biology and behaviour studies in the fruit fly have unveiled new basal body components and revealed different modes of assembly and functions of basal bodies that are conserved in many other organisms, including human, green algae and plasmodium. Here we describe the various basal bodies of Drosophila, what is known about their composition, structure and function.
Collapse
Affiliation(s)
- Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, número 6, 2780-156 Oeiras, Portugal
| | | | - Bénédicte Durand
- Institut NeuroMyogène, CNRS UMR-5310 INSERM-U1217, Université Claude Bernard Lyon-1, Lyon, Villeurbanne, France
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|
22
|
Hilgendorf KI, Johnson CT, Jackson PK. The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol 2016; 39:84-92. [PMID: 26926036 DOI: 10.1016/j.ceb.2016.02.008] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
The primary cilium is an antenna-like cellular protrusion mediating sensory and neuroendocrine signaling. Its localization within tissue architecture and a growing list of cilia-localized receptors, in particular G-protein-coupled receptors, determine a host of crucial physiologies, which are disrupted in human ciliopathies. Here, we discuss recent advances in the identification and characterization of ciliary signaling components and pathways. Recent studies have highlighted the unique signaling environment of the primary cilium and we are just beginning to understand how this design allows for highly amplified and regulated signaling.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carl T Johnson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stem Cell and Regenerative Medicine PhD Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Abstract
The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
24
|
Sanchez GM, Alkhori L, Hatano E, Schultz SW, Kuzhandaivel A, Jafari S, Granseth B, Alenius M. Hedgehog Signaling Regulates the Ciliary Transport of Odorant Receptors in Drosophila. Cell Rep 2016; 14:464-470. [PMID: 26774485 DOI: 10.1016/j.celrep.2015.12.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023] Open
Abstract
Hedgehog (Hh) signaling is a key regulatory pathway during development and also has a functional role in mature neurons. Here, we show that Hh signaling regulates the odor response in adult Drosophila olfactory sensory neurons (OSNs). We demonstrate that this is achieved by regulating odorant receptor (OR) transport to and within the primary cilium in OSN neurons. Regulation relies on ciliary localization of the Hh signal transducer Smoothened (Smo). We further demonstrate that the Hh- and Smo-dependent regulation of the kinesin-like protein Cos2 acts in parallel to the intraflagellar transport system (IFT) to localize ORs within the cilium compartment. These findings expand our knowledge of Hh signaling to encompass chemosensory modulation and receptor trafficking.
Collapse
Affiliation(s)
- Gonzalo M Sanchez
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Liza Alkhori
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Eduardo Hatano
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Sebastian W Schultz
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | | | - Shadi Jafari
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Björn Granseth
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden.
| |
Collapse
|
25
|
Balmer S, Dussert A, Collu GM, Benitez E, Iomini C, Mlodzik M. Components of Intraflagellar Transport Complex A Function Independently of the Cilium to Regulate Canonical Wnt Signaling in Drosophila. Dev Cell 2015; 34:705-18. [PMID: 26364750 PMCID: PMC4610147 DOI: 10.1016/j.devcel.2015.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/17/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022]
Abstract
The development of multicellular organisms requires the precisely coordinated regulation of an evolutionarily conserved group of signaling pathways. Temporal and spatial control of these signaling cascades is achieved through networks of regulatory proteins, segregation of pathway components in specific subcellular compartments, or both. In vertebrates, dysregulation of primary cilia function has been strongly linked to developmental signaling defects, yet it remains unclear whether cilia sequester pathway components to regulate their activation or cilia-associated proteins directly modulate developmental signaling events. To elucidate this question, we conducted an RNAi-based screen in Drosophila non-ciliated cells to test for cilium-independent loss-of-function phenotypes of ciliary proteins in developmental signaling pathways. Our results show no effect on Hedgehog signaling. In contrast, our screen identified several cilia-associated proteins as functioning in canonical Wnt signaling. Further characterization of specific components of Intraflagellar Transport complex A uncovered a cilia-independent function in potentiating Wnt signals by promoting β-catenin/Armadillo activity.
Collapse
Affiliation(s)
- Sophie Balmer
- Department of Developmental & Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Aurore Dussert
- Department of Developmental & Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Giovanna M Collu
- Department of Developmental & Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Elvira Benitez
- Department of Developmental & Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Carlo Iomini
- Department of Developmental & Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Developmental & Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
26
|
Leaf A, Von Zastrow M. Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. eLife 2015; 4. [PMID: 26182404 PMCID: PMC4547097 DOI: 10.7554/elife.06996] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
Appropriate physiological signaling by primary cilia depends on the specific targeting of particular receptors to the ciliary membrane, but how this occurs remains poorly understood. In this study, we show that D1-type dopaminergic receptors are delivered to cilia from the extra-ciliary plasma membrane by a mechanism requiring the receptor cytoplasmic tail, the intraflagellar transport complex-B (IFT-B), and ciliary kinesin KIF17. This targeting mechanism critically depends on Rab23, a small guanine nucleotide binding protein that has important effects on physiological signaling from cilia but was not known previously to be essential for ciliary delivery of any cargo. Depleting Rab23 prevents dopamine receptors from accessing the ciliary membrane. Conversely, fusion of Rab23 to a non-ciliary receptor is sufficient to drive robust, nucleotide-dependent mis-localization to the ciliary membrane. Dopamine receptors thus reveal a previously unrecognized mechanism of ciliary receptor targeting and functional role of Rab23 in promoting this process.
Collapse
Affiliation(s)
- Alison Leaf
- Program in Cell Biology, University of California, San Francisco, San Francisco, United States
| | - Mark Von Zastrow
- Program in Cell Biology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
27
|
Inaba M, Buszczak M, Yamashita YM. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 2015; 523:329-32. [PMID: 26131929 PMCID: PMC4586072 DOI: 10.1038/nature14602] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
Stem cell niches provide resident stem cells with signals that specify their identity. Niche signals act over a short range such that only stem cells but not their differentiating progeny receive the self-renewing signals. However, the cellular mechanisms that limit niche signalling to stem cells remain poorly understood. Here we show that the Drosophila male germline stem cells form previously unrecognized structures, microtubule-based nanotubes, which extend into the hub, a major niche component. Microtubule-based nanotubes are observed specifically within germline stem cell populations, and require intraflagellar transport proteins for their formation. The bone morphogenetic protein (BMP) receptor Tkv localizes to microtubule-based nanotubes. Perturbation of microtubule-based nanotubes compromises activation of Dpp signalling within germline stem cells, leading to germline stem cell loss. Moreover, Dpp ligand and Tkv receptor interaction is necessary and sufficient for microtubule-based nanotube formation. We propose that microtubule-based nanotubes provide a novel mechanism for selective receptor-ligand interaction, contributing to the short-range nature of niche-stem-cell signalling.
Collapse
Affiliation(s)
- Mayu Inaba
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA [3] Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Yukiko M Yamashita
- 1] Life Sciences Institute, Department of Cell and Developmental Biology Medical School, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan 48109, USA
| |
Collapse
|
28
|
Benmerah A, Durand B, Giles RH, Harris T, Kohl L, Laclef C, Meilhac SM, Mitchison HM, Pedersen LB, Roepman R, Swoboda P, Ueffing M, Bastin P. The more we know, the more we have to discover: an exciting future for understanding cilia and ciliopathies. Cilia 2015; 4:5. [PMID: 25974046 PMCID: PMC4378380 DOI: 10.1186/s13630-015-0014-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022] Open
Abstract
The Cilia 2014 conference was organised by four European networks: the Ciliopathy Alliance, the Groupement de Recherche CIL, the Nordic Cilia and Centrosome Network and the EU FP7 programme SYSCILIA. More than 400 delegates from 27 countries gathered at the Institut Pasteur conference centre in Paris, including 30 patients and patient representatives. The meeting offered a unique opportunity for exchange between different scientific and medical communities. Major highlights included new discoveries about the roles of motile and immotile cilia during development and homeostasis, the mechanism of cilium construction, as well as progress in diagnosis and possible treatment of ciliopathies. The contributions to the cilia field of flagellated infectious eukaryotes and of systems biology were also presented.
Collapse
Affiliation(s)
- Alexandre Benmerah
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, 24 boulevard du Montparnasse, 75015 Paris, France ; Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, 16 rue Dubois, Villeurbanne, Lyon, F69622 France
| | - Rachel H Giles
- Department of Nephrology, University Medical Centre Utrecht, 100 Heidelberglaan, Utrecht, 3584CX The Netherlands
| | - Tess Harris
- The Ciliopathy Alliance, 91 Royal College St, NW1 0SE, London
| | - Linda Kohl
- UMR7245 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Christine Laclef
- Developmental Biology Laboratory UMR7622, UPMC Univ Paris 06, Sorbonne Université, 9 Quai Saint Bernard, F-75005 Paris, France ; Developmental Biology Laboratory UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS), 9 Quai Saint Bernard, F-75005 Paris, France ; INSERM, ERL1156, 9 Quai Saint Bernard, F-75005 Paris, France
| | - Sigolène M Meilhac
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du docteur Roux, 75015 Paris, France ; CNRS URA2578, 25 rue du docteur Roux, 75015 Paris, France
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, OE Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 25, P.O. Box 9101, 6525 Nijmegen, GA The Netherlands
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, S-141 83 Huddinge, Sweden
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tübingen, PO 2669, D-72016 Tübingen, Germany ; Research Unit of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85758 Neuherberg, Germany
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
29
|
Hedgehog signaling: From basic research to clinical applications. J Formos Med Assoc 2015; 114:569-76. [PMID: 25701396 DOI: 10.1016/j.jfma.2015.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/01/2015] [Indexed: 01/20/2023] Open
Abstract
Studies of the major signaling pathways have revealed a connection between development, regeneration, and cancer, highlighting common signaling networks in these processes. The Hedgehog (Hh) pathway plays a central role in the development of most tissues and organs in mammals. Hh signaling is also required for tissue homeostasis and regeneration in adults, while perturbed Hh signaling is associated with human cancers. A fundamental understanding of Hh signaling will not only enhance our knowledge of how the embryos are patterned but also provide tools to treat diseases related to aberrant Hh signaling. Studies have yielded a basic framework of Hh signaling, which establishes the foundation for addressing unresolved issues of Hh signaling. A detailed characterization of the biochemical interactions between Hh components will help explain the production of graded Hh responses required for tissue patterning. Additional cell biological and genetic studies will offer new insight into the role of Hh signaling in homeostasis and regeneration. Finally, drugs that are capable of manipulating the Hh pathway can be used to treat human diseases caused by disrupted Hh signaling. These investigations will serve as a paradigm for studying signal transduction/integration in homeostasis and disease, and for translating discovery from bench to bedside.
Collapse
|
30
|
Lin C, Yao E, Wang K, Nozawa Y, Shimizu H, Johnson JR, Chen JN, Krogan NJ, Chuang PT. Regulation of Sufu activity by p66β and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes Dev 2014; 28:2547-2563. [PMID: 25403183 PMCID: PMC4233246 DOI: 10.1101/gad.249425.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
Control of Gli function by Suppressor of Fused (Sufu), a major negative regulator, is a key step in mammalian Hedgehog (Hh) signaling, but how this is achieved in the nucleus is unknown. We found that Hh signaling results in reduced Sufu protein levels and Sufu dissociation from Gli proteins in the nucleus, highlighting critical functions of Sufu in the nucleus. Through a proteomic approach, we identified several Sufu-interacting proteins, including p66β (a member of the NuRD [nucleosome remodeling and histone deacetylase] repressor complex) and Mycbp (a Myc-binding protein). p66β negatively and Mycbp positively regulate Hh signaling in cell-based assays and zebrafish. They function downstream from the membrane receptors, Patched and Smoothened, and the primary cilium. Sufu, p66β, Mycbp, and Gli are also detected on the promoters of Hh targets in a dynamic manner. Our results support a new model of Hh signaling in the nucleus. Sufu recruits p66β to block Gli-mediated Hh target gene expression. Meanwhile, Mycbp forms a complex with Gli and Sufu without Hh stimulation but remains inactive. Hh pathway activation leads to dissociation of Sufu/p66β from Gli, enabling Mycbp to promote Gli protein activity and Hh target gene expression. These studies provide novel insight into how Sufu controls Hh signaling in the nucleus.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kevin Wang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yoko Nozawa
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Hirohito Shimizu
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - Jau-Nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
31
|
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014; 74:4967-75. [PMID: 25172843 DOI: 10.1158/0008-5472.can-14-1666] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arianna L Kim
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| | | | - David R Bickers
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| |
Collapse
|
32
|
Kornberg TB. The contrasting roles of primary cilia and cytonemes in Hh signaling. Dev Biol 2014; 394:1-5. [PMID: 25072627 DOI: 10.1016/j.ydbio.2014.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 12/16/2022]
Abstract
Hedgehog (Hh) is a paracrine signaling protein with major roles in development and disease. In vertebrates and invertebrates, Hh signal transduction is carried out almost entirely by evolutionarily conserved components, and in both, intercellular movement of Hh is mediated by cytonemes - specialized filopodia that serve as bridges that bring distant cells into contact. A significant difference is the role of the primary cilium, a slender, tubulin-based protuberance of many vertebrate cells. Although the primary cilium is essential for Hh signaling in cells that have one, most Drosophila cells lack a primary cilium. This perspective addresses the roles of primary cilia and cytonemes, and proposes that for Hh signaling, the role of primary cilia is to provide a specialized hydrophobic environment that hosts lipid-modified Hh and other components of Hh signal transduction after Hh has traveled from elsewhere in the cell. Implicit in this model is the idea that initial binding and uptake of Hh is independent of and segregated from the processes of signal transduction and activation.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
33
|
Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA. Canonical and non-canonical Hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 2014; 33:81-92. [PMID: 24862854 DOI: 10.1016/j.semcdb.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, Hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease.
Collapse
Affiliation(s)
- Raffaele Teperino
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Natalia Riobo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|