1
|
Kleist AB, Szpakowska M, Talbot LJ, Slodkowicz G, Malinverni D, Thomas MA, Crawford KS, McGrail DJ, Dishman AF, Wedemeyer MJ, Sluter M, Yi SS, Sahni N, Peterson FC, Chevigné A, Volkman BF, Babu MM. Encoding and decoding selectivity and promiscuity in the human chemokine-GPCR interaction network. Cell 2025:S0092-8674(25)00398-8. [PMID: 40273912 DOI: 10.1016/j.cell.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
In humans, selective and promiscuous interactions between 46 secreted chemokine ligands and 23 cell surface chemokine receptors of the G-protein-coupled receptor (GPCR) family form a complex network to coordinate cell migration. While chemokines and their GPCRs each share common structural scaffolds, the molecular principles driving selectivity and promiscuity remain elusive. Here, we identify conserved, semi-conserved, and variable determinants (i.e., recognition elements) that are encoded and decoded by chemokines and their receptors to mediate interactions. Selectivity and promiscuity emerge from an ensemble of generalized ("public/conserved") and specific ("private/variable") determinants distributed among structured and unstructured protein regions, with ligands and receptors recognizing these determinants combinatorially. We employ these principles to engineer a viral chemokine with altered GPCR coupling preferences and provide a web resource to facilitate sequence-structure-function studies and protein design efforts for developing immuno-therapeutics and cell therapies.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA; MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Lindsay J Talbot
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK; Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kyler S Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel J McGrail
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Acacia F Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Madison Sluter
- Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - S Stephen Yi
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA; Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Protein Foundry, LLC, West Allis, WI, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA; Protein Foundry, LLC, West Allis, WI, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI, USA; Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK; Center of Excellence for Data-Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Hagai T, Sironi M. Evolutionary analysis of ZAP and its cofactors identifies intrinsically disordered regions as central elements in host-pathogen interactions. Comput Struct Biotechnol J 2024; 23:3143-3154. [PMID: 39234301 PMCID: PMC11372611 DOI: 10.1016/j.csbj.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is an innate immunity sensor of non-self nucleic acids. Its antiviral activity is exerted through the physical interaction with different cofactors, including TRIM25, Riplet and KHNYN. Cellular proteins that interact with infectious agents are expected to be engaged in genetic conflicts that often result in their rapid evolution. To test this possibility and to identify the regions most strongly targeted by natural selection, we applied in silico molecular evolution tools to analyze the evolutionary history of ZAP and cofactors in four mammalian groups. We report evidence of positive selection in all genes and in most mammalian groups. On average, the intrinsically disordered regions (IDRs) embedded in the four proteins evolve significantly faster than folded domains and most positively selected sites fall within IDRs. In ZAP, the PARP domain also shows abundant signals of selection, and independent evolution in different mammalian groups suggests modulation of its ADP-ribose binding ability. Detailed analyses of the biophysical properties of IDRs revealed that chain compaction and conformational entropy are conserved across mammals. The IDRs in ZAP and KHNYN are particularly compact, indicating that they may promote phase separation (PS). In line with this hypothesis, we predicted several PS-promoting regions in ZAP and KHNYN, as well as in TRIM25. Positively selected sites are abundant in these regions, suggesting that PS may be important for the antiviral functions of these proteins and the evolutionary arms race with viruses. Our data shed light into the evolution of ZAP and cofactors and indicate that IDRs represent central elements in host-pathogen interactions.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
3
|
Nguyen A, Zhao H, Myagmarsuren D, Srinivasan S, Wu D, Chen J, Piszczek G, Schuck P. Modulation of biophysical properties of nucleocapsid protein in the mutant spectrum of SARS-CoV-2. eLife 2024; 13:RP94836. [PMID: 38941236 PMCID: PMC11213569 DOI: 10.7554/elife.94836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.
Collapse
Affiliation(s)
- Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Dulguun Myagmarsuren
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| |
Collapse
|
4
|
Nguyen A, Zhao H, Myagmarsuren D, Srinivasan S, Wu D, Chen J, Piszczek G, Schuck P. Modulation of Biophysical Properties of Nucleocapsid Protein in the Mutant Spectrum of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568093. [PMID: 38045241 PMCID: PMC10690151 DOI: 10.1101/2023.11.21.568093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also exhibiting functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.
Collapse
Affiliation(s)
- Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dulguun Myagmarsuren
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Petraccione K, Ali MGH, Cyr N, Wahba HM, Stocker T, Akhrymuk M, Akhrymuk I, Panny L, Bracci N, Cafaro R, Sastre D, Silberfarb A, O’Maille P, Omichinski J, Kehn-Hall K. An LIR motif in the Rift Valley fever virus NSs protein is critical for the interaction with LC3 family members and inhibition of autophagy. PLoS Pathog 2024; 20:e1012093. [PMID: 38512999 PMCID: PMC10986958 DOI: 10.1371/journal.ppat.1012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.
Collapse
Affiliation(s)
- Kaylee Petraccione
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mohamed G. H. Ali
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Haytham M. Wahba
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Timothy Stocker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Maryna Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Raphaël Cafaro
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Danuta Sastre
- Biosciences Division, SRI International, Menlo Park, California, United States of America
| | - Andrew Silberfarb
- Artificial Intelligence Center, SRI International, Menlo Park, California, United States of America
| | - Paul O’Maille
- Biosciences Division, SRI International, Menlo Park, California, United States of America
| | - James Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
6
|
Schuck P, Zhao H. Diversity of short linear interaction motifs in SARS-CoV-2 nucleocapsid protein. mBio 2023; 14:e0238823. [PMID: 38018991 PMCID: PMC10746173 DOI: 10.1128/mbio.02388-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Short linear motifs (SLiMs) are 3-10 amino acid long binding motifs in intrinsically disordered protein regions (IDRs) that serve as ubiquitous protein-protein interaction modules in eukaryotic cells. Through molecular mimicry, viruses hijack these sequence motifs to control host cellular processes. It is thought that the small size of SLiMs and the high mutation frequencies of viral IDRs allow rapid host adaptation. However, a salient characteristic of RNA viruses, due to high replication errors, is their obligate existence as mutant swarms. Taking advantage of the uniquely large genomic database of SARS-CoV-2, here, we analyze the role of sequence diversity in the presentation of SLiMs, focusing on the highly abundant, multi-functional nucleocapsid protein. We find that motif mimicry is a highly dynamic process that produces an abundance of motifs transiently present in subsets of mutant species. This diversity allows the virus to efficiently explore eukaryotic motifs and evolve the host-virus interface.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Schuck P, Zhao H. Diversity of Short Linear Interaction Motifs in SARS-CoV-2 Nucleocapsid Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551467. [PMID: 37790474 PMCID: PMC10542142 DOI: 10.1101/2023.08.01.551467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Molecular mimicry of short linear interaction motifs has emerged as a key mechanism for viral proteins binding host domains and hijacking host cell processes. Here, we examine the role of RNA-virus sequence diversity in the dynamics of the virus-host interface, by analyzing the uniquely vast sequence record of viable SARS-CoV-2 species with focus on the multi-functional nucleocapsid protein. We observe the abundant presentation of motifs encoding several essential host protein interactions, alongside a majority of possibly non-functional and randomly occurring motif sequences absent in subsets of viable virus species. A large number of motifs emerge ex nihilo through transient mutations relative to the ancestral consensus sequence. The observed mutational landscape implies an accessible motif space that spans at least 25% of known eukaryotic motifs. This reveals motif mimicry as a highly dynamic process with the capacity to broadly explore host motifs, allowing the virus to rapidly evolve the virus-host interface.
Collapse
Affiliation(s)
- Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Gunnarsson PA, Babu MM. Predicting evolutionary outcomes through the probability of accessing sequence variants. SCIENCE ADVANCES 2023; 9:eade2903. [PMID: 37506212 PMCID: PMC10381947 DOI: 10.1126/sciadv.ade2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Natural selection can only operate on available genetic variation. Thus, determining the probability of accessing different sequence variants from a starting sequence can help predict evolutionary trajectories and outcomes. We define the concept of "variant accessibility" as the probability that a set of genotypes encoding a particular protein function will arise through mutations before subject to natural selection. This probability is shaped by the mutational biases of nucleotides and the structure of the genetic code. Using the influenza A virus as a model, we discuss how a more accessible but less fit variant can emerge as an adaptation rather than a more fit variant. We describe a genotype-accessibility landscape, complementary to the genotype-fitness landscape, that informs the likelihood of a starting sequence reaching different parts of genotype space. The proposed framework lays the foundation for predicting the emergence of adaptive genotypes in evolving systems such as viruses and tumors.
Collapse
Affiliation(s)
- P. Alexander Gunnarsson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Pennacchietti V, Toto A. Different electrostatic forces drive the binding kinetics of SARS-CoV, SARS-CoV-2 and MERS-CoV Envelope proteins with the PDZ2 domain of ZO1. Sci Rep 2023; 13:7906. [PMID: 37193746 DOI: 10.1038/s41598-023-35079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
The Envelope protein (E) is a structural protein encoded by the genome of SARS-CoV, SARS-CoV-2 and MERS-CoV Coronaviruses. It is poorly present in the virus but highly expressed in the host cell, with prominent role in virus assembly and virulence. The E protein possesses a PDZ-binding motif (PBM) at its C terminus that allows it to interact with host PDZ domain containing proteins. ZO1 is a key protein in assembling the cytoplasmic plaque of epithelial and endothelial Tight Junctions (TJs) as well as in determining cell differentiation, proliferation and polarity. The PDZ2 domain of ZO1 is known to interact with the Coronaviruses Envelope proteins, however the molecular details of such interaction have not been established. In this paper we directly measured, through Fluorescence Resonance Energy Transfer and Stopped-Flow methodology, the binding kinetics of the PDZ2 domain of ZO1 with peptides mimicking the C-terminal portion of the Envelope protein from SARS-CoV, SARS-CoV-2 and MERS-CoV in different ionic strength conditions. Interestingly, the peptide mimicking the E protein from MERS-CoV display much higher microscopic association rate constant with PDZ2 compared to SARS-CoV and SARS-CoV-2 suggesting a stronger contribution of electrostatic forces in the early events of binding. A comparison of thermodynamic and kinetic data obtained at increasing ionic strengths put in evidence different contribution of electrostatics in the recognition and complex formation events for the three peptides. Our data are discussed under the light of available structural data of PDZ2 domain of ZO1 and of previous works about these protein systems.
Collapse
Affiliation(s)
- Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Simonetti L, Nilsson J, McInerney G, Ivarsson Y, Davey NE. SLiM-binding pockets: an attractive target for broad-spectrum antivirals. Trends Biochem Sci 2023; 48:420-427. [PMID: 36623987 DOI: 10.1016/j.tibs.2022.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023]
Abstract
Short linear motif (SLiM)-mediated interactions offer a unique strategy for viral intervention due to their compact interfaces, ease of convergent evolution, and key functional roles. Consequently, many viruses extensively mimic host SLiMs to hijack or deregulate cellular pathways and the same motif-binding pocket is often targeted by numerous unrelated viruses. A toolkit of therapeutics targeting commonly mimicked SLiMs could provide prophylactic and therapeutic broad-spectrum antivirals and vastly improve our ability to treat ongoing and future viral outbreaks. In this opinion article, we discuss the therapeutic relevance of SLiMs, advocating their suitability as targets for broad-spectrum antiviral inhibitors.
Collapse
Affiliation(s)
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Husargatan 3, 751 23 Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
11
|
Mihalič F, Simonetti L, Giudice G, Sander MR, Lindqvist R, Peters MBA, Benz C, Kassa E, Badgujar D, Inturi R, Ali M, Krystkowiak I, Sayadi A, Andersson E, Aronsson H, Söderberg O, Dobritzsch D, Petsalaki E, Överby AK, Jemth P, Davey NE, Ivarsson Y. Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Nat Commun 2023; 14:2409. [PMID: 37100772 PMCID: PMC10132805 DOI: 10.1038/s41467-023-38015-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.
Collapse
Affiliation(s)
- Filip Mihalič
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Marie Berit Akpiroro Peters
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eszter Kassa
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Dilip Badgujar
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Ahmed Sayadi
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Hanna Aronsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, Box 591, SE-751 24, Uppsala, Sweden
| | - Doreen Dobritzsch
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Anna K Överby
- Department of Clinical Microbiology, Umeå University, 90187, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90186, Umeå, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, Husargatan 3, 751 23, Uppsala, Sweden.
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
12
|
Goswami S, Samanta D, Duraivelan K. Molecular mimicry of host short linear motif-mediated interactions utilised by viruses for entry. Mol Biol Rep 2023; 50:4665-4673. [PMID: 37016039 PMCID: PMC10072811 DOI: 10.1007/s11033-023-08389-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
Viruses are obligate intracellular parasites that depend on host cellular machinery for performing even basic biological functions. One of the many ways they achieve this is through molecular mimicry, wherein the virus mimics a host sequence or structure, thereby being able to hijack the host's physiological interactions for its pathogenesis. Such adaptations are specific recognitions that often confer tissue and species-specific tropisms to the virus, and enable the virus to utilise previously existing host signalling networks, which ultimately aid in further steps of viral infection, such as entry, immune evasion and spread. A common form of sequence mimicry utilises short linear motifs (SLiMs). SLiMs are short-peptide sequences that mediate transient interactions and are major elements in host protein interaction networks. This work is aimed at providing a comprehensive review of current literature of some well-characterised SLiMs that play a role in the attachment and entry of viruses into host cells, which mimic physiological receptor-ligand interactions already present in the host. Considering recent trends in emerging diseases, further research on such motifs involved in viral entry can help in the discovery of previously unknown cellular receptors utilised by viruses, as well as help in the designing of targeted therapeutics such as vaccines or inhibitors directed towards these interactions.
Collapse
Affiliation(s)
- Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kheerthana Duraivelan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
13
|
Molteni C, Forni D, Cagliani R, Mozzi A, Clerici M, Sironi M. Evolution of the orthopoxvirus core genome. Virus Res 2023; 323:198975. [PMID: 36280003 PMCID: PMC9586335 DOI: 10.1016/j.virusres.2022.198975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Orthopoxviruses comprise several relevant pathogens, including the causative agent of smallpox and monkeypox virus. Analysis of orthopoxvirus genome evolution mainly focused on gene gains/losses. We instead analyzed core genes, which are conserved in all orthopoxviruses. We show that, despite their strong constraint, some genes involved in viral morphogenesis and transcription/replication were targets of pervasive positive selection, which was relatively uncommon in immunomodulatory genes. However at least three of the positively selected genes, E3L, A24R, and H3L, might have evolved in response to immune selection. Episodic positive selection was particularly common on the internal branches of the orthopox phylogeny and on the monkeypox virus lineage. The latter showed evidence of episodic positive selection at the D14L gene, which encodes a modulator of complement activation (MOPICE). Notably, two genes (B1R and A33R) targeted by episodic selection on more than one branch are involved in forms of intra-genomic conflict. Finally, we found that, in orthopoxvirus proteomes, intrinsically disordered regions (IDRs) tend to be less constrained and are common targets of positive selection. Extension of our analysis to all poxviruses showed no evidence that the IDR fraction differs with host range. Conversely, we found a strong effect of base composition, which was however not sufficient to explain IDR fraction. We thus suggest that, in poxviruses, the IDR fraction is maintained by modulating GC content to accommodate disorder-promoting codons. Overall, our data provide novel insight in orthopoxvirus evolution and provide a list of genes and sites that are expected to modulate viral phenotypes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
14
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Evolution of SLiM-mediated hijack functions in intrinsically disordered viral proteins. Essays Biochem 2022; 66:945-958. [DOI: 10.1042/ebc20220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022]
Abstract
Abstract
Viruses and their hosts are involved in an ‘arms race’ where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.
Collapse
|
16
|
Chai H, Gu Q, Robertson DL, Hughes J. Defining the characteristics of interferon-alpha-stimulated human genes: insight from expression data and machine learning. Gigascience 2022; 11:giac103. [PMID: 36399061 PMCID: PMC9673497 DOI: 10.1093/gigascience/giac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A virus-infected cell triggers a signalling cascade, resulting in the secretion of interferons (IFNs), which in turn induces the upregulation of the IFN-stimulated genes (ISGs) that play a role in antipathogen host defence. Here, we conducted analyses on large-scale data relating to evolutionary gene expression, sequence composition, and network properties to elucidate factors associated with the stimulation of human genes in response to IFN-α. RESULTS We find that ISGs are less evolutionary conserved than genes that are not significantly stimulated in IFN experiments (non-ISGs). ISGs show obvious depletion of GC content in the coding region. This influences the representation of some compositions following the translation process. IFN-repressed human genes (IRGs), downregulated genes in IFN experiments, can have similar properties to the ISGs. Additionally, we design a machine learning framework integrating the support vector machine and novel feature selection algorithm that achieves an area under the receiver operating characteristic curve (AUC) of 0.7455 for ISG prediction. Its application in other IFN systems suggests the similarity between the ISGs triggered by type I and III IFNs. CONCLUSIONS ISGs have some unique properties that make them different from the non-ISGs. The representation of some properties has a strong correlation with gene expression following IFN-α stimulation, which can be used as a predictive feature in machine learning. Our model predicts several genes as putative ISGs that so far have shown no significant differential expression when stimulated with IFN-α in the cell/tissue types in the available databases. A web server implementing our method is accessible at http://isgpre.cvr.gla.ac.uk/. The docker image at https://hub.docker.com/r/hchai01/isgpre can be downloaded to reproduce the prediction.
Collapse
Affiliation(s)
- Haiting Chai
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| |
Collapse
|
17
|
Garg A, Singhal N, Kumar M. Investigating the eukaryotic host-like SLiMs in microbial mimitopes and their potential as novel drug targets for treating autoimmune diseases. Front Microbiol 2022; 13:1039188. [DOI: 10.3389/fmicb.2022.1039188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
18
|
Shuler G, Hagai T. Rapidly evolving viral motifs mostly target biophysically constrained binding pockets of host proteins. Cell Rep 2022; 40:111212. [PMID: 35977510 DOI: 10.1016/j.celrep.2022.111212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/11/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
Abstract
Evolutionary changes in host-virus interactions can alter the course of infection, but the biophysical and regulatory constraints that shape interface evolution remain largely unexplored. Here, we focus on viral mimicry of host-like motifs that allow binding to host domains and modulation of cellular pathways. We observe that motifs from unrelated viruses preferentially target conserved, widely expressed, and highly connected host proteins, enriched with regulatory and essential functions. The interface residues within these host domains are more conserved and bind a larger number of cellular proteins than similar motif-binding domains that are not known to interact with viruses. In contrast, rapidly evolving viral-binding human proteins form few interactions with other cellular proteins and display high tissue specificity, and their interfaces have few inter-residue contacts. Our results distinguish between conserved and rapidly evolving host-virus interfaces and show how various factors limit host capacity to evolve, allowing for efficient viral subversion of host machineries.
Collapse
Affiliation(s)
- Gal Shuler
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
19
|
Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat Struct Mol Biol 2022; 29:781-790. [PMID: 35948766 DOI: 10.1038/s41594-022-00811-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 02/02/2023]
Abstract
Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.
Collapse
|
20
|
Abdin O, Nim S, Wen H, Kim PM. PepNN: a deep attention model for the identification of peptide binding sites. Commun Biol 2022; 5:503. [PMID: 35618814 PMCID: PMC9135736 DOI: 10.1038/s42003-022-03445-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Protein-peptide interactions play a fundamental role in many cellular processes, but remain underexplored experimentally and difficult to model computationally. Here, we present PepNN-Struct and PepNN-Seq, structure and sequence-based approaches for the prediction of peptide binding sites on a protein. A main difficulty for the prediction of peptide-protein interactions is the flexibility of peptides and their tendency to undergo conformational changes upon binding. Motivated by this, we developed reciprocal attention to simultaneously update the encodings of peptide and protein residues while enforcing symmetry, allowing for information flow between the two inputs. PepNN integrates this module with modern graph neural network layers and a series of transfer learning steps are used during training to compensate for the scarcity of peptide-protein complex information. We show that PepNN-Struct achieves consistently high performance across different benchmark datasets. We also show that PepNN makes reasonable peptide-agnostic predictions, allowing for the identification of novel peptide binding proteins.
Collapse
Affiliation(s)
- Osama Abdin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Han Wen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Philip M Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
21
|
Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022; 39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Linear motifs have an integral role in dynamic cell functions, including cell signaling. However, due to their small size, low complexity, and frequent mutations, identifying novel functional motifs poses a challenge. Viruses rely extensively on the molecular mimicry of cellular linear motifs. In this study, we apply systematic motif prediction combined with functional filters to identify human linear motifs convergently evolved also in viral proteins. We observe an increase in the sensitivity of motif prediction and improved enrichment in known instances. We identify >7,300 non-redundant motif instances at various confidence levels, 99 of which are supported by all functional and structural filters. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalog of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the associated mechanisms of viral interference.
Collapse
Affiliation(s)
- Bishoy Wadie
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Vitalii Kleshchevnikov
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Elissavet Sandaltzopoulou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.
| |
Collapse
|
22
|
Saha D, Iannuccelli M, Brun C, Zanzoni A, Licata L. The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Front Microbiol 2022; 13:849781. [PMID: 35531299 PMCID: PMC9069133 DOI: 10.3389/fmicb.2022.849781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Viral infections are one of the major causes of human diseases that cause yearly millions of deaths and seriously threaten global health, as we have experienced with the COVID-19 pandemic. Numerous approaches have been adopted to understand viral diseases and develop pharmacological treatments. Among them, the study of virus-host protein-protein interactions is a powerful strategy to comprehend the molecular mechanisms employed by the virus to infect the host cells and to interact with their components. Experimental protein-protein interactions described in the scientific literature have been systematically captured into several molecular interaction databases. These data are organized in structured formats and can be easily downloaded by users to perform further bioinformatic and network studies. Network analysis of available virus-host interactomes allow us to understand how the host interactome is perturbed upon viral infection and what are the key host proteins targeted by the virus and the main cellular pathways that are subverted. In this review, we give an overview of publicly available viral-human protein-protein interactions resources and the community standards, curation rules and adopted ontologies. A description of the main virus-human interactome available is provided, together with the main network analyses that have been performed. We finally discuss the main limitations and future challenges to assess the quality and reliability of protein-protein interaction datasets and resources.
Collapse
Affiliation(s)
- Deeya Saha
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
| | | | - Christine Brun
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- CNRS, Marseille, France
| | - Andreas Zanzoni
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- *Correspondence: Andreas Zanzoni,
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Luana Licata,
| |
Collapse
|
23
|
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30:357-372.e11. [PMID: 35182467 PMCID: PMC8912257 DOI: 10.1016/j.chom.2022.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
Collapse
Affiliation(s)
- Callum Talbot-Cooper
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - John P Shannon
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Christian R Cherry
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Marcus T Au
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, NIAD, NIH, Bethesda, MD 20852, USA
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
24
|
A case of convergent evolution: Several viral and bacterial pathogens hijack RSK kinases through a common linear motif. Proc Natl Acad Sci U S A 2022; 119:2114647119. [PMID: 35091472 PMCID: PMC8812568 DOI: 10.1073/pnas.2114647119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.
Collapse
|
25
|
Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Viruses 2021; 13:v13122369. [PMID: 34960638 PMCID: PMC8703344 DOI: 10.3390/v13122369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Most viruses have small genomes that encode proteins needed to perform essential enzymatic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database.
Collapse
|
26
|
A widespread viral entry mechanism: The C-end Rule motif-neuropilin receptor interaction. Proc Natl Acad Sci U S A 2021; 118:2112457118. [PMID: 34772761 PMCID: PMC8670474 DOI: 10.1073/pnas.2112457118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
Many phylogenetically distant animal viruses, including the new coronavirus severe acute respiratory syndrome coronavirus 2, have surface proteins with polybasic sites that are cleaved by host furin and furin-like proteases. Other than priming certain viral surface proteins for fusion, cleavage generates a carboxy-terminal RXXR sequence. This C-end Rule (CendR) motif is known to bind to neuropilin (NRP) receptors on the cell surface. NRPs are ubiquitously expressed, pleiotropic cell surface receptors with important roles in growth factor signaling, vascular biology, and neurobiology, as well as immune homeostasis and activation. The CendR–NRP receptor interaction promotes endocytic internalization and tissue spreading of different cargo, including viral particles. We propose that the interaction between viral surface proteins and NRPs plays an underappreciated and prevalent role in the transmission and pathogenesis of diverse viruses and represents a promising broad-spectrum antiviral target.
Collapse
|
27
|
Tsu BV, Fay EJ, Nguyen KT, Corley MR, Hosuru B, Dominguez VA, Daugherty MD. Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Front Immunol 2021; 12:769543. [PMID: 34790204 PMCID: PMC8591160 DOI: 10.3389/fimmu.2021.769543] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthew D. Daugherty
- Division of Biological Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
28
|
Lian X, Yang X, Yang S, Zhang Z. Current status and future perspectives of computational studies on human-virus protein-protein interactions. Brief Bioinform 2021; 22:6161422. [PMID: 33693490 DOI: 10.1093/bib/bbab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
29
|
Martínez YA, Guo X, Portales-Pérez DP, Rivera G, Castañeda-Delgado JE, García-Pérez CA, Enciso-Moreno JA, Lara-Ramírez EE. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus. PLoS One 2021; 16:e0246901. [PMID: 33596252 PMCID: PMC7888644 DOI: 10.1371/journal.pone.0246901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.
Collapse
Affiliation(s)
- Yamelie A. Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Diana P. Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Cátedras-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Carlos A. García-Pérez
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A. Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| |
Collapse
|
30
|
Yang CW, Shi ZL. Uncovering potential host proteins and pathways that may interact with eukaryotic short linear motifs in viral proteins of MERS, SARS and SARS2 coronaviruses that infect humans. PLoS One 2021; 16:e0246150. [PMID: 33534852 PMCID: PMC7857568 DOI: 10.1371/journal.pone.0246150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A coronavirus pandemic caused by a novel coronavirus (SARS-CoV-2) has spread rapidly worldwide since December 2019. Improved understanding and new strategies to cope with novel coronaviruses are urgently needed. Viruses (especially RNA viruses) encode a limited number and size (length of polypeptide chain) of viral proteins and must interact with the host cell components to control (hijack) the host cell machinery. To achieve this goal, the extensive mimicry of SLiMs in host proteins provides an effective strategy. However, little is known regarding SLiMs in coronavirus proteins and their potential targets in host cells. The objective of this study is to uncover SLiMs in coronavirus proteins that are present within host cells. These SLiMs have a high possibility of interacting with host intracellular proteins and hijacking the host cell machinery for virus replication and dissemination. In total, 1,479 SLiM hits were identified in the 16 proteins of 590 coronaviruses infecting humans. Overall, 106 host proteins were identified that may interact with SLiMs in 16 coronavirus proteins. These SLiM-interacting proteins are composed of many intracellular key regulators, such as receptors, transcription factors and kinases, and may have important contributions to virus replication, immune evasion and viral pathogenesis. A total of 209 pathways containing proteins that may interact with SLiMs in coronavirus proteins were identified. This study uncovers potential mechanisms by which coronaviruses hijack the host cell machinery. These results provide potential therapeutic targets for viral infections.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Center for Applied Artificial Intelligence Research, Soochow University, Taipei, Taiwan
- * E-mail:
| | - Zhi-Ling Shi
- Ocean School of Fuzhou University, Fuzhou University, Fuzhou, China
| |
Collapse
|
31
|
Abstract
Viral genomes encode transcriptional regulators that alter the expression of viral and host genes. Despite an emerging role in human diseases, a thorough annotation of human viral transcriptional regulators (vTRs) is currently lacking, limiting our understanding of their molecular features and functions. Here, we provide a comprehensive catalog of 419 vTRs belonging to 20 different virus families. Using this catalog, we characterize shared and unique cellular genes, proteins, and pathways targeted by particular vTRs and discuss the role of vTRs in human disease pathogenesis. Our study provides a unique and valuable resource for the fields of virology, genomics, and human disease genetics.
Collapse
|
32
|
Tsu BV, Beierschmitt C, Ryan AP, Agarwal R, Mitchell PS, Daugherty MD. Diverse viral proteases activate the NLRP1 inflammasome. eLife 2021; 10:60609. [PMID: 33410748 PMCID: PMC7857732 DOI: 10.7554/elife.60609] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation. Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of the bioactive C-terminal domain, which includes the caspase activation and recruitment domain (CARD). However, natural pathogen-derived effectors that can activate human NLRP1 have remained unknown. Here, we use an evolutionary model to identify several proteases from diverse picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work demonstrates that NLRP1 acts as a 'tripwire' to recognize the enzymatic function of a wide range of viral proteases and suggests that host mimicry of viral polyprotein cleavage sites can be an evolutionary strategy to activate a robust inflammatory immune response. The immune system recognizes disease-causing microbes, such as bacteria and viruses, and removes them from the body before they can cause harm. When the immune system first detects these foreign invaders, a multi-part structure known as the inflammasome launches an inflammatory response to help fight the microbes off. Several sensor proteins can activate the inflammasome, including one in mice called NLRP1B. This protein has evolved a specialized site that can be cut by a bacterial toxin. Once cleaved, this region acts like a biological tripwire and sparks NLRP1B into action, allowing the sensor to activate the inflammasome system. Humans have a similar protein called NLRP1, but it is unclear whether this protein has also evolved a tripwire region that can sense microbial proteins. To answer this question, Tsu, Beierschmitt et al. set out to find whether NLRP1 can be activated by viruses in the Picornaviridae family, which are responsible for diseases like polio, hepatitis A, and the common cold. This revealed that NLRP1 contains a cleavage site for enzymes produced by some, but not all, of the viruses in the picornavirus family. Further experiments confirmed that when a picornavirus enzyme cuts through this region during a viral infection, it triggers NLRP1 to activate the inflammasome and initiate an immune response. The enzymes from different viruses were also found to cleave human NLRP1 at different sites, and the protein’s susceptibility to cleavage varied between different animal species. For instance, Tsu, Beierschmitt et al. discovered that NLRP1B in mice is also able to sense picornaviruses, and that different enzymes activate and cleave NLRP1B and NLRP1 to varying degrees: this affected how well the two proteins are expected to be able to sense specific viral infections. This variation suggests that there is an ongoing evolutionary arms-race between viral proteins and the immune system: as viral proteins change and new ones emerge, NLRP1 rapidly evolves new tripwire sites that allow it to sense the infection and launch an inflammatory response. What happens when NLRP1B activates the inflammasome during a viral infection is still an open question. The discovery that mouse NLRP1B shares features with human NLRP1 could allow the development of animal models to study the role of the tripwire in antiviral defenses and the overactive inflammation associated with some viral infections. Understanding the types of viruses that activate the NLRP1 inflammasome, and the outcomes of the resulting immune response, may have implications for future treatments of viral infections.
Collapse
Affiliation(s)
- Brian V Tsu
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | | | - Andrew P Ryan
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| | - Rimjhim Agarwal
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States
| | - Patrick S Mitchell
- Division of Immunology & Pathogenesis, University of California Berkeley, Berkeley, United States.,Department of Microbiology, University of Washington, Seattle, United States
| | - Matthew D Daugherty
- Division of Biological Sciences, University of California San Diego, San Diego, United States
| |
Collapse
|
33
|
Lian X, Yang X, Shao J, Hou F, Yang S, Pan D, Zhang Z. Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Blundell TL, Gupta MN, Hasnain SE. Intrinsic disorder in proteins: Relevance to protein assemblies, drug design and host-pathogen interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 156:34-42. [PMID: 32628954 DOI: 10.1016/j.pbiomolbio.2020.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Intrinsic disorder in proteins resulting in considerable variation in structure can lead to multiple functions including multi-specificity and diverse pathologies. Protein interfaces can involve disordered regions that assemble through a concerted-fold-and-bind mechanism. The binding involves both enthalpic and entropic gains by exploiting 'hot spots' on the partner and displacing water molecules placed in thermodynamically unfavorable situations. The examples of Rad51-BRCA2 and Artemis-DNA-PKCs/LigIV complexes illustrate this in the context of drug design. This overview tracks the seamless involvement of protein disorder in multi-specificity of biocatalysts, protein assembly formations and host-pathogen interactions, where intrinsic disorder can in Mycobacteria, compensate for genome reduction by carrying out multiple functions and in some RNA viruses facilitate adaption to the host. These present challenging opportunities for designing new drugs and interventions.
Collapse
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, CB21GA, UK
| | - Munishwar N Gupta
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed E Hasnain
- Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India; Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Prof C.R. Rao Road, Hyderabad, India.
| |
Collapse
|
35
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
36
|
Hraber P, O'Maille PE, Silberfarb A, Davis-Anderson K, Generous N, McMahon BH, Fair JM. Resources to Discover and Use Short Linear Motifs in Viral Proteins. Trends Biotechnol 2020; 38:113-127. [PMID: 31427097 PMCID: PMC7114124 DOI: 10.1016/j.tibtech.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022]
Abstract
Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.
Collapse
Affiliation(s)
- Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Paul E O'Maille
- Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Andrew Silberfarb
- Artificial Intelligence Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Katie Davis-Anderson
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nicholas Generous
- Global Security Directorate, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeanne M Fair
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
37
|
Ahmad J, Khubaib M, Sheikh JA, Pancsa R, Kumar S, Srinivasan A, Babu MM, Hasnain SE, Ehtesham NZ. Disorder-to-order transition in PE-PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Bio 2019; 10:70-85. [PMID: 31643141 PMCID: PMC6943233 DOI: 10.1002/2211-5463.12749] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
A growing body of evidence supports the hypothesis that intrinsically disordered proteins often mediate host–pathogen interactions and modulate host functions for pathogen survival and virulence. Mycobacterium tuberculosis (M.tb) has evolved largely through reductive evolution, with a few exceptions such as the glycine–alanine‐rich PE–PPE/PGRS protein family, which has been expanding in pathogenic mycobacteria. Here, our analyses of the M.tb proteome and secretome revealed that the PE–PGRS subfamily is enriched for disordered regions and disordered binding sites, pointing to their importance in host–pathogen interactions. As a case study, the secondary structure of PE35–PPE68 and PE32–PPE65 of the pathogenesis‐related RD1 and RD8 regions was analyzed through Fourier‐transform infrared spectroscopy. These disordered proteins displayed a considerable structural shift from disordered to ordered while engaged in the formation of complexes. While these proteins are immunogenic individually and enhance the pro‐pathogen response, their corresponding complexes enhanced the responses manifold as displayed here by PE35 and PPE68. It is likely that M.tb exploits such disorder–order structural dynamics as a strategy to mount a pro‐pathogen response and subvert host defense for productive infection. This functional gain also serves as a means to compensate genomic content loss due to reductive evolution.
Collapse
Affiliation(s)
- Javeed Ahmad
- Inflammation Biology and Cell Signalling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Khubaib
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Javaid Ahmad Sheikh
- Inflammation Biology and Cell Signalling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Rita Pancsa
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohan Madan Babu
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India.,Dr. Reddy's Institute of Life Sciences, Hyderabad, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signalling Laboratory, National Institute of Pathology, New Delhi, India
| |
Collapse
|
38
|
Dubreuil B, Matalon O, Levy ED. Protein Abundance Biases the Amino Acid Composition of Disordered Regions to Minimize Non-functional Interactions. J Mol Biol 2019; 431:4978-4992. [PMID: 31442477 PMCID: PMC6941228 DOI: 10.1016/j.jmb.2019.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023]
Abstract
In eukaryotes, disordered regions cover up to 50% of proteomes and mediate fundamental cellular processes. In contrast to globular domains, where about half of the amino acids are buried in the protein interior, disordered regions show higher solvent accessibility, which makes them prone to engage in non-functional interactions. Such interactions are exacerbated by the law of mass action, prompting the question of how they are minimized in abundant proteins. We find that interaction propensity or "stickiness" of disordered regions negatively correlates with their cellular abundance, both in yeast and human. Strikingly, considering yeast proteins where a large fraction of the sequence is disordered, the correlation between stickiness and abundance reaches R=-0.55. Beyond this global amino-acid composition bias, we identify three rules by which amino-acid composition of disordered regions adjusts with high abundance. First, lysines are preferred over arginines, consistent with the latter amino acid being stickier than the former. Second, compensatory effects exist, whereby a sticky region can be tolerated if it is compensated by a distal non-sticky region. Third, such compensation requires a lower average stickiness at the same abundance when compared to a scenario where stickiness is homogeneous throughout the sequence. We validate these rules experimentally, employing them as different strategies to rescue an otherwise sticky protein fragment from aggregation. Our results highlight that non-functional interactions represent a significant constraint in cellular systems and reveal simple rules by which protein sequences adapt to that constraint. Data from this work are deposited in Figshare, at https://doi.org/10.6084/m9.figshare.8068937.v3.
Collapse
Affiliation(s)
- Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Or Matalon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
39
|
Wang S, Li H, Weng S, Li C, He J. White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication. iScience 2019; 23:100752. [PMID: 31884168 PMCID: PMC6941876 DOI: 10.1016/j.isci.2019.100752] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Viruses need to hijack and manipulate host proteins to guarantee their replication. Herein, we uncovered that the DNA virus white spot syndrome virus (WSSV) established a novel positive feedback loop by hijacking the host JNK pathway via its immediate-early 1 (IE1) protein to drive replication. Specifically, the WSSV IE1 bound to host JNK, and enhanced JNK autoactivation by autophosphorylation, and in turn, elevated JNK kinase activity to its substrate c-Jun and induced IE1, which resulted in a viral gene-mediated positive feedback loop. Moreover, the activation of this loop is able to induce wsv056, wsv249, and wsv403, in addition to IE1 itself. Disruption of this loop during WSSV infection by knockdown of JNK, c-Jun or IE1 led to an increased survival rate and lower viral burdens in shrimp. Taken together, this loop may provide a potential target for the development of specific antiviral strategies or agents against WSSV infection. Lvc-Jun promotes WSSV IE1 induction via interacting with the promoter of IE1 gene The interaction of IE1-LvJNK enhances the autophosphorylation of LvJNK IE1 hijacks the JNK/c-Jun cascade to create a feedback loop to drive replication wsv056, wsv249, and wsv403 are also benefit from this positive feedback loop
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Jianguo He
- State Key Laboratory of Biocontrol/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, P. R. China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
40
|
Zsolyomi F, Ambrus V, Fuxreiter M. Patterns of Dynamics Comprise a Conserved Evolutionary Trait. J Mol Biol 2019; 432:497-507. [PMID: 31783068 DOI: 10.1016/j.jmb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/04/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
The importance of protein dynamics in function may suggest an evolutionary selection on large-scale protein motions. Here we systematically studied the dynamic characteristics in 2221 protein domains (58477 sequences) of the Pfam database. We defined the patterns of dynamics (PODs) based on the estimated NMR order parameters and the predicted degree of disorder, and found a significant correlation between them in families of both structured and disordered protein domains. We demonstrate that conservation of dynamic patterns frequently exceeds conservation of sequence and is comparable to the patterns of hydropathy and nonspecific interaction potential. Similarity of dynamic patterns is weakly correlated to structure similarity and to the degree of disorder. We illustrate that POD alignments could be applied to sequentially divergent or intrinsically disordered regions. We propose that patterns of dynamics comprise a conserved evolutionary trait, which could be used to infer evolutionary relationships as an alternative to sequence and structure.
Collapse
Affiliation(s)
- F Zsolyomi
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - V Ambrus
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary
| | - M Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary.
| |
Collapse
|
41
|
Pabis M, Corsini L, Vincendeau M, Tripsianes K, Gibson TJ, Brack-Werner R, Sattler M. Modulation of HIV-1 gene expression by binding of a ULM motif in the Rev protein to UHM-containing splicing factors. Nucleic Acids Res 2019; 47:4859-4871. [PMID: 30892606 PMCID: PMC6511859 DOI: 10.1093/nar/gkz185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/01/2022] Open
Abstract
The HIV-1 protein Rev is essential for virus replication and ensures the expression of partially spliced and unspliced transcripts. We identified a ULM (UHM ligand motif) motif in the Arginine-Rich Motif (ARM) of the Rev protein. ULMs (UHM ligand motif) mediate protein interactions during spliceosome assembly by binding to UHM (U2AF homology motifs) domains. Using NMR, biophysical methods and crystallography we show that the Rev ULM binds to the UHMs of U2AF65 and SPF45. The highly conserved Trp45 in the Rev ULM is crucial for UHM binding in vitro, for Rev co-precipitation with U2AF65 in human cells and for proper processing of HIV transcripts. Thus, Rev-ULM interactions with UHM splicing factors contribute to the regulation of HIV-1 transcript processing, also at the splicing level. The Rev ULM is an example of viral mimicry of host short linear motifs that enables the virus to interfere with the host molecular machinery.
Collapse
Affiliation(s)
- Marta Pabis
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Lorenzo Corsini
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| | - Michelle Vincendeau
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, 85 764, Germany
| | - Konstantinos Tripsianes
- CEITEC - Central European Institute of Technology, Masaryk University, Brno 62 500, Czech Republic
| | | | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Zentrum München, Neuherberg 85 764, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85 764, Germany.,Center for Integrated Protein Science Munich, Department Chemie, TU München, Garching 85748, Germany
| |
Collapse
|
42
|
Shukla E, Chauhan R. Host-HIV-1 Interactome: A Quest for Novel Therapeutic Intervention. Cells 2019; 8:cells8101155. [PMID: 31569640 PMCID: PMC6830350 DOI: 10.3390/cells8101155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The complex nature and structure of the human immunodeficiency virus has rendered the cure for HIV infections elusive. The advances in antiretroviral treatment regimes and the development of highly advanced anti-retroviral therapy, which primarily targets the HIV enzymes, have dramatically changed the face of the HIV epidemic worldwide. Despite this remarkable progress, patients treated with these drugs often witness inadequate efficacy, compound toxicity and non-HIV complications. Considering the limited inventory of druggable HIV proteins and their susceptibility to develop drug resistance, recent attempts are focussed on targeting HIV-host interactomes that are essential for viral reproduction. Noticeably, unlike other viruses, HIV subverts the host nuclear pore complex to enter into and exit through the nucleus. Emerging evidence suggests a crucial role of interactions between HIV-1 proteins and host nucleoporins that underlie the import of the pre-integration complex into the nucleus and export of viral RNAs into the cytoplasm during viral replication. Nevertheless, the interaction of HIV-1 with nucleoporins has been poorly described and the role of nucleoporins during nucleocytoplasmic transport of HIV-1 still remains unclear. In this review, we highlight the advances and challenges in developing a more effective antiviral arsenal by exploring critical host-HIV interactions with a special focus on nuclear pore complex (NPC) and nucleoporins.
Collapse
Affiliation(s)
- Ekta Shukla
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| | - Radha Chauhan
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| |
Collapse
|
43
|
Gutiérrez-González LH, Santos-Mendoza T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism. FASEB J 2019; 33:10607-10617. [PMID: 31336050 DOI: 10.1096/fj.201900518r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.
Collapse
Affiliation(s)
- Luis H Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
44
|
Walter J, Charon J, Hu Y, Lachat J, Leger T, Lafforgue G, Barra A, Michon T. Comparative analysis of mutational robustness of the intrinsically disordered viral protein VPg and of its interactor eIF4E. PLoS One 2019; 14:e0211725. [PMID: 30763345 PMCID: PMC6375565 DOI: 10.1371/journal.pone.0211725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/20/2019] [Indexed: 01/02/2023] Open
Abstract
Conformational intrinsic disorder is a feature present in many virus proteins. Intrinsically disordered regions (IDRs) have weaker structural requirement than ordered regions and mutations in IDRs could have a lower impact on the virus fitness. This could favor its exploration of adaptive solutions. The potyviral protein VPg contains IDRs with determinants for adaptation to its host plant. To experimentally assess whether IDRs are more resistant to mutations than ordered regions, the biologically relevant interaction between mutant libraries of both VPg and the eukaryotic translation initiation factor 4E (eIF4E) and their respective wild type partner was examined using yeast two hybrid assay. Our data shows that VPg is significantly more robust to mutations than eIF4E and as such belongs to a particular class of intrinsically disordered proteins. This result is discussed from the standpoint of IDRs involvement in the virus adaptive processes.
Collapse
Affiliation(s)
- Jocelyne Walter
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
- * E-mail: (JW); (TM)
| | - Justine Charon
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
- School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yihua Hu
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Joy Lachat
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Thomas Leger
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Guillaume Lafforgue
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Amandine Barra
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
| | - Thierry Michon
- UMR Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, CS, Villenave d’Ornon, France
- * E-mail: (JW); (TM)
| |
Collapse
|
45
|
Ivarsson Y, Jemth P. Affinity and specificity of motif-based protein-protein interactions. Curr Opin Struct Biol 2018; 54:26-33. [PMID: 30368054 DOI: 10.1016/j.sbi.2018.09.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023]
Abstract
It is becoming increasingly clear that eukaryotic cell physiology is largely controlled by protein-protein interactions involving disordered protein regions, which usually interact with globular domains in a coupled binding and folding reaction. Several protein recognition domains are part of large families where members can interact with similar peptide ligands. Because of this, much research has been devoted to understanding how specificity can be achieved. A combination of interface complementarity, interactions outside of the core binding site, avidity from multidomain architecture and spatial and temporal regulation of expression resolves the conundrum. Here, we review recent advances in molecular aspects of affinity and specificity in such protein-protein interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|
46
|
Zhao N, Sebastiano V, Moshkina N, Mena N, Hultquist J, Jimenez-Morales D, Ma Y, Rialdi A, Albrecht R, Fenouil R, Sánchez-Aparicio MT, Ayllon J, Ravisankar S, Haddad B, Ho JSY, Low D, Jin J, Yurchenko V, Prinjha RK, Tarakhovsky A, Squatrito M, Pinto D, Allette K, Byun M, Smith ML, Sebra R, Guccione E, Tumpey T, Krogan N, Greenbaum B, van Bakel H, García-Sastre A, Marazzi I. Influenza virus infection causes global RNAPII termination defects. Nat Struct Mol Biol 2018; 25:885-893. [PMID: 30177761 PMCID: PMC10754036 DOI: 10.1038/s41594-018-0124-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Viral infection perturbs host cells and can be used to uncover regulatory mechanisms controlling cellular responses and susceptibility to infections. Using cell biological, biochemical, and genetic tools, we reveal that influenza A virus (IAV) infection induces global transcriptional defects at the 3' ends of active host genes and RNA polymerase II (RNAPII) run-through into extragenic regions. Deregulated RNAPII leads to expression of aberrant RNAs (3' extensions and host-gene fusions) that ultimately cause global transcriptional downregulation of physiological transcripts, an effect influencing antiviral response and virulence. This phenomenon occurs with multiple strains of IAV, is dependent on influenza NS1 protein, and can be modulated by SUMOylation of an intrinsically disordered region (IDR) of NS1 expressed by the 1918 pandemic IAV strain. Our data identify a strategy used by IAV to suppress host gene expression and indicate that polymorphisms in IDRs of viral proteins can affect the outcome of an infection.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Natasha Moshkina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nacho Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judd Hultquist
- Department of Medicine (Infectious Diseases), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yixuan Ma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Rialdi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Fenouil
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Ayllon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sweta Ravisankar
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Bahareh Haddad
- Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Sook Yuin Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Diana Low
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Rab K Prinjha
- Epinova Epigenetics Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY, USA
| | - Massimo Squatrito
- Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, Spain
| | - Dalila Pinto
- Department of Psychiatry, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimaada Allette
- Department of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minji Byun
- Department of Medicine, Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa Laird Smith
- Department of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Terrence Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin Greenbaum
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
47
|
García-Pérez CA, Guo X, Navarro JG, Aguilar DAG, Lara-Ramírez EE. Proteome-wide analysis of human motif-domain interactions mapped on influenza a virus. BMC Bioinformatics 2018; 19:238. [PMID: 29940841 PMCID: PMC6019528 DOI: 10.1186/s12859-018-2237-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/07/2018] [Indexed: 01/27/2023] Open
Abstract
Background The influenza A virus (IAV) is a constant threat for humans worldwide. The understanding of motif-domain protein participation is essential to combat the pathogen. Results In this study, a data mining approach was employed to extract influenza-human Protein-Protein interactions (PPI) from VirusMentha,Virus MINT, IntAct, and Pfam databases, to mine motif-domain interactions (MDIs) stored as Regular Expressions (RegExp) in 3DID database. A total of 107 RegExp related to human MDIs were searched on 51,242 protein fragments from H1N1, H1N2, H2N2, H3N2 and H5N1 strains obtained from Virus Variation database. A total 46 MDIs were frequently mapped on the IAV proteins and shared between the different strains. IAV kept host-like MDIs that were associated with the virus survival, which could be related to essential biological process such as microtubule-based processes, regulation of cell cycle check point, regulation of replication and transcription of DNA, etc. in human cells. The amino acid motifs were searched for matches in the immune epitope database and it was found that some motifs are part of experimentally determined epitopes on IAV, implying that such interactions exist. Conclusion The directed data-mining method employed could be used to identify functional motifs in other viruses for envisioning new therapies. Electronic supplementary material The online version of this article (10.1186/s12859-018-2237-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlos A García-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, Mexico
| | - Xianwu Guo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, Mexico
| | | | | | - Edgar E Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Interior Alameda # 45, Colonia Centro, CP. 98000, Zacatecas, Zac, Mexico.
| |
Collapse
|
48
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
49
|
The present and the future of motif-mediated protein-protein interactions. Curr Opin Struct Biol 2018; 50:162-170. [PMID: 29730529 DOI: 10.1016/j.sbi.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023]
Abstract
Protein-protein interactions (PPIs) are essential to governing virtually all cellular processes. Of particular importance are the versatile motif-mediated interactions (MMIs), which are thus far underrepresented in available interaction data. This is largely due to technical difficulties inherent in the properties of MMIs, but due to the increasing recognition of the vital roles of MMIs in biology, several systematic approaches have recently been developed to detect novel MMIs. Consequently, rapidly growing numbers of motifs are being identified and pursued further for therapeutic applications. In this review, we discuss the current understanding on the diverse functions and disease-relevance of MMIs, the key methodologies for detection of MMIs, and the potential of MMIs for drug development.
Collapse
|
50
|
Contrasting Function of Structured N-Terminal and Unstructured C-Terminal Segments of Mycobacterium tuberculosis PPE37 Protein. mBio 2018; 9:mBio.01712-17. [PMID: 29362230 PMCID: PMC5784249 DOI: 10.1128/mbio.01712-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pathogens frequently employ eukaryotic linear motif (ELM)-rich intrinsically disordered proteins (IDPs) to perturb and hijack host cell networks for a productive infection. Mycobacterium tuberculosis has a relatively high percentage of IDPs in its proteome, the significance of which is not known. The Mycobacterium-specific PE-PPE protein family has several members with unusually high levels of structural disorder and disorder-promoting Ala/Gly residues. PPE37 protein, a member of this family, carries an N-terminal PPE domain capable of iron binding, two transmembrane domains, and a disordered C-terminal segment harboring ELMs and a eukaryotic nuclear localization signal (NLS). PPE37, expressed as a function of low iron stress, was cleaved by M. tuberculosis protease into N- and C-terminal segments. A recombinant N-terminal segment (P37N) caused proliferation and differentiation of monocytic THP-1 cells, into CD11c, DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin)-positive semimature dendritic cells exhibiting high interleukin-10 (IL-10) but negligible IL-12 and also low tumor necrosis factor alpha (TNF-α) secretion—an environment suitable for maintaining tolerogenic immune cells. The C-terminal segment entered the macrophage nucleus and induced caspase-3-dependent apoptosis of host cells. Mice immunized with recombinant PPE37FL and PPE37N evoked strong anti-inflammatory response, validating the in vitro immunostimulatory effect. Analysis of the IgG response of PPE37FL and PPE37N revealed significant immunoreactivities in different categories of TB patients, viz. pulmonary TB (PTB) and extrapulmonary TB (EPTB), vis-a-vis healthy controls. These results support the role of IDPs in performing contrasting activities to modulate the host processes, possibly through molecular mimicry and cross talk in two spatially distinct host environments which may likely aid M. tuberculosis survival and pathogenesis. To hijack the human host cell machinery to enable survival inside macrophages, the pathogen Mycobacterium tuberculosis requires a repertoire of proteins that can mimic host protein function and modulate host cell machinery. Here, we have shown how a single protein can play multiple functions and hijack the host cell for the benefit of the pathogen. Full-length membrane-anchored PPE37 protein is cleaved into N- and C-terminal domains under iron-depleted conditions. The N-terminal domain facilitates the propathogen semimature tolerogenic state of dendritic cells, whereas the C-terminal segment is localized into host cell nucleus and induces apoptosis. The immune implications of these in vitro observations were assessed and validated in mice and also human TB patients. This study presents novel mechanistic insight adopted by M. tuberculosis to survive inside host cells.
Collapse
|