1
|
Huang HC, Fong M, Nowak I, Shcherbinina E, Lobo V, Besavilla DF, Huynh HT, Schön K, Westholm JO, Fernandez C, Patel AAH, Wiel C, Sayin VI, Anastasakis D, Angeletti D, Sarshad AA. Nuclear AGO2 supports influenza A virus replication through type-I interferon regulation. Nucleic Acids Res 2025; 53:gkaf268. [PMID: 40219968 PMCID: PMC11992678 DOI: 10.1093/nar/gkaf268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
The role of Argonaute (AGO) proteins and the RNA interference (RNAi) machinery in mammalian antiviral response has been debated. Therefore, we set out to investigate how mammalian RNAi impacts influenza A virus (IAV) infection. We reveal that IAV infection triggers nuclear accumulation of AGO2, which is directly facilitated by p53 activation. Mechanistically, we show that IAV induces nuclear AGO2 targeting of TRIM71and type-I interferon-pathway genes for silencing. Accordingly, Tp53-/- mice do not accumulate nuclear AGO2 and demonstrate decreased susceptibility to IAV infection. Hence, the RNAi machinery is highjacked by the virus to evade the immune system and support viral replication. Furthermore, the FDA-approved drug, arsenic trioxide, prevents p53 nuclear translocation, increases interferon response and decreases viral replication in vitro and in a mouse model in vivo. Our data indicate that targeting the AGO2:p53-mediated silencing of innate immunity may offer a promising strategy to mitigate viral infections.
Collapse
Affiliation(s)
- Hsiang-Chi Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Michelle Fong
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Iwona Nowak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Evgeniia Shcherbinina
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Vivian Lobo
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Danica F Besavilla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Hang T Huynh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Jakub O Westholm
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121 Solna, Sweden
| | - Carola Fernandez
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Angana A H Patel
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Clotilde Wiel
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Volkan I Sayin
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Dimitrios G Anastasakis
- Department of Basic Sciences, School of Medicine, University of Crete, GR 70013 Heraklion ,Greece
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Wu Y, Liu P, Zhou J, Fu M, Wang C, Xiong N, Ji W, Wang Z, Lin J, Yang Q. Virus-derived siRNA: Coronavirus and influenza virus trigger antiviral RNAi immunity in birds. Nucleic Acids Res 2025; 53:gkaf116. [PMID: 39988316 PMCID: PMC11840554 DOI: 10.1093/nar/gkaf116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
RNA interference (RNAi) is a key antiviral immune mechanism in eukaryotes. However, antiviral RNAi in vertebrates has only been observed in cells with poor interferon systems or in viral suppressors of RNAi (VSR) deficiency virus infections. Our research discovered that infecting macrophages with wild-type coronavirus (Infectious bronchitis virus, IBV) and influenza viruses (Avian influenza virus, AIV) can trigger RNAi antiviral immunity and produce a certain amount of virus-derived siRNA (vsiRNA). These vsiRNAs have an inhibitory effect on the virus and carry out targeted silencing along the Dicer-Ago2-vsiRNA axis. Notably, these vsiRNAs are distributed throughout the virus's entire genome, with a predilection for A/U at the 5' and 3' termini of vsiRNA. In addition, Dicer cleavage produces vsiRNA based on the RWM motif, where R represents A/G, W represents A/C, and M represents A/U. We also discovered that avian LGP2 and MDA5 proteins positively impact the expression of the Dicer protein and the Dicer subtype "DicerM." Most importantly, the PS-vsiRNA plasmid combined with nanomaterial polyetherimide (PEI) showed excellent anti-virus activity in specific-pathogen-free (SPF) chickens. These findings show that RNA viruses trigger the production of the vsiRNA in avian somatic cells, which is of great significance for the application of therapeutic vaccines.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Peng Liu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Jie Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Mei Fu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Chenlu Wang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Ningna Xiong
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Wenxin Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
3
|
Baldaccini M, Gaucherand L, Chane-Woon-Ming B, Messmer M, Gucciardi F, Pfeffer S. The helicase domain of human Dicer prevents RNAi-independent activation of antiviral and inflammatory pathways. EMBO J 2024; 43:806-835. [PMID: 38287188 PMCID: PMC10907635 DOI: 10.1038/s44318-024-00035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
In mammalian somatic cells, the relative contribution of RNAi and the type I interferon response during viral infection is unclear. The apparent inefficiency of antiviral RNAi might be due to self-limiting properties and mitigating co-factors of the key enzyme Dicer. In particular, the helicase domain of human Dicer appears to be an important restriction factor of its activity. Here, we study the involvement of several helicase-truncated mutants of human Dicer in the antiviral response. All deletion mutants display a PKR-dependent antiviral phenotype against certain viruses, and one of them, Dicer N1, acts in a completely RNAi-independent manner. Transcriptomic analyses show that many genes from the interferon and inflammatory response pathways are upregulated in Dicer N1 expressing cells. We show that some of these genes are controlled by NF-kB and that blocking this pathway abrogates the antiviral phenotype of Dicer N1. Our findings highlight the crosstalk between Dicer, PKR, and the NF-kB pathway, and suggest that human Dicer may have repurposed its helicase domain to prevent basal activation of antiviral and inflammatory pathways.
Collapse
Affiliation(s)
- Morgane Baldaccini
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Mélanie Messmer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Floriane Gucciardi
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67000, Strasbourg, France.
| |
Collapse
|
4
|
Lopez-Orozco J, Fayad N, Khan JQ, Felix-Lopez A, Elaish M, Rohamare M, Sharma M, Falzarano D, Pelletier J, Wilson J, Hobman TC, Kumar A. The RNA Interference Effector Protein Argonaute 2 Functions as a Restriction Factor Against SARS-CoV-2. J Mol Biol 2023; 435:168170. [PMID: 37271493 PMCID: PMC10238125 DOI: 10.1016/j.jmb.2023.168170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory system that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siRNAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ablation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in parental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonuclease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.
Collapse
Affiliation(s)
- Joaquin Lopez-Orozco
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nawell Fayad
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Juveriya Qamar Khan
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alberto Felix-Lopez
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Mohamed Elaish
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Megha Rohamare
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Maansi Sharma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Joyce Wilson
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Tom C Hobman
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| | - Anil Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
5
|
Kong J, Bie Y, Ji W, Xu J, Lyu B, Xiong X, Qiu Y, Zhou X. Alphavirus infection triggers antiviral RNAi immunity in mammals. Cell Rep 2023; 42:112441. [PMID: 37104090 DOI: 10.1016/j.celrep.2023.112441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
RNA interference (RNAi) is a well-established antiviral immunity. However, for mammalian somatic cells, antiviral RNAi becomes evident only when viral suppressors of RNAi (VSRs) are disabled by mutations or VSR-targeting drugs, thereby limiting its scope as a mammalian immunity. We find that a wild-type alphavirus, Semliki Forest virus (SFV), triggers the Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs) in both mammalian somatic cells and adult mice. These SFV-vsiRNAs are located at a particular region within the 5' terminus of the SFV genome, Argonaute loaded, and active in conferring effective anti-SFV activity. Sindbis virus, another alphavirus, also induces vsiRNA production in mammalian somatic cells. Moreover, treatment with enoxacin, an RNAi enhancer, inhibits SFV replication dependent on RNAi response in vitro and in vivo and protects mice from SFV-induced neuropathogenesis and lethality. These findings show that alphaviruses trigger the production of active vsiRNA in mammalian somatic cells, highlighting the functional importance and therapeutic potential of antiviral RNAi in mammals.
Collapse
Affiliation(s)
- Jing Kong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Bie
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenting Ji
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiuyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Lyu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobei Xiong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
6
|
Anobile DP, Poirier EZ. RNA interference, an emerging component of antiviral immunity in mammals. Biochem Soc Trans 2023; 51:137-146. [PMID: 36606711 DOI: 10.1042/bst20220385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Antiviral RNA interference (RNAi) is an immune pathway that can, in certain conditions, protect mammalian cells against RNA viruses. It depends on the recognition and dicing of viral double-stranded RNA by a protein of the Dicer family, which leads to the production of viral small interfering RNAs (vsiRNAs) that sequence-specifically guide the degradation of cognate viral RNA. If the first line of defence against viruses relies on type-I and type-III interferons (IFN) in mammals, certain cell types such as stem cells, that are hyporesponsive for IFN, instead use antiviral RNAi via the expression of a specific antiviral Dicer. In certain conditions, antiviral RNAi can also contribute to the protection of differentiated cells. Indeed, abundant vsiRNAs are detected in infected cells and efficiently guide the degradation of viral RNA, especially in cells infected with viruses disabled for viral suppressors of RNAi (VSRs), which are virally encoded blockers of antiviral RNAi. The existence and importance of antiviral RNAi in differentiated cells has however been debated in the field, because data document mutual inhibition between IFN and antiviral RNAi. Recent developments include the engineering of a small molecule inhibitor of VSR to probe antiviral RNAi in vivo, as well as the detection of vsiRNAs inside extracellular vesicles in the serum of infected mice. It suggests that using more complex, in vivo models could allow to unravel the contribution of antiviral RNAi to immunity at the host level.
Collapse
Affiliation(s)
- Dario Pasquale Anobile
- Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Enzo Z Poirier
- Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
7
|
Guo YL, Gurung C, Fendereski M, Huang F. Dicer and PKR as Novel Regulators of Embryonic Stem Cell Fate and Antiviral Innate Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2259-2266. [PMID: 35577384 PMCID: PMC9179006 DOI: 10.4049/jimmunol.2200042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 05/17/2023]
Abstract
Embryonic stem cells (ESCs) represent a unique cell population in the blastocyst stage embryo. They have been intensively studied as a promising cell source for regenerative medicine. Recent studies have revealed that both human and mouse ESCs are deficient in expressing IFNs and have attenuated inflammatory responses. Apparently, the ability to express IFNs and respond to certain inflammatory cytokines is not "innate" to ESCs but rather is developmentally acquired by somatic cells during differentiation. Accumulating evidence supports a hypothesis that the attenuated innate immune response may serve as a protective mechanism allowing ESCs to avoid immunological cytotoxicity. This review describes our current understanding of the molecular basis that shapes the immune properties of ESCs. We highlight the recent findings on Dicer and dsRNA-activated protein kinase R as novel regulators of ESC fate and antiviral immunity and discuss how ESCs use alternative mechanisms to accommodate their stem cell properties.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Chandan Gurung
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Mona Fendereski
- Cell and Molecular Biology Program, University of Southern Mississippi, Hattiesburg, MS; and
| | - Faqing Huang
- Chemistry and Biochemistry Program, University of Southern Mississippi, Hattiesburg, MS
| |
Collapse
|
8
|
Zhang S, Zhang X, Bie Y, Kong J, Wang A, Qiu Y, Zhou X. STUB1 regulates antiviral RNAi through inducing ubiquitination and degradation of Dicer and AGO2 in mammals. Virol Sin 2022; 37:569-580. [PMID: 35533808 PMCID: PMC9437610 DOI: 10.1016/j.virs.2022.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
RNA interference (RNAi) is an intrinsic antiviral immune mechanism conserved in diverse eukaryotic organisms. However, the mechanism by which antiviral RNAi in mammals is regulated is poorly understood. In this study, we uncovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1) was a new regulator of the RNAi machinery in mammals. We found that STUB1 interacted with and ubiquitinated AGO2, and targeted it for degradation in a chaperon-dependent manner. STUB1 promoted the formation of Lys48 (K48)-linked polyubiquitin chains on AGO2, and facilitated AGO2 degradation through ubiquitin-proteasome system. In addition to AGO2, STUB1 also induced the protein degradation of AGO1, AGO3 and AGO4. Further investigation revealed that STUB1 also regulated Dicer's ubiquitination via K48-linked polyubiquitin and induced the degradation of Dicer as well as its specialized form, termed antiviral Dicer (aviDicer) that expresses in mammalian stem cells. Moreover, we found that STUB1 deficiency up-regulated Dicer and AGO2, thereby enhancing the RNAi response and efficiently inhibiting viral replication in mammalian cells. Using the newborn mouse model of Enterovirus A71 (EV-A71), we confirmed that STUB1 deficiency enhanced the virus-derived siRNAs production and antiviral RNAi, which elicited a potent antiviral effect against EV-A71 infection in vivo. In summary, our findings uncovered that the E3 ubiquitin ligase STUB1 was a general regulator of the RNAi machinery by targeting Dicer, aviDicer and AGO1–4. Moreover, STUB1 regulated the RNAi response through mediating the abundance of Dicer and AGO2 during viral infection, thereby providing novel insights into the regulation of antiviral RNAi in mammals. The E3 ubiquitin ligase, STUB1, is a novel regulator of the RNAi machinery in mammals. STUB1 induces ubiquitination and degradation of Dicer and AGO proteins in mammals. STUB1 deficiency enhances a potent antiviral effect against EV-A71 infection in vivo.
Collapse
|
9
|
Montavon TC, Baldaccini M, Lefèvre M, Girardi E, Chane-Woon-Ming B, Messmer M, Hammann P, Chicher J, Pfeffer S. Human DICER helicase domain recruits PKR and modulates its antiviral activity. PLoS Pathog 2021; 17:e1009549. [PMID: 33984068 PMCID: PMC8118307 DOI: 10.1371/journal.ppat.1009549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
The antiviral innate immune response mainly involves type I interferon (IFN) in mammalian cells. The contribution of the RNA silencing machinery remains to be established, but several recent studies indicate that the ribonuclease DICER can generate viral siRNAs in specific conditions. It has also been proposed that type I IFN and RNA silencing could be mutually exclusive antiviral responses. In order to decipher the implication of DICER during infection of human cells with alphaviruses such as the Sindbis virus and Semliki forest virus, we determined its interactome by proteomics analysis. We show that DICER specifically interacts with several double-stranded RNA binding proteins and RNA helicases during viral infection. In particular, proteins such as DHX9, ADAR-1 and the protein kinase RNA-activated (PKR) are enriched with DICER in virus-infected cells. We demonstrate that the helicase domain of DICER is essential for this interaction and that its deletion confers antiviral properties to this protein in an RNAi-independent, PKR-dependent, manner.
Collapse
Affiliation(s)
- Thomas C Montavon
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Morgane Baldaccini
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Mathieu Lefèvre
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Erika Girardi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Mélanie Messmer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Philippe Hammann
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, France
| | - Johana Chicher
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Plateforme Protéomique Strasbourg-Esplanade, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| |
Collapse
|
10
|
Zeng J, Luo Z, Dong S, Xie X, Liang X, Yan Y, Liang Q, Zhao Z. Functional Mapping of AGO-Associated Zika Virus-Derived Small Interfering RNAs in Neural Stem Cells. Front Cell Infect Microbiol 2021; 11:628887. [PMID: 33718276 PMCID: PMC7946837 DOI: 10.3389/fcimb.2021.628887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
Viral interfering RNA (viRNA) has been identified from several viral genomes via directly deep RNA sequencing of the virus-infected cells, including zika virus (ZIKV). Once produced by endoribonuclease Dicer, viRNAs are loaded onto the Argonaute (AGO) family proteins of the RNA-induced silencing complexes (RISCs) to pair with their RNA targets and initiate the cleavage of target genes. However, the identities of functional ZIKV viRNAs and their viral RNA targets remain largely unknown. Our recent study has shown that ZIKV capsid protein interacted with Dicer and antagonized its endoribonuclease activity, which requires its histidine residue at the 41st amino acid. Accordingly, the engineered ZIKV-H41R loss-of-function (LOF) mutant virus no longer suppresses Dicer enzymatic activity nor inhibits miRNA biogenesis in NSCs. By combining AGO-associated RNA sequencing, deep sequencing analysis in ZIKV-infected human neural stem cells (NSCs), and miRanda target scanning, we defined 29 ZIKV derived viRNA profiles in NSCs, and established a complex interaction network between the viRNAs and their viral targets. More importantly, we found that viRNA production from the ZIKV mRNA is dependent on Dicer function and is a limiting factor for ZIKV virulence in NSCs. As a result, much higher levels of viRNAs generated from the ZIKV-H41R virus-infected NSCs. Therefore, our mapping of viRNAs to their RNA targets paves a way to further investigate how viRNAs play the role in anti-viral mechanisms, and perhaps other unknown biological functions.
Collapse
Affiliation(s)
- Jianxiong Zeng
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Zhifei Luo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Shupeng Dong
- Department of Immunology and Microbiology, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China.,Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochun Xie
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Xinyan Liang
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Youzhen Yan
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Qiming Liang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China.,Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,AngelicaMadlangbayanKeck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Chow JTS, Salmena L. Prediction and Analysis of SARS-CoV-2-Targeting MicroRNA in Human Lung Epithelium. Genes (Basel) 2020; 11:E1002. [PMID: 32858958 PMCID: PMC7565861 DOI: 10.3390/genes11091002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for the coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to identify microRNA with predicted binding sites in the SARS-CoV-2 genome, compare these to their microRNA expression profiles in lung epithelial tissue and make inference towards possible roles for microRNA in mitigating coronavirus infection. We hypothesize that high expression of specific coronavirus-targeting microRNA in lung epithelia may protect against infection and viral propagation, conversely, low expression may confer susceptibility to infection. We have identified 128 human microRNA with potential to target the SARS-CoV-2 genome, most of which have very low expression in lung epithelia. Six of these 128 microRNA are differentially expressed upon in vitro infection of SARS-CoV-2. Additionally, 28 microRNA also target the SARS-CoV genome while 23 microRNA target the MERS-CoV genome. We also found that a number of microRNA are commonly identified in two other studies. Further research into identifying bona fide coronavirus targeting microRNA will be useful in understanding the importance of microRNA as a cellular defence mechanism against pathogenic coronavirus infections.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
12
|
Han Q, Chen G, Wang J, Jee D, Li WX, Lai EC, Ding SW. Mechanism and Function of Antiviral RNA Interference in Mice. mBio 2020; 11:e03278-19. [PMID: 32753500 PMCID: PMC7407090 DOI: 10.1128/mbio.03278-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Distinct mammalian RNA viruses trigger Dicer-mediated production of virus-derived small-interfering RNAs (vsiRNA) and encode unrelated proteins to suppress vsiRNA biogenesis. However, the mechanism and function of the mammalian RNA interference (RNAi) response are poorly understood. Here, we characterized antiviral RNAi in a mouse model of infection with Nodamura virus (NoV), a mosquito-transmissible positive-strand RNA virus encoding a known double-stranded RNA (dsRNA)-binding viral suppressor of RNAi (VSR), the B2 protein. We show that inhibition of NoV RNA replication by antiviral RNAi in mouse embryonic fibroblasts (MEFs) requires Dicer-dependent vsiRNA biogenesis and Argonaute-2 slicer activity. We found that VSR-B2 of NoV enhances viral RNA replication in wild-type but not RNAi-defective MEFs such as Argonaute-2 catalytic-dead MEFs and Dicer or Argonaute-2 knockout MEFs, indicating that VSR-B2 acts mainly by suppressing antiviral RNAi in the differentiated murine cells. Consistently, VSR-B2 expression in MEFs has no detectable effect on the induction of interferon-stimulated genes or the activation of global RNA cleavages by RNase L. Moreover, we demonstrate that NoV infection of adult mice induces production of abundant vsiRNA active to guide RNA slicing by Argonaute-2. Notably, VSR-B2 suppresses the biogenesis of both vsiRNA and the slicing-competent vsiRNA-Argonaute-2 complex without detectable inhibition of Argonaute-2 slicing guided by endogenous microRNA, which dramatically enhances viral load and promotes lethal NoV infection in adult mice either intact or defective in the signaling by type I, II, and III interferons. Together, our findings suggest that the mouse RNAi response confers essential protective antiviral immunity in both the presence and absence of the interferon response.IMPORTANCE Innate immune sensing of viral nucleic acids in mammals triggers potent antiviral responses regulated by interferons known to antagonize the induction of RNA interference (RNAi) by synthetic long double-stranded RNA (dsRNA). Here, we show that Nodamura virus (NoV) infection in adult mice activates processing of the viral dsRNA replicative intermediates into small interfering RNAs (siRNAs) active to guide RNA slicing by Argonaute-2. Genetic studies demonstrate that NoV RNA replication in mouse embryonic fibroblasts is inhibited by the RNAi pathway and enhanced by the B2 viral RNAi suppressor only in RNAi-competent cells. When B2 is rendered nonexpressing or nonfunctional, the resulting mutant viruses become nonpathogenic and are cleared in adult mice either intact or defective in the signaling by type I, II, and III interferons. Our findings suggest that mouse antiviral RNAi is active and necessary for the in vivo defense against viral infection in both the presence and absence of the interferon response.
Collapse
Affiliation(s)
- Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Gang Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Jinyan Wang
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - David Jee
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, New York, USA
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
13
|
Prasad AN, Ronk AJ, Widen SG, Wood TG, Basler CF, Bukreyev A. Ebola Virus Produces Discrete Small Noncoding RNAs Independently of the Host MicroRNA Pathway Which Lack RNA Interference Activity in Bat and Human Cells. J Virol 2020; 94:e01441-19. [PMID: 31852785 PMCID: PMC7158719 DOI: 10.1128/jvi.01441-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The question as to whether RNA viruses produce bona fide microRNAs (miRNAs) during infection has been the focus of intense research and debate. Recently, several groups using computational prediction methods have independently reported possible miRNA candidates produced by Ebola virus (EBOV). Additionally, efforts to detect these predicted RNA products in samples from infected animals and humans have produced positive results. However, these studies and their conclusions are predicated on the assumption that these RNA products are actually processed through, and function within, the miRNA pathway. In the present study, we performed the first rigorous assessment of the ability of filoviruses to produce miRNA products during infection of both human and bat cells. Using next-generation sequencing, we detected several candidate miRNAs from both EBOV and the closely related Marburg virus (MARV). Focusing our validation efforts on EBOV, we found evidence contrary to the idea that these small RNA products function as miRNAs. The results of our study are important because they highlight the potential pitfalls of relying on computational methods alone for virus miRNA discovery.IMPORTANCE Here, we report the discovery, via deep sequencing, of numerous noncoding RNAs (ncRNAs) derived from both EBOV and MARV during infection of both bat and human cell lines. In addition to identifying several novel ncRNAs from both viruses, we identified two EBOV ncRNAs in our sequencing data that were near-matches to computationally predicted viral miRNAs reported in the literature. Using molecular and immunological techniques, we assessed the potential of EBOV ncRNAs to function as viral miRNAs. Importantly, we found little evidence supporting this hypothesis. Our work is significant because it represents the first rigorous assessment of the potential for EBOV to encode viral miRNAs and provides evidence contrary to the existing paradigm regarding the biological role of computationally predicted EBOV ncRNAs. Moreover, our work highlights further avenues of research regarding the nature and function of EBOV ncRNAs.
Collapse
Affiliation(s)
- Abhishek N Prasad
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| | - Adam J Ronk
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Christopher F Basler
- Center of Microbial Pathogenesis, Institute of Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, Texas, USA
- The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
Immune correlates of postexposure vaccine protection against Marburg virus. Sci Rep 2020; 10:3071. [PMID: 32080323 PMCID: PMC7033120 DOI: 10.1038/s41598-020-59976-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60–75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20–30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80–89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.
Collapse
|
15
|
Adiliaghdam F, Basavappa M, Saunders TL, Harjanto D, Prior JT, Cronkite DA, Papavasiliou N, Jeffrey KL. A Requirement for Argonaute 4 in Mammalian Antiviral Defense. Cell Rep 2020; 30:1690-1701.e4. [PMID: 32049003 PMCID: PMC7039342 DOI: 10.1016/j.celrep.2020.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/09/2019] [Accepted: 01/06/2020] [Indexed: 01/07/2023] Open
Abstract
While interferon (IFN) responses are critical for mammalian antiviral defense, induction of antiviral RNA interference (RNAi) is evident. To date, individual functions of the mammalian RNAi and micro RNA (miRNA) effector proteins Argonautes 1-4 (AGO1-AGO4) during virus infection remain undetermined. AGO2 was recently implicated in mammalian antiviral defense, so we examined antiviral activity of AGO1, AGO3, or AGO4 in IFN-competent immune cells. Only AGO4-deficient cells are hyper-susceptible to virus infection. AGO4 antiviral function is both IFN dependent and IFN independent, since AGO4 promotes IFN but also maintains antiviral capacity following prevention of IFN signaling or production. We identified AGO-loaded virus-derived short interfering RNAs (vsiRNAs), a molecular marker of antiviral RNAi, in macrophages infected with influenza or influenza lacking the IFN and RNAi suppressor NS1, which are uniquely diminished without AGO4. Importantly, AGO4-deficient influenza-infected mice have significantly higher burden and viral titers in vivo. Together, our data assign an essential role for AGO4 in mammalian antiviral defense.
Collapse
Affiliation(s)
- Fatemeh Adiliaghdam
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Megha Basavappa
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L Saunders
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dewi Harjanto
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John T Prior
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - D Alexander Cronkite
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Abstract
Protection against microbial infection in eukaryotes is provided by diverse cellular and molecular mechanisms. Here, we present a comparative view of the antiviral activity of virus-derived small interfering RNAs in fungi, plants, invertebrates and mammals, detailing the mechanisms for their production, amplification and activity. We also highlight the recent discovery of viral PIWI-interacting RNAs in animals and a new role for mobile host and pathogen small RNAs in plant defence against eukaryotic pathogens. In turn, viruses that infect plants, insects and mammals, as well as eukaryotic pathogens of plants, have evolved specific virulence proteins that suppress RNA interference (RNAi). Together, these advances suggest that an antimicrobial function of the RNAi pathway is conserved across eukaryotic kingdoms.
Collapse
|
17
|
Levraud JP, Jouneau L, Briolat V, Laghi V, Boudinot P. IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:3361-3373. [DOI: 10.4049/jimmunol.1900804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
|
18
|
No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Sci Rep 2019; 9:13752. [PMID: 31551491 PMCID: PMC6760161 DOI: 10.1038/s41598-019-50287-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) has strong antiviral activity in a range of animal phyla, but the extent to which RNAi controls virus infection in chordates, and specifically mammals remains incompletely understood. Here we analyze the antiviral activity of RNAi against a number of positive-sense RNA viruses using Argonaute-2 deficient human cells. In line with absence of virus-derived siRNAs, Sindbis virus, yellow fever virus, and encephalomyocarditis virus replicated with similar kinetics in wildtype cells and Argonaute-2 deficient cells. Coxsackievirus B3 (CVB3) carrying mutations in the viral 3A protein, previously proposed to be a virus-encoded suppressor of RNAi in another picornavirus, human enterovirus 71, had a strong replication defect in wildtype cells. However, this defect was not rescued in Argonaute-2 deficient cells, arguing against a role of CVB3 3A as an RNAi suppressor. In agreement, neither infection with wildtype nor 3A mutant CVB3 resulted in small RNA production with the hallmarks of canonical vsiRNAs. Together, our results argue against strong antiviral activity of RNAi under these experimental conditions, but do not exclude that antiviral RNAi may be functional under other cellular, experimental, or physiological conditions in mammals.
Collapse
|
19
|
Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Komoto S, Chawla-Sarkar M. Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2. Cell Microbiol 2019; 21:e13101. [PMID: 31424151 PMCID: PMC7162324 DOI: 10.1111/cmi.13101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is an evolutionary ancient innate immune response in plants, nematodes, and arthropods providing natural protection against viral infection. Viruses have also gained counter‐defensive measures by producing virulence determinants called viral‐suppressors‐of‐RNAi (VSRs). Interestingly, in spite of dominance of interferon‐based immunity over RNAi in somatic cells of higher vertebrates, recent reports are accumulating in favour of retention of the antiviral nature of RNAi in mammalian cells. The present study focuses on the modulation of intracellular RNAi during infection with rotavirus (RV), an enteric virus with double‐stranded RNA genome. Intriguingly, a time point‐dependent bimodal regulation of RNAi was observed in RV‐infected cells, where short interfering RNA (siRNA)‐based RNAi was rendered non‐functional during early hours of infection only to be reinstated fully beyond that early infection stage. Subsequent investigations revealed RV nonstructural protein 1 to serve as a putative VSR by associating with and triggering degradation of Argonaute2 (AGO2), the prime effector of siRNA‐mediated RNAi, via ubiquitin–proteasome pathway. The proviral significance of AGO2 degradation was further confirmed when ectopic overexpression of AGO2 significantly reduced RV infection. Cumulatively, the current study presents a unique modulation of host RNAi during RV infection, highlighting the importance of antiviral RNAi in mammalian cells.
Collapse
Affiliation(s)
- Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shampa Chanda
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anupam Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Satoshi Komoto
- Department of Virology and Parasitology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
20
|
Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019; 11:v11050448. [PMID: 31100912 PMCID: PMC6563508 DOI: 10.3390/v11050448] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi. In this review, we describe the mechanism of RNAi and its antiviral functions in insects and mammals. We draw parallels and highlight differences between (antiviral) RNAi in these classes of animals and discuss open questions for future research.
Collapse
|
21
|
Maillard PV, van der Veen AG, Poirier EZ, Reis e Sousa C. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J 2019; 38:e100941. [PMID: 30872283 PMCID: PMC6463209 DOI: 10.15252/embj.2018100941] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
To protect against the harmful consequences of viral infections, organisms are equipped with sophisticated antiviral mechanisms, including cell-intrinsic means to restrict viral replication and propagation. Plant and invertebrate cells utilise mostly RNA interference (RNAi), an RNA-based mechanism, for cell-intrinsic immunity to viruses while vertebrates rely on the protein-based interferon (IFN)-driven innate immune system for the same purpose. The RNAi machinery is conserved in vertebrate cells, yet whether antiviral RNAi is still active in mammals and functionally relevant to mammalian antiviral defence is intensely debated. Here, we discuss cellular and viral factors that impact on antiviral RNAi and the contexts in which this system might be at play in mammalian resistance to viral infection.
Collapse
Affiliation(s)
- Pierre V Maillard
- Division of Infection and Immunity, University College London, London, UK
| | | | - Enzo Z Poirier
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
22
|
Xu YP, Qiu Y, Zhang B, Chen G, Chen Q, Wang M, Mo F, Xu J, Wu J, Zhang RR, Cheng ML, Zhang NN, Lyu B, Zhu WL, Wu MH, Ye Q, Zhang D, Man JH, Li XF, Cui J, Xu Z, Hu B, Zhou X, Qin CF. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Res 2019; 29:265-273. [PMID: 30814679 PMCID: PMC6461993 DOI: 10.1038/s41422-019-0152-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
The re-emergence of Zika virus (ZIKV) in the Western Hemisphere has resulted in global public health crisis since 2015. ZIKV preferentially infects and targets human neural progenitor cells (hNPCs) and causes fetal microcephaly upon maternal infection. hNPCs not only play critical roles during fetal brain development, but also persist in adult brain throughout life. Yet the mechanism of innate antiviral immunity in hNPCs remains largely unknown. Here, we show that ZIKV infection triggers the abundant production of virus-derived small interfering RNAs in hNPCs, but not in the more differentiated progenies or somatic cells. Ablation of key RNAi machinery components significantly enhances ZIKV replication in hNPCs. Furthermore, enoxacin, a broad-spectrum antibiotic that is known as an RNAi enhancer, exerts potent anti-ZIKV activity in hNPCs and other RNAi-competent cells. Strikingly, enoxacin treatment completely prevents ZIKV infection and circumvents ZIKV-induced microcephalic phenotypes in brain organoid models that recapitulate human fetal brain development. Our findings highlight the physiological importance of RNAi-mediated antiviral immunity during the early stage of human brain development, uncovering a novel strategy to combat human congenital viral infections through enhancing RNAi.
Collapse
Affiliation(s)
- Yan-Peng Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, Hubei, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guilai Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Miao Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, Hubei, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiuyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jin Wu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
- School of Basic Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Meng-Li Cheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
- School of Basic Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na-Na Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Bao Lyu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, Hubei, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Wen-Liang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Meng-Hua Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Da Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiang-Hong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, 100850, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Jie Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiheng Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, CAS, 100101, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071, Hubei, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
- School of Basic Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
23
|
Watson SF, Knol LI, Witteveldt J, Macias S. Crosstalk Between Mammalian Antiviral Pathways. Noncoding RNA 2019; 5:E29. [PMID: 30909383 PMCID: PMC6468734 DOI: 10.3390/ncrna5010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
As part of their innate immune response against viral infections, mammals activate the expression of type I interferons to prevent viral replication and dissemination. An antiviral RNAi-based response can be also activated in mammals, suggesting that several mechanisms can co-occur in the same cell and that these pathways must interact to enable the best antiviral response. Here, we will review how the classical type I interferon response and the recently described antiviral RNAi pathways interact in mammalian cells. Specifically, we will uncover how the small RNA biogenesis pathway, composed by the nucleases Drosha and Dicer can act as direct antiviral factors, and how the type-I interferon response regulates the function of these. We will also describe how the factors involved in small RNA biogenesis and specific small RNAs impact the activation of the type I interferon response and antiviral activity. With this, we aim to expose the complex and intricate network of interactions between the different antiviral pathways in mammals.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Lisanne I Knol
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Jeroen Witteveldt
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
24
|
Brachtlova T, van Beusechem VW. Unleashing the Full Potential of Oncolytic Adenoviruses against Cancer by Applying RNA Interference: The Force Awakens. Cells 2018; 7:cells7120228. [PMID: 30477117 PMCID: PMC6315459 DOI: 10.3390/cells7120228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Oncolytic virus therapy of cancer is an actively pursued field of research. Viruses that were once considered as pathogens threatening the wellbeing of humans and animals alike are with every passing decade more prominently regarded as vehicles for genetic and oncolytic therapies. Oncolytic viruses kill cancer cells, sparing healthy tissues, and provoke an anticancer immune response. Among these viruses, recombinant adenoviruses are particularly attractive agents for oncolytic immunotherapy of cancer. Different approaches are currently examined to maximize their therapeutic effect. Here, knowledge of virus–host interactions may lead the way. In this regard, viral and host microRNAs are of particular interest. In addition, cellular factors inhibiting viral replication or dampening immune responses are being discovered. Therefore, applying RNA interference is an attractive approach to strengthen the anticancer efficacy of oncolytic viruses gaining attention in recent years. RNA interference can be used to fortify the virus’ cancer cell-killing and immune-stimulating properties and to suppress cellular pathways to cripple the tumor. In this review, we discuss different ways of how RNA interference may be utilized to increase the efficacy of oncolytic adenoviruses, to reveal their full potential.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| | - Victor W van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Fay EJ, Langlois RA. MicroRNA-Attenuated Virus Vaccines. Noncoding RNA 2018; 4:E25. [PMID: 30279330 PMCID: PMC6316615 DOI: 10.3390/ncrna4040025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
Live-attenuated vaccines are the most effective way to establish robust, long-lasting immunity against viruses. However, the possibility of reversion to wild type replication and pathogenicity raises concerns over the safety of these vaccines. The use of host-derived microRNAs (miRNAs) to attenuate viruses has been accomplished in an array of biological contexts. The broad assortment of effective tissue- and species-specific miRNAs, and the ability to target a virus with multiple miRNAs, allow for targeting to be tailored to the virus of interest. While escape is always a concern, effective strategies have been developed to improve the safety and stability of miRNA-attenuated viruses. In this review, we discuss the various approaches that have been used to engineer miRNA-attenuated viruses, the steps that have been taken to improve their safety, and the potential use of these viruses as vaccines.
Collapse
Affiliation(s)
- Elizabeth J Fay
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ryan A Langlois
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Ding SW, Han Q, Wang J, Li WX. Antiviral RNA interference in mammals. Curr Opin Immunol 2018; 54:109-114. [PMID: 30015086 PMCID: PMC6196099 DOI: 10.1016/j.coi.2018.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/25/2022]
Abstract
Infection of plants and insects with RNA and DNA viruses triggers Dicer-dependent production of virus-derived small interfering RNAs (vsiRNAs), which subsequently guide specific virus clearance by RNA interference (RNAi). Consistent with a major antiviral function of RNAi, productive virus infection in these eukaryotic hosts depends on the expression of virus-encoded suppressors of RNAi (VSRs). The eukaryotic RNAi pathway is highly conserved, particularly between insects and mammals. This review will discuss key recent findings that indicate a natural antiviral function of the RNAi pathway in mammalian cells. We will summarize the properties of the characterized mammalian vsiRNAs and VSRs and highlight important questions remaining to be addressed on the function and mechanism of mammalian antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA.
| | - Qingxia Han
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA
| | - Jinyan Wang
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology, University of California, Riverside, USA
| |
Collapse
|
27
|
Aguado LC, Jordan TX, Hsieh E, Blanco-Melo D, Heard J, Panis M, Vignuzzi M, tenOever BR. Homologous recombination is an intrinsic defense against antiviral RNA interference. Proc Natl Acad Sci U S A 2018. [PMID: 30209219 DOI: 10.1073/pnas.181022911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
RNA interference (RNAi) is the major antiviral defense mechanism of plants and invertebrates, rendering the capacity to evade it a defining factor in shaping the viral landscape. Here we sought to determine whether different virus replication strategies provided any inherent capacity to evade RNAi in the absence of an antagonist. Through the exploitation of host microRNAs, we recreated an RNAi-like environment in vertebrates and directly compared the capacity of positive- and negative-stranded RNA viruses to cope with this selective pressure. Applying this defense against four distinct viral families revealed that the capacity to undergo homologous recombination was the defining attribute that enabled evasion of this defense. Independent of gene expression strategy, positive-stranded RNA viruses that could undergo strand switching rapidly excised genomic material, while negative-stranded viruses were effectively targeted and cleared upon RNAi-based selection. These data suggest a dynamic relationship between host antiviral defenses and the biology of virus replication in shaping pathogen prevalence.
Collapse
Affiliation(s)
- Lauren C Aguado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Tristan X Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Emily Hsieh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Daniel Blanco-Melo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John Heard
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maryline Panis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institute Pasteur, 75015 Paris, France
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
28
|
Homologous recombination is an intrinsic defense against antiviral RNA interference. Proc Natl Acad Sci U S A 2018; 115:E9211-E9219. [PMID: 30209219 DOI: 10.1073/pnas.1810229115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA interference (RNAi) is the major antiviral defense mechanism of plants and invertebrates, rendering the capacity to evade it a defining factor in shaping the viral landscape. Here we sought to determine whether different virus replication strategies provided any inherent capacity to evade RNAi in the absence of an antagonist. Through the exploitation of host microRNAs, we recreated an RNAi-like environment in vertebrates and directly compared the capacity of positive- and negative-stranded RNA viruses to cope with this selective pressure. Applying this defense against four distinct viral families revealed that the capacity to undergo homologous recombination was the defining attribute that enabled evasion of this defense. Independent of gene expression strategy, positive-stranded RNA viruses that could undergo strand switching rapidly excised genomic material, while negative-stranded viruses were effectively targeted and cleared upon RNAi-based selection. These data suggest a dynamic relationship between host antiviral defenses and the biology of virus replication in shaping pathogen prevalence.
Collapse
|
29
|
Tsai K, Courtney DG, Kennedy EM, Cullen BR. Influenza A virus-derived siRNAs increase in the absence of NS1 yet fail to inhibit virus replication. RNA (NEW YORK, N.Y.) 2018; 24:1172-1182. [PMID: 29903832 PMCID: PMC6097656 DOI: 10.1261/rna.066332.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 05/08/2023]
Abstract
While the issue of whether RNA interference (RNAi) ever forms part of the antiviral innate immune response in mammalian somatic cells remains controversial, there is considerable evidence demonstrating that few, if any, viral small interfering RNAs (siRNAs) are produced in infected cells. Moreover, inhibition of RNAi by mutational inactivation of key RNAi factors, such as Dicer or Argonaute 2, fails to enhance virus replication. One potential explanation for this lack of inhibitory effect is that mammalian viruses encode viral suppressors of RNAi (VSRs) that are so effective that viral siRNAs are not produced in infected cells. Indeed, a number of mammalian VSRs have been described, of which the most prominent is the influenza A virus (IAV) NS1 protein, which has not only been reported to inhibit RNAi in plants and insects but also to prevent the production of viral siRNAs in IAV-infected human cells. Here, we confirm that an IAV mutant lacking NS1 indeed differs from wild-type IAV in that it induces the production of readily detectable levels of Dicer-dependent viral siRNAs in infected human cells. However, we also demonstrate that these siRNAs have little if any inhibitory effect on IAV gene expression. This is likely due, at least in part, to their inefficient loading into RNA-induced silencing complexes.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G Courtney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Edward M Kennedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
30
|
Waldron FM, Stone GN, Obbard DJ. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet 2018; 14:e1007533. [PMID: 30059538 PMCID: PMC6085071 DOI: 10.1371/journal.pgen.1007533] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022] Open
Abstract
RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient, and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs (viRNAs) are not easily detectable. Here we use a metagenomic approach to test for the presence of viRNAs in five species from divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga-which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify viRNAs derived from those viruses. We identified 21U small RNAs derived from an RNA virus in the brown alga, reminiscent of plant and fungal viRNAs, despite the deep divergence between these lineages. However, contrary to our expectations, we were unable to identify canonical (i.e. Drosophila- or nematode-like) viRNAs in any of the animals, despite the widespread presence of abundant micro-RNAs, and somatic transposon-derived piwi-interacting RNAs. We did identify a distinctive group of small RNAs derived from RNA viruses in the mollusc. However, unlike ecdysozoan viRNAs, these had a piRNA-like length distribution but lacked key signatures of piRNA biogenesis. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, with cryptic viRNAs not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings show that the antiviral RNAi responses of arthropods and nematodes, which are highly divergent from each other and from that of plants and fungi, are also highly diverged from the most likely ancestral metazoan state.
Collapse
Affiliation(s)
- Fergal M. Waldron
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- Centre for Immunity Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Thorne L, Lu J, Chaudhry Y, Goodfellow I. miR-155 induction is a marker of murine norovirus infection but does not contribute to control of replication in vivo. Wellcome Open Res 2018; 3:42. [PMID: 29900416 PMCID: PMC5974592 DOI: 10.12688/wellcomeopenres.14188.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/03/2023] Open
Abstract
Background: Due to their role in fine-tuning cellular protein expression, microRNAs both promote viral replication and contribute to antiviral responses, for a range of viruses. The interactions between norovirus and the microRNA machinery have not yet been studied. Here, we investigated the changes that occur in microRNA expression during murine norovirus (MNV) infection. Methods: Using RT-qPCR-based arrays, we analysed changes in miRNA expression during infection with the acute strain MNV-1 in two permissive cell lines, a murine macrophage cell line, RAW264.7, and a murine microglial cell line, BV-2. By RT-qPCR, we further confirmed and analysed the changes in miR-155 expression in the infected cell lines, bone-marrow derived macrophage, and tissues harvested from mice infected with the persistent strain MNV-3. Using miR-155 knockout (KO) mice, we investigated whether loss of miR-155 affected viral replication and pathogenesis during persistent MNV-3 infection in vivo and monitored development of a serum IgG response by ELISA. Results: We identified cell-specific panels of miRNAs whose expression were increased or decreased during infection. Only two miRNAs, miR-687 and miR-155, were induced in both cell lines. miR-155, implicated in innate immunity, was also upregulated in bone-marrow derived macrophage and infected tissues. MNV-3 established a persistent infection in miR-155 knockout (KO) mice, with comparable levels of secreted virus and tissue replication observed as for wildtype mice. However, serum anti-MNV IgG levels were significantly reduced in miR-155 KO mice compared to wildtype mice. Conclusions: We have identified a panel of miRNAs whose expression changes with MNV infection. miR-155 induction is a marker of MNV infection in vitro and in vivo, however it does not contribute to the control of persistent infections in vivo. This finding suggests that the immune defects associated with miR-155 deletion, such as lower serum IgG levels, are also not important for control of persistent MNV-3 infection.
Collapse
Affiliation(s)
- Lucy Thorne
- Division of Virology, Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, CB2 0QQ, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Jia Lu
- Division of Virology, Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, CB2 0QQ, UK
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, CB2 0QQ, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge Addenbrooke's Hospital Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
32
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
33
|
van der Veen AG, Maillard PV, Schmidt JM, Lee SA, Deddouche-Grass S, Borg A, Kjær S, Snijders AP, Reis e Sousa C. The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J 2018; 37:e97479. [PMID: 29351913 PMCID: PMC5813259 DOI: 10.15252/embj.201797479] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, the presence of viral RNA in the cytosol is sensed by members of the RIG-I-like receptor (RLR) family, which signal to induce production of type I interferons (IFN). These key antiviral cytokines act in a paracrine and autocrine manner to induce hundreds of interferon-stimulated genes (ISGs), whose protein products restrict viral entry, replication and budding. ISGs include the RLRs themselves: RIG-I, MDA5 and, the least-studied family member, LGP2. In contrast, the IFN system is absent in plants and invertebrates, which defend themselves from viral intruders using RNA interference (RNAi). In RNAi, the endoribonuclease Dicer cleaves virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that target complementary viral RNA for cleavage. Interestingly, the RNAi machinery is conserved in mammals, and we have recently demonstrated that it is able to participate in mammalian antiviral defence in conditions in which the IFN system is suppressed. In contrast, when the IFN system is active, one or more ISGs act to mask or suppress antiviral RNAi. Here, we demonstrate that LGP2 constitutes one of the ISGs that can inhibit antiviral RNAi in mammals. We show that LGP2 associates with Dicer and inhibits cleavage of dsRNA into siRNAs both in vitro and in cells. Further, we show that in differentiated cells lacking components of the IFN response, ectopic expression of LGP2 interferes with RNAi-dependent suppression of gene expression. Conversely, genetic loss of LGP2 uncovers dsRNA-mediated RNAi albeit less strongly than complete loss of the IFN system. Thus, the inefficiency of RNAi as a mechanism of antiviral defence in mammalian somatic cells can be in part attributed to Dicer inhibition by LGP2 induced by type I IFNs. LGP2-mediated antagonism of dsRNA-mediated RNAi may help ensure that viral dsRNA substrates are preserved in order to serve as targets of antiviral ISG proteins.
Collapse
Affiliation(s)
| | | | | | - Sonia A Lee
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Annabel Borg
- Structural Biology Platform, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Platform, The Francis Crick Institute, London, UK
| | | | | |
Collapse
|
34
|
Aguado LC, tenOever BR. RNase III Nucleases and the Evolution of Antiviral Systems. Bioessays 2017; 40. [PMID: 29266287 DOI: 10.1002/bies.201700173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Indexed: 01/15/2023]
Abstract
Every living entity requires the capacity to defend against viruses in some form. From bacteria to plants to arthropods, cells retain the capacity to capture genetic material, process it in a variety of ways, and subsequently use it to generate pathogen-specific small RNAs. These small RNAs can then be used to provide specificity to an otherwise non-specific nuclease, generating a potent antiviral system. While small RNA-based defenses in chordates are less utilized, the protein-based antiviral invention in this phylum appears to have derived from components of the same ancestral small RNA machinery. Based on recent evidence, it would seem that RNase III nucleases have been reiteratively repurposed over billions of years to provide cells with the capacity to recognize and destroy unwanted genetic material. Here we describe an overview of what is known on this subject and provide a model for how these defenses may have evolved.
Collapse
Affiliation(s)
- Lauren C Aguado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, New York, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, New York, USA
| |
Collapse
|
35
|
Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat Commun 2017; 8:1789. [PMID: 29176620 PMCID: PMC5702611 DOI: 10.1038/s41467-017-01954-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
Cellular microRNAs (miRNAs) have been shown to regulate hepatitis C virus (HCV) replication, yet a systematic interrogation of the repertoire of miRNAs impacting HCV life cycle is lacking. Here we apply integrative functional genomics strategies to elucidate global HCV–miRNA interactions. Through genome-wide miRNA mimic and hairpin inhibitor phenotypic screens, and miRNA–mRNA transcriptomics analyses, we identify three proviral and nine antiviral miRNAs that interact with HCV. These miRNAs are functionally linked to particular steps of HCV life cycle and related viral host dependencies. Further mechanistic studies demonstrate that miR-25, let-7, and miR-130 families repress essential HCV co-factors, thus restricting viral infection at multiple stages. HCV subverts the antiviral actions of these miRNAs by dampening their expression in cell culture models and HCV-infected human livers. This comprehensive HCV–miRNA interaction map provides fundamental insights into HCV-mediated pathogenesis and unveils molecular pathways linking RNA biology to viral infections. Using genome-wide miRNA mimic and hairpin inhibitor screens, Li et al. identify 31 miRNAs that either inhibit or promote hepatitis C virus (HCV) replication at different steps of the viral life cycle. Furthermore, human liver biopsies show that HCV down-regulates identified miRNAs with antiviral function.
Collapse
|
36
|
The evolution of animal Argonautes: evidence for the absence of antiviral AGO Argonautes in vertebrates. Sci Rep 2017; 7:9230. [PMID: 28835645 PMCID: PMC5569025 DOI: 10.1038/s41598-017-08043-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
In addition to mediating regulation of endogenous gene expression, RNA interference (RNAi) in plants and invertebrates plays a crucial role in defense against viruses via virus-specific siRNAs. Different studies have demonstrated that the functional diversity of RNAi in animals is linked to the diversification of the Argonaute superfamily, central components of RISCs (RNA induced silencing complexes). The animal Argonaute superfamily is traditionally grouped into AGO and PIWI Argonautes. Yet, by performing phylogenetic analyses and determining the selective evolutionary pressure in the metazoan Argonaute superfamily, we provide evidence for the existence of three conserved Argonaute lineages between basal metazoans and protostomes, namely siRNA-class AGO, miRNA-class AGO and PIWI Argonautes. In addition, it shown that the siRNA-class AGO lineage is characterized by high rates of molecular evolution, suggesting a role in the arms race with viruses, while the miRNA-class AGOs display strong sequence conservation. Interestingly, we also demonstrate that vertebrates lack siRNA-class AGO proteins and that vertebrate AGOs display low rates of molecular evolution. In this way, we provide supportive evidence for the loss of the antiviral siRNA-class AGO group in vertebrates and discuss the consequence hereof on antiviral immunity and the use of RNAi as a loss of function tool in these animals.
Collapse
|
37
|
Deletion of Cytoplasmic Double-Stranded RNA Sensors Does Not Uncover Viral Small Interfering RNA Production in Human Cells. mSphere 2017; 2:mSphere00333-17. [PMID: 28815217 PMCID: PMC5557678 DOI: 10.1128/msphere.00333-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/03/2023] Open
Abstract
The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses. Antiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in mammals is the subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated type I interferon (IFN)-based immune response, and it has been proposed that this response masks or inhibits antiviral RNAi. To test this hypothesis, we analyzed viral small RNA production in differentiated cells deficient in the cytoplasmic RNA sensors RIG-I and MDA5. We did not detect 22-nucleotide (nt) viral siRNAs upon infection with three different positive-sense RNA viruses. Our data suggest that the depletion of cytoplasmic RIG-I-like sensors is not sufficient to uncover viral siRNAs in differentiated cells. IMPORTANCE The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses.
Collapse
|
38
|
Affiliation(s)
- Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
39
|
|
40
|
Hodzic J, Sie D, Vermeulen A, van Beusechem VW. Functional Screening Identifies Human miRNAs that Modulate Adenovirus Propagation in Prostate Cancer Cells. Hum Gene Ther 2017; 28:766-780. [PMID: 28114818 DOI: 10.1089/hum.2016.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncolytic adenoviruses represent a novel class of anticancer agents. Their efficacy in killing cancer cells is variable, suggesting that there is room for improvement. Host miRNAs have been shown to play important roles in susceptibility of cells to replication of different viruses. This study investigated if adenovirus replication in human prostate cancer cells is influenced by host cell miRNA expression. To this end, human miRNA expression in response to adenovirus infection was analyzed, and functional screens for lytic adenovirus replication were performed using synthetic miRNA mimic and inhibitor libraries. Adenovirus infection generally reduced miRNA expression. On top of this nonspecific interference with miRNA biogenesis, a set of miRNAs, including in particular miR-222, was found specifically reduced. Another set of miRNAs was found to promote adenovirus-induced death of prostate cancer cells. In most cases, this did not stimulate adenovirus propagation. The exception was miR-26b. Overexpression of miR-26b inhibited adenovirus-induced NF-κB activation, augmented adenovirus-mediated cell death, increased adenovirus progeny release, and promoted adenovirus propagation and spread in several human prostate cancer cell lines. This suggests that miR-26b is particularly useful to be combined with oncolytic adenovirus for more effective treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmina Hodzic
- 1 Department of Medical Oncology, VU University Medical Center , Amsterdam, Netherlands
| | - Daoud Sie
- 2 Department of Pathology, VU University Medical Center , Amsterdam, Netherlands
| | | | | |
Collapse
|
41
|
Abstract
Analysis of the incorporation of cellular microRNAs (miRNAs) into highly purified HIV-1 virions revealed that this largely, but not entirely, mirrored the level of miRNA expression in the producer CD4+ T cells. Specifically, of the 58 cellular miRNAs detected at significant levels in the producer cells, only 5 were found in virions at a level 2- to 4-fold higher than that predicted on the basis of random cytoplasmic sampling. Of note, these included two miRNAs, miR-155 and miR-92a, that were reported previously to at least weakly bind HIV-1 transcripts. To test whether miRNA binding to the HIV-1 genome can induce virion incorporation, artificial miRNA target sites were introduced into the viral genome and a 10- to 40-fold increase in the packaging of the cognate miRNAs into virions was then observed, leading to the recruitment of up to 1.6 miRNA copies per virion. Importantly, this high level of incorporation significantly inhibited HIV-1 virion infectivity. These results suggest that target sites for cellular miRNAs can inhibit RNA virus replication at two distinct steps, i.e., during infection and during viral gene expression, thus explaining why a range of different RNA viruses appear to have evolved to avoid cellular miRNA binding to their genome. The genomes of RNA viruses have the potential to interact with cellular miRNAs, which could lead to their incorporation into virions, with unknown effects on virion function. Here, it is demonstrated that wild-type HIV-1 virions essentially randomly incorporate low levels of the miRNAs expressed by infected cells. However, the specific incorporation of high levels of individual cellular miRNAs can be induced by insertion of cognate target sites into the viral genome. Of note, this results in a modest but significant inhibition of virion infectivity. These data imply that cellular miRNAs have the potential to inhibit viral replication by interfering with not only viral mRNA function but also virion infectivity.
Collapse
|
42
|
Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat Microbiol 2016; 2:16250. [PMID: 27918527 DOI: 10.1038/nmicrobiol.2016.250] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
Influenza A virus (IAV) causes annual epidemics and occasional pandemics, and is one of the best-characterized human RNA viral pathogens1. However, a physiologically relevant role for the RNA interference (RNAi) suppressor activity of the IAV non-structural protein 1 (NS1), reported over a decade ago2, remains unknown3. Plant and insect viruses have evolved diverse virulence proteins to suppress RNAi as their hosts produce virus-derived small interfering RNAs (siRNAs) that direct specific antiviral defence4-7 by an RNAi mechanism dependent on the slicing activity of Argonaute proteins (AGOs)8,9. Recent studies have documented induction and suppression of antiviral RNAi in mouse embryonic stem cells and suckling mice10,11. However, it is still under debate whether infection by IAV or any other RNA virus that infects humans induces and/or suppresses antiviral RNAi in mature mammalian somatic cells12-21. Here, we demonstrate that mature human somatic cells produce abundant virus-derived siRNAs co-immunoprecipitated with AGOs in response to IAV infection. We show that the biogenesis of viral siRNAs from IAV double-stranded RNA (dsRNA) precursors in infected cells is mediated by wild-type human Dicer and potently suppressed by both NS1 of IAV as well as virion protein 35 (VP35) of Ebola and Marburg filoviruses. We further demonstrate that the slicing catalytic activity of AGO2 inhibits IAV and other RNA viruses in mature mammalian cells, in an interferon-independent fashion. Altogether, our work shows that IAV infection induces and suppresses antiviral RNAi in differentiated mammalian somatic cells.
Collapse
|
43
|
Maillard PV, Van der Veen AG, Deddouche-Grass S, Rogers NC, Merits A, Reis e Sousa C. Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. EMBO J 2016; 35:2505-2518. [PMID: 27815315 PMCID: PMC5167344 DOI: 10.15252/embj.201695086] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) elicited by long double-stranded (ds) or base-paired viral RNA constitutes the major mechanism of antiviral defence in plants and invertebrates. In contrast, it is controversial whether it acts in chordates. Rather, in vertebrates, viral RNAs induce a distinct defence system known as the interferon (IFN) response. Here, we tested the possibility that the IFN response masks or inhibits antiviral RNAi in mammalian cells. Consistent with that notion, we find that sequence-specific gene silencing can be triggered by long dsRNAs in differentiated mouse cells rendered deficient in components of the IFN pathway. This unveiled response is dependent on the canonical RNAi machinery and is lost upon treatment of IFN-responsive cells with type I IFN Notably, transfection with long dsRNA specifically vaccinates IFN-deficient cells against infection with viruses bearing a homologous sequence. Thus, our data reveal that RNAi constitutes an ancient antiviral strategy conserved from plants to mammals that precedes but has not been superseded by vertebrate evolution of the IFN system.
Collapse
Affiliation(s)
| | | | | | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
44
|
Aguado LC, Schmid S, Sachs D, Shim JV, Lim JK, tenOever BR. microRNA Function Is Limited to Cytokine Control in the Acute Response to Virus Infection. Cell Host Microbe 2016; 18:714-22. [PMID: 26651947 DOI: 10.1016/j.chom.2015.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
With the capacity to fine-tune protein expression via sequence-specific interactions, microRNAs (miRNAs) help regulate cell maintenance and differentiation. While some studies have also implicated miRNAs as regulators of the antiviral response, others have found that the RISC complex that facilitates miRNA-mediated silencing is rendered nonfunctional during cellular stress, including virus infection. To determine the global role of miRNAs in the cellular response to virus infection, we generated a vector that rapidly eliminates total cellular miRNA populations in terminally differentiated primary cultures. Loss of miRNAs has a negligible impact on both innate sensing of and immediate response to acute viral infection. In contrast, miRNA depletion specifically enhances cytokine expression, providing a posttranslational mechanism for immune cell activation during cellular stress. This work highlights the physiological role of miRNAs during the antiviral response and suggests their contribution is limited to chronic infections and the acute activation of the adaptive immune response.
Collapse
Affiliation(s)
- Lauren C Aguado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sonja Schmid
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaehee V Shim
- Department of Pharmacology and System Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
45
|
Utilization of different anti-viral mechanisms by mammalian embryonic stem cells and differentiated cells. Immunol Cell Biol 2016; 95:17-23. [PMID: 27485807 DOI: 10.1038/icb.2016.70] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have received tremendous attention because of their potential applications in regenerative medicine. Over the past two decades, intensive research has not only led to the generation of various types of cells from ESCs that can be potentially used for the treatment of human diseases but also led to the formation of new concepts and breakthroughs that have significantly impacted our understanding of basic cell biology and developmental biology. Recent studies have revealed that ESCs and other types of pluripotent cells do not have a functional interferon (IFN)-based anti-viral mechanism, challenging the idea that the IFN system is developed as the central component of anti-viral innate immunity in all types of cells in vertebrates. This finding also provided important insight into a question that has been uncertain for a long time: whether or not the RNA interference (RNAi) anti-viral mechanism operates in mammalian cells. An emerging paradigm is that mammals may have adapted distinct anti-viral mechanisms at different stages of organismal development; the IFN-based system is mainly used by differentiated somatic cells, while the RNAi anti-viral mechanism may be used in ESCs. This paper discusses the molecular basis and biological implications for mammals to have different anti-viral mechanisms during development.
Collapse
|
46
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
47
|
Honda T, Yamamoto Y, Daito T, Matsumoto Y, Makino A, Tomonaga K. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus. Sci Rep 2016; 6:26154. [PMID: 27189575 PMCID: PMC4870639 DOI: 10.1038/srep26154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/19/2016] [Indexed: 01/28/2023] Open
Abstract
RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies.
Collapse
Affiliation(s)
- Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Yamamoto
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Takuji Daito
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Matsumoto
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Akiko Makino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.,Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.,Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| |
Collapse
|
48
|
Li ML, Weng KF, Shih SR, Brewer G. The evolving world of small RNAs from RNA viruses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:575-88. [PMID: 27046163 DOI: 10.1002/wrna.1351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
RNA virus infection in plants and invertebrates can produce virus-derived small RNAs. These RNAs share features with host endogenous small interfering RNAs (siRNAs). They can potentially mediate RNA interference (RNAi) and related RNA silencing pathways, resulting in specific antiviral defense. Although most RNA silencing components such as Dicer, Ago2, and RISC are conserved among eukaryotic hosts, whether RNA virus infection in mammals can generate functional small RNAs that act in antiviral defense remains under discussion. Here, we review recent studies on the molecular and biochemical features of viral siRNAs and other virus-derived small RNAs from infected plants, arthropods, nematodes, and vertebrates and discuss the genetic pathways for their biogenesis and their roles in antiviral activity. WIREs RNA 2016, 7:575-588. doi: 10.1002/wrna.1351 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Virology Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gary Brewer
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
49
|
De Cock A, Michiels T. Cellular microRNAs Repress Vesicular Stomatitis Virus but Not Theiler's Virus Replication. Viruses 2016; 8:75. [PMID: 26978386 PMCID: PMC4810265 DOI: 10.3390/v8030075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
Picornavirus’ genomic RNA is a positive-stranded RNA sequence that also serves as a template for translation and replication. Cellular microRNAs were reported to interfere to different extents with the replication of specific picornaviruses, mostly acting as inhibitors. However, owing to the high error rate of their RNA-dependent RNA-polymerases, picornavirus quasi-species are expected to evolve rapidly in order to lose any detrimental microRNA target sequence. We examined the genome of Theiler’s murine encephalomyelitis virus (TMEV) for the presence of under-represented microRNA target sequences that could have been selected against during virus evolution. However, little evidence for such sequences was found in the genome of TMEV and introduction of the most under-represented microRNA target (miR-770-3p) in TMEV did not significantly affect viral replication in cells expressing this microRNA. To test the global impact of cellular microRNAs on viral replication, we designed a strategy based on short-term Dicer inactivation in mouse embryonic fibroblasts. Short-term Dicer inactivation led to a >10-fold decrease in microRNA abundance and strongly increased replication of Vesicular stomatitis virus (VSV), which was used as a microRNA-sensitive control virus. In contrast, Dicer inactivation did not increase TMEV replication. In conclusion, cellular microRNAs appear to exert little influence on Theiler’s virus fitness.
Collapse
Affiliation(s)
- Aurélie De Cock
- Université Catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 Avenue Hippocrate, B-1200 Brussels, Belgium.
| | - Thomas Michiels
- Université Catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 Avenue Hippocrate, B-1200 Brussels, Belgium.
| |
Collapse
|
50
|
Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc Natl Acad Sci U S A 2015; 112:E6945-54. [PMID: 26621737 DOI: 10.1073/pnas.1513421112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although RNA interference (RNAi) functions as a potent antiviral innate-immune response in plants and invertebrates, mammalian somatic cells appear incapable of mounting an RNAi response and few, if any, small interfering RNAs (siRNAs) can be detected. To examine why siRNA production is inefficient, we have generated double-knockout human cells lacking both Dicer and protein kinase RNA-activated. Using these cells, which tolerate double-stranded RNA expression, we show that a mutant form of human Dicer lacking the amino-terminal helicase domain can process double-stranded RNAs to produce high levels of siRNAs that are readily detectable by Northern blot, are loaded into RNA-induced silencing complexes, and can effectively and specifically inhibit the expression of cognate mRNAs. Remarkably, overexpression of this mutant Dicer, but not wild-type Dicer, also resulted in a partial inhibition of Influenza A virus-but not poliovirus-replication in human cells.
Collapse
|