1
|
Jiang J, Shen T, Chen D, Dai Z, Wang X, Meng Q, Yang Z, Zhang D, Guo X, Xu J, Gu J, Wang C. FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer. Cell Biochem Biophys 2025; 83:2441-2452. [PMID: 39899193 DOI: 10.1007/s12013-024-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.
Collapse
MESH Headings
- Humans
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Gemcitabine
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Forkhead Box Protein M1/genetics
- Forkhead Box Protein M1/metabolism
- Cell Line, Tumor
- Prognosis
- Transcription Factors/metabolism
- Transcription Factors/antagonists & inhibitors
- Animals
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Female
- Mice
- Azepines/pharmacology
- Azepines/therapeutic use
- Male
- Cell Cycle Proteins/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Nude
- Signal Transduction/drug effects
- Transforming Growth Factor beta/metabolism
- Super Enhancers
- Bromodomain Containing Proteins
Collapse
Affiliation(s)
- Jian Jiang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianci Shen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zihao Dai
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuelong Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhuo Yang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China
| | - Di Zhang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyi Guo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, Liaoning, China
| | - Jiangning Gu
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China.
| | - Changmiao Wang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Athanasouli P, Vanhessche T, Lluis F. Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination. Life Sci Alliance 2025; 8:e202403091. [PMID: 39779220 PMCID: PMC11711469 DOI: 10.26508/lsa.202403091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Chen Y, Xue Y, Jiang Q, Jin Y, Chen W, Hua M. Disruption of the FOXM1 Regulatory Region Inhibits Tumor Progression in Ovarian Cancer by CRISPR-Cas9. Drug Dev Res 2025; 86:e70049. [PMID: 39829431 DOI: 10.1002/ddr.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified. Treatment with bromodomain and extraterminal (BET) inhibitors JQ-1 and I-BET were explored in ovarian cancer cell lines (OVCAR3, A2780, or SKOV3) to evaluate FOXM1 expression and biological behavior by qPCR, CCK8 assay, colony formation assay, wound-healing, and transwell assays. The regulatory regions (enhancer sequence spanning promoter or exon 1) of FOXM1 were deleted using CRISPR-Cas9 in the OVCAR3 cell line. FOXM1 expression and tumor biological behavior were further assessed in FOXM1 regulatory regions deleted OVCAR3 cell line. The mouse xenograft model was assessed at the indicated time points following subcutaneous injection of enhancer-deleted cells. Treatment with the JQ-1 and I-BET reduced the expression of FOXM1, decreasing cell proliferation, migration, and invasion in a panel of ovarian cancer cell lines including OVCAR3, A2780, and SKOV3 cells. By mining the published ChIP-sequencing data (H3K27Ac) from 12 ovarian cancer cell lines, we identified a potential enhancer and promoter region. Deletion of the spanning enhancer and promoter region of FOXM1 reduced mRNA and protein expression. Similarly, cell proliferation, migration, invasion, and tumorigenesis in both cells and mouse xenograft models were significantly attenuated. Our study demonstrates that JQ-1 and I-BET can regulate the expression of the FOXM1 gene-relating network. These data also indicate that disruption of the span enhancer and promoter region activity of FOXM1 has a vital role in the anti-ovarian cancer effect, hiding a potential opportunity for the evaluation of this non-coding DNA deletion disrupts the FOXM1 transcriptional network in ovarian cancer development.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
- Department of Oncology, Huaian Hospital of Huaian City, Huaian, China
| | - Yingzhuo Xue
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiuwen Jiang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunfeng Jin
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Weiguan Chen
- Department of Rehabilitation Medicine, The First People's Hospital of Nantong, Nantong, China
| | - Minhui Hua
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Sun L, Fu X, Xiao Z, Ma G, Zhou Y, Hu H, Shi L, Li D, Jauch R, Hutchins AP. BRD8 Guards the Pluripotent State by Sensing and Maintaining Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409160. [PMID: 39656858 PMCID: PMC11792058 DOI: 10.1002/advs.202409160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Epigenetic control of cell fates is a critical determinant to maintain cell type stability and permit differentiation during embryonic development. However, the epigenetic control mechanisms are not well understood. Here, it is shown that the histone acetyltransferase reader protein BRD8 impairs the conversion of primed mouse EpiSCs (epiblast stem cells) to naive mouse ESCs (embryonic stem cells). BRD8 works by maintaining histone acetylation on promoters and transcribed gene bodies. BRD8 is responsible for maintaining open chromatin at somatic genes, and histone acetylation at naive-specific genes. When Brd8 expression is reduced, chromatin accessibility is unchanged at primed-specific genes, but histone acetylation is reduced. Conversely, naive-specific genes has reduced repressive chromatin marks and acquired accessible chromatin more rapidly during the cell type conversion. It is shown that this process requires active histone deacetylation to promote the conversion of primed to naive. This data supports a model for BRD8 reading histone acetylation to accurately localize the genome-wide binding of the histone acetyltransferase KAT5. Overall, this study shows how the reading of the histone acetylation state by BRD8 maintains cell type stability and both enables and impairs stem cell differentiation.
Collapse
Affiliation(s)
- Li Sun
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Xiuling Fu
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Zhen Xiao
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Gang Ma
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Yibin Zhou
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Haoqing Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Liyang Shi
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Dongwei Li
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510799China
| | - Ralf Jauch
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Centre for Translational Stem Cell BiologyHong KongSARChina
| | - Andrew Paul Hutchins
- Department of Systems BiologySouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
5
|
Schuetze KB, Stratton MS, Bagchi RA, Hobby ARH, Felisbino MB, Rubino M, Toni LS, Reges C, Cavasin MA, McMahan RH, Alexanian M, Vagnozzi RJ, McKinsey TA. BRD4 inhibition rewires cardiac macrophages toward a protective phenotype marked by low MHC class II expression. Am J Physiol Heart Circ Physiol 2025; 328:H294-H309. [PMID: 39716819 DOI: 10.1152/ajpheart.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Bromodomain and extraterminal domain (BET) proteins, including BRD4, bind acetylated chromatin and coactivate gene transcription. A BET inhibitor, JQ1, prevents and reverses pathological cardiac remodeling in preclinical models of heart failure. However, the underlying cellular mechanisms by which JQ1 improves cardiac structure and function remain poorly defined. Here, we demonstrate that BRD4 knockdown reduced expression of genes encoding CC chemokines in cardiac fibroblasts, suggesting a role for this epigenetic reader in controlling fibroblast-immune cell cross talk. Consistent with this, JQ1 dramatically suppressed recruitment of monocytes to the heart in response to stress. Normal mouse hearts were found to have approximately equivalent numbers of major histocompatibility complex (MHC-II)high and MHC-IIlow resident macrophages, whereas MHC-IIlow macrophages predominated following JQ1 treatment. Single-cell RNA-seq data confirmed that JQ1 treatment or BRD4 knockout in CX3CR1+ cells reduced MHC-II gene expression in cardiac macrophages, and studies with cultured macrophages further illustrated a cell autonomous role for BET proteins in controlling the MHC-II axis. Bulk RNA-seq analysis demonstrated that JQ1 blocked pro-inflammatory macrophage gene expression through a mechanism that likely involves repression of NF-κB signaling. JQ1 treatment reduced cardiac infarct size in mice subjected to ischemia/reperfusion. Our findings illustrate that BET inhibition affords a powerful pharmacological approach to manipulate monocyte-derived and resident macrophages in the heart. Such an approach has the potential to enhance the reparative phenotype of macrophages to promote wound healing and limit infarct expansion following myocardial ischemia.NEW & NOTEWORTHY BRD4 inhibition blocks stress-induced recruitment of pro-inflammatory monocytes to the heart. BRD4 inhibition reprograms resident cardiac macrophages toward a reparative phenotype marked by reduced NF-κB signaling and diminished MHC-II expression. BRD4 inhibition reduces infarct size in an acute model of ischemia/reperfusion injury in mice.
Collapse
Affiliation(s)
- Katherine B Schuetze
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew S Stratton
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rushita A Bagchi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander R H Hobby
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Marina B Felisbino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Marcello Rubino
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Lee S Toni
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Caroline Reges
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maria A Cavasin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rachel H McMahan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, California, United States
- Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, California, United States
- Department of Pediatrics, University of California, San Francisco, California, United States
| | - Ronald J Vagnozzi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
6
|
Ji Y, Li B, Lin R, Yuan J, Han Y, Du Y, Zhao Y. Super-enhancers in tumors: unraveling recent advances in their role in Oncogenesis and the emergence of targeted therapies. J Transl Med 2025; 23:98. [PMID: 39838405 PMCID: PMC11753147 DOI: 10.1186/s12967-025-06098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Super enhancers are a unique class of enhancers that possess a distinct structure and mechanism, which enable them to exhibit stronger gene transcription regulatory function than classical enhancers, thereby regulating cellular activities. In tumor samples, super enhancers have been identified as crucial players in the development and progression of tumor cells, opening up new avenues for cancer research and treatment. This review provides a concise overview of various models regarding super enhancer assembly and activation, examining the mechanisms through which tumor cells acquire or activate these enhancers and regulate carcinogenic transcription programs. Furthermore, we discuss the current landscape and challenges in developing cancer therapeutic drugs that target super enhancers.
Collapse
Affiliation(s)
- Yumeng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baixue Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongjin Lin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Han
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
7
|
Chen W, Sang L, Wang R, Zou D, Chen L. Selective inhibition mechanism of three inhibitors to BRD4 uncovered by molecular docking and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:1199-1219. [PMID: 39773125 DOI: 10.1080/1062936x.2024.2447071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Bromodomain-containing protein 4 (BRD4) plays an important role in gene transcription in a variety of diseases, including inflammation and cancer. However, the mechanism by which the BRD4 inhibitors bind selectively to its bromodomain 1 (BRD4-BD1) and bromodomain 2 (BRD4-BD2) remains unclear. Studying the interaction mechanism between bromodomain of BRD4 and inhibitors will provide new ideas for drug development and disease treatment. To explore the molecular mechanism of selective binding of three novel phenoxypyridone Cpd11, Cpd14, and Cpd23 to BRD4-BD1 and BRD4-BD2, respectively, molecular docking, molecular dynamics (MD) simulation, and free energy calculation containing molecular mechanics generalized born surface area (MM-GBSA) and solvation interaction energy (SIE) were achieved. The results show that these three inhibitors have different effects on the internal dynamics of BRD4-BD1 and BRD4-BD2, but the key interactions are similar. Key residues of BRD4-BD1 and BRD4-BD2, Ile146/Val439, Trp81/Trp374, Phe83/Phe375, Val87/Val380, Leu92/Leu385, Leu94/Leu387, Tyr97/Tyr390, and Asn140/Asn433, play a key role in selective binding of BRD4-BD1 and BRD4-BD2 to these three inhibitors. At the same time, non-polar interactions, especially van der Waals interactions, are the main drivers of the interactions of these three inhibitors with BRD4-BD1 and BRD4-BD2. These results provide useful dynamic and energy information for the development of novel highly selective phenoxypyridone inhibitors targeting BRD4-BD2.
Collapse
Affiliation(s)
- W Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - L Sang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - R Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| | - D Zou
- College of Food and Bio-Engineering, Qiqihar University, Qiqihar, P. R. China
| | - L Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China
| |
Collapse
|
8
|
Di Marco T, Mazzoni M, Greco A, Cassinelli G. Non-oncogene dependencies: Novel opportunities for cancer therapy. Biochem Pharmacol 2024; 228:116254. [PMID: 38704100 DOI: 10.1016/j.bcp.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Targeting oncogene addictions have changed the history of subsets of malignancies and continues to represent an excellent therapeutic opportunity. Nonetheless, alternative strategies are required to treat malignancies driven by undruggable oncogenes or loss of tumor suppressor genes and to overcome drug resistance also occurring in cancers addicted to actionable drivers. The discovery of non-oncogene addiction (NOA) uncovered novel therapeutically exploitable "Achilles' heels". NOA refers to genes/pathways not oncogenic per sé but essential for the tumor cell growth/survival while dispensable for normal cells. The clinical success of several classes of conventional and molecular targeted agents can be ascribed to their impact on both tumor cell-associated intrinsic as well as microenvironment-related extrinsic NOA. The integration of genetic, computational and pharmacological high-throughput approaches led to the identification of an expanded repertoire of synthetic lethality interactions implicating NOA targets. Only a few of them have been translated into the clinics as most NOA vulnerabilities are not easily druggable or appealing targets. Nonetheless, their identification has provided in-depth knowledge of tumor pathobiology and suggested novel therapeutic opportunities. Here, we summarize conceptual framework of intrinsic and extrinsic NOA providing exploitable vulnerabilities. Conventional and emerging methodological approaches used to disclose NOA dependencies are reported together with their limits. We illustrate NOA paradigmatic and peculiar examples and outline the functional/mechanistic aspects, potential druggability and translational interest. Finally, we comment on difficulties in exploiting the NOA-generated knowledge to develop novel therapeutic approaches to be translated into the clinics and to fully harness the potential of clinically available drugs.
Collapse
Affiliation(s)
- Tiziana Di Marco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Mara Mazzoni
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Angela Greco
- Integrated Biology of Rare Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
9
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
10
|
Chen Y, Jiang Q, Xue Y, Chen W, Hua M. CRISPR-Cas9-mediated deletion enhancer of MECOM play a tumor suppressor role in ovarian cancer. Funct Integr Genomics 2024; 24:125. [PMID: 38995475 DOI: 10.1007/s10142-024-01399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
MDS1 and EVI1 complex locus (MECOM), a transcription factor encoding several variants, has been implicated in progression of ovarian cancer. The function of regulatory regions in regulating MECOM expression in ovarian cancer is not fully understood. In this study, MECOM expression was evaluated in ovarian cancer cell lines treated with bromodomain and extraterminal (BET) inhibitor JQ-1. Oncogenic phenotypes were assayed using assays of CCK-8, colony formation, wound-healing and transwell. Oncogenic phenotypes were estimated in stable sgRNA-transfected OVCAR3 cell lines. Xenograft mouse model was assayed via subcutaneous injection of enhancer-deleted OVCAR3 cell lines. The results displayed that expression of MECOM is downregulated in cell lines treated with JQ-1. Data from published ChIP-sequencing (H3K27Ac) in 3 ovarian cancer cell lines displayed a potential enhancer around the first exon. mRNA and protein expression were downregulated in OVCAR3 cells after deletion of the MECOM enhancer. Similarly, oncogenic phenotypes both in cells and in the xenograft mouse model were significantly attenuated. This study demonstrates that JQ-1 can inhibit the expression of MECOM and tumorigenesis. Deletion of the enhancer activity of MECOM has an indispensable role in inhibiting ovarian cancer progress, which sheds light on a promising opportunity for ovarian cancer treatment through the application of this non-coding DNA deletion.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Qiuwen Jiang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Yingzhuo Xue
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Weiguan Chen
- Department of Rehabilitation Medicine, the first People's Hospital of Nantong, No. 666 Shengli Road, Nantong, 226001, China
| | - Minhui Hua
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
11
|
Xie J, Zhang J, Xiong G, Ouyang S, Yun B, Xu X, Wang W, Zhang M, Xie N, Chen D, Wang C. Targeting BRD4 attenuates the stemness and aggressiveness of ameloblastoma. Oral Dis 2024; 30:3212-3224. [PMID: 37798926 DOI: 10.1111/odi.14762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/19/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND BRD4, belonging to the bromodomain extra-terminal (BET) protein family, plays a unique role in tumor progression. However, the potential impact of BRD4 in ameloblastoma (AM) remains largely unknown. Herein, we aimed to assess the expression and functional role of BRD4 in AM. METHODS The expression level of BRD4 was assessed by immunohistochemistry. The proliferation, migration, invasion, and tumorigenic abilities of AM cells were assessed by a series of assays. To explore the molecular expression profile of BRD4-depleted AM cells, RNA sequencing (RNA-seq) was performed. Bioinformatic analysis was performed on AM expression matrices obtained from the Gene Expression Omnibus (GEO). The therapeutic efficacy of BET-inhibitors (BETi) was assessed with AM patient-derived organoids. RESULTS Upregulation of BRD4 was observed in conventional AMs, recurrent AMs, and ameloblastic carcinomas. Depletion of BRD4 inhibited proliferation, invasion, migration, and tumorigenesis in AM. Administration of BETi attenuated the aggressiveness of AM and the growth of AM patient-derived organoids. Bioinformatic analysis indicated that BRD4 may promote AM progression by regulating the Wnt pathway and stemness-associated pathways. CONCLUSION BRD4 increases the aggressiveness and promotes the recurrence of ameloblastoma by regulating the Wnt pathway and stemness-associated pathways. These findings highlight BRD4 as a promising therapeutic target in AM management.
Collapse
Affiliation(s)
- Jiaxiang Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jingqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shengqi Ouyang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bokai Yun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiuyun Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Nan Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Huber PB, Rao A, LaBonne C. BET activity plays an essential role in control of stem cell attributes in Xenopus. Development 2024; 151:dev202990. [PMID: 38884356 PMCID: PMC11266789 DOI: 10.1242/dev.202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Neural crest cells are a stem cell population unique to vertebrate embryos that retains broad multi-germ layer developmental potential through neurulation. Much remains to be learned about the genetic and epigenetic mechanisms that control the potency of neural crest cells. Here, we examine the role that epigenetic readers of the BET (bromodomain and extra terminal) family play in controlling the potential of pluripotent blastula and neural crest cells. We find that inhibiting BET activity leads to loss of pluripotency at blastula stages and a loss of neural crest at neurula stages. We compare the effects of HDAC (an eraser of acetylation marks) and BET (a reader of acetylation) inhibition and find that they lead to similar cellular outcomes through distinct effects on the transcriptome. Interestingly, loss of BET activity in cells undergoing lineage restriction is coupled to increased expression of genes linked to pluripotency and prolongs the competence of initially pluripotent cells to transit to a neural progenitor state. Together these findings advance our understanding of the epigenetic control of pluripotency and the formation of the vertebrate neural crest.
Collapse
Affiliation(s)
- Paul B. Huber
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| | - Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
14
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
15
|
Yoo W, Song YW, Kim J, Ahn J, Kim J, Shin Y, Ryu JK, Kim KK. Molecular basis for SOX2-dependent regulation of super-enhancer activity. Nucleic Acids Res 2023; 51:11999-12019. [PMID: 37930832 PMCID: PMC10711550 DOI: 10.1093/nar/gkad908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Pioneer transcription factors (TFs) like SOX2 are vital for stemness and cancer through enhancing gene expression within transcriptional condensates formed with coactivators, RNAs and mediators on super-enhancers (SEs). Despite their importance, how these factors work together for transcriptional condensation and activation remains unclear. SOX2, a pioneer TF found in SEs of pluripotent and cancer stem cells, initiates SE-mediated transcription by binding to nucleosomes, though the mechanism isn't fully understood. To address SOX2's role in SEs, we identified mSE078 as a model SOX2-enriched SE and p300 as a coactivator through bioinformatic analysis. In vitro and cell assays showed SOX2 forms condensates with p300 and SOX2-binding motifs in mSE078. We further proved that SOX2 condensation is highly correlated with mSE078's enhancer activity in cells. Moreover, we successfully demonstrated that p300 not only elevated transcriptional activity but also triggered chromatin acetylation via its direct interaction with SOX2 within these transcriptional condensates. Finally, our validation of SOX2-enriched SEs showcased their contribution to target gene expression in both stem cells and cancer cells. In its entirety, this study imparts valuable mechanistic insights into the collaborative interplay of SOX2 and its coactivator p300, shedding light on the regulation of transcriptional condensation and activation within SOX2-enriched SEs.
Collapse
Affiliation(s)
- Wanki Yoo
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yi Wei Song
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Je-Kyung Ryu
- Department of Physics & Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Lee J, Lee BK, Gross JM. Brd activity regulates Müller glia-dependent retinal regeneration in zebrafish. Glia 2023; 71:2866-2883. [PMID: 37584502 DOI: 10.1002/glia.24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The zebrafish retina possesses tremendous regenerative potential. Müller glia underlie retinal regeneration through their ability to reprogram and generate multipotent neuronal progenitors that re-differentiate into lost neurons. Many factors required for Müller glia reprogramming and proliferation have been identified; however, we know little about the epigenetic and transcriptional regulation of these genes during regeneration. Here, we determined whether transcriptional regulation by members of the Bromodomain (Brd) family is required for Müller glia-dependent retinal regeneration. Our data demonstrate that three brd genes were expressed in Müller glia upon injury. brd2a and brd2b were expressed in all Müller glia and brd4 was expressed only in reprogramming Müller glia. Utilizing (+)-JQ1, a pharmacological inhibitor of Brd function, we demonstrate that transcriptional regulation by Brds plays a critical role in Müller glia reprogramming and regeneration. (+)-JQ1 treatment prevented cell cycle re-entry of Müller glia and the generation of neurogenic progenitors. Modulating the (+)-JQ1 exposure window, we identified the first 48 h post-injury as the time-period during which Müller glia reprogramming occurs. (+)-JQ1 treatments after 48 h post-injury had no effect on the re-differentiation of UV cones, indicating that Brd function is required only for Müller glia reprogramming and not subsequent specification/differentiation events. Brd inhibition also prevented the expression of reprogramming genes like ascl1a and lepb in Müller glia, but not effector genes like mmp9, nor did it affect microglial recruitment after injury. These results demonstrate that transcriptional regulation by Brds plays a critical role during Müller glia-dependent retinal regeneration in zebrafish.
Collapse
Affiliation(s)
- Jiwoon Lee
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
17
|
Wang X, Song C, Ye Y, Gu Y, Li X, Chen P, Leng D, Xiao J, Wu H, Xie S, Liu W, Zhao Q, Chen D, Chen X, Wu Q, Chen G, Zhang W. BRD9-mediated control of the TGF-β/Activin/Nodal pathway regulates self-renewal and differentiation of human embryonic stem cells and progression of cancer cells. Nucleic Acids Res 2023; 51:11634-11651. [PMID: 37870468 PMCID: PMC10681724 DOI: 10.1093/nar/gkad907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-β, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, β-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-β/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-β/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.
Collapse
Affiliation(s)
- Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Chengcheng Song
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ying Ye
- Medical College of Soochow University, Suzhou 215123, China
| | - Yashi Gu
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xuemei Li
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Peixin Chen
- Medical College of Soochow University, Suzhou 215123, China
| | - Dongliang Leng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jing Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hao Wu
- Medical College of Soochow University, Suzhou 215123, China
| | - Sisi Xie
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Qi Zhao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Di Chen
- Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518000, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
- The Precision Regenerative Medicine Centre, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Wensheng Zhang
- Medical College of Soochow University, Suzhou 215123, China
- Peninsula Cancer Research Center, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| |
Collapse
|
18
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
19
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
20
|
Jiang Y, Lei G, Lin T, Zhou N, Wu J, Wang Z, Fan Y, Sheng H, Mao R. 1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. BMC Biol 2023; 21:75. [PMID: 37024934 PMCID: PMC10080975 DOI: 10.1186/s12915-023-01580-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Angiogenesis plays important roles in physiological and pathologic conditions, but the mechanisms underlying this complex process often remain to be elucidated. In recent years, liquid-liquid phase separation (LLPS) has emerged as a new concept to explain many cellular functions and diseases. However, whether LLPS is involved in angiogenesis has not been studied until now. Here, we investigated the potential role of LLPS in angiogenesis and endothelial function. RESULTS We found 1,6-hexanediol (1,6-HD), an inhibitor of LLPS, but not 2,5-hexanediol (2,5-HD) dramatically decreases neovascularization of Matrigel plug and angiogenesis response of murine corneal in vivo. Moreover, 1,6-HD but not 2,5-HD inhibits microvessel outgrowth of aortic ring and endothelial network formation. The endothelial function of migration, proliferation, and cell growth is suppressed by 1,6-HD. Global transcriptional analysis by RNA-sequencing reveals that 1,6-HD specifically blocks cell cycle and downregulates cell cycle-related genes including cyclin A1. Further experimental data show that 1,6-HD treatment greatly reduces the expression of cyclin A1 but with minimal effect on cyclin D1, cyclin E1, CDK2, and CDK4. The inhibitory effect of 1,6-HD on cyclin A1 is mainly through transcriptional regulation because proteasome inhibitors fail to rescue its expression. Furthermore, overexpression of cyclin A1 in HUVECs largely rescues the dysregulated tube formation upon 1,6-HD treatment. CONCLUSIONS Our data reveal a critical role of LLPS inhibitor 1,6-HD in angiogenesis and endothelial function, which specifically affects endothelial G1/S transition through transcriptional suppression of CCNA1, implying LLPS as a possible novel player to modulate angiogenesis, and thus, it might represent an interesting therapeutic target to be investigated in clinic angiogenesis-related diseases in future.
Collapse
Affiliation(s)
- Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Gongyun Lei
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Nan Zhou
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jintao Wu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Zhou Wang
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
21
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
22
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
23
|
Chen Y, Xu R, Zhou S, Zhao C, Hu Z, Hua Y, Xiong Y, Liu X, Lü J, Sun Y, Li C, Gao S, Zhang Y. Mechanical strain treatment improves nuclear transfer reprogramming efficiency by enhancing chromatin accessibility. Stem Cell Reports 2023; 18:807-816. [PMID: 36963387 PMCID: PMC10147550 DOI: 10.1016/j.stemcr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/26/2023] Open
Abstract
Cellular mechanical properties are considered to be important factors affecting cell fate transitions, but the links between cellular mechanical properties and transition efficiency and chromatin structure remain elusive. Here, we predicted that mechanical strain treatment could induce signatures of cellular dedifferentiation and transdifferentiation, and we validated this prediction by showing that mechanical strain-treated mouse cumulus cells (CCs) exhibit significantly improved somatic cell nuclear transfer (SCNT) reprogramming efficiency. We found that the chromatin accessibility of CCs was globally increased by mechanical strain treatment and that this increase was partially mediated by the induction of the YAP-TEAD interaction. Moreover, using mechanical strain-treated CCs could prevent transcriptional dysregulation in SCNT embryos. Taken together, our study results demonstrated that modulating cell mechanical properties to regulate epigenetic status is a promising approach to facilitate cell fate transition.
Collapse
Affiliation(s)
- Yujie Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruimin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuang Zhou
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Chengchen Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ziyue Hu
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Yuwei Hua
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Xiong
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junhong Lü
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.
| | - Chong Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translation Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
24
|
Yu X, Long Q, Shen S, Liu Z, Chandran J, Zhang J, Ding H, Zhang H, Cai D, Kim ES, Huang Y, Guo H. Screening of an epigenetic compound library identifies BRD4 as a potential antiviral target for hepatitis B virus covalently closed circular DNA transcription. Antiviral Res 2023; 211:105552. [PMID: 36737008 PMCID: PMC10036215 DOI: 10.1016/j.antiviral.2023.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
HBV cccDNA is the persistent form of viral genome, which exists in host cell nucleus as an episomal minichromosome decorated with histone and non-histone proteins. cccDNA is the authentic viral transcription template and resistant to current antivirals. Growing evidence shows that the transcriptional activity of cccDNA minichromosome undergoes epigenetic regulations, suggesting a new perspective for anti-cccDNA drug development through targeting histone modifications. In this study, we screened an epigenetic compound library in the cccDNA reporter cell line HepBHAe82, which produces the HA-tagged HBeAg in a cccDNA-dependent manner. Among the obtained hits, a bromodomain-containing protein 4 (BRD4) inhibitor MS436 exhibited marked inhibition of cccDNA transcription in both HBV stable cell line HepAD38 and HepG2-NTCP or primary human hepatocyte infection system under noncytotoxic concentrations. Chromatin immunoprecipitation (ChIP) assay demonstrated that MS436 dramatically reduced the enrichment of H3K27ac, an activating histone modification pattern, on cccDNA minichromosome. RNAseq differential analysis showed that MS436 does not drastically change host transcriptome or induce any known anti-HBV factors/pathways, indicating a direct antiviral effect of MS436 on cccDNA minichromosome. Interestingly, the MS436-mediated inhibition of cccDNA transcription is accompanied by cccDNA destabilization in HBV infection and a recombinant cccDNA system, indicating that BRD4 activity may also play a role in cccDNA maintenance. Furthermore, depletion of BRD4 by siRNA knockdown or PROTAC degrader resulted in cccDNA inhibition in HBV-infected HepG2-NTCP cells, further validating BRD4 as an antiviral target. Taken together, our study has demonstrated the practicability of HepBHAe82-based anti-HBV drug screening system and provided a proof-of-concept for targeting HBV cccDNA with epigenetic compounds.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Quanxin Long
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sheng Shen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Electrical and Computer Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jithin Chandran
- Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Junjie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hao Ding
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hu Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elena S Kim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Electrical and Computer Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
26
|
Wang X, Fan Y, Wu Q. The regulation of transcription elongation in embryonic stem cells. Front Cell Dev Biol 2023; 11:1145611. [PMID: 36875763 PMCID: PMC9978399 DOI: 10.3389/fcell.2023.1145611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Transcription elongation is a fundamental molecular process which is accurately regulated to ensure proper gene expression in cellular activities whereas its malfunction is associated with impaired cellular functions. Embryonic stem cells (ESCs) have significant value in regenerative medicine due to their self-renewal ability and their potential to differentiate to almost all types of cells. Therefore, dissection of the exact regulatory mechanism of transcription elongation in ESCs is crucial for both basic research and their clinical applications. In this review, we discuss the current understanding on the regulatory mechanisms of transcription elongation mediated by transcription factors and epigenetic modifications in ESCs.
Collapse
Affiliation(s)
- Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yudan Fan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
27
|
Eischer N, Arnold M, Mayer A. Emerging roles of BET proteins in transcription and co-transcriptional RNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1734. [PMID: 35491403 DOI: 10.1002/wrna.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/31/2023]
Abstract
Transcription by RNA polymerase II (Pol II) gives rise to all nuclear protein-coding and a large set of non-coding RNAs, and is strictly regulated and coordinated with RNA processing. Bromodomain and extraterminal (BET) family proteins including BRD2, BRD3, and BRD4 have been implicated in the regulation of Pol II transcription in mammalian cells. However, only recent technological advances have allowed the analysis of direct functions of individual BET proteins with high precision in cells. These studies shed new light on the molecular mechanisms of transcription control by BET proteins challenging previous longstanding views. The most studied BET protein, BRD4, emerges as a master regulator of transcription elongation with roles also in coupling nascent transcription with RNA processing. In contrast, BRD2 is globally required for the formation of transcriptional boundaries to restrict enhancer activity to nearby genes. Although these recent findings suggest non-redundant functions of BRD4 and BRD2 in Pol II transcription, more research is needed for further clarification. Little is known about the roles of BRD3. Here, we illuminate experimental work that has initially linked BET proteins to Pol II transcription in mammalian cells, outline main methodological breakthroughs that have strongly advanced the understanding of BET protein functions, and discuss emerging roles of individual BET proteins in transcription and transcription-coupled RNA processing. Finally, we propose an updated model for the function of BRD4 in transcription and co-transcriptional RNA maturation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Nicole Eischer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
28
|
Hu J, Pan D, Li G, Chen K, Hu X. Regulation of programmed cell death by Brd4. Cell Death Dis 2022; 13:1059. [PMID: 36539410 PMCID: PMC9767942 DOI: 10.1038/s41419-022-05505-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Epigenetic factor Brd4 has emerged as a key regulator of cancer cell proliferation. Targeted inhibition of Brd4 suppresses growth and induces apoptosis of various cancer cells. In addition to apoptosis, Brd4 has also been shown to regulate several other forms of programmed cell death (PCD), including autophagy, necroptosis, pyroptosis, and ferroptosis, with different biological outcomes. PCD plays key roles in development and tissue homeostasis by eliminating unnecessary or detrimental cells. Dysregulation of PCD is associated with various human diseases, including cancer, neurodegenerative and infectious diseases. In this review, we discussed some recent findings on how Brd4 actively regulates different forms of PCD and the therapeutic potentials of targeting Brd4 in PCD-related human diseases. A better understanding of PCD regulation would provide not only new insights into pathophysiological functions of PCD but also provide new avenues for therapy by targeting Brd4-regulated PCD.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
29
|
Liang Y, Xu H, Cheng T, Fu Y, Huang H, Qian W, Wang J, Zhou Y, Qian P, Yin Y, Xu P, Zou W, Chen B. Gene activation guided by nascent RNA-bound transcription factors. Nat Commun 2022; 13:7329. [PMID: 36443367 PMCID: PMC9705438 DOI: 10.1038/s41467-022-35041-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Technologies for gene activation are valuable tools for the study of gene functions and have a wide range of potential applications in bioengineering and medicine. In contrast to existing methods based on recruiting transcriptional modulators via DNA-binding proteins, we developed a strategy termed Narta (nascent RNA-guided transcriptional activation) to achieve gene activation by recruiting artificial transcription factors (aTFs) to transcription sites through nascent RNAs of the target gene. Using Narta, we demonstrate robust activation of a broad range of exogenous and endogenous genes in various cell types, including zebrafish embryos, mouse and human cells. Importantly, the activation is reversible, tunable and specific. Moreover, Narta provides better activation potency of some expressed genes than CRISPRa and, when used in combination with CRISPRa, has an enhancing effect on gene activation. Quantitative imaging illustrated that nascent RNA-directed aTFs could induce the high-density assembly of coactivators at transcription sites, which may explain the larger transcriptional burst size induced by Narta. Overall, our work expands the gene activation toolbox for biomedical research.
Collapse
Affiliation(s)
- Ying Liang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Haiyue Xu
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Cheng
- grid.13402.340000 0004 1759 700XWomen’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujuan Fu
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanwei Huang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenchang Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Wang
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuenan Zhou
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengfei Xu
- grid.13402.340000 0004 1759 700XWomen’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zou
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China ,grid.13402.340000 0004 1759 700XInsititute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Baohui Chen
- grid.13402.340000 0004 1759 700XDepartment of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China ,grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China
| |
Collapse
|
30
|
Ito S, Das ND, Umehara T, Koseki H. Factors and Mechanisms That Influence Chromatin-Mediated Enhancer-Promoter Interactions and Transcriptional Regulation. Cancers (Basel) 2022; 14:5404. [PMID: 36358822 PMCID: PMC9659172 DOI: 10.3390/cancers14215404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression is regulated through chromatin conformation, in which enhancers and promoters physically interact (E-P interactions). How such chromatin-mediated E-P interactions affect gene expression is not yet fully understood, but the roles of histone acetylation and methylation, pioneer transcription factors, and architectural proteins such as CCCTC binding factor (CTCF) and cohesin have recently attracted attention. Moreover, accumulated data suggest that E-P interactions are mechanistically involved in biophysical events, including liquid-liquid phase separation, and in biological events, including cancers. In this review, we discuss various mechanisms that regulate eukaryotic gene expression, focusing on emerging views regarding chromatin conformations that are involved in E-P interactions and factors that establish and maintain them.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Nando Dulal Das
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Immune Regulation, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
31
|
Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proc Natl Acad Sci U S A 2022; 119:e2204716119. [PMID: 36161929 DOI: 10.1073/pnas.2204716119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite pluripotent stem cells sharing key transcription factors, their maintenance involves distinct genetic inputs. Emerging evidence suggests that super-enhancers (SEs) can function as master regulatory hubs to control cell identity and pluripotency in humans and mice. However, whether pluripotency-associated SEs share an evolutionary origin in mammals remains elusive. Here, we performed comprehensive comparative epigenomic and transcription factor binding analyses among pigs, humans, and mice to identify pluripotency-associated SEs. Like typical enhancers, SEs displayed rapid evolution in mammals. We showed that BRD4 is an essential and conserved activator for mammalian pluripotency-associated SEs. Comparative motif enrichment analysis revealed 30 shared transcription factor binding motifs among the three species. The majority of transcriptional factors that bind to identified motifs are known regulators associated with pluripotency. Further, we discovered three pluripotency-associated SEs (SE-SOX2, SE-PIM1, and SE-FGFR1) that displayed remarkable conservation in placental mammals and were sufficient to drive reporter gene expression in a pluripotency-dependent manner. Disruption of these conserved SEs through the CRISPR-Cas9 approach severely impaired stem cell pluripotency. Our study provides insights into the understanding of conserved regulatory mechanisms underlying the maintenance of pluripotency as well as species-specific modulation of the pluripotency-associated regulatory networks in mammals.
Collapse
|
32
|
Yang N, Das D, Shankar SR, Goy PA, Guccione E, Taneja R. An interplay between BRD4 and G9a regulates skeletal myogenesis. Front Cell Dev Biol 2022; 10:978931. [PMID: 36158208 PMCID: PMC9489841 DOI: 10.3389/fcell.2022.978931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Histone acetylation and methylation are epigenetic modifications that are dynamically regulated by chromatin modifiers to precisely regulate gene expression. However, the interplay by which histone modifications are synchronized to coordinate cellular differentiation is not fully understood. In this study, we demonstrate a relationship between BRD4, a reader of acetylation marks, and G9a, a writer of methylation marks in the regulation of myogenic differentiation. Using loss- and gain-of-function studies, as well as a pharmacological inhibition of its activity, we examined the mechanism by which BRD4 regulates myogenesis. Transcriptomic analysis using RNA sequencing revealed that a number of myogenic differentiation genes are downregulated in Brd4-depleted cells. Interestingly, some of these genes were upregulated upon G9a knockdown, indicating that BRD4 and G9a play opposing roles in the control of myogenic gene expression. Remarkably, the differentiation defect caused by Brd4 knockdown was rescued by inhibition of G9a methyltransferase activity. These findings demonstrate that the absence of BRD4 results in the upregulation of G9a activity and consequently impaired myogenic differentiation. Collectively, our study identifies an interdependence between BRD4 and G9a for the precise control of transcriptional outputs to regulate myogenesis.
Collapse
Affiliation(s)
- Naidi Yang
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pierre-Alexis Goy
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Reshma Taneja,
| |
Collapse
|
33
|
Abstract
Transcription elongation by RNA polymerase II (Pol II) has emerged as a regulatory hub in gene expression. A key control point occurs during early transcription elongation when Pol II pauses in the promoter-proximal region at the majority of genes in mammalian cells and at a large set of genes in Drosophila. An increasing number of trans-acting factors have been linked to promoter-proximal pausing. Some factors help to establish the pause, whereas others are required for the release of Pol II into productive elongation. A dysfunction of this elongation control point leads to aberrant gene expression and can contribute to disease development. The BET bromodomain protein BRD4 has been implicated in elongation control. However, only recently direct BRD4-specific functions in Pol II transcription elongation have been uncovered. This mainly became possible with technological advances that allow selective and rapid ablation of BRD4 in cells along with the availability of approaches that capture the immediate consequences on nascent transcription. This review sheds light on the experimental breakthroughs that led to the emerging view of BRD4 as a general regulator of transcription elongation.
Collapse
Affiliation(s)
- Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yelizaveta Mochalova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
34
|
Ashby E, Paddock L, Betts HL, Liao J, Miller G, Porter A, Rollosson LM, Saada C, Tang E, Wade SJ, Hardin J, Schulz D. Genomic Occupancy of the Bromodomain Protein Bdf3 Is Dynamic during Differentiation of African Trypanosomes from Bloodstream to Procyclic Forms. mSphere 2022; 7:e0002322. [PMID: 35642518 PMCID: PMC9241505 DOI: 10.1128/msphere.00023-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 12/05/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human and animal African trypanosomiasis, cycles between a mammalian host and a tsetse fly vector. The parasite undergoes huge changes in morphology and metabolism during adaptation to each host environment. These changes are reflected in the different transcriptomes of parasites living in each host. However, it remains unclear whether chromatin-interacting proteins help mediate these changes. Bromodomain proteins localize to transcription start sites in bloodstream parasites, but whether the localization of bromodomain proteins changes as parasites differentiate from bloodstream to insect stages remains unknown. To address this question, we performed cleavage under target and release using nuclease (CUT&RUN) against bromodomain protein 3 (Bdf3) in parasites differentiating from bloodstream to insect forms. We found that Bdf3 occupancy at most loci increased at 3 h following onset of differentiation and decreased thereafter. A number of sites with increased bromodomain protein occupancy lie proximal to genes with altered transcript levels during differentiation, such as procyclins, procyclin-associated genes, and invariant surface glycoproteins. Most Bdf3-occupied sites are observed throughout differentiation. However, one site appears de novo during differentiation and lies proximal to the procyclin gene locus housing genes essential for remodeling surface proteins following transition to the insect stage. These studies indicate that occupancy of chromatin-interacting proteins is dynamic during life cycle stage transitions and provide the groundwork for future studies on the effects of changes in bromodomain protein occupancy. Additionally, the adaptation of CUT&RUN for Trypanosoma brucei provides other researchers with an alternative to chromatin immunoprecipitation (ChIP). IMPORTANCE The parasite Trypanosoma brucei is the causative agent of human and animal African trypanosomiasis (sleeping sickness). Trypanosomiasis, which affects humans and cattle, is fatal if untreated. Existing drugs have significant side effects. Thus, these parasites impose a significant human and economic burden in sub-Saharan Africa, where trypanosomiasis is endemic. T. brucei cycles between the mammalian host and a tsetse fly vector, and parasites undergo huge changes in morphology and metabolism to adapt to different hosts. Here, we show that DNA-interacting bromodomain protein 3 (Bdf3) shows changes in occupancy at its binding sites as parasites transition from the bloodstream to the insect stage. Additionally, a new binding site appears near the locus responsible for remodeling of parasite surface proteins during transition to the insect stage. Understanding the mechanisms behind host adaptation is important for understanding the life cycle of the parasite.
Collapse
Affiliation(s)
- Ethan Ashby
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Lucinda Paddock
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Hannah L. Betts
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Jingwen Liao
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Geneva Miller
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Anya Porter
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | | | - Carrie Saada
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Eric Tang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Serenity J. Wade
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Johanna Hardin
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
35
|
Ali HA, Li Y, Bilal AHM, Qin T, Yuan Z, Zhao W. A Comprehensive Review of BET Protein Biochemistry, Physiology, and Pathological Roles. Front Pharmacol 2022; 13:818891. [PMID: 35401196 PMCID: PMC8990909 DOI: 10.3389/fphar.2022.818891] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications, specifically acetylation of histone plays a decisive role in gene regulation and transcription of normal cellular mechanisms and pathological conditions. The bromodomain and extraterminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT), being epigenetic readers, ligate to acetylated regions of histone and synchronize gene transcription. BET proteins are crucial for normal cellular processing as they control cell cycle progression, neurogenesis, differentiation, and maturation of erythroids and spermatogenesis, etc. Research-based evidence indicated that BET proteins (mainly BRD4) are associated with numeral pathological ailments, including cancer, inflammation, infections, renal diseases, and cardiac diseases. To counter the BET protein-related pathological conditions, there are some BET inhibitors developed and also under development. BET proteins are a topic of most research nowadays. This review, provides an ephemeral but comprehensive knowledge about BET proteins’ basic structure, biochemistry, physiological roles, and pathological conditions in which the role of BETs have been proven. This review also highlights the current and future approaches to pledge BET protein-related pathologies.
Collapse
Affiliation(s)
- Hafiz Akbar Ali
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yalan Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Akram Hafiz Muhammad Bilal
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingting Qin
- Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
36
|
Hoffner O’Connor M, Berglind A, Kennedy Ng MM, Keith BP, Lynch ZJ, Schaner MR, Steinbach EC, Herzog J, Trad OK, Jeck WR, Arthur JC, Simon JM, Sartor RB, Furey TS, Sheikh SZ. BET Protein Inhibition Regulates Macrophage Chromatin Accessibility and Microbiota-Dependent Colitis. Front Immunol 2022; 13:856966. [PMID: 35401533 PMCID: PMC8988134 DOI: 10.3389/fimmu.2022.856966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction In colitis, macrophage functionality is altered compared to normal homeostatic conditions. Loss of IL-10 signaling results in an inappropriate chronic inflammatory response to bacterial stimulation. It remains unknown if inhibition of bromodomain and extra-terminal domain (BET) proteins alters usage of DNA regulatory elements responsible for driving inflammatory gene expression. We determined if the BET inhibitor, (+)-JQ1, could suppress inflammatory activation of macrophages in Il10-/- mice. Methods We performed ATAC-seq and RNA-seq on Il10-/- bone marrow-derived macrophages (BMDMs) cultured in the presence and absence of lipopolysaccharide (LPS) with and without treatment with (+)-JQ1 and evaluated changes in chromatin accessibility and gene expression. Germ-free Il10-/- mice were treated with (+)-JQ1, colonized with fecal slurries and underwent histological and molecular evaluation 14-days post colonization. Results Treatment with (+)-JQ1 suppressed LPS-induced changes in chromatin at distal regulatory elements associated with inflammatory genes, particularly in regions that contain motifs for AP-1 and IRF transcription factors. This resulted in attenuation of inflammatory gene expression. Treatment with (+)-JQ1 in vivo resulted in a mild reduction in colitis severity as compared with vehicle-treated mice. Conclusion We identified the mechanism of action associated with a new class of compounds that may mitigate aberrant macrophage responses to bacteria in colitis.
Collapse
Affiliation(s)
- Michelle Hoffner O’Connor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ana Berglind
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Meaghan M. Kennedy Ng
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin P. Keith
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zachary J. Lynch
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Erin C. Steinbach
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy Herzog
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Omar K. Trad
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William R. Jeck
- Department of Pathology, Duke University, Durham, NC, United States
| | - Janelle C. Arthur
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy M. Simon
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Carolina Institute for Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Terrence S. Furey
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
37
|
Tsume-Kajioka M, Kimura-Yoshida C, Mochida K, Ueda Y, Matsuo I. BET proteins are essential for the specification and maintenance of the epiblast lineage in mouse preimplantation embryos. BMC Biol 2022; 20:64. [PMID: 35264162 PMCID: PMC8905768 DOI: 10.1186/s12915-022-01251-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. Results To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. Conclusions BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01251-0.
Collapse
Affiliation(s)
- Mami Tsume-Kajioka
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Osaka Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Ji G, Xiao X, Huang M, Wu Q. Jmjd6 regulates ES cell homeostasis and enhances reprogramming efficiency. Heliyon 2022; 8:e09105. [PMID: 35846449 PMCID: PMC9280369 DOI: 10.1016/j.heliyon.2022.e09105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Jmjd6 is a conserved nuclear protein which possesses histone arginine demethylation and lysyl hydroxylase activity. Previous studies have revealed that Jmjd6 is essential for cell differentiation and embryo development. However, the role of Jmjd6 in mammalian ES cell identity and reprogramming has been unclear. Here we report that depletion of Jmjd6 not only results in downregulation of pluripotency genes but also is implicated in apoptosis, glycolysis, cell cycle and protein hydroxylation. We also revealed the reduction of BrdU incorporation in Jmjd6 depleted cells. Reprogramming efficiency of MEFs can be enhanced with Jmjd6 overexpression while the efficiency was reduced upon Jmjd6 depletion. Together, these results suggest that Jmjd6 can regulate ES cell homeostasis and enhance somatic cell reprogramming.
Collapse
|
39
|
Ma X, Lu Y, Zhou Z, Li Q, Chen X, Wang W, Jin Y, Hu Z, Chen G, Deng Q, Shang W, Wang H, Fu H, He X, Feng XH, Zhu S. Human expandable pancreatic progenitor-derived β cells ameliorate diabetes. SCIENCE ADVANCES 2022; 8:eabk1826. [PMID: 35196077 PMCID: PMC8865776 DOI: 10.1126/sciadv.abk1826] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An unlimited source of human pancreatic β cells is in high demand. Even with recent advances in pancreatic differentiation from human pluripotent stem cells, major hurdles remain in large-scale and cost-effective production of functional β cells. Here, through chemical screening, we demonstrate that the bromodomain and extraterminal domain (BET) inhibitor I-BET151 can robustly promote the expansion of PDX1+NKX6.1+ pancreatic progenitors (PPs). These expandable PPs (ePPs) maintain pancreatic progenitor cell status in the long term and can efficiently differentiate into functional pancreatic β (ePP-β) cells. Notably, transplantation of ePP-β cells rapidly ameliorated diabetes in mice, suggesting strong potential for cell replacement therapy. Mechanistically, I-BET151 activates Notch signaling and promotes the expression of key PP-associated genes, underscoring the importance of epigenetic and transcriptional modulations for lineage-specific progenitor self-renewal. In summary, our studies achieve the long-term goal of robust expansion of PPs and represent a substantial step toward unlimited supplies of functional β cells for biomedical research and regenerative medicine.
Collapse
Affiliation(s)
- Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Weina Shang
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, 369 Kunpeng Road, Hangzhou, China
| | - Hongxing Fu
- Department of Pharmacy, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shunlan International Medical College, 848 Dongxin Road, Hangzhou, China
| | - Xiangwei He
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Corresponding author.
| |
Collapse
|
40
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
41
|
Schreiber J, Liaukouskaya N, Fuhrmann L, Hauser AT, Jung M, Huber TB, Wanner N. BET Proteins Regulate Expression of Osr1 in Early Kidney Development. Biomedicines 2021; 9:biomedicines9121878. [PMID: 34944697 PMCID: PMC8698285 DOI: 10.3390/biomedicines9121878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
In utero renal development is subject to maternal metabolic and environmental influences affecting long-term renal function and the risk of developing chronic kidney failure and cardiovascular disease. Epigenetic processes have been implicated in the orchestration of renal development and prenatal programming of nephron number. However, the role of many epigenetic modifiers for kidney development is still unclear. Bromodomain and extra-terminal domain (BET) proteins act as histone acetylation reader molecules and promote gene transcription. BET family members Brd2, Brd3 and Brd4 are expressed in the nephrogenic zone during kidney development. Here, the effect of the BET inhibitor JQ1 on renal development is evaluated. Inhibition of BET proteins via JQ1 leads to reduced growth of metanephric kidney cultures, loss of the nephron progenitor cell population, and premature and disturbed nephron differentiation. Gene expression of key nephron progenitor transcription factor Osr1 is downregulated after 24 h BET inhibition, while Lhx1 and Pax8 expression is increased. Mining of BRD4 ChIP-seq and gene expression data identify Osr1 as a key factor regulated by BRD4-controlled gene activation. Inhibition of BRD4 by BET inhibitor JQ1 leads to downregulation of Osr1, thereby causing a disturbance in the balance of nephron progenitor cell self-renewal and premature differentiation of the nephron, which ultimately leads to kidney hypoplasia and disturbed nephron development. This raises questions about the potential teratogenic effects of BET inhibitors for embryonic development. In summary, our work highlights the role of BET proteins for prenatal programming of nephrogenesis and identifies Osr1 as a potential target of BET proteins.
Collapse
Affiliation(s)
- Janina Schreiber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Nastassia Liaukouskaya
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Lars Fuhrmann
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Alexander-Thomas Hauser
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (A.-T.H.); (M.J.)
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (A.-T.H.); (M.J.)
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias B. Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
| | - Nicola Wanner
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.L.); (L.F.); (T.B.H.)
- Correspondence:
| |
Collapse
|
42
|
White SM, Snyder MP, Yi C. Master lineage transcription factors anchor trans mega transcriptional complexes at highly accessible enhancer sites to promote long-range chromatin clustering and transcription of distal target genes. Nucleic Acids Res 2021; 49:12196-12210. [PMID: 34850122 PMCID: PMC8643643 DOI: 10.1093/nar/gkab1105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
The term 'super enhancers' (SE) has been widely used to describe stretches of closely localized enhancers that are occupied collectively by large numbers of transcription factors (TFs) and co-factors, and control the transcription of highly-expressed genes. Through integrated analysis of >600 DNase-seq, ChIP-seq, GRO-seq, STARR-seq, RNA-seq, Hi-C and ChIA-PET data in five human cancer cell lines, we identified a new class of autonomous SEs (aSEs) that are excluded from classic SE calls by the widely used Rank Ordering of Super-Enhancers (ROSE) method. TF footprint analysis revealed that compared to classic SEs and regular enhancers, aSEs are tightly bound by a dense array of master lineage TFs, which serve as anchors to recruit additional TFs and co-factors in trans. In addition, aSEs are preferentially enriched for Cohesins, which likely involve in stabilizing long-distance interactions between aSEs and their distal target genes. Finally, we showed that aSEs can be reliably predicted using a single DNase-seq data or combined with Mediator and/or P300 ChIP-seq. Overall, our study demonstrates that aSEs represent a unique class of functionally important enhancer elements that distally regulate the transcription of highly expressed genes.
Collapse
Affiliation(s)
- Shannon M White
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Chunling Yi
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
43
|
Liang Y, Tian J, Wu T. BRD4 in physiology and pathology: ''BET'' on its partners. Bioessays 2021; 43:e2100180. [PMID: 34697817 DOI: 10.1002/bies.202100180] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Bromodomain-containing 4 (BRD4), a member of Bromo and Extra-Terminal (BET) family, recognizes acetylated histones and is of importance in transcription, replication, and DNA repair. It also binds non-histone proteins, DNA and RNA, contributing to development, tissue growth, and various physiological processes. Additionally, BRD4 has been implicated in driving diverse diseases, ranging from cancer, viral infection, inflammation to neurological disorders. Inhibiting its functions with BET inhibitors (BETis) suppresses the progression of several types of cancer, creating an impetus for translating these chemicals to the clinic. The diverse roles of BRD4 are largely dependent on its interaction partners in different contexts. In this review we discuss the molecular mechanisms of BRD4 with its interacting partners in physiology and pathology. Current development of BETis is also summarized. Further understanding the functions of BRD4 and its partners will facilitate resolving the liabilities of present BETis and accelerate their clinical translation.
Collapse
Affiliation(s)
- Yin Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jieyi Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
44
|
Chen Z, Huang Y, Yu C, Liu Q, Qiu C, Wan G. Cochlear Sox2 + Glial Cells Are Potent Progenitors for Spiral Ganglion Neuron Reprogramming Induced by Small Molecules. Front Cell Dev Biol 2021; 9:728352. [PMID: 34621745 PMCID: PMC8490772 DOI: 10.3389/fcell.2021.728352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, spiral ganglion neurons (SGNs) relay the acoustic information to the central auditory circuits. Degeneration of SGNs is a major cause of sensorineural hearing loss and severely affects the effectiveness of cochlear implant therapy. Cochlear glial cells are able to form spheres and differentiate into neurons in vitro. However, the identity of these progenitor cells is elusive, and it is unclear how to differentiate these cells toward functional SGNs. In this study, we found that Sox2+ subpopulation of cochlear glial cells preserves high potency of neuronal differentiation. Interestingly, Sox2 expression was downregulated during neuronal differentiation and Sox2 overexpression paradoxically inhibited neuronal differentiation. Our data suggest that Sox2+ glial cells are potent SGN progenitor cells, a phenotype independent of Sox2 expression. Furthermore, we identified a combination of small molecules that not only promoted neuronal differentiation of Sox2– glial cells, but also removed glial cell identity and promoted the maturation of the induced neurons (iNs) toward SGN fate. In summary, we identified Sox2+ glial subpopulation with high neuronal potency and small molecules inducing neuronal differentiation toward SGNs.
Collapse
Affiliation(s)
- Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chaorong Yu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
46
|
Dey A, Uppal S, Giri J, Misra HS. Emerging roles of bromodomain protein 4 in regulation of stem cell identity. Stem Cells 2021; 39:1615-1624. [PMID: 34520583 DOI: 10.1002/stem.3454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Understanding the mechanism of fate decision and lineage commitment is the key step for developing novel stem cell applications in therapeutics. This process is coordinately regulated through systematic epigenetic reprogramming and concomitant changes in the transcriptional landscape of the stem cells. One of the bromo- and extra-terminal domain (BET) family member proteins, bromodomain protein 4 (BRD4), performs the role of epigenetic reader and modulates gene expression by recruiting other transcription factors and directly regulating RNA polymerase II elongation. Controlled gene regulation is the critical step in maintenance of stem cell potency and dysregulation may lead to tumor formation. As a key transcriptional factor and epigenetic regulator, BRD4 contributes to stem cell maintenance in several ways. Being a druggable target, BRD4 is an attractive candidate for exploiting its potential in stem cell therapeutics. Therefore, it is crucial to elucidate how BRD4, through its interplay with pluripotency transcriptional regulators, control lineage commitment in stem cells. Here, we systemically review the role of BRD4 in complex gene regulatory network during three specific states of stem cell transitions: cell differentiation, cell reprogramming and transdifferentiation. A thorough understanding of BRD4 mediated epigenetic regulation in the maintenance of stem cell potency will be helpful to strategically control stem cell fates in regenerative medicine.
Collapse
Affiliation(s)
- Anusree Dey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Sheetal Uppal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Jayeeta Giri
- TIFR Complex, 605 Raman, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
47
|
Cheung KL, Kim C, Zhou MM. The Functions of BET Proteins in Gene Transcription of Biology and Diseases. Front Mol Biosci 2021; 8:728777. [PMID: 34540900 PMCID: PMC8446420 DOI: 10.3389/fmolb.2021.728777] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 12/25/2022] Open
Abstract
The BET (bromodomain and extra-terminal domain) family proteins, consisting of BRD2, BRD3, BRD4, and testis-specific BRDT, are widely acknowledged as major transcriptional regulators in biology. They are characterized by two tandem bromodomains (BDs) that bind to lysine-acetylated histones and transcription factors, recruit transcription factors and coactivators to target gene sites, and activate RNA polymerase II machinery for transcriptional elongation. Pharmacological inhibition of BET proteins with BD inhibitors has been shown as a promising therapeutic strategy for the treatment of many human diseases including cancer and inflammatory disorders. The recent advances in bromodomain protein biology have further uncovered the complex and versatile functions of BET proteins in the regulation of gene expression in chromatin. In this review article, we highlight our current understanding of BET proteins' functions in mediating protein-protein interactions required for chromatin-templated gene transcription and splicing, chromatin remodeling, DNA replication, and DNA damage repair. We further discuss context-dependent activator vs. repressor functions of individual BET proteins, isoforms, and bromodomains that may be harnessed for future development of BET bromodomain inhibitors as emerging epigenetic therapies for cancer and inflammatory disorders.
Collapse
|
48
|
Halder TG, Soldi R, Sharma S. Bromodomain and extraterminal domain protein bromodomain inhibitor based cancer therapeutics. Curr Opin Oncol 2021; 33:526-531. [PMID: 34280171 DOI: 10.1097/cco.0000000000000763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Bromodomain and extraterminal domain (BET) proteins are evolutionarily conserved, multifunctional super-regulators that specifically recognize acetyl-lysine on histones and other proteins controlling gene transcription. Several studies show that small molecules targeting these regulators preferentially suppress the transcription of cancer-promoting genes. Consequently, several BET inhibitors reached clinical trials and are in various stages for different kind of malignancies. In this review, we provide a concise summary of the molecular basis and preliminary clinical outcomes of BET inhibitors as anticancer therapeutics. RECENT FINDINGS Results from early clinical trials with BET inhibitors confirmed their antitumor potential in both hematologic and solid tumours, but the evidence does not support the application of BET inhibitors as a monotherapy for cancer treatment. Treatment-emergent toxicities such as thrombocytopenia and gastrointestinal disorders are also reported. Preclinical data suggest that BET inhibitors may have a promising future in combination with other anticancer agents. SUMMARY Despite of various challenges, BET inhibitors have high potential in combinatorial therapy and the future development of next-generation inhibitors could be promising. Further studies are needed to determine the predictive biomarkers for therapeutic response, which would translate into the long-term success of BET inhibitors as personalized medicines in cancer treatment.
Collapse
Affiliation(s)
- Tithi Ghosh Halder
- Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | | | | |
Collapse
|
49
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
50
|
Cheng S, Yang GJ, Wang W, Ma DL, Leung CH. Discovery of a tetrahydroisoquinoline-based CDK9-cyclin T1 protein–protein interaction inhibitor as an anti-proliferative and anti-migration agent against triple-negative breast cancer cells. Genes Dis 2021; 9:1674-1688. [PMID: 36157485 PMCID: PMC9485199 DOI: 10.1016/j.gendis.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Shasha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
| | - Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, PR China
- Corresponding author.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, PR China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, PR China
- Corresponding author.
| |
Collapse
|