1
|
Seidel T, Ohri N, Glaß M, Sunami Y, Müller LP, Kleeff J. Stromal Cells in Early Inflammation-Related Pancreatic Carcinogenesis-Biology and Its Potential Role in Therapeutic Targeting. Cancers (Basel) 2025; 17:1541. [PMID: 40361466 DOI: 10.3390/cancers17091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
The stroma of healthy pancreases contains various non-hematopoietic, non-endothelial mesenchymal cells. It is altered by chronic inflammation which in turn is a major contributor to the development of pancreatic adenocarcinoma (PDAC). In PDAC, the stroma plays a decisive and well-investigated role for tumor progression and therapy response. This review addresses the central role of stromal cells in the early inflammation-driven development of PDAC. It focuses on major subpopulations of pancreatic mesenchymal cells, i.e., fibroblasts, pancreatic stellate cells, and multipotent stroma cells, particularly their activation and functional alterations upon chronic inflammation including the development of different types of carcinoma-associated fibroblasts. In the second part, the current knowledge on the impact of activated stroma cells on acinar-to-ductal metaplasia and the transition to pancreatic intraepithelial neoplasia is summarized. Finally, putative strategies to target stroma cells and their signaling in early pancreatic carcinogenesis are reflected. In summary, the current data show that the activation of pancreatic stroma cells and the resulting fibrotic changes has pro- and anti-carcinogenetic effects but, overall, creates a carcinogenesis-promoting microenvironment. However, this is a dynamic process and the therapeutic targeting of specific pathways and cells requires in-depth knowledge of the molecular interplay of various cell types.
Collapse
Affiliation(s)
- Tina Seidel
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Lutz P Müller
- Department of Internal Medicine, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, University Hospital Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Hu ZY, Ding D, Song Y, Deng YF, Zhang CM, Yu T. Molecular mechanism of pancreatic ductal adenocarcinoma: The heterogeneity of cancer-associated fibroblasts and key signaling pathways. World J Clin Oncol 2025; 16:97007. [PMID: 39995552 PMCID: PMC11686552 DOI: 10.5306/wjco.v16.i2.97007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma stands out as an exceptionally fatal cancer owing to the complexities associated with its treatment and diagnosis, leading to a notably low five-year survival rate. This study offers a detailed exploration of epidemiological trends in pancreatic cancer and key molecular drivers, such as mutations in CDKN2A, KRAS, SMAD4, and TP53, along with the influence of cancer-associated fibroblasts (CAFs) on disease progression. In particular, we focused on the pivotal roles of signaling pathways such as the transforming growth factor-β and Wnt/β-catenin pathways in the development of pancreatic cancer and investigated their application in emerging therapeutic strategies. This study provides new scientific perspectives on pancreatic cancer treatment, especially in the development of precision medicine and targeted therapeutic strategies, and demonstrates the importance of signaling pathway research in the development of effective therapeutic regimens. Future studies should explore the subtypes of CAFs and their specific roles in the tumor microenvironment to devise more effective therapeutic methods.
Collapse
Affiliation(s)
- Zhong-Yuan Hu
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ding Ding
- First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Yu Song
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang 712000, Shaanxi Province, China
| | - Ya-Feng Deng
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Cheng-Ming Zhang
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| | - Tao Yu
- Digestive Department I, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 710000, Shaanxi Province, China
| |
Collapse
|
3
|
Liu Y, Ji H, Wu LH, Wang XX, Yang Y, Zhang Q, Zhang HM. Stratifying hepatocellular carcinoma based on immunophenotypes for immunotherapy response and prognosis. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200890. [PMID: 39498358 PMCID: PMC11532917 DOI: 10.1016/j.omton.2024.200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Immunotherapy has transformed the management of hepatocellular carcinoma (HCC), but effectiveness varies among patients. This study aimed to identify biomarkers and HCC subtypes responsive to immunotherapy. Patients were classified into Immunity-High (Immunity-H) and Immunity-Low (Immunity-L) subtypes using ssGSEA scores. Prognostic genes were identified through Cox regression, and immune cell infiltration was quantified with TIMER 2.0. Brother of CDO (BOC) expression, analyzed via immunohistochemistry, correlated with immunotherapy responses. Flow cytometry assessed immune cell infiltration relative to BOC levels, while CCK-8 and transwell assays evaluated BOC overexpression's effects on cell proliferation and invasiveness. Clinically, immunity-H patients had better survival outcomes. Three hub genes-BOC, V-Set and Transmembrane Domain Containing 1 (VSTM1), and PRDM12-were identified as significantly associated with prognosis. Among these, BOC and VSTM1 demonstrated positive correlations with immune cell infiltration. Elevated expression of BOC was found to be predictive of favorable responses to immunotherapy and was associated with enhanced infiltration of T cells, dendritic cells, and B cells in the tumor microenvironment. Conversely, BOC overexpression in liver cancer cell lines led to decreased cell proliferation and invasiveness. This study underscores the prognostic significance of HCC subtypes defined by immunogenomic profiles and identifies BOC as a potential biomarker for immunotherapy selection and outcome prediction.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hongchen Ji
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Li-Hong Wu
- Department of Gastroenterology, Xijing 986 Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yue Yang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qiong Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
4
|
Wang X, Li S, Shen Y, Cao L, Lu Y, Cao J, Liu Y, Deng A, Yang J, Wang T. Construction of molecular subtype and prognostic model for gastric cancer based on nucleus-encoded mitochondrial genes. Sci Rep 2024; 14:28491. [PMID: 39557952 PMCID: PMC11574080 DOI: 10.1038/s41598-024-78729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Gastric cancer (GC) is a common digestive system cancer, characterized by a significant mortality rate. Mitochondria is an indispensable organelle in eukaryotic cells. It was previously revealed that a series of nucleus-encoded mitochondrial genes (NMG) mutations and dysfunctions potentially contribute to the initiation and progression of GC. However, the correlation between NMG mutations and survival outcomes for GC patients is still unclear. In this study, NMG expression profile and clinical information in GC samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Through consistent clustering and functional enrichment analysis, we have identified three NMG clusters and three gene clusters that are associated with patterns of immune cell infiltration. Prognostic genes were identified through Univariate Cox regression analysis. The principal component analysis was conducted to set up a scoring system. Subsequently, the Single‑cell RNA sequencing (scRNA-seq) data of GC patients and cancer cell drug sensitivity data were retrieved from the GEO database. Patients with high NMG scores exhibited increased microsatellite instability status and a heightened tumor mutation rate compared to those with low NMG scores. Survival analysis revealed that GC samples with high NMG scores could achieve a better prognosis. Additionally, These patients were observed to be more responsive to immunotherapy. Moreover, we delved into prognostic genes at the level of single cells, revealing that MRPL4 and MRPL37 exhibit high expression in epithelial cells, while TPM1 demonstrates high expression in tissue stem cells. Utilizing cancer cell drug sensitivity data from the Drug Sensitivity in Cancer (GDSC) database, we noted a heightened sensitivity to chemotherapy in the high NMG group. Furthermore, we discovered a significant enrichment of cuproptosis-related genes in clusters with high NMG scores. Consequently, employing the scoring system could facilitate the prediction of GC patients' sensitivity to cuproptosis-induced therapy. Our study confirmed the potency of this scoring system as a therapeutic response biomarker for gastric cancer, potentially informing clinical treatment strategies.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sainan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Li Cao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Tongtong Wang
- Department of Intensive Care Unit, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xian, China.
| |
Collapse
|
5
|
Liu W, Huang F, Yao Y, Liang Y, Yan Z, Guo L, Zhang X, Shi L, Yao Y. Cleft lip and palate transmembrane protein 1-like is a putative regulator of tumorigenesis and sensitization of cervical cancer cells to cisplatin. Front Oncol 2024; 14:1440906. [PMID: 39346724 PMCID: PMC11427242 DOI: 10.3389/fonc.2024.1440906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background Cervical cancer stands as one of the leading causes of cancer-related mortality in women worldwide, yet the precise functions of host genes implicated in its pathogenesis remain elusive. Genome-wide association studies (GWAS) have revealed a significant association between the CLPTM1L locus and cervical cancer risk in European women, and aberrant expression of CLPTM1L has been noted in various malignant tumors. However, the role of CLPTM1L in cervical cancer remains largely unexplored. Methods The expression of CLPTM1L in cervical cancer cells and tissues was detected by RT-qPCR. Furthermore, the potential biological functions of CLPTM1L in the context of cervical cancer were explored via RNA sequencing. Cell proliferation rates and the responsiveness of cervical cancer cells to cisplatin were evaluated using the CCK-8 assay, while cell apoptosis was quantified through the utilization of flow cytometry. Nude mouse xenograft models were utilized to explore the impact of CLPTM1L on tumor formation in vivo. Results Our findings demonstrated a significant increase in CLPTM1L mRNA expression levels in HeLa and C33A cells, as well as in cervical carcinoma tissues, compared to ECT1/E6E7 cells and adjacent normal tissues. Genes related to CLPTM1L were found to be enriched in the Hedgehog signaling pathway. In vitro and in vivo studies showed that reducing CLPTM1L expression markedly inhibited cell proliferation via downstream candidate genes BOC and LRP2. Furthermore, the downregulation of CLPTM1L was found to enhance cisplatin-induced cell apoptosis and increase the susceptibility of cervical cancer cells to cisplatin through DAP1. Conclusions CLPTM1L could impact cervical cancer cell proliferation and cisplatin-induced cell apoptosis, as well as cisplatin susceptibility in cervical cancer cells. This investigation has bestowed upon us novel insights into the pathogenesis of cervical cancer, underscoring the potential of CLPTM1L as a promising target for chemotherapeutic sensitization in the management of this malignancy.
Collapse
Affiliation(s)
- Weipeng Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Fengdan Huang
- Graduate School of Yunnan University, Yunnan University, Kunming, Yunnan, China
| | - Yueting Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yan Liang
- College of Nursing Health Sciences, Yunnan Open University, Kunming, Yunnan, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, Peking University Cancer Hospital Yunnan & Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lili Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
6
|
Sussman JH, Kim N, Kemp SB, Traum D, Katsuda T, Kahn BM, Xu J, Kim IK, Eskandarian C, Delman D, Beatty GL, Kaestner KH, Simpson AL, Stanger BZ. Multiplexed Imaging Mass Cytometry Analysis Characterizes the Vascular Niche in Pancreatic Cancer. Cancer Res 2024; 84:2364-2376. [PMID: 38695869 PMCID: PMC11250934 DOI: 10.1158/0008-5472.can-23-2352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Oncogenesis and progression of pancreatic ductal adenocarcinoma (PDAC) are driven by complex interactions between the neoplastic component and the tumor microenvironment, which includes immune, stromal, and parenchymal cells. In particular, most PDACs are characterized by a hypovascular and hypoxic environment that alters tumor cell behavior and limits the efficacy of chemotherapy and immunotherapy. Characterization of the spatial features of the vascular niche could advance our understanding of inter- and intratumoral heterogeneity in PDAC. In this study, we investigated the vascular microenvironment of PDAC by applying imaging mass cytometry using a 26-antibody panel on 35 regions of interest across 9 patients, capturing more than 140,000 single cells. The approach distinguished major cell types, including multiple populations of lymphoid and myeloid cells, endocrine cells, ductal cells, stromal cells, and endothelial cells. Evaluation of cellular neighborhoods identified 10 distinct spatial domains, including multiple immune and tumor-enriched environments as well as the vascular niche. Focused analysis revealed differential interactions between immune populations and the vasculature and identified distinct spatial domains wherein tumor cell proliferation occurs. Importantly, the vascular niche was closely associated with a population of CD44-expressing macrophages enriched for a proangiogenic gene signature. Taken together, this study provides insights into the spatial heterogeneity of PDAC and suggests a role for CD44-expressing macrophages in shaping the vascular niche. Significance: Imaging mass cytometry revealed that pancreatic ductal cancers are composed of 10 distinct cellular neighborhoods, including a vascular niche enriched for macrophages expressing high levels of CD44 and a proangiogenic gene signature.
Collapse
Affiliation(s)
- Jonathan H. Sussman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathalia Kim
- Department of Biomedical and Molecular Sciences/School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Samantha B Kemp
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Daniel Traum
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Takeshi Katsuda
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Benjamin M. Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Il-Kyu Kim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Cody Eskandarian
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Devora Delman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory L. Beatty
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Amber L. Simpson
- Department of Biomedical and Molecular Sciences/School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Ben Z. Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Torres-Llanos Y, Zabaleta J, Cruz-Rodriguez N, Quijano S, Guzmán PC, de los Reyes I, Poveda-Garavito N, Infante A, Lopez-Kleine L, Combita AL. MIR4435-2HG as a possible novel predictive biomarker of chemotherapy response and death in pediatric B-cell ALL. Front Mol Biosci 2024; 11:1385140. [PMID: 38745909 PMCID: PMC11091394 DOI: 10.3389/fmolb.2024.1385140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction: Although B-cell acute lymphoblastic leukemia (B-cell ALL) survival rates have improved in recent years, Hispanic children continue to have poorer survival rates. There are few tools available to identify at the time of diagnosis whether the patient will respond to induction therapy. Our goal was to identify predictive biomarkers of treatment response, which could also serve as prognostic biomarkers of death, by identifying methylated and differentially expressed genes between patients with positive minimal residual disease (MRD+) and negative minimal residual disease (MRD-). Methods: DNA and RNA were extracted from tumor blasts separated by immunomagnetic columns. Illumina MethlationEPIC and mRNA sequencing assays were performed on 13 bone marrows from Hispanic children with B-cell ALL. Partek Flow was used for transcript mapping and quantification, followed by differential expression analysis using DEseq2. DNA methylation analyses were performed with Partek Genomic Suite and Genome Studio. Gene expression and differential methylation were compared between patients with MRD-/- and MRD+/+ at the end of induction chemotherapy. Overexpressed and hypomethylated genes were selected and validated by RT-qPCR in samples of an independent validation cohort. The predictive ability of the genes was assessed by logistic regression. Survival and Cox regression analyses were performed to determine the association of genes with death. Results: DAPK1, BOC, CNKSR3, MIR4435-2HG, CTHRC1, NPDC1, SLC45A3, ITGA6, and ASCL2 were overexpressed and hypomethylated in MRD+/+ patients. Overexpression was also validated by RT-qPCR. DAPK1, BOC, ASCL2, and CNKSR3 can predict refractoriness, but MIR4435-2HG is the best predictor. Additionally, higher expression of MIR4435-2HG increases the probability of non-response, death, and the risk of death. Finally, MIR4435-2HG overexpression, together with MRD+, are associated with poorer survival, and together with overexpression of DAPK1 and ASCL2, it could improve the risk classification of patients with normal karyotype. Conclusion: MIR4435-2HG is a potential predictive biomarker of treatment response and death in children with B-cell ALL.
Collapse
Affiliation(s)
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Sandra Quijano
- Department of Microbiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | - Ana Infante
- Department of Pediatrics, Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | - Alba Lucía Combita
- Cancer Biology Group, Instituto Nacional de Cancerología, Bogotá, Colombia
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
8
|
Yan W, Menjivar RE, Bonilla ME, Steele NG, Kemp SB, Du W, Donahue KL, Brown K, Carpenter ES, Avritt FR, Irizarry-Negron VM, Yang S, Burns WR, Zhang Y, di Magliano MP, Bednar F. Notch Signaling Regulates Immunosuppressive Tumor-Associated Macrophage Function in Pancreatic Cancer. Cancer Immunol Res 2024; 12:91-106. [PMID: 37931247 PMCID: PMC10842043 DOI: 10.1158/2326-6066.cir-23-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/08/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAM) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, expressed high levels of Notch receptors, with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells, and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators, suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Genetic inhibition of Notch in myeloid cells led to reduced tumor size and decreased macrophage infiltration in an orthotopic PDA model. Combination of pharmacologic Notch inhibition with PD-1 blockade resulted in increased cytotoxic T-cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in patients with PDA.
Collapse
Affiliation(s)
- Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rosa E. Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica E. Bonilla
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samantha B. Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katelyn L. Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor MI 48109, USA
| | - Faith R. Avritt
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sion Yang
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - William R. Burns
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Lv Y, Hu J, Zheng W, Shan L, Bai B, Zhu H, Dai S. A WGCNA-based cancer-associated fibroblast risk signature in colorectal cancer for prognosis and immunotherapy response. Transl Cancer Res 2023; 12:2256-2275. [PMID: 37859738 PMCID: PMC10583018 DOI: 10.21037/tcr-23-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Background Cancer-associated fibroblasts (CAFs) are notably involved in colorectal cancer (CRC) tumorigenesis, progression, and treatment failure. In this article, we report the in silico development of a CAF-related prognostic signature for CRC. Methods We separately downloaded CRC transcription data from The Cancer Genome Atlas and the Gene Expression Omnibus database. Deconvolution algorithms, including Estimating the Proportions of Immune and Cancer Cells and the Microenvironment Cell Population-counter, were used to calculate CAF abundance, while the Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression algorithm was used to calculate the stromal score. Weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator algorithm were used to identify CAF-related genes and prognostic signatures. Results We identified a three-gene, prognostic, CAF-related signature and defined risk groups based on the Riskscores. Multidimensional validations were applied to evaluate the robustness of the signature and its correlation with clinical parameters. We utilized Tumor Immune Dysfunction and Exclusion (TIDE) and oncoPredict algorithms to predict therapy responses and found that patients in low-risk groups are more sensitive to immunotherapy and chemotherapy drugs such as 5-fluorouracil and oxaliplatin. Finally, we used the Cancer Cell Line Encyclopedia and Human Protein Atlas databases to evaluate the mRNA and protein levels encoded by the signature genes. Conclusions This novel CAF-related three-gene signature is expected to become a potential prognostic biomarker in CRC and predict chemotherapy and immunotherapy responses. It may be of considerable value for studying the tumor microenvironment in CRC.
Collapse
Affiliation(s)
- Yiming Lv
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinhui Hu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenqian Zheng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Shan
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingjun Bai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongbo Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Dai
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Chung JYF, Tang PCT, Chan MKK, Xue VW, Huang XR, Ng CSH, Zhang D, Leung KT, Wong CK, Lee TL, Lam EWF, Nikolic-Paterson DJ, To KF, Lan HY, Tang PMK. Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma. Nat Commun 2023; 14:1794. [PMID: 37002229 PMCID: PMC10066366 DOI: 10.1038/s41467-023-37515-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Neutrophils are dynamic with their phenotype and function shaped by the microenvironment, such as the N1 antitumor and N2 pro-tumor states within the tumor microenvironment (TME), but its regulation remains undefined. Here we examine TGF-β1/Smad3 signaling in tumor-associated neutrophils (TANs) in non-small cell lung carcinoma (NSCLC) patients. Smad3 activation in N2 TANs is negatively correlate with the N1 population and patient survival. In experimental lung carcinoma, TANs switch from a predominant N2 state in wild-type mice to an N1 state in Smad3-KO mice which associate with enhanced neutrophil infiltration and tumor regression. Neutrophil depletion abrogates the N1 anticancer phenotype in Smad3-KO mice, while adoptive transfer of Smad3-KO neutrophils reproduces this protective effect in wild-type mice. Single-cell analysis uncovers a TAN subset showing a mature N1 phenotype in Smad3-KO TME, whereas wild-type TANs mainly retain an immature N2 state due to Smad3. Mechanistically, TME-induced Smad3 target genes related to cell fate determination to preserve the N2 state of TAN. Importantly, genetic deletion and pharmaceutical inhibition of Smad3 enhance the anticancer capacity of neutrophils against NSCLC via promoting their N1 maturation. Thus, our work suggests that Smad3 signaling in neutrophils may represent a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Calvin Sze-Hang Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong, 510060, China
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
11
|
Sherman MH, Beatty GL. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. ANNUAL REVIEW OF PATHOLOGY 2023; 18:123-148. [PMID: 36130070 PMCID: PMC9877114 DOI: 10.1146/annurev-pathmechdis-031621-024600] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
| | - Gregory L Beatty
- Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
12
|
Yan W, Steele NG, Kemp SB, Menjivar RE, Du W, Carpenter ES, Donahue KL, Brown KL, Irizarry-Negron V, Yang S, Burns WR, Zhang Y, di Magliano MP, Bednar F. Notch signaling regulates immunosuppressive tumor-associated macrophage function in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523584. [PMID: 36711890 PMCID: PMC9882066 DOI: 10.1101/2023.01.11.523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAMs) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, express high levels of Notch receptors with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators including arginase 1 (Arg1) suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Combination of Notch inhibition with PD-1 blockade resulted in increased cytotoxic T cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in PDA patients.
Collapse
Affiliation(s)
- Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samantha B. Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rosa E. Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor Ml 48109, USA
| | - Katelyn L. Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristee L. Brown
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sion Yang
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - William R. Burns
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. Cancer Commun (Lond) 2023; 43:3-41. [PMID: 36424360 PMCID: PMC9859735 DOI: 10.1002/cac2.12392] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
As a critical component of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play important roles in cancer initiation and progression. Well-known signaling pathways, including the transforming growth factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT pathways, as well as transcription factors, including hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53, Snail, and Twist, constitute complex regulatory networks in the TME to modulate the formation, activation, heterogeneity, metabolic characteristics and malignant phenotype of CAFs. Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics, and this modulation partially depends on the regulation of signaling cascades. The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures (e.g., NCT01130142 and NCT01064622). Hence, a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies. Here, we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yingjun Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| |
Collapse
|
14
|
Al-Akkad W, Acedo P, Vilia MG, Frenguelli L, Ney A, Rodriguez-Hernandez I, Labib PL, Tamburrino D, Spoletini G, Hall AR, Canestrari S, Osnato A, Garcia-Bernardo J, Sejour L, Vassileva V, Vlachos IS, Fusai G, Luong TV, Whittaker SR, Pereira SP, Vallier L, Pinzani M, Rombouts K, Mazza G. Tissue-Specific Human Extracellular Matrix Scaffolds Promote Pancreatic Tumour Progression and Chemotherapy Resistance. Cells 2022; 11:3652. [PMID: 36429078 PMCID: PMC9688243 DOI: 10.3390/cells11223652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Over 80% of patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed at a late stage and are locally advanced or with concurrent metastases. The aggressive phenotype and relative chemo- and radiotherapeutic resistance of PDAC is thought to be mediated largely by its prominent stroma, which is supported by an extracellular matrix (ECM). Therefore, we investigated the impact of tissue-matched human ECM in driving PDAC and the role of the ECM in promoting chemotherapy resistance. Decellularized human pancreata and livers were recellularized with PANC-1 and MIA PaCa-2 (PDAC cell lines), as well as PK-1 cells (liver-derived metastatic PDAC cell line). PANC-1 cells migrated into the pancreatic scaffolds, MIA PaCa-2 cells were able to migrate into both scaffolds, whereas PK-1 cells were able to migrate into the liver scaffolds only. These differences were supported by significant deregulations in gene and protein expression between the pancreas scaffolds, liver scaffolds, and 2D culture. Moreover, these cell lines were significantly more resistant to gemcitabine and doxorubicin chemotherapy treatments in the 3D models compared to 2D cultures, even after confirmed uptake by confocal microscopy. These results suggest that tissue-specific ECM provides the preserved native cues for primary and metastatic PDAC cells necessary for a more reliable in vitro cell culture.
Collapse
Affiliation(s)
- Walid Al-Akkad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Pilar Acedo
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Maria-Giovanna Vilia
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Luca Frenguelli
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Alexander Ney
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | | | - Peter L. Labib
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Domenico Tamburrino
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Gabriele Spoletini
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Andrew R. Hall
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Simone Canestrari
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | | | - Leinal Sejour
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vessela Vassileva
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Ioannis S. Vlachos
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giuseppe Fusai
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Tu Vinh Luong
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Steven R. Whittaker
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Krista Rombouts
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Giuseppe Mazza
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| |
Collapse
|
15
|
Scales MK, Velez-Delgado A, Steele NG, Schrader HE, Stabnick AM, Yan W, Mercado Soto NM, Nwosu ZC, Johnson C, Zhang Y, Salas-Escabillas DJ, Menjivar RE, Maurer HC, Crawford HC, Bednar F, Olive KP, Pasca di Magliano M, Allen BL. Combinatorial Gli activity directs immune infiltration and tumor growth in pancreatic cancer. PLoS Genet 2022; 18:e1010315. [PMID: 35867772 PMCID: PMC9348714 DOI: 10.1371/journal.pgen.1010315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023] Open
Abstract
Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.
Collapse
Affiliation(s)
- Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah E. Schrader
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna M. Stabnick
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nayanna M. Mercado Soto
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zeribe C. Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - H. Carlo Maurer
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Internal Medicine II, School of Medicine, Technische Universität München, Munich, Germany
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth P. Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York city, New York, United States of America
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
16
|
Boyd LNC, Andini KD, Peters GJ, Kazemier G, Giovannetti E. Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Semin Cancer Biol 2022; 82:184-196. [PMID: 33737108 DOI: 10.1016/j.semcancer.2021.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a notably poor prognosis, in urgent need of improved treatment strategies. The desmoplastic PDAC tumor microenvironment (TME), marked by a high concentration of cancer-associated-fibroblasts (CAFs), is a dynamic part of PDAC pathophysiology which occasions a variety of effects throughout the course of pancreatic tumorigenesis and disease evolution. A better understanding of the desmoplastic TME and CAF biology in particular, should provide new opportunities for improving therapeutics. That CAFs have a tumor-supportive role in oncogenesis is well known, yet research evidence has shown that CAFs also have tumor-repressive functions. In this review, we seek to clarify the intriguing heterogeneity and plasticity of CAFs and their ambivalent role in PDAC tumorigenesis and progression. Additionally, we provide recommendations to advance the implementation of CAF-directed PDAC care. An improved understanding of CAFs' origins, spatial location, functional diversity, and marker determination, as well as CAF behavior during the course of PDAC progression and metastasis will provide essential knowledge for the future improvement of therapeutic strategies for patients suffering from PDAC.
Collapse
Affiliation(s)
- Lenka N C Boyd
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Katarina D Andini
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Godefridus J Peters
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Elisa Giovannetti
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini, 13, 56017, San Giuliano Terme PI, Pisa, Italy.
| |
Collapse
|
17
|
Tarannum M, Holtzman K, Dréau D, Mukherjee P, Vivero-Escoto JL. Nanoparticle combination for precise stroma modulation and improved delivery for pancreatic cancer. J Control Release 2022; 347:425-434. [PMID: 35569588 DOI: 10.1016/j.jconrel.2022.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Therapeutic success in the treatment of pancreatic ductal adenocarcinoma (PDAC) is hindered by the extensive stroma associated to this disease. Stroma is composed of cellular and non-cellular components supporting and evolving with the tumor. One of the most studied mediators of cancer cell-stroma crosstalk is sonic hedgehog (SHh) pathway leading to the intense desmoplasia observed in PDAC tumors. Herein, we demonstrate that the use of mesoporous silica nanoparticles (MSNs) containing an SHh inhibitor, cyclopamine (CyP), and the combination of chemotherapeutic drugs (Gemcitabine (Gem)/cisplatin (cisPt)) as the main delivery system for the sequential treatment led to the reduction in tumor stroma along with an improvement in the treatment of PDAC. We synthesized two versions of the MSN-based platform containing the SHh inhibitor (CyP-MSNs) and the drug combination (PEG-Gem-cisPt-MSNs). In vitro and in vivo protein analysis show that CyP-MSNs effectively inhibited the SHh pathway. In addition, the sequential combination of CyP-MSNs followed by PEG-Gem-cisPt-MSNs led to effective stromal modulation, increased access of secondary PEG-Gem-cisPt-MSNs at the tumor site, and improved therapeutic performance in HPAF II xenograft mice. Taken together, our findings support the potential of drug delivery using MSNs for stroma modulation and to prevent pancreatic cancer progression.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Nanoscale Science Program, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Katherine Holtzman
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina Charlotte, Charlotte, NC 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Nanoscale Science Program, University of North Carolina Charlotte, Charlotte, NC 28223, USA; Center for Biomedical Engineering and Science, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
18
|
Han L, Seward C, Leone G, Ostrowski MC. Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers. Adv Cancer Res 2022; 154:169-201. [PMID: 35459469 DOI: 10.1016/bs.acr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pancreas and breast cancers both contain abundant stromal components within the tumor tissues. A prominent cell type within the stroma is cancer-associated fibroblasts (CAFs). CAFs play critical and complex roles establishing the tumor microenvironment to either promote or prevent tumor progression. Recently, complex genetic models and single cell-based techniques have provided emerging insights on the precise functions and cellular heterogeneity of CAFs. The transformation of normal fibroblasts into CAFs is a key event during tumor initiation and progression. Such coordination between tumor cells and fibroblasts plays an important role in cancer development. Reprograming fibroblasts is currently being explored for therapeutic benefits. In this review, we will discuss recent literature shedding light on the tissues of origin, activation mechanisms, and heterogeneity of CAFs comparing pancreas and breast cancers.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Cara Seward
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin Cancer Center, Medical college of Wisconsin, Milwaukee, WI, United States
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
19
|
Huang P, Wierbowski BM, Lian T, Chan C, García-Linares S, Jiang J, Salic A. Structural basis for catalyzed assembly of the Sonic hedgehog-Patched1 signaling complex. Dev Cell 2022; 57:670-685.e8. [PMID: 35231446 PMCID: PMC8932645 DOI: 10.1016/j.devcel.2022.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 01/04/2023]
Abstract
The dually lipidated Sonic hedgehog (SHH) morphogen signals through the tumor suppressor membrane protein Patched1 (PTCH1) to activate the Hedgehog pathway, which is fundamental in development and cancer. SHH engagement with PTCH1 requires the GAS1 coreceptor, but the mechanism is unknown. We demonstrate a unique role for GAS1, catalyzing SHH-PTCH1 complex assembly in vertebrate cells by direct SHH transfer from the extracellular SCUBE2 carrier to PTCH1. Structure of the GAS1-SHH-PTCH1 transition state identifies how GAS1 recognizes the SHH palmitate and cholesterol modifications in modular fashion and how it facilitates lipid-dependent SHH handoff to PTCH1. Structure-guided experiments elucidate SHH movement from SCUBE2 to PTCH1, explain disease mutations, and demonstrate that SHH-induced PTCH1 dimerization causes its internalization from the cell surface. These results define how the signaling-competent SHH-PTCH1 complex assembles, the key step triggering the Hedgehog pathway, and provide a paradigm for understanding morphogen reception and its regulation.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charlene Chan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Nakauma-González JA, Rijnders M, van Riet J, van der Heijden MS, Voortman J, Cuppen E, Mehra N, van Wilpe S, Oosting SF, Rijstenberg LL, Westgeest HM, Zwarthoff EC, de Wit R, van der Veldt AAM, van de Werken HJG, Lolkema MPJ, Boormans JL. Comprehensive Molecular Characterization Reveals Genomic and Transcriptomic Subtypes of Metastatic Urothelial Carcinoma. Eur Urol 2022; 81:331-336. [PMID: 35086719 DOI: 10.1016/j.eururo.2022.01.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Recent molecular characterization of primary urothelial carcinoma (UC) may guide future clinical decision-making. For metastatic UC (mUC), a comprehensive molecular characterization is still lacking. We analyzed whole-genome DNA and RNA sequencing data for fresh-frozen metastatic tumor biopsies from 116 mUC patients who were scheduled for palliative systemic treatment within the context of a clinical trial (NCT01855477 and NCT02925234). Hierarchical clustering for mutational signatures revealed two major genomic subtypes: GenS1 (67%), which was APOBEC-driven; and GenS2 (24%), which had a high fraction of de novo mutational signatures related to reactive oxygen species and is putatively clock-like. Significantly mutated genes (SMGs) did not differ between the genomic subtypes. Transcriptomic analysis revealed five mUC subtypes: luminal-a and luminal-b (40%), stroma-rich (24%), basal/squamous (23%), and a nonspecified subtype (12%). These subtypes differed regarding expression of key genes, SMGs, oncogenic pathway activity, and immune cell infiltration. We integrated the genomic and transcriptomic data to propose potential therapeutic options by transcriptomic subtype and for individual patients. This in-depth analysis of a large cohort of patients with mUC may serve as a reference for subtype-oriented and patient-specific research on the etiology of mUC and for novel drug development. PATIENT SUMMARY: We carried out an in-depth analysis of the molecular and genetic features of metastatic cancer involving the cells that line the urinary tract. We showed that this is a heterogeneous disease with different molecular subtypes and we identified possible targets for therapy for each subtype.
Collapse
Affiliation(s)
- J Alberto Nakauma-González
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maud Rijnders
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Jens Voortman
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands; Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra van Wilpe
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - L Lucia Rijstenberg
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hans M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Martijn P J Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Bannoura SF, Uddin MH, Nagasaka M, Fazili F, Al-Hallak MN, Philip PA, El-Rayes B, Azmi AS. Targeting KRAS in pancreatic cancer: new drugs on the horizon. Cancer Metastasis Rev 2021; 40:819-835. [PMID: 34499267 PMCID: PMC8556325 DOI: 10.1007/s10555-021-09990-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.
Collapse
Affiliation(s)
- Sahar F Bannoura
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Misako Nagasaka
- Division of Hematology/Oncology, Department of Medicine, UCI Health, Orange, CA, 92868, USA
| | - Farzeen Fazili
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
23
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
24
|
Alexander JI, Martinez E, Vargas A, Zinshteyn D, Sodi V, Connolly DC, Hartman TR, O'Reilly AM. Cholesterol and CDON Regulate Sonic Hedgehog Release from Pancreatic Cancer Cells. J Pancreat Cancer 2021; 7:39-47. [PMID: 34235374 PMCID: PMC8252898 DOI: 10.1089/pancan.2021.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Sonic Hedgehog (Shh) is a tightly regulated membrane-associated morphogen and a known driver of tumorigenesis in pancreatic ductal adenocarcinoma (PDAC). After processing, Shh remains at the plasma membrane of Shh producing cells, thereby limiting its distribution and signal strength. In PDAC, the release of Shh from tumor cells is necessary to promote a tumor-permissive microenvironment. Mechanisms regulating Shh sequestration and/or release from tumor cells to signal distant stromal cells are not well known. Previously, our laboratory demonstrated that the Drosophila transmembrane protein Boi, sequesters Hh at the membrane of Hh-producing cells. In response to dietary cholesterol or in the absence of boi, Hh is constitutively released to promote proliferation in distant cells. In this study, we investigated the conservation of this mechanism in mammals by exploring the role of the human boi homolog, CDON, in PDAC. Methods: Using PDAC cell-lines BxPC-3, Capan-2, and MIA PaCa-2, along with normal pancreatic epithelial cells (PDEC), we investigated Shh expression via Immunoblot and real-time, quantitative polymerase chain reaction in addition to Shh release via enzyme-linked immunoassay following cholesterol treatment and/or transfection with either RNA interference to reduce CDON expression or with human CDON to increase expression. Results: Consistent with our Boi model, CDON suppresses Shh release, which is alleviated in response to dietary cholesterol. However, over-expressing CDON suppresses cholesterol-mediated Shh release in some PDAC contexts, which may be relative to the mutational burden of the cells. Conclusion: Identifying mechanisms that either sequester or stimulate Shh release from the tumor cell membrane may provide new avenues to reduce signaling between the tumor and its surrounding environment, which may restrain tumor development.
Collapse
Affiliation(s)
- Jennifer I Alexander
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Esteban Martinez
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Alberto Vargas
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Daniel Zinshteyn
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Valerie Sodi
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Denise C Connolly
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tiffiney R Hartman
- Roberts Individualized Medical Genetics Center and the Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alana M O'Reilly
- Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Fattahi S, Nikbakhsh N, Ranaei M, Sabour D, Akhavan-Niaki H. Association of sonic hedgehog signaling pathway genes IHH, BOC, RAB23a and MIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci Rep 2021; 11:7471. [PMID: 33811245 PMCID: PMC8018955 DOI: 10.1038/s41598-021-86946-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the leading cause of cancer-related mortality worldwide. Given the importance of gastric cancer in public health, identifying biomarkers associated with disease onset is an important part of precision medicine. The hedgehog signaling pathway is considered as one of the most significant widespread pathways of intracellular signaling in the early events of embryonic development. This pathway contributes also to the maintenance of pluripotency of cancer stem cells pluripotency. In this study, we analyzed the expression levels of sonic hedgehog (Shh) signaling pathway genes IHH, BOC, RAB23a and their regulatory miRNAs including MIR-195-5p, MIR-509-3-5p, MIR-6738-3p in gastric cancer patients. In addition, the impact of infection status on the expression level of those genes and their regulatory miRNAs was investigated. One hundred samples taken from 50 gastric cancer patients (50 tumoral tissues and their adjacent non-tumoral counterparts) were included in this study. There was a significant difference in all studied genes and miRNAs in tumoral tissues in comparison with their adjacent non-tumoral counterparts. The lower expression of IHH, BOC, RAB23, miR-195-5p, and miR-6738-3p was significantly associated with more advanced cancer stage. Additionally, IHH upregulation was significantly associated with CMV infection (P < 0.001). Also, receiver operating characteristic (ROC) curve analysis indicated that mir-195 was significantly related to several clinicopathological features including tumor stage, grade, age, gender, and infection status of gastric cancer and can be considered as a potential diagnostic biomarker for gastric cancer. This study confirms the important role of Shh signaling pathway genes in gastric cancer tumorigenesis and their potential as novel molecular biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Novin Nikbakhsh
- Department of Surgery, Rouhani Hospital Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ranaei
- Department of Pathology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Davood Sabour
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
26
|
Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, Hao Y, Oni TE, Brosnan E, Elyada E, Doshi A, Hansma C, Espinoza C, Abbas A, The S, Irizarry-Negron V, Halbrook CJ, Franks NE, Hoffman MT, Brown K, Carpenter ES, Nwosu ZC, Johnson C, Lima F, Anderson MA, Park Y, Crawford HC, Lyssiotis CA, Frankel TL, Rao A, Bednar F, Dlugosz AA, Preall JB, Tuveson DA, Allen BL, Pasca di Magliano M. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res 2021; 27:2023-2037. [PMID: 33495315 PMCID: PMC8026631 DOI: 10.1158/1078-0432.ccr-20-3715] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.
Collapse
Affiliation(s)
- Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - LiJyun Syu
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, New York
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Christa Hansma
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ahmed Abbas
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Nicole E Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle A Anderson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Howard C Crawford
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Michigan Institute of Data Science (MIDAS), University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Bai JY, Jin B, Ma JB, Liu TJ, Yang C, Chong Y, Wang X, He D, Guo P. HOTAIR and androgen receptor synergistically increase GLI2 transcription to promote tumor angiogenesis and cancer stemness in renal cell carcinoma. Cancer Lett 2021; 498:70-79. [PMID: 33157157 DOI: 10.1016/j.canlet.2020.10.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a major characteristic of renal cell carcinoma (RCC). Herein, we report a novel mechanism of how lncRNA and androgen receptor (AR) drive the Hedgehog pathway to promote tumor angiogenesis in RCC. We found that the high expression of lncRNA HOTAIR in RCC is associated with poor prognosis. Moreover, HOTAIR and AR form a feedback loop to promote the expression of each other. Interestingly, we also found that in RCC, HOTAIR is associated with the Hedgehog pathway, especially GLI2, via bioinformatics analysis. Furthermore, HOTAIR promotes GLI2 expression in the presence of AR. Mechanistically, HOTAIR interacts with AR and they cooperatively bind to GLI2 promoter and increase its transcription activity. We further confirmed how HOTAIR-AR axis regulates GLI2 expression by analyzing its function in RCC cells and found that HOTAIR and AR synergistically enhanced the expression of GLI2 downstream genes, such as VEGFA, PDGFA, and cancer stem cell transcription factors, and promoted tumor angiogenesis and cancer stemness in RCC cells both in vitro and in tumor xenografts. Overall, these findings suggest that HOTAIR and GLI2 could be novel therapeutic targets against RCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Cell Line
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/genetics
- HEK293 Cells
- Hedgehog Proteins/genetics
- Human Umbilical Vein Endothelial Cells
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Male
- Mice, Nude
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Nuclear Proteins/genetics
- Platelet-Derived Growth Factor/genetics
- Promoter Regions, Genetic/genetics
- RNA, Long Noncoding/genetics
- Receptors, Androgen/genetics
- Signal Transduction/genetics
- Transcription Factors/genetics
- Transcription, Genetic/genetics
- Zinc Finger Protein Gli2/genetics
- Mice
Collapse
Affiliation(s)
- Ji-Yu Bai
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ben Jin
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian-Bin Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tian-Jie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Chong
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China.
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
28
|
Geyer N, Gerling M. Hedgehog Signaling in Colorectal Cancer: All in the Stroma? Int J Mol Sci 2021; 22:ijms22031025. [PMID: 33498528 PMCID: PMC7864206 DOI: 10.3390/ijms22031025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hedgehog (Hh) signaling regulates intestinal development and homeostasis. The role of Hh signaling in cancer has been studied for many years; however, its role in colorectal cancer (CRC) remains controversial. It has become increasingly clear that the “canonical” Hh pathway, in which ligand binding to the receptor PTCH1 initiates a signaling cascade that culminates in the activation of the GLI transcription factors, is mainly organized in a paracrine manner, both in the healthy colon and in CRC. Such canonical Hh signals largely act as tumor suppressors. In addition, stromal Hh signaling has complex immunomodulatory effects in the intestine with a potential impact on carcinogenesis. In contrast, non-canonical Hh activation may have tumor-promoting roles in a subset of CRC tumor cells. In this review, we attempt to summarize the current knowledge of the Hh pathway in CRC, with a focus on the tumor-suppressive role of canonical Hh signaling in the stroma. Despite discouraging results from clinical trials using Hh inhibitors in CRC and other solid cancers, we argue that a more granular understanding of Hh signaling might allow the exploitation of this key morphogenic pathway for cancer therapy in the future.
Collapse
Affiliation(s)
- Natalie Geyer
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden;
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden;
- Theme Cancer, Oncology, Karolinska University Hospital, 17176 Solna, Sweden
- Correspondence:
| |
Collapse
|
29
|
Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021; 101:147-176. [PMID: 32466724 PMCID: PMC7864232 DOI: 10.1152/physrev.00048.2019] [Citation(s) in RCA: 729] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Han X, Zhang WH, Wang WQ, Yu XJ, Liu L. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1874:188444. [PMID: 33031899 DOI: 10.1016/j.bbcan.2020.188444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is highly lethal, and the most effective treatment is curative resection followed by chemotherapy. Unfortunately, chemoresistance is an extremely common occurrence, and novel treatment modalities, such as immunotherapy and molecular targeted therapy, have shown limited success in clinical practice. Pancreatic cancer is characterized by an abundant stromal compartment. Cancer-associated fibroblasts (CAFs) and the extracellular matrix they deposit account for a large portion of the pancreatic tumor stroma. CAFs interact directly and indirectly with pancreatic cancer cells and can compromise the effects of, and even promote tumorigenic responses to, various treatment approaches. To eliminate these adverse effects, CAFs depletion strategies were developed. Instead of the anticipated antitumor effects of CAFs depletion, more aggressive tumor phenotypes were occasionally observed. The failure of universal stromal depletion led to the investigation of CAFs heterogeneity that forms the foundation for stromal remodeling and normalization. This review analyzes the role of CAFs in therapeutic resistance of pancreatic cancer and discusses potential CAFs-targeting strategies basing on the diverse biological functions of CAFs, thus to improve the outcome of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Wierbowski BM, Petrov K, Aravena L, Gu G, Xu Y, Salic A. Hedgehog Pathway Activation Requires Coreceptor-Catalyzed, Lipid-Dependent Relay of the Sonic Hedgehog Ligand. Dev Cell 2020; 55:450-467.e8. [PMID: 33038332 DOI: 10.1016/j.devcel.2020.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022]
Abstract
Hedgehog signaling governs critical processes in embryogenesis, adult stem cell maintenance, and tumorigenesis. The activating ligand, Sonic hedgehog (SHH), is highly hydrophobic because of dual palmitate and cholesterol modification, and thus, its release from cells requires the secreted SCUBE proteins. We demonstrate that the soluble SCUBE-SHH complex, although highly potent in cellular assays, cannot directly signal through the SHH receptor, Patched1 (PTCH1). Rather, signaling by SCUBE-SHH requires a molecular relay mediated by the coreceptors CDON/BOC and GAS1, which relieves SHH inhibition by SCUBE. CDON/BOC bind both SCUBE and SHH, recruiting the complex to the cell surface. SHH is then handed off, in a dual lipid-dependent manner, to GAS1, and from GAS1 to PTCH1, initiating signaling. These results define an essential step in Hedgehog signaling, whereby coreceptors activate SHH by chaperoning it from a latent extracellular complex to its cell-surface receptor, and point to a broader paradigm of coreceptor function.
Collapse
Affiliation(s)
| | - Kostadin Petrov
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Aravena
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Garrick Gu
- Williams College, Williamstown, MA 01267, USA
| | - Yangqing Xu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Hedgehog Acyltransferase Promotes Uptake of Palmitoyl-CoA across the Endoplasmic Reticulum Membrane. Cell Rep 2020; 29:4608-4619.e4. [PMID: 31875564 PMCID: PMC6948154 DOI: 10.1016/j.celrep.2019.11.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/29/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Attachment of palmitate to the N terminus of Sonic hedgehog (Shh) is essential for Shh signaling. Shh palmitoylation is catalyzed on the luminal side of the endoplasmic reticulum (ER) by Hedgehog acyltransferase (Hhat), an ER-resident enzyme. Palmitoyl-coenzyme A (CoA), the palmitate donor, is produced in the cytosol and is not permeable across membrane bilayers. It is not known how palmitoyl-CoA crosses the ER membrane to access the active site of Hhat. Here, we use fluorescent and radiolabeled palmitoyl-CoA probes to demonstrate that Hhat promotes the uptake of palmitoyl-CoA across the ER membrane in microsomes and semi-intact cells. Reconstitution of purified Hhat into liposomes provided further evidence that palmitoyl-CoA uptake activity is an intrinsic property of Hhat. Palmitoyl-CoA uptake was regulated by and could be uncoupled from Hhat enzymatic activity, implying that Hhat serves a dual function as a palmitoyl acyltransferase and a conduit to supply palmitoyl-CoA to the luminal side of the ER. Palmitoylation of hedgehog proteins by Hedgehog acyltransferase (Hhat) occurs on the luminal side of the ER. However, the palmitoyl-CoA donor for the reaction is membrane impermeable. Asciolla and Resh show that Hhat serves a dual function as both an acyltransferase and a transporter that promotes palmitoyl-CoA uptake across the ER membrane.
Collapse
|
34
|
Sun C, Zhang Y, Wang H, Yin Z, Wu L, Huang Y, Zhang W, Wang Y, Hu Q. Design and biological evaluation of phenyl imidazole analogs as hedgehog signaling pathway inhibitors. Chem Biol Drug Des 2020; 97:546-552. [PMID: 32946174 DOI: 10.1111/cbdd.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
The hedgehog (Hh) signaling pathway is involved in diverse aspects of cellular events. Aberrant activation of Hh signaling pathway drives oncogenic transformation for a wide range of cancers, and it is therefore a promising target in cancer therapy. In the principle of association and ring-opening, we designed and synthesized a series of Hh signaling pathway inhibitors with phenyl imidazole scaffold, which were biologically evaluated in Gli-Luc reporter assay. Compound 25 was identified to possess high potency with nanomolar IC50 , and moreover, it preserved the inhibition against wild-type and drug-resistant Smo-overexpressing cells. A molecular modeling study of compound 25 expounded its binding mode to Smo receptor, providing a basis for the further structural modification of phenyl imidazole analogs.
Collapse
Affiliation(s)
- Chiyu Sun
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Ying Zhang
- School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, China
| | - Han Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Zhengxu Yin
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lingqiong Wu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Yanmiao Huang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Wenhu Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Youbing Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Qibo Hu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| |
Collapse
|
35
|
Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK, El-Tawil YS, Shaikh AZ, Wen HJ, Bednar F, Allen BL, Wellik DM, Crawford HC, Pasca di Magliano M. Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic Cancer Stroma. Cell Mol Gastroenterol Hepatol 2020; 10:581-599. [PMID: 32454112 PMCID: PMC7399194 DOI: 10.1016/j.jcmgh.2020.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Although the healthy pancreas consists mostly of epithelial cells, pancreatic cancer and the precursor lesions known as pancreatic intraepithelial neoplasia, are characterized by an extensive accumulation of fibroinflammatory stroma that includes a substantial and heterogeneous fibroblast population. The cellular origin of fibroblasts within the stroma has not been determined. Here, we show that the Gli1 and Hoxb6 markers label distinct fibroblast populations in the healthy mouse pancreas. We then set out to determine whether these distinct fibroblast populations expanded during carcinogenesis. METHODS We developed genetically engineered models using a dual-recombinase approach that allowed us to induce pancreatic cancer formation through codon-optimized Flp recombinase-driven epithelial recombination of Kirsten rat sarcoma viral oncogene homolog while labeling Gli1+ or Hoxb6+ fibroblasts in an inducible manner. By using these models, we lineage-traced these 2 fibroblast populations during the process of carcinogenesis. RESULTS Although in the healthy pancreas Gli1+ fibroblasts and Hoxb6+ fibroblasts are present in similar numbers, they contribute differently to the stroma in carcinogenesis. Namely, Gli1+ fibroblasts expand dramatically, whereas Hoxb6+ cells do not. CONCLUSIONS Fibroblasts present in the healthy pancreas expand during carcinogenesis, but with a different prevalence for different subtypes. Here, we compared Gli1+ and Hoxb6+ fibroblasts and found only Gli1+ expanded to contribute to the stroma during pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Paloma E Garcia
- Program in Molecular and Cellular Pathology, University of Michigan, Ann Arbor, Michigan
| | - Maeva Adoumie
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Esther C Kim
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michael K Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yara S El-Tawil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Amara Z Shaikh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hui-Ju Wen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Ben L Allen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Deneen M Wellik
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Howard C Crawford
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
36
|
Kasiri S, Chen B, Wilson AN, Reczek A, Mazambani S, Gadhvi J, Noel E, Marriam U, Mino B, Lu W, Girard L, Solis LM, Luby-Phelps K, Bishop J, Kim JW, Kim J. Stromal Hedgehog pathway activation by IHH suppresses lung adenocarcinoma growth and metastasis by limiting reactive oxygen species. Oncogene 2020; 39:3258-3275. [PMID: 32108165 PMCID: PMC7160060 DOI: 10.1038/s41388-020-1224-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
Activation of the Hedgehog (Hh) signaling pathway by mutations within its components drives the growth of several cancers. However, the role of Hh pathway activation in lung cancers has been controversial. Here, we demonstrate that the canonical Hh signaling pathway is activated in lung stroma by Hh ligands secreted from transformed lung epithelia. Genetic deletion of Shh, the primary Hh ligand expressed in the lung, in KrasG12D/+;Trp53fl/fl autochthonous murine lung adenocarcinoma had no effect on survival. Early abrogation of the pathway by an anti-SHH/IHH antibody 5E1 led to significantly worse survival with increased tumor and metastatic burden. Loss of IHH, another Hh ligand, by in vivo CRISPR led to more aggressive tumor growth suggesting that IHH, rather than SHH, activates the pathway in stroma to drive its tumor suppressive effects-a novel role for IHH in the lung. Tumors from mice treated with 5E1 had decreased blood vessel density and increased DNA damage suggestive of reactive oxygen species (ROS) activity. Treatment of KrasG12D/+;Trp53fl/fl mice with 5E1 and N-acetylcysteine, as a ROS scavenger, decreased tumor DNA damage, inhibited tumor growth and prolonged mouse survival. Thus, IHH induces stromal activation of the canonical Hh signaling pathway to suppress tumor growth and metastases, in part, by limiting ROS activity.
Collapse
Affiliation(s)
- Sahba Kasiri
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Baozhi Chen
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Alexandra N Wilson
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Annika Reczek
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Simbarashe Mazambani
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jashkaran Gadhvi
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Evan Noel
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Ummay Marriam
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Barbara Mino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Luc Girard
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katherine Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Justin Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jung-Whan Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - James Kim
- Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research and Harold C. Simmons Comprehensive Cancer Center, Dallas, TX, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
37
|
Yin QQ, Xu LH, Zhang M, Xu C. Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling. Asian J Androl 2019; 20:608-614. [PMID: 30027929 PMCID: PMC6219293 DOI: 10.4103/aja.aja_55_18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The autonomic nervous system contributes to prostate cancer proliferation and metastasis. However, the exact molecular mechanism remains unclear. In this study, muscarinic acetylcholine receptor M1 (CHRM1) expression was measured via immunohistochemical analysis in human prostate cancer tissue array slides. PC-3, LNCaP, and A549 cells were treated with pirenzepine or carbachol, and the cell migration and invasion abilities were evaluated. Western blotting and quantitative real-time PCR were performed to measure GLI family zinc finger 1 (GLI1), patched 1 (PTCH1), and sonic hedgehog (SHH) expression levels. High expression of CHRM1 was found in early-stage human prostate cancer tissues. In addition, the selective CHRM1 antagonist pirenzepine inhibited PC-3, LNCaP, and A549 cell migration and invasion, but the agonist carbachol promoted the migration and invasion of these three cell lines. Muscarinic signaling can be relayed by hedgehog signaling. These data show that CHRM1 is involved in the regulation of prostate cancer migration and invasion through the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Qing-Qing Yin
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lin-Hui Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Mi Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chen Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
38
|
Wang J, Chan DKW, Sen A, Ma WW, Straubinger RM. Tumor Priming by SMO Inhibition Enhances Antibody Delivery and Efficacy in a Pancreatic Ductal Adenocarcinoma Model. Mol Cancer Ther 2019; 18:2074-2084. [PMID: 31363010 DOI: 10.1158/1535-7163.mct-18-0354] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/12/2018] [Accepted: 07/25/2019] [Indexed: 01/04/2023]
Abstract
Despite frequent overexpression of numerous growth factor receptors by pancreatic ductal adenocarcinomas (PDAC), such as EGFR, therapeutic antibodies have not proven effective. Desmoplasia, hypovascularity, and hypoperfusion create a functional drug delivery barrier that contributes to treatment resistance. Drug combinations that target tumor/stroma interactions could enhance tumor deposition of therapeutic antibodies, although clinical trials have yet to support this strategy. We hypothesize that macromolecular or nanoparticulate therapeutic agents may best exploit stroma-targeting "tumor priming" strategies, based on the fundamental principles of the Enhanced Permeability and Retention phenomenon. Therefore, we investigated the molecular and pharmacologic tumor responses to NVP-LDE225, an SMO inhibitor of sonic hedgehog signaling (sHHI), of patient-derived xenograft models that recapitulate the desmoplasia and drug delivery barrier properties of PDAC. Short-term sHHI exposure mediated dose- and time-dependent changes in tumor microvessel patency, extracellular matrix architecture, and interstitial pressure, which waned with prolonged sHHI exposure, and increased nanoparticulate permeability probe deposition in multiple PDAC patient-derived xenograft isolates. During sHHI-mediated priming, deposition and intratumor distribution of both a nontargeted mAb and a mAb targeting EGFR, cetuximab, were enhanced. Sequencing the sHH inhibitor with cetuximab administration resulted in marked tumor growth inhibition compared with cetuximab alone. These studies suggest that PDAC drug delivery barriers confound efforts to employ mAb against targets in PDAC, and that short-term, intermittent exposure to stromal modulators can increase tumor cell exposure to therapeutic antibodies, improving their efficacy, and potentially minimize adverse effects that may accompany longer-term, continuous sHHI treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Darren K W Chan
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Arindam Sen
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, New York.,Department of Cell Stress Biochemistry and Biophysics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wen Wee Ma
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York. .,Department of Cell Stress Biochemistry and Biophysics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
39
|
Chandler C, Liu T, Buckanovich R, Coffman LG. The double edge sword of fibrosis in cancer. Transl Res 2019; 209:55-67. [PMID: 30871956 PMCID: PMC6545239 DOI: 10.1016/j.trsl.2019.02.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
Cancer-associated fibrosis is a critical component of the tumor microenvironment (TME) which significantly impacts cancer behavior. However, there is significant controversy regarding fibrosis as a predominantly tumor promoting or tumor suppressing factor. Cells essential to the generation of tissue fibrosis such as fibroblasts and mesenchymal stem cells (MSCs) have dual phenotypes dependent upon their independence or association with cancer cells. Cancer-associated fibroblasts and cancer-associated MSCs have unique molecular profiles which facilitate cancer cell cross talk, influence extracellular matrix deposition, and direct the immune system to generate a protumorigenic environment. In contrast, normal tissue fibroblasts and MSCs are important in restraining cancer initiation, influencing epithelial cell differentiation, and limiting cancer cell invasion. We propose this apparent dichotomy of function is due to (1) cancer mediated stromal reprogramming; (2) tissue stromal source; (3) unique subtypes of fibrosis; and (4) the impact of fibrosis on other TME elements. First, as cancer progresses, tumor cells influence their surrounding stroma to move from a cancer restraining phenotype into a cancer supportive role. Second, cancer has specific organ tropism, thus stroma derived from preferred metastatic organs support growth while less preferred metastatic tissues do not. Third, there are subtypes of fibrosis which have unique function to support or inhibit cancer growth. Fourth, depleting fibrosis influences other TME components which drive the cancer response. Collectively, this review highlights the complexity of cancer-associated fibrosis and supports a dual function of fibrosis which evolves during the continuum of cancer growth.
Collapse
Affiliation(s)
- Chelsea Chandler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tianshi Liu
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Hematology Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lan G Coffman
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Hematology Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
40
|
Adams CR, Htwe HH, Marsh T, Wang AL, Montoya ML, Subbaraj L, Tward AD, Bardeesy N, Perera RM. Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. eLife 2019; 8:45313. [PMID: 31134896 PMCID: PMC6538376 DOI: 10.7554/elife.45313] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a heterogeneous disease comprised of a basal-like subtype with mesenchymal gene signatures, undifferentiated histopathology and worse prognosis compared to the classical subtype. Despite their prognostic and therapeutic value, the key drivers that establish and control subtype identity remain unknown. Here, we demonstrate that PDA subtypes are not permanently encoded, and identify the GLI2 transcription factor as a master regulator of subtype inter-conversion. GLI2 is elevated in basal-like PDA lines and patient specimens, and forced GLI2 activation is sufficient to convert classical PDA cells to basal-like. Mechanistically, GLI2 upregulates expression of the pro-tumorigenic secreted protein, Osteopontin (OPN), which is especially critical for metastatic growth in vivo and adaptation to oncogenic KRAS ablation. Accordingly, elevated GLI2 and OPN levels predict shortened overall survival of PDA patients. Thus, the GLI2-OPN circuit is a driver of PDA cell plasticity that establishes and maintains an aggressive variant of this disease.
Collapse
Affiliation(s)
- Christina R Adams
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Htet Htwe Htwe
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Timothy Marsh
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Aprilgate L Wang
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Megan L Montoya
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Lakshmipriya Subbaraj
- Department of Otolaryngology, University of California, San Francisco, San Francisco, United States
| | - Aaron D Tward
- Department of Otolaryngology, University of California, San Francisco, San Francisco, United States.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, United States
| | - Rushika M Perera
- Department of Anatomy, University of California, San Francisco, San Francisco, United States.,Department of Pathology, University of California, San Francisco, San Francisco, United States.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
41
|
Yoshida GJ, Azuma A, Miura Y, Orimo A. Activated Fibroblast Program Orchestrates Tumor Initiation and Progression; Molecular Mechanisms and the Associated Therapeutic Strategies. Int J Mol Sci 2019; 20:ijms20092256. [PMID: 31067787 PMCID: PMC6539414 DOI: 10.3390/ijms20092256] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Neoplastic epithelial cells coexist in carcinomas with various non-neoplastic stromal cells, together creating the tumor microenvironment. There is a growing interest in the cross-talk between tumor cells and stromal fibroblasts referred to as carcinoma-associated fibroblasts (CAFs), which are frequently present in human carcinomas. CAF populations extracted from different human carcinomas have been shown to possess the ability to influence the hallmarks of cancer. Indeed, several mechanisms underlying CAF-promoted tumorigenesis are elucidated. Activated fibroblasts in CAFs are characterized as alpha-smooth muscle actin-positive myofibroblasts and actin-negative fibroblasts, both of which are competent to support tumor growth and progression. There are, however, heterogeneous CAF populations presumably due to the diverse sources of their progenitors in the tumor-associated stroma. Thus, molecular markers allowing identification of bona fide CAF populations with tumor-promoting traits remain under investigation. CAFs and myofibroblasts in wound healing and fibrosis share biological properties and support epithelial cell growth, not only by remodeling the extracellular matrix, but also by producing numerous growth factors and inflammatory cytokines. Notably, accumulating evidence strongly suggests that anti-fibrosis agents suppress tumor development and progression. In this review, we highlight important tumor-promoting roles of CAFs based on their analogies with wound-derived myofibroblasts and discuss the potential therapeutic strategy targeting CAFs.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Arata Azuma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Yukiko Miura
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 1138603, Japan.
| | - Akira Orimo
- Department of Molecular Pathogenesis, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
42
|
Crawford HC, Pasca di Magliano M, Banerjee S. Signaling Networks That Control Cellular Plasticity in Pancreatic Tumorigenesis, Progression, and Metastasis. Gastroenterology 2019; 156:2073-2084. [PMID: 30716326 PMCID: PMC6545585 DOI: 10.1053/j.gastro.2018.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest cancers, and its incidence on the rise. The major challenges in overcoming the poor prognosis with this disease include late detection and the aggressive biology of the disease. Intratumoral heterogeneity; presence of a robust, reactive, and desmoplastic stroma; and the crosstalk between the different tumor components require complete understanding of the pancreatic tumor biology to better understand the therapeutic challenges posed by this disease. In this review, we discuss the processes involved during tumorigenesis encompassing the inherent plasticity of the transformed cells, development of tumor stroma crosstalk, and enrichment of cancer stem cell population during tumorigenesis.
Collapse
Affiliation(s)
- Howard C Crawford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sulagna Banerjee
- Department of Surgery, University of Miami School of Medicine, Miami, Florida; Sylvester Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
43
|
Raleigh DR, Reiter JF. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J Clin Invest 2019; 129:465-475. [PMID: 30707108 DOI: 10.1172/jci120850] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog pathway is critical for the development of diverse organs. Misactivation of the Hedgehog pathway can cause developmental abnormalities and cancers, including medulloblastoma, the most common pediatric brain tumor, and basal cell carcinoma, the most common cancer in the United States. Here, we review how basic, translational, and clinical studies of the Hedgehog pathway have helped reveal how cells communicate, how intercellular communication controls development, how signaling goes awry to cause cancer, and how to use targeted molecular agents to treat both inherited and sporadic cancers.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology.,Department of Neurological Surgery, and
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| |
Collapse
|
44
|
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, Conti DV, Qu C, Jeon J, Edlund CK, Greenside P, Wainberg M, Schumacher FR, Smith JD, Levine DM, Nelson SC, Sinnott-Armstrong NA, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Bamia C, Banbury BL, Baron JA, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Chirlaque MD, Cho SH, Connolly CM, Cross AJ, Cuk K, Curtis KR, de la Chapelle A, Doheny KF, Duggan D, Easton DF, Elias SG, Elliott F, English DR, Feskens EJM, Figueiredo JC, Fischer R, FitzGerald LM, Forman D, Gala M, Gallinger S, Gauderman WJ, Giles GG, Gillanders E, Gong J, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hampel H, Harlid S, Hayes RB, Hofer P, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Hunter DJ, Ibañez-Sanz G, Idos GE, Ingersoll R, Jackson RD, Jacobs EJ, Jenkins MA, Joshi AD, Joshu CE, Keku TO, Key TJ, Kim HR, Kobayashi E, Kolonel LN, Kooperberg C, Kühn T, Küry S, et alHuyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, Conti DV, Qu C, Jeon J, Edlund CK, Greenside P, Wainberg M, Schumacher FR, Smith JD, Levine DM, Nelson SC, Sinnott-Armstrong NA, Albanes D, Alonso MH, Anderson K, Arnau-Collell C, Arndt V, Bamia C, Banbury BL, Baron JA, Berndt SI, Bézieau S, Bishop DT, Boehm J, Boeing H, Brenner H, Brezina S, Buch S, Buchanan DD, Burnett-Hartman A, Butterbach K, Caan BJ, Campbell PT, Carlson CS, Castellví-Bel S, Chan AT, Chang-Claude J, Chanock SJ, Chirlaque MD, Cho SH, Connolly CM, Cross AJ, Cuk K, Curtis KR, de la Chapelle A, Doheny KF, Duggan D, Easton DF, Elias SG, Elliott F, English DR, Feskens EJM, Figueiredo JC, Fischer R, FitzGerald LM, Forman D, Gala M, Gallinger S, Gauderman WJ, Giles GG, Gillanders E, Gong J, Goodman PJ, Grady WM, Grove JS, Gsur A, Gunter MJ, Haile RW, Hampe J, Hampel H, Harlid S, Hayes RB, Hofer P, Hoffmeister M, Hopper JL, Hsu WL, Huang WY, Hudson TJ, Hunter DJ, Ibañez-Sanz G, Idos GE, Ingersoll R, Jackson RD, Jacobs EJ, Jenkins MA, Joshi AD, Joshu CE, Keku TO, Key TJ, Kim HR, Kobayashi E, Kolonel LN, Kooperberg C, Kühn T, Küry S, Kweon SS, Larsson SC, Laurie CA, Le Marchand L, Leal SM, Lee SC, Lejbkowicz F, Lemire M, Li CI, Li L, Lieb W, Lin Y, Lindblom A, Lindor NM, Ling H, Louie TL, Männistö S, Markowitz SD, Martín V, Masala G, McNeil CE, Melas M, Milne RL, Moreno L, Murphy N, Myte R, Naccarati A, Newcomb PA, Offit K, Ogino S, Onland-Moret NC, Pardini B, Parfrey PS, Pearlman R, Perduca V, Pharoah PDP, Pinchev M, Platz EA, Prentice RL, Pugh E, Raskin L, Rennert G, Rennert HS, Riboli E, Rodríguez-Barranco M, Romm J, Sakoda LC, Schafmayer C, Schoen RE, Seminara D, Shah M, Shelford T, Shin MH, Shulman K, Sieri S, Slattery ML, Southey MC, Stadler ZK, Stegmaier C, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Thomas SS, Toland AE, Trichopoulou A, Ulrich CM, Van Den Berg DJ, van Duijnhoven FJB, Van Guelpen B, van Kranen H, Vijai J, Visvanathan K, Vodicka P, Vodickova L, Vymetalkova V, Weigl K, Weinstein SJ, White E, Win AK, Wolf CR, Wolk A, Woods MO, Wu AH, Zaidi SH, Zanke BW, Zhang Q, Zheng W, Scacheri PC, Potter JD, Bassik MC, Kundaje A, Casey G, Moreno V, Abecasis GR, Nickerson DA, Gruber SB, Hsu L, Peters U. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet 2019; 51:76-87. [PMID: 30510241 PMCID: PMC6358437 DOI: 10.1038/s41588-018-0286-6] [Show More Authors] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022]
Abstract
To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
Collapse
Affiliation(s)
- Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hyun Min Kang
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sai Chen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David V Conti
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher K Edlund
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peyton Greenside
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Michael Wainberg
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua D Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David M Levine
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Henar Alonso
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Kristin Anderson
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Bamia
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Juergen Boehm
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | - Katja Butterbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bette J Caan
- Division of Research, Kaiser Permanente Medical Care Program, Oakland, CA, USA
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Christopher S Carlson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria-Dolores Chirlaque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
| | - Sang Hee Cho
- Department of Hematology-Oncology, Chonnam National University Hospital, Hwasun, South Korea
| | - Charles M Connolly
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Keith R Curtis
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Duggan
- Translational Genomics Research Institute - An Affiliate of City of Hope, Phoenix, AZ, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Faye Elliott
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rocky Fischer
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Liesel M FitzGerald
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - David Forman
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Manish Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - W James Gauderman
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Elizabeth Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Jian Gong
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - John S Grove
- University of Hawaii Cancer Research Center, Honolulu, HI, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Philipp Hofer
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Wan-Ling Hsu
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Gemma Ibañez-Sanz
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Gastroenterology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Gregory E Idos
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roxann Ingersoll
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca D Jackson
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun, Korea
| | - Emiko Kobayashi
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laurence N Kolonel
- Office of Public Health Studies, University of Hawaii Manoa, Honolulu, HI, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sébastien Küry
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Flavio Lejbkowicz
- The Clalit Health Services, Personalized Genomic Service, Carmel, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Mathieu Lemire
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Li
- Center for Community Health Integration and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Wolfgang Lieb
- Institute of Epidemiology, PopGen Biobank, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Hua Ling
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tin L Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanford D Markowitz
- Departments of Medicine and Genetics, Case Comprehensive Cancer Center, Case Western Reserve University, and University Hospitals of Cleveland, Cleveland, OH, USA
| | - Vicente Martín
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute of Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Caroline E McNeil
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Marilena Melas
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Lorena Moreno
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Robin Myte
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Patrick S Parfrey
- The Clinical Epidemiology Unit, Memorial University Medical School, Newfoundland, Canada
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vittorio Perduca
- Laboratoire de Mathématiques Appliquées MAP5 (UMR CNRS 8145), Université Paris Descartes, Paris, France
- CESP (Inserm U1018), Facultés de Medicine Université Paris-Sud, UVSQ, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mila Pinchev
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elizabeth Pugh
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Leon Raskin
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hedy S Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Miguel Rodríguez-Barranco
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain
| | - Jane Romm
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniela Seminara
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Tameka Shelford
- Center for Inherited Disease Research (CIDR), Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Korea
| | | | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sushma S Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - David J Van Den Berg
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Henk van Kranen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Korbinian Weigl
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aung Ko Win
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - C Roland Wolf
- School of Medicine, University of Dundee, Dundee, Scotland, UK
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Newfoundland, Canada
| | - Anna H Wu
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Brent W Zanke
- Division of Hematology, University of Toronto, Toronto, Ontario, Canada
| | - Qing Zhang
- Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
45
|
Pitarresi JR, Liu X, Avendano A, Thies KA, Sizemore GM, Hammer AM, Hildreth BE, Wang DJ, Steck SA, Donohue S, Cuitiño MC, Kladney RD, Mace TA, Chang JJ, Ennis CS, Li H, Reeves RH, Blackshaw S, Zhang J, Yu L, Fernandez SA, Frankel WL, Bloomston M, Rosol TJ, Lesinski GB, Konieczny SF, Guttridge DC, Rustgi AK, Leone G, Song JW, Wu J, Ostrowski MC. Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth. Life Sci Alliance 2018; 1:e201800190. [PMID: 30456390 PMCID: PMC6238420 DOI: 10.26508/lsa.201800190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Disrupting paracrine Hedgehog signaling in pancreatic cancer stroma through genetic deletion of fibroblast Smoothened leads to proteasomal degradation of fibroblast PTEN and accelerates tumor growth. The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene Smoothened (Smo) in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, Smo deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in Smo-null fibroblasts. Ring Finger Protein 5 (Rnf5) knockdown or pharmacological inhibition of glycogen synthase kinase 3β (GSKβ), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.
Collapse
Affiliation(s)
- Jason R Pitarresi
- Ohio State Biochemistry Graduate Program, The Ohio State University Columbus, Columbus, OH, USA.,Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Xin Liu
- Ohio State Biochemistry Graduate Program, The Ohio State University Columbus, Columbus, OH, USA.,Department of Surgery, Stanford University, Stanford, CA, USA
| | - Alex Avendano
- Department of Mechanical and Aerospace Engineering and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Katie A Thies
- Hollings Cancer Center and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gina M Sizemore
- Department of Radiation Oncology and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Anisha M Hammer
- Ohio State Biochemistry Graduate Program, The Ohio State University Columbus, Columbus, OH, USA
| | - Blake E Hildreth
- Hollings Cancer Center and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - David J Wang
- Hollings Cancer Center and the Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Sarah A Steck
- Department of Radiation Oncology and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sydney Donohue
- Cancer Biology & Genetics Department and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Maria C Cuitiño
- Hollings Cancer Center and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Ohio State Biochemistry Graduate Program, The Ohio State University Columbus, Columbus, OH, USA
| | - Raleigh D Kladney
- Cancer Biology & Genetics Department and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Thomas A Mace
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jonathan J Chang
- Department of Mechanical and Aerospace Engineering and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Christina S Ennis
- Department of Mechanical and Aerospace Engineering and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huiqing Li
- Department of Physiology and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger H Reeves
- Department of Physiology and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianying Zhang
- Department of Biomedical Informatics' and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Mark Bloomston
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Thomas J Rosol
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Gregory B Lesinski
- Department of Hematology & Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue Center for Cancer Research and Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Denis C Guttridge
- Ohio State Biochemistry Graduate Program, The Ohio State University Columbus, Columbus, OH, USA.,Hollings Cancer Center and the Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo Leone
- Hollings Cancer Center and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Ohio State Biochemistry Graduate Program, The Ohio State University Columbus, Columbus, OH, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jinghai Wu
- Cancer Biology & Genetics Department and Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Michael C Ostrowski
- Hollings Cancer Center and Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Ohio State Biochemistry Graduate Program, The Ohio State University Columbus, Columbus, OH, USA
| |
Collapse
|
46
|
Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, Yu X, Xu J. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics 2018; 8:5072-5087. [PMID: 30429887 PMCID: PMC6217060 DOI: 10.7150/thno.26546] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) constitutes one of the most challenging lethal tumors and has a very poor prognosis. In addition to cancer cells, the tumor microenvironment created by a repertoire of resident and recruited cells and the extracellular matrix also contribute to the acquisition of hallmarks of cancer. Among these factors, cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment. CAFs originate from the activation of resident fibroblasts and pancreatic stellate cells, the differentiation of bone marrow-derived mesenchymal stem cells and epithelial-to-mesenchymal transition. CAFs acquire an activated phenotype via various cytokines and promote tumor proliferation and growth, accelerate invasion and metastasis, induce angiogenesis, promote inflammation and immune destruction, regulate tumor metabolism, and induce chemoresistance; these factors contribute to the acquisition of major hallmarks of PDAC. Therefore, an improved understanding of the impact of CAFs on the major hallmarks of PDAC will highlight the diagnostic and therapeutic values of these targeted cells.
Collapse
Affiliation(s)
- Qiqing Sun
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
| |
Collapse
|
47
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
48
|
Subramaniam D, Kaushik G, Dandawate P, Anant S. Targeting Cancer Stem Cells for Chemoprevention of Pancreatic Cancer. Curr Med Chem 2018; 25:2585-2594. [PMID: 28137215 DOI: 10.2174/0929867324666170127095832] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest cancers worldwide and the fourth leading cause of cancer-related deaths in United States. Regardless of the advances in molecular pathogenesis and consequential efforts to suppress the disease, this cancer remains a major health problem in United States. By 2030, the projection is that pancreatic cancer will be climb up to be the second leading cause of cancer-related deaths in the United States. Pancreatic cancer is a rapidly invasive and highly metastatic cancer, and does not respond to standard therapies. Emerging evidence supports that the presence of a unique population of cells called cancer stem cells (CSCs) as potential cancer inducing cells and efforts are underway to develop therapeutic strategies targeting these cells. CSCs are rare quiescent cells, and with the capacity to self-renew through asymmetric/symmetric cell division, as well as differentiate into various lineages of cells in the cancer. Studies have been shown that CSCs are highly resistant to standard therapy and also responsible for drug resistance, cancer recurrence and metastasis. To overcome this problem, we need novel preventive agents that target these CSCs. Natural compounds or phytochemicals have ability to target these CSCs and their signaling pathways. Therefore, in the present review article, we summarize our current understanding of pancreatic CSCs and their signaling pathways, and the phytochemicals that target these cells including curcumin, resveratrol, tea polyphenol EGCG (epigallocatechin- 3-gallate), crocetinic acid, sulforaphane, genistein, indole-3-carbinol, vitamin E δ- tocotrienol, Plumbagin, quercetin, triptolide, Licofelene and Quinomycin. These natural compounds or phytochemicals, which inhibit cancer stem cells may prove to be promising agents for the prevention and treatment of pancreatic cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Gaurav Kaushik
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Prasad Dandawate
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Shrikant Anant
- Department of Surgery, the University of Kansas Medical Center, Kansas City, KS 66160, United States.,The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
49
|
Halbrook CJ, Pasca di Magliano M, Lyssiotis CA. Tumor cross-talk networks promote growth and support immune evasion in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2018; 315. [PMID: 29543507 PMCID: PMC6109710 DOI: 10.1152/ajpgi.00416.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the event of an injury, normal tissues exit quiescent homeostasis and rapidly engage a complex stromal and immune program. These tissue repair responses are hijacked and become dysregulated in carcinogenesis to form a growth-supportive tumor microenvironment. In pancreatic ductal adenocarcinoma (PDA), which remains one of the deadliest major cancers, the microenvironment is a key driver of tumor maintenance that impedes many avenues of therapy. In this review, we outline recent efforts made to uncover the microenvironmental cross-talk mechanisms that support pancreatic cancer cells, and we detail the strategies that have been undertaken to help overcome these barriers.
Collapse
Affiliation(s)
- Christopher J. Halbrook
- 1Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- 2Department of Surgery, University of Michigan, Ann Arbor, Michigan,3Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Costas A. Lyssiotis
- 1Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,3Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan,4Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Cannon A, Thompson C, Hall BR, Jain M, Kumar S, Batra SK. Desmoplasia in pancreatic ductal adenocarcinoma: insight into pathological function and therapeutic potential. Genes Cancer 2018; 9:78-86. [PMID: 30108679 PMCID: PMC6086006 DOI: 10.18632/genesandcancer.171] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Extensive desmoplasia is a prominent feature of the pancreatic ductal adenocarcinoma (PDAC) microenvironment. Initially, studies demonstrated that desmoplasia promotes proliferation, invasion and chemoresistance in PDAC cells. While these findings suggested the therapeutic potential of targeting desmoplasia in PDAC, more recent studies utilizing genetically-engineered mouse models of PDAC, which lack key components of desmoplasia, demonstrated accelerated progression of PDAC. This contrast calls into question the paradigm that desmoplasia unilaterally promotes PDAC progression and the premise of desmoplasia-targeted therapy. This review briefly examines the major reports of the tumor-promoting and -restraining roles of desmoplasia in PDAC with commentary on the gaps in our current understanding of desmoplasia in PDAC. Additionally, we discuss the studies demonstrating the heterogeneous and multifaceted nature of desmoplasia in PDAC and advocate for future areas of research to thoroughly address the various facets of desmoplasia in PDAC, reconcile seemingly contradictory reports of the role of desmoplasia in PDAC progression, and discover aspects of desmoplasia that are therapeutically actionable.
Collapse
Affiliation(s)
- Andrew Cannon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christopher Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bradley R Hall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|