1
|
Cheung KYM, Nair A, Li LY, Shapiro MG, Anderson DJ. Population coding of predator imminence in the hypothalamus. Neuron 2025; 113:1259-1275.e4. [PMID: 40086431 PMCID: PMC12064081 DOI: 10.1016/j.neuron.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/16/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
Hypothalamic VMHdmSF1 neurons are activated by predator cues and are necessary and sufficient for instinctive defensive responses. However, such data do not distinguish which features of a predator encounter are encoded by VMHdmSF1 neural activity. To address this issue, we imaged VMHdmSF1 neurons at single-cell resolution in freely behaving mice exposed to a natural predator in varying contexts. Our results reveal that VMHdmSF1 neurons do not encode different defensive behaviors but rather represent predator identity and multiple predator-evoked internal states, including threat-evoked fear/anxiety, arousal or neophobia, predator imminence, and safety. Notably, threat and safety are encoded bi-directionally by anti-correlated subpopulations. Strikingly, individual differences in predator defensiveness are correlated with individual differences in VMHdmSF1 response dynamics. Thus, different threat-related internal state variables are encoded by distinct neuronal subpopulations within a genetically defined, anatomically restricted hypothalamic cell class.
Collapse
Affiliation(s)
- Kathy Y M Cheung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
| | - Ling-Yun Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience Caltech, Pasadena, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Hokenson RE, Rodríguez-Acevedo KL, Chen Y, Short AK, Samrari SA, Devireddy B, Jensen BJ, Winter JJ, Gall CM, Soma KK, Heller EA, Baram TZ. Unexpected mechanisms of sex-specific memory vulnerabilities to acute traumatic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645300. [PMID: 40196630 PMCID: PMC11974907 DOI: 10.1101/2025.03.25.645300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
It is increasingly recognized that severe acute traumatic events (e.g., mass shooting, natural disasters) can provoke enduring memory disturbances, and these problems are more common in women. We probed the fundamental sex differences underlying memory vulnerability to acute traumatic stress (ATS), focusing on the role of the sex hormone, estrogen (17β-estradiol) and its receptor signaling in hippocampus. Surprisingly, high physiological hippocampal estrogen levels were required for ATS-induced episodic memory disruption and the concurrent sensitization and generalization of fear memories in both male and female mice. Pharmacological and transgenic approaches demonstrated signaling via estrogen receptor (ER)α in males and, in contrast, ERβ in females, as the mechanisms for these memory problems. Finally, identify distinct hippocampal chromatin states governed by sex and estrogen levels, which may confer an enduring vulnerability to post-traumatic memory disturbances in females.
Collapse
Affiliation(s)
- Rachael E Hokenson
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
| | - Kiara L Rodríguez-Acevedo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuncai Chen
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
| | - Annabel K Short
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
| | - Sara A Samrari
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
| | - Brinda Devireddy
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
| | - Brittany J Jensen
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Julia J Winter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Christine M Gall
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, United States
| | - Kiran K Soma
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Tallie Z Baram
- Department of Anatomy/ Neurobiology, University of California-Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California-Irvine, Irvine, CA, United States
- Department of Neurology, University of California-Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. eLife 2025; 13:RP93373. [PMID: 40126547 PMCID: PMC11932693 DOI: 10.7554/elife.93373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Leandro M Velez
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcus M Seldin
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Ouldibbat L, Rocks D, Sampson B, Kundakovic M. The role of ovarian hormone dynamics in metabolic phenotype and gene expression in female mice. Horm Behav 2025; 169:105693. [PMID: 39946826 DOI: 10.1016/j.yhbeh.2025.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/22/2024] [Accepted: 01/23/2025] [Indexed: 03/16/2025]
Abstract
Ovarian hormones, particularly estradiol, play an important role in the regulation of metabolic function including in food intake, thermogenesis, activity, fat distribution, and overall weight management. While it is known that weight and food intake follow cyclical patterns across the rodent estrous cycle, the majority of metabolic studies still focus on ovariectomized rodent models and estrogen replacement. Here we provide a comprehensive metabolic profiling of female mice under different ovarian hormone states, from having naturally-cycling ovarian hormone levels to complete ovarian hormone depletion and "estrous cycle-like" estrogen replacement (0.2 or 1 μg estradiol benzoate every 4 days). Every domain of metabolic function that we examined including activity levels, food intake, and body composition was affected by ovariectomy and contributed to >30 % weight gain and nearly two-fold increase in fat mass in ovarian hormone-depleted mice over the 12-week period. By combining physiological and hormone replacement paradigms, we show that cyclical estrogen levels are necessary and sufficient to maintain optimal body weight and fat mass. We show that the hypothalamic expression of genes encoding estrogen receptor alpha (Esr1) and neuropeptides involved in feeding behavior (Agrp, Pomc) changes across the cycle and with ovariectomy, and is partially "rescued" by cyclical estrogen treatment. The drastic fat mass changes following ovariectomy are accompanied by changes in adipose tissue gene expression, including a decreased responsiveness to estrogens due to Esr1 down-regulation. Our study highlights the importance of understanding the dynamic regulation of metabolic function by ovarian hormones and calls for more naturalistic and higher-resolution approaches to studying the molecular basis of ovarian hormone action.
Collapse
Affiliation(s)
- Laila Ouldibbat
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Branden Sampson
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
5
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.01.565163. [PMID: 37961647 PMCID: PMC10635050 DOI: 10.1101/2023.11.01.565163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologous in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Flak JN. Functionally Separate Populations of Ventromedial Hypothalamic Neurons in Obesity and Diabetes: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2025; 74:4-11. [PMID: 39418333 PMCID: PMC11664020 DOI: 10.2337/dbi24-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The ventromedial hypothalamic nucleus (VMN) maintains healthy metabolic function through several important roles. Collectively, homeostasis is maintained via intermingled cells within the VMN that raise blood glucose, lower blood glucose, and stimulate energy expenditure when needed. In this article I discuss the defining factors for the VMN cell types that govern distinct functions induced by the VMN, particularly in relation to energy balance and blood glucose levels. Special attention is given to distinct features of VMN cells responsible for these processes. Finally, these topics are reviewed in the context of research funded by the American Diabetes Association Pathway to Stop Diabetes initiative, with highlighting of key findings and current unresolved questions for future investigations.
Collapse
Affiliation(s)
- Jonathan N. Flak
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN
| |
Collapse
|
7
|
Xu N, Yang K, Wang M. CCN3: lactational bone booster. Cell Biosci 2024; 14:155. [PMID: 39734229 DOI: 10.1186/s13578-024-01344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024] Open
Abstract
Mammalian reproduction requires that nursing mothers transfer large amounts of calcium to their offspring through milk. Meeting this demand requires the activation of a brain-breast-bone circuit during lactation that coordinates changes in systemic hormones, dietary calcium intake, skeletal turnover, and calcium transport into milk. Classically, increased bone resorption via increased parathyroid hormone-related protein and low estrogen levels is the main source of calcium for milk production during lactation. Over the past few decades, investigators have described many aspects of this brain-breast-bone axis during lactation, yet many unanswered questions remain. Using a comprehensive set of parabiosis coupled with in vivo µCT, bone transplant studies, cell culturing and differentiation assays, mouse genetic models, pharmacologic interventions, hepatic viral transduction, and sequencing analysis, a recent study discovered that cellular communication network factor 3 (CCN3), derived from ARHERα/Kiss1 neurons, functions as an osteogenic hormone to sustain bone formation and progeny survival during lactation. Compelling evidence has been presented to show that (1) CCN3 expression in ARHERα/Kiss1 neurons fluctuates, almost exclusively appearing during lactation; (2) CCN3 stimulates mouse and human skeletal stem cell activity, increases bone remodeling and fracture repair in young and old mice of both sexes; (3) knockdown Ccn3 transcripts in the ARHKiss1 neurons in lactating dams causes devastating bone loss and failure to sustain progeny survival. These findings suggested that the stage-specific expression of CCN3 in female ARHERα/Kiss1 neurons during lactation is a newly identified brain-bone axis evolved to sustain the skeleton in mammalian mothers and offspring.
Collapse
Affiliation(s)
- Nathan Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| | - Kyle Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.
- , 1100 Bates Street #8066, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Park JW, Cortes LR, Sandoval NP, Baron AG, Vree AR, Fideles HJ, Hansen MR, Lopez JI, Dilday EA, Rashid S, Kammel LG, van Veen JE, Correa SM. Sex-specific thermoregulatory effects of estrogen signaling in Reprimo lineage cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626488. [PMID: 39677630 PMCID: PMC11642856 DOI: 10.1101/2024.12.02.626488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Menopause affects over a million individuals annually and is characterized by variable and declining ovarian hormones. Decreasing estrogen levels impact energy homeostasis and increases the risk of metabolic disorders. Energy expenditure is largely directed towards thermoregulation, which is modulated in part by estrogen receptor (ER) α expressing neurons in the hypothalamus. Whether specific sub-populations of ERα+ neurons control the effects of estrogens on thermogenesis remains poorly understood. This study investigates the function of ERα in neurons that express Rprm (Reprimo), a gene we previously linked to thermoregulation in females. Here, we use a novel ReprimoCre mouse to selectively knock out ERα in Rprm lineage neurons (Reprimo-specific estrogen receptor α KO; RERKO) and report changes in core temperature in female mice, with no changes in body weight, body composition, or food intake. RERKO females have elevated brown adipose tissue (BAT) temperature and lower tail temperature relative to controls, suggesting increased heat production and impaired heat dissipation, respectively. Developmental expression of Rprm was detected in the brain, but not in BAT or white adipose tissue suggesting temperature changes may be mediated by the nervous system. Thus, we next ablated Rprm expressing neurons in the ventrolateral area of the ventromedial nucleus of the hypothalamus (VMHvl) and observed a reduction in core temperature and increased fat mass in ablated female mice relative to controls. Taken together, these results show that estrogen signaling in Rprm expressing cells and VMHvl Rprm neurons are critical for thermoregulation, mainly through the modulation of brown adipose tissue thermogenesis in female, but not male mice.
Collapse
Affiliation(s)
- Jae W. Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Laura R. Cortes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Norma P. Sandoval
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Alejandra G. Baron
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Adriana R. Vree
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Higor J. Fideles
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Mia R. Hansen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Julissa I. Lopez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Cypress College, Cypress, CA, USA
| | - Elizabeth A. Dilday
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Sakina Rashid
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Laura G. Kammel
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
9
|
Camon C, Garratt M, Correa SM. Exploring the effects of estrogen deficiency and aging on organismal homeostasis during menopause. NATURE AGING 2024; 4:1731-1744. [PMID: 39672893 PMCID: PMC11785355 DOI: 10.1038/s43587-024-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
Sex hormone signaling declines during aging, from early midlife through menopause, as a consequence of reduced circulating estrogens and decreased receptiveness to these hormones in target tissues. Estrogens preserve energy homeostasis and promote metabolic health via coordinated and simultaneous effects throughout the brain and body. Age-associated loss of estrogen production during menopause has been implicated in a higher risk for metabolic diseases and increased mortality. However, it remains unclear whether age-associated changes in homeostasis are dependent on reduced estrogen signaling during menopause. Although menopausal hormone therapies containing estrogens can alleviate symptoms, concerns about the risks involved have contributed to a broad decline in the use of these approaches. Non-hormonal therapies have emerged that target tissues or pathways with varying levels of selectivity, reducing risk. We summarize here the broad effects of estrogen loss on homeostasis during menopause, current and emerging therapies and opportunities for understanding homeostatic disruptions associated with menopause.
Collapse
Affiliation(s)
- Celine Camon
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Garratt
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand.
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Lee TH, Nicolas JC, Quarta C. Molecular and functional mapping of the neuroendocrine hypothalamus: a new era begins. J Endocrinol Invest 2024; 47:2627-2648. [PMID: 38878127 DOI: 10.1007/s40618-024-02411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Recent advances in neuroscience tools for single-cell molecular profiling of brain neurons have revealed an enormous spectrum of neuronal subpopulations within the neuroendocrine hypothalamus, highlighting the remarkable molecular and cellular heterogeneity of this brain area. RATIONALE Neuronal diversity in the hypothalamus reflects the high functional plasticity of this brain area, where multiple neuronal populations flexibly integrate a variety of physiological outputs, including energy balance, stress and fertility, through crosstalk mechanisms with peripheral hormones. Intrinsic functional heterogeneity is also observed within classically 'defined' subpopulations of neuroendocrine neurons, including subtypes with distinct neurochemical signatures, spatial organisation and responsiveness to hormonal cues. AIM The aim of this review is to critically evaluate past and current research on the functional diversity of hypothalamic neuroendocrine neurons and their plasticity. It focuses on how this neuronal plasticity in this brain area relates to metabolic control, feeding regulation and interactions with stress and fertility-related neural circuits. CONCLUSION Our analysis provides an original framework for improving our understanding of the hypothalamic regulation of hormone function and the development of neuroendocrine diseases.
Collapse
Affiliation(s)
- T H Lee
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - J-C Nicolas
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - C Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
11
|
Spool JA, Lally AP, Remage-Healey L. Auditory pallial regulation of the social behavior network. Commun Biol 2024; 7:1336. [PMID: 39414913 PMCID: PMC11484815 DOI: 10.1038/s42003-024-07013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Sensory cues such as vocalizations contain important social information. Processing social features of vocalizations (e.g., vocalizer identity, emotional state) necessitates unpacking the complex sound streams in song or speech; this depends on circuits in pallial cortex. But whether and how this information is then transferred to limbic and hypothalamic regions remains a mystery. Here, using gregarious, vocal songbirds (female Zebra finches), we identify a prominent influence of the auditory pallium on one specific node of the Social Behavior Network, the lateral ventromedial nucleus of the hypothalamus (VMHl). Electrophysiological recordings revealed that social and non-social auditory stimuli elicited stimulus-specific spike trains that permitted stimulus differentiation in a large majority of VMHl single units, while transient disruption of auditory pallium elevated immediate early gene activity in VMHl. Descending functional connections such as these may be critical for the range of vertebrate species that rely on nuanced communication signals to guide social decision-making.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA
| | - Anna P Lally
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Sapkota S, Roy SC, Briski KP. Dorsomedial Ventromedial Hypothalamic Nucleus Growth Hormone-Releasing Hormone Neuron Steroidogenic Factor-1 Gene Targets in Female Rat. ASN Neuro 2024; 16:2403345. [PMID: 39401164 PMCID: PMC11792125 DOI: 10.1080/17590914.2024.2403345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
The prospect that the ventromedial hypothalamic nucleus (VMN) transcription factor steroidogenic factor-1/NR5A1 (SF-1) may exert sex-dimorphic control of glucose counterregulation is unresolved. Recent studies in male rats show that SF-1 regulates transcription of co-expressed hypoglycemia-sensitive neurochemicals in dorsomedial VMN growth hormone-releasing hormone (Ghrh) neurons. Gene knockdown and laser-catapult-microdissection/single-cell multiplex qPCR techniques were used here in a female rat model to determine if SF-1 control of Ghrh neuron transmitter marker, energy sensor, and estrogen receptor (ER) variant mRNAs varies according to sex. Data show that in females, hypoglycemia elicits a gain of SF-1 inhibitory control of VMNdm Ghrh neuron Ghrh and Ghrh-receptor gene profiles and loss of augmentation of glutaminase transcription; SF-1 gene silencing diminished eu- and hypoglycemic patterns of neuronal nitric oxide gene transcription. SF-1 imposes divergent control of baseline and hypoglycemic glutamate decarboxylase65 (GAD)-1 (stimulatory) versus GAD2 (inhibitory) mRNAs in that sex. SF-1 stimulates baseline VMNdm Ghrh neuron PRKAA1/AMPKα1 and PRKAA2/AMPKα2 gene expression, yet causes opposite changes in these gene profiles during hypoglycemia. SF-1 exerts glucose-dependent control of ER-alpha and G-protein-coupled ER-1 transcription, but blunts ER-beta gene profiles during eu- and hypoglycemia. In females, SF-1 knockdown did not affect hypercorticosteronemia or hyperglucagonemia, but blunted hypoglycemic suppression of growth hormone secretion. Results show that SF-1 expression is critical for female rat VMNdm Ghrh neuron counterregulatory neurochemical, AMPK catalytic subunit, and ER gene transcription responses to hypoglycemia. Sex differences in direction of SF-1 control of distinctive gene profiles may result in observed disparities in SF-1 regulation of counterregulatory hormone secretion between sexes.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Sagor C. Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P. Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
13
|
Yu M, Yin N, Feng B, Gao P, Yu K, Liu H, Liu H, Li Y, Ginnard OZ, Conde KM, Wang M, Fang X, Tu L, Bean JC, Liu Q, Deng Y, Yang Y, Han J, Jossy SV, Burt ML, Wong HZ, Yang Y, Arenkiel BR, He Y, Guo S, Gourdy P, Arnal JF, Lenfant F, Wang Z, Wang C, He Y, Xu Y. Identification of an ionic mechanism for ERα-mediated rapid excitation in neurons. SCIENCE ADVANCES 2024; 10:eadp0696. [PMID: 39356770 PMCID: PMC11446276 DOI: 10.1126/sciadv.adp0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The major female ovarian hormone, 17β-estradiol (E2), can alter neuronal excitability within milliseconds to regulate a variety of physiological processes. Estrogen receptor-α (ERα), classically known as a nuclear receptor, exists as a membrane-bound receptor to mediate this rapid action of E2, but the ionic mechanisms remain unclear. Here, we show that a membrane channel protein, chloride intracellular channel protein-1 (Clic1), can physically interact with ERα with a preference to the membrane-bound ERα. Clic1-mediated currents can be enhanced by E2 and reduced by its depletion. In addition, Clic1 currents are required to mediate the E2-induced rapid excitations in multiple brain ERα populations. Further, genetic disruption of Clic1 in hypothalamic ERα neurons blunts the regulations of E2 on female body weight balance. In conclusion, we identified the Clic1 chloride channel as a key mediator for E2-induced rapid neuronal excitation, which may have a broad impact on multiple neurobiological processes regulated by E2.
Collapse
Affiliation(s)
- Meng Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Na Yin
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bing Feng
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Peiyu Gao
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kaifan Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hailan Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Olivia Z. Ginnard
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kristine M. Conde
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mengjie Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xing Fang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Longlong Tu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan C. Bean
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yue Deng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuxue Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanika V. Jossy
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Megan L. Burt
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Huey Zhong Wong
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yongjie Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang He
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Pierre Gourdy
- I2MC, Inserm U1297, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Jean-Francois Arnal
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Francoise Lenfant
- I2MC, Inserm U1048, CHU de Toulouse and Université de Toulouse III, Toulouse, France
| | - Zhao Wang
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chunmei Wang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Mills EG, Abbara A, Dhillo WS, Comninos AN. Interactions between kisspeptin and bone: Cellular mechanisms, clinical evidence, and future potential. Ann N Y Acad Sci 2024; 1540:47-60. [PMID: 39269749 DOI: 10.1111/nyas.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The neuropeptide kisspeptin and its cognate receptor have been extensively studied in reproductive physiology, with diverse and well-established functions, including as an upstream regulator of pubertal onset, reproductive hormone secretion, and sexual behavior. Besides classical reproduction, both kisspeptin and its receptor are extensively expressed in bone-resorbing osteoclasts and bone-forming osteoblasts, which putatively permits direct bone effects. Accordingly, this sets the scene for recent compelling findings derived from in vitro experiments through to in vivo and clinical studies revealing prominent regulatory interactions for kisspeptin signaling in bone metabolism, as well as certain oncological aspects of bone metabolism. Herein, we comprehensively examine the experimental evidence obtained to date supporting the interaction between kisspeptin and bone. A comprehensive understanding of this emerging facet of kisspeptin biology is fundamental to exploiting the future therapeutic potential of kisspeptin-based medicines as a novel strategy for treating bone-related disorders.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Endocrine Bone Unit, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
15
|
Cheung KYM, Nair A, Li LY, Shapiro MG, Anderson DJ. Population coding of predator imminence in the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607651. [PMID: 39211163 PMCID: PMC11360964 DOI: 10.1101/2024.08.12.607651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hypothalamic VMHdm SF1 neurons are activated by predator cues and are necessary and sufficient for instinctive defensive responses. However, such data do not distinguish which features of a predator encounter are encoded by VMHdm SF1 neural activity. To address this issue, we imaged VMHdm SF1 neurons at single-cell resolution in freely behaving mice exposed to a natural predator in varying contexts. Our results reveal that VMHdm SF1 neurons do not represent different defensive behaviors, but rather encode predator identity and multiple predator-evoked internal states, including threat-evoked fear/anxiety; neophobia or arousal; predator imminence; and safety. Notably, threat and safety are encoded bi-directionally by anti-correlated subpopulations. Finally, individual differences in predator defensiveness are correlated with differences in VMHdm SF1 response dynamics. Thus, different threat-related internal state variables are encoded by distinct neuronal subpopulations within a genetically defined, anatomically restricted hypothalamic cell class. Highlights Distinct subsets of VMHdm SF1 neurons encode multiple predator-evoked internal states. Anti-correlated subsets encode safety vs. threat in a bi-directional mannerA population code for predator imminence is identified using a novel assay VMHdm SF1 dynamics correlate with individual variation in predator defensiveness.
Collapse
|
16
|
Babey ME, Krause WC, Chen K, Herber CB, Torok Z, Nikkanen J, Rodriguez R, Zhang X, Castro-Navarro F, Wang Y, Wheeler EE, Villeda S, Leach JK, Lane NE, Scheller EL, Chan CKF, Ambrosi TH, Ingraham HA. A maternal brain hormone that builds bone. Nature 2024; 632:357-365. [PMID: 38987585 PMCID: PMC11306098 DOI: 10.1038/s41586-024-07634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.
Collapse
Affiliation(s)
- Muriel E Babey
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, San Francisco, CA, USA
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Chen
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Denali Therapeutics, South San Francisco, CA, USA
| | - Zsofia Torok
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joni Nikkanen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ruben Rodriguez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Carmot Therapeutics, Berkeley, CA, USA
| | - Xiao Zhang
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Fernanda Castro-Navarro
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Erika E Wheeler
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Saul Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Nancy E Lane
- Department of Medicine, Division of Rheumatology, University of California, Davis, Sacramento, CA, USA
| | - Erica L Scheller
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, CA, USA.
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Riera CE. Wiring the Brain for Wellness: Sensory Integration in Feeding and Thermogenesis: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:338-347. [PMID: 38377445 PMCID: PMC10882152 DOI: 10.2337/db23-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance. This body of work presents an opportunity for the development of innovative weight loss therapies for the treatment of obesity and type 2 diabetes. In this overview, we delve into the sensory cues and the neuronal populations responsible for their integration, exploring their potential in the development of weight loss treatments for obesity and type 2 diabetes. This article is the first in a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline E. Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
18
|
Leidmaa E, Prodan AM, Depner LL, Komorowska-Müller JA, Beins EC, Schuermann B, Kolbe CC, Zimmer A. Astrocytic Dagla Deletion Decreases Hedonic Feeding in Female Mice. Cannabis Cannabinoid Res 2024; 9:74-88. [PMID: 38265773 PMCID: PMC10874831 DOI: 10.1089/can.2023.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Introduction: Endocannabinoids and exogenous cannabinoids are potent regulators of feeding behavior and energy metabolism. Stimulating cannabinoid receptor signaling enhances appetite, particularly for energy-dense palatable foods, and promotes energy storage. To elucidate the underlying cellular mechanisms, we investigate here the potential role of astrocytic endocannabinoid 2-arachidonoylglycerol (2-AG). Astrocytes provide metabolic support for neurons and contribute to feeding regulation but the effect of astrocytic 2-AG on feeding is unknown. Materials and Methods: We generated mice lacking the 2-AG synthesizing enzyme diacylglycerol lipase alpha (Dagla) in astrocytes (GLAST-Dagla KO) and investigated hedonic feeding behavior in male and female mice. Body weight and baseline water and food intake was characterized; additionally, the mice went through milk, saccharine, and sucrose preference tests in fed and fasted states. In female mice, the estrous cycle stages were identified and plasma levels of female sex hormones were measured. Results: We found that the effects of the inducible astrocytic Dagla deletion were sex-specific. Acute milk preference was decreased in female, but not in male mice and the effect was most evident in the estrus stage of the cycle. This prompted us to investigate sex hormone profiles, which were found to be altered in GLAST-Dagla KO females. Specifically, follicle-stimulating hormone was elevated in the estrus stage, luteinizing hormone in the proestrus, and progesterone was increased in both proestrus and estrus stages of the cycle compared with controls. Conclusions: Astrocytic Dagla regulates acute hedonic appetite for palatable food in females and not in males, possibly owing to a deregulated female sex hormone profile. It is plausible that endocannabinoid production by astrocytes at least partly contributes to the greater susceptibility to overeating in females. This finding may also be important for understanding the effects of exogenous cannabinoids on sex hormone profiles.
Collapse
Affiliation(s)
- Este Leidmaa
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Alexandra Maria Prodan
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Lena-Louise Depner
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Eva Carolina Beins
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Medical Faculty, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Britta Schuermann
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | - Andreas Zimmer
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Thomas NS, Scalzo RL, Wellberg EA. Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy. Nat Rev Endocrinol 2024; 20:16-26. [PMID: 37783846 PMCID: PMC11487546 DOI: 10.1038/s41574-023-00899-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Breast cancer is the most common invasive malignancy in the world, with millions of survivors living today. Type 2 diabetes mellitus (T2DM) is also a globally prevalent disease that is a widely studied risk factor for breast cancer. Most breast tumours express the oestrogen receptor and are treated with systemic therapies designed to disrupt oestrogen-dependent signalling. Since the advent of targeted endocrine therapy six decades ago, the mortality from breast cancer has steadily declined; however, during the past decade, an elevated risk of T2DM after breast cancer treatment has been reported, particularly for those who received endocrine therapy. In this Review, we highlight key events in the history of endocrine therapies, beginning with the development of tamoxifen. We also summarize the sequence of reported adverse metabolic effects, which include dyslipidaemia, hepatic steatosis and impaired glucose tolerance. We discuss the limitations of determining a causal role for breast cancer treatments in T2DM development from epidemiological data and describe informative preclinical studies that suggest complex mechanisms through which endocrine therapy might drive T2DM risk and progression. We also reinforce the life-saving benefits of endocrine therapy and highlight the need for better predictive biomarkers of T2DM risk and preventive strategies for the growing population of breast cancer survivors.
Collapse
Affiliation(s)
- Nisha S Thomas
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, Oklahoma City, OK, USA.
| |
Collapse
|
20
|
Chhabra KH, Bathina S, Faniyan TS, Samuel DJ, Raza MU, de Souza Cordeiro LM, Viana Di Prisco G, Atwood BK, Robles J, Bainbridge L, Davis A. ADGRL1 is a glucose receptor involved in mediating energy and glucose homeostasis. Diabetologia 2024; 67:170-189. [PMID: 37712955 PMCID: PMC10709246 DOI: 10.1007/s00125-023-06010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
AIMS/HYPOTHESIS The brain is a major consumer of glucose as an energy source and regulates systemic glucose as well as energy balance. Although glucose transporters such as GLUT2 and sodium-glucose cotransporter 2 (SGLT2) are known to regulate glucose homeostasis and metabolism, the identity of a receptor that binds glucose to activate glucose signalling pathways in the brain is unknown. In this study, we aimed to discover a glucose receptor in the mouse hypothalamus. METHODS Here we used a high molecular mass glucose-biotin polymer to enrich glucose-bound mouse hypothalamic neurons through cell-based affinity chromatography. We then subjected the enriched neurons to proteomic analyses and identified adhesion G-protein coupled receptor 1 (ADGRL1) as a top candidate for a glucose receptor. We validated glucose-ADGRL1 interactions using CHO cells stably expressing human ADGRL1 and ligand-receptor binding assays. We generated and determined the phenotype of global Adgrl1-knockout mice and hypothalamus-specific Adgrl1-deficient mice. We measured the variables related to glucose and energy homeostasis in these mice. We also generated an Adgrl1Cre mouse model to investigate the role of ADGRL1 in sensing glucose using electrophysiology. RESULTS Adgrl1 is highly expressed in the ventromedial nucleus of the hypothalamus (VMH) in mice. Lack of Adgrl1 in the VMH in mice caused fasting hyperinsulinaemia, enhanced glucose-stimulated insulin secretion and insulin resistance. In addition, the Adgrl1-deficient mice had impaired feeding responses to glucose and fasting coupled with abnormal glucose sensing and decreased physical activity before development of obesity and hyperglycaemia. In female mice, ovariectomy was necessary to reveal the contribution of ADGRL1 to energy and glucose homeostasis. CONCLUSIONS/INTERPRETATION Altogether, our findings demonstrate that ADGRL1 binds glucose and is involved in energy as well as glucose homeostasis in a sex-dependent manner. Targeting ADGRL1 may introduce a new class of drugs for the treatment of type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Siresha Bathina
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tumininu S Faniyan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Dennis J Samuel
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Muhammad Ummear Raza
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Leticia Maria de Souza Cordeiro
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Gonzalo Viana Di Prisco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Robles
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lauren Bainbridge
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Autumn Davis
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
21
|
Babey ME, Krause WC, Herber CB, Chen K, Nikkanen J, Rodriquez R, Zhang X, Castro-Navarro F, Wang Y, Villeda S, Lane NE, Scheller EL, Chan CKF, Ambrosi TH, Ingraham HA. Brain-Derived CCN3 Is An Osteoanabolic Hormone That Sustains Bone in Lactating Females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554707. [PMID: 37693376 PMCID: PMC10491109 DOI: 10.1101/2023.08.28.554707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In lactating mothers, the high calcium (Ca 2+ ) demand for milk production triggers significant bone resorption. While estrogen would normally counteract excessive bone loss and maintain sufficient bone formation during this postpartum period, this sex steroid drops precipitously after giving birth. Here, we report that brain-derived CCN3 (Cellular Communication Network factor 3) secreted from KISS1 neurons of the arcuate nucleus (ARC KISS1 ) fills this void and functions as a potent osteoanabolic factor to promote bone mass in lactating females. Using parabiosis and bone transplant methods, we first established that a humoral factor accounts for the female-specific, high bone mass previously observed by our group after deleting estrogen receptor alpha (ER α ) from ARC KISS1 neurons 1 . This exceptional bone phenotype in mutant females can be traced back to skeletal stem cells (SSCs), as reflected by their increased frequency and osteochondrogenic potential. Based on multiple assays, CCN3 emerged as the most promising secreted pro-osteogenic factor from ARC KISS1 neurons, acting on mouse and human SSCs at low subnanomolar concentrations independent of age or sex. That brain-derived CCN3 promotes bone formation was further confirmed by in vivo gain- and loss-of-function studies. Notably, a transient rise in CCN3 appears in ARC KISS1 neurons in estrogen-depleted lactating females coincident with increased bone remodeling and high calcium demand. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone that defines a novel female-specific brain-bone axis for ensuring mammalian species survival.
Collapse
|
22
|
Mei L, Osakada T, Lin D. Hypothalamic control of innate social behaviors. Science 2023; 382:399-404. [PMID: 37883550 PMCID: PMC11105421 DOI: 10.1126/science.adh8489] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Sexual, parental, and aggressive behaviors are central to the reproductive success of individuals and species survival and thus are supported by hardwired neural circuits. The reproductive behavior control column (RBCC), which comprises the medial preoptic nucleus (MPN), the ventrolateral part of the ventromedial hypothalamus (VMHvl), and the ventral premammillary nucleus (PMv), is essential for all social behaviors. The RBCC integrates diverse hormonal and metabolic cues and adjusts an animal's physical activity, hence the chance of social encounters. The RBCC further engages the mesolimbic dopamine system to maintain social interest and reinforces cues and actions that are time-locked with social behaviors. We propose that the RBCC and brainstem form a dual-control system for generating moment-to-moment social actions. This Review summarizes recent progress regarding the identities of RBCC cells and their pathways that drive different aspects of social behaviors.
Collapse
Affiliation(s)
- Long Mei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10016, USA
| |
Collapse
|
23
|
Massa MG, Scott RL, Cara AL, Cortes LR, Vander PB, Sandoval NP, Park JW, Ali SL, Velez LM, Wang HB, Ati SS, Tesfaye B, Reue K, van Veen JE, Seldin MM, Correa SM. Feeding neurons integrate metabolic and reproductive states in mice. iScience 2023; 26:107918. [PMID: 37817932 PMCID: PMC10561062 DOI: 10.1016/j.isci.2023.107918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Balance between metabolic and reproductive processes is important for survival, particularly in mammals that gestate their young. How the nervous system coordinates this balance is an active area of study. Herein, we demonstrate that somatostatin (SST) neurons of the tuberal hypothalamus alter feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of SST neurons increased food intake across sexes, ablation decreased food intake only in female mice during proestrus. This ablation effect was only apparent in animals with low body mass. Fat transplantation and bioinformatics analysis of SST neuronal transcriptomes revealed white adipose as a key modulator of these effects. These studies indicate that SST hypothalamic neurons integrate metabolic and reproductive cues by responding to varying levels of circulating estrogens to modulate feeding differentially based on energy stores. Thus, gonadal steroid modulation of neuronal circuits can be context dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G. Massa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
- Neuroscience Interdepartmental Doctoral Program, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel L. Scott
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Alexandra L. Cara
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Laura R. Cortes
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Paul B. Vander
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Norma P. Sandoval
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Jae W. Park
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Sahara L. Ali
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Leandro M. Velez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Huei-Bin Wang
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Shomik S. Ati
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California – Irvine, Irvine, CA 92697, USA
| | - Stephanie M. Correa
- Department of Integrative Biology and Physiology, University of California – Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Mahmood ASMH, Roy SC, Leprince J, Briski KP. Sex-dependent endozepinergic regulation of ventromedial hypothalamic nucleus glucose counter-regulatory neuron aromatase protein expression in the adult rat. J Chem Neuroanat 2023; 132:102323. [PMID: 37543285 PMCID: PMC10528386 DOI: 10.1016/j.jchemneu.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The hypothalamic brain cell types that produce estradiol from testosterone remain unclear. Aromatase inhibition affects ventromedial hypothalamic nucleus (VMN) glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) transmission during insulin (INS)-induced hypoglycemia (IIH). Pure GABA and NO nerve cell samples acquired by laser-catapult-microdissection from consecutive rostro-caudal segments of the VMN were analyzed by Western blot to investigate whether regional subpopulations of each cell type contain machinery for neuro-estradiol synthesis. Astrocyte endozepinergic signaling governs brain steroidogenesis. Pharmacological tools were used here to determine if the glio-peptide octadecaneuropeptide (ODN) controls aromatase expression in GABA and NO neurons during eu- and/or hypoglycemia. Intracerebroventricular administration of the ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) decreased (male) or enhanced (female) VMN GABAergic neuron aromatase expression, but increased or reduced this profile in nitrergic neurons in a region-specific manner in each sex. IIH suppressed aromatase levels in GABA neurons located in the middle segment of the male VMN or distributed throughout this nucleus in the female. This inhibitory response was altered by the ODN isoactive surrogate octapeptide (OP) in female, but was refractory to OP in male. NO neuron aromatase protein in hypoglycemic male (middle and caudal VMN) and female (rostral and caudal VMN) rats, but was normalized in OP- plus INS-treated rats of both sexes. Results provide novel evidence that VMN glucose-regulatory neurons may produce neuro-estradiol, and that the astrocyte endozepine transmitter ODN may impose sex-specific control of baseline and/or hypoglycemic patterns of aromatase expression in distinct subsets of nitrergic and GABAergic neurons in this neural structure.
Collapse
Affiliation(s)
- A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Jérôme Leprince
- Univ Rouen Normandie, Inserm, NorDic UMR 1239, PRIMACEN, Rouen, France
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
25
|
Bheemanapally K, Briski KP. Differential G Protein-Coupled Estrogen Receptor-1 Regulation of Counter-Regulatory Transmitter Marker and 5'-AMP-Activated Protein Kinase Expression in Ventrolateral versus Dorsomedial Ventromedial Hypothalamic Nucleus. Neuroendocrinology 2023; 114:25-41. [PMID: 37699381 PMCID: PMC10843453 DOI: 10.1159/000533627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION The ventromedial hypothalamic nucleus (VMN) is an estrogen receptor (ER)-rich structure that regulates glucostasis. The role of nuclear but not membrane G protein-coupled ER-1 (GPER) in that function has been studied. METHODS Gene silencing and laser-catapult microdissection/immunoblot tools were used to examine whether GPER regulates transmitter and energy sensor function in dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN counter-regulatory nitrergic and γ-Aminobutyric acid (GABA) neurons. RESULTS Intra-VMN GPER siRNA administration to euglycemic animals did not affect VMNdm or -vl nitrergic neuron nitric oxide synthase (nNOS), but upregulated (VMNdm) or lacked influence on (VMNvl) GABA nerve cell glutamate decarboxylase65/67 (GAD) protein. Insulin-induced hypoglycemia (IIH) caused GPER knockdown-reversible augmentation of nNOS, 5'-AMP-activated protein kinase (AMPK), and phospho-AMPK proteins in nitrergic neurons in both divisions. IIH had dissimilar effects on VMNvl (unchanged) versus VMNdm (increased) GABAergic neuron GAD levels, yet GPER knockdown affected these profiles. GPER siRNA prevented hypoglycemic upregulation of VMNvl and -dm GABA neuron AMPK without altering pAMPK expression. CONCLUSIONS Outcomes infer that GPER exerts differential control of VMNdm versus -vl GABA transmission during glucostasis and is required for hypoglycemic upregulated nitrergic (VMNdm and -vl) and GABA (VMNdm) signaling. Glycogen metabolism is reported to regulate VMN nNOS and GAD proteins. Data show that GPER limits VMNvl glycogen phosphorylase (GP) protein expression and glycogen buildup during euglycemia but mediates hypoglycemic augmentation of VMNvl GP protein and glycogen content; VMNdm glycogen mass is refractory to GPER control. GPER regulation of VMNvl glycogen metabolism infers that this receptor may govern local counter-regulatory transmission in part by astrocyte metabolic coupling.
Collapse
Affiliation(s)
- Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
26
|
Napit PR, Ali MH, Mahmood ASMH, Ibrahim MMH, Briski KP. Sex-dimorphic hindbrain lactate regulation of ventromedial hypothalamic nucleus glucoregulatory neuron 5'-AMP-activated protein kinase activity and transmitter marker protein expression. Neuropeptides 2023; 99:102324. [PMID: 36791640 PMCID: PMC10175150 DOI: 10.1016/j.npep.2023.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The oxidizable glycolytic end-product L-lactate is a gauge of nerve cell metabolic fuel stability that metabolic-sensory hindbrain A2 noradrenergic neurons impart to the brain glucose-regulatory network. Current research investigated the premise that hindbrain lactate deficiency exerts sex-specific control of energy sensor and transmitter marker protein responses to hypoglycemia in ventromedial hypothalamic nucleus (VMN) glucose-regulatory nitrergic and γ-aminobutyric acid (GABA) neurons. METHODS Nitric oxide synthase (nNOS)- or glutamate decarboxylase65/67 (GAD)-immunoreactive neurons were laser-catapult-microdissected from male and female rat VMN after subcutaneous insulin injection and caudal fourth ventricular L-lactate or vehicle infusion for Western blot protein analysis. RESULTS Hindbrain lactate repletion reversed hypoglycemia-associated augmentation (males) or inhibition (females) of nitrergic neuron nNOS expression, and prevented up-regulation of phosphorylated AMPK 5'-AMP-activated protein kinase (pAMPK) expression in those neurons. Hypoglycemic suppression of GABAergic neuron GAD protein was averted by exogenous lactate over the rostro-caudal length of the male VMN and in the middle region of the female VMN. Lactate normalized GABA neuron pAMPK profiles in hypoglycemic male (caudal VMN) and female (all VMN segments) rats. Hypoglycemic patterns of norepinephrine (NE) signaling were lactate-dependent throughout the male VMN, but confined to the rostral and middle female VMN. CONCLUSIONS Results document, in each sex, regional VMN glucose-regulatory transmitter responses to hypoglycemia that are controlled by hindbrain lactate status. Hindbrain metabolic-sensory regulation of hypoglycemia-correlated nitric oxide or GABA release may entail AMPK-dependent mechanisms in specific VMN rostro-caudal segments in each sex. Additional effort is required to examine the role of hindbrain lactoprivic-sensitive VMN neurotransmitters in lactate-mediated attenuation of hypoglycemic hyperglucagonemia and hypercorticosteronemia in male and female rats.
Collapse
Affiliation(s)
- Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - A S M Hasan Mahmood
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
27
|
Medrano M, Allaoui W, Van Bulck M, Thys S, Makrini-Maleville L, Seuntjens E, De Vos WH, Valjent E, Gaszner B, Van Eeckhaut A, Smolders I, De Bundel D. Neuroanatomical characterization of the Nmu-Cre knock-in mice reveals an interconnected network of unique neuropeptidergic cells. Open Biol 2023; 13:220353. [PMID: 37311538 PMCID: PMC10264104 DOI: 10.1098/rsob.220353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the Nmu promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions, in situ hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.
Collapse
Affiliation(s)
- Mireia Medrano
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Wissal Allaoui
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathias Van Bulck
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sofie Thys
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
| | | | - Eve Seuntjens
- Department of Biology, Laboratory of Developmental Neurobiology, KU Leuven, 3000 Leuven, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology and Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), 2610 Wilrijk, Belgium
| | - Emmanuel Valjent
- IGF, Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Bálazs Gaszner
- Medical School, Research Group for Mood Disorders, Department of Anatomy and Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ann Van Eeckhaut
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ilse Smolders
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Center for Neurosciences, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
28
|
Cortes LR, Sturgeon H, Forger NG. Sexual differentiation of estrogen receptor alpha subpopulations in the ventromedial nucleus of the hypothalamus. Horm Behav 2023; 151:105348. [PMID: 36948113 PMCID: PMC10204815 DOI: 10.1016/j.yhbeh.2023.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023]
Abstract
Estrogen receptor (ER) α-expressing neurons in the ventrolateral area of the ventromedial hypothalamus (VMHvl) are implicated in the control of many behaviors and physiological processes, some of which are sex-specific. Recently, three sex-differentiated ERα subpopulations have been discovered in the VMHvl marked by co-expression with tachikinin1 (Tac1), reprimo (Rprm), or prodynorphin (Pdyn), that may subserve specific functions. These markers show sex differences in adulthood: females have many more Tac1/Esr1 and Rprm/Esr1 co-expressing cells, while males have more Pdyn/Esr1 cells. In this study, we sought to understand the development of these sex differences and pinpoint the sex-differentiating signal. We examined developmental changes in the number of Esr1 cells co-expressing Tac1, Rprm or Pdyn using single-molecule in situ hybridization. We found that both sexes have similarly high numbers of Tac1/Esr1 and Rprm/Esr1 cells at birth, but newborn males have many more Pdyn/Esr1 cells than females. However, the number of cells with Tac1/Esr1 and Rprm/Esr1 co-expression markedly decreases by weaning in males, but not females, leading to sex differences in neurochemical expression. Female mice administered testosterone at birth have expression patterns akin to male mice. Thus, a substantial neurochemical reorganization of the VMHvl occurs in males between birth and weaning that likely underlies the previously reported sex differences in behavioral and physiological responses to estrogens in adulthood.
Collapse
Affiliation(s)
- L R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| | - H Sturgeon
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - N G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
29
|
Saavedra-Peña RDM, Taylor N, Flannery C, Rodeheffer MS. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Rep 2023; 42:112390. [PMID: 37053070 PMCID: PMC10567995 DOI: 10.1016/j.celrep.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
White adipose tissue (WAT) distribution is sex dependent. Adipocyte hyperplasia contributes to WAT distribution in mice driven by cues in the tissue microenvironment, with females displaying hyperplasia in subcutaneous and visceral WAT, while males and ovariectomized females have visceral WAT (VWAT)-specific hyperplasia. However, the mechanism underlying sex-specific hyperplasia remains elusive. Here, transcriptome analysis in female mice shows that high-fat diet (HFD) induces estrogen signaling in adipocyte precursor cells (APCs). Analysis of APCs throughout the estrous cycle demonstrates increased proliferation only when proestrus (high estrogen) coincides with the onset of HFD feeding. We further show that estrogen receptor α (ERα) is required for this proliferation and that estradiol treatment at the onset of HFD feeding is sufficient to drive it. This estrous influence on APC proliferation leads to increased obesity driven by adipocyte hyperplasia. These data indicate that estrogen drives ERα-dependent obesogenic adipocyte hyperplasia in females, exacerbating obesity and contributing to the differential fat distribution between the sexes.
Collapse
Affiliation(s)
- Rocío Del M Saavedra-Peña
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Natalia Taylor
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Clare Flannery
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA; Section of Endocrinology and Metabolism, Yale University, New Haven, CT 06520, USA
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
30
|
Klappenbach CM, Wang Q, Jensen AL, Glodosky NC, Delevich K. Sex and timing of gonadectomy relative to puberty interact to influence weight, body composition, and feeding behaviors in mice. Horm Behav 2023; 151:105350. [PMID: 36996734 DOI: 10.1016/j.yhbeh.2023.105350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
Gonadal sex steroids are important regulators of energy balance in adult rodents, and gonadectomy (GDX) has opposing effects on weight gain in sexually mature males and females. Puberty is associated with the emergence of sex differences in weight, body composition, and feeding behaviors, yet the role of gonadal hormones at puberty remains unclear. To address this, we performed GDX or sham surgery in male and female C57Bl/6 mice at postnatal day (P)25 (prepubertal) or P60 (postpubertal) timepoints and measured weight and body composition for 35 days, after which ad libitum and operant food intake was measured using Feeding Experimentation Device 3 (FED3s) in the home cage. Consistent with previous studies, postpubertal GDX caused weight gain in females and weight loss in males and increased adiposity in both sexes. However, prepubertal GDX decreased weight gain and altered body composition across the adolescent transition (P25 to P60) in males but had no effect in females. Despite the varied effects on weight, GDX decreased food intake and motivation for food as assessed in operant tasks regardless of sex or timing of surgery relative to puberty. Our findings indicate that GDX interacts with both sex and age at surgery to influence weight, body composition, and feeding behavior.
Collapse
Affiliation(s)
- Courtney M Klappenbach
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Allison L Jensen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Nicholas C Glodosky
- Department of Psychology Washington State University, Pullman, WA 99164, USA
| | - Kristen Delevich
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
31
|
Spool JA, Lally AP, Remage-Healey L. Top-down, auditory pallial regulation of the social behavior network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531754. [PMID: 36945416 PMCID: PMC10028912 DOI: 10.1101/2023.03.08.531754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Social encounters rely on sensory cues that carry nuanced information to guide social decision-making. While high-level features of social signals are processed in the telencephalic pallium, nuclei controlling social behaviors, called the social behavior network (SBN), reside mainly in the diencephalon. Although it is well known how mammalian olfactory pallium interfaces with the SBN, there is little information for how pallial processing of other sensory modalities can modulate SBN circuits. This is surprising given the importance of complex vocalizations, for example, for social behavior in many vertebrate taxa such as humans and birds. Using gregarious and highly vocal songbirds, female Zebra finches, we asked to what extent auditory pallial circuits provide consequential input to the SBN as it processes social sensory cues. We transiently inactivated auditory pallium of female Zebra finches during song playback and examined song-induced activation in SBN nuclei. Auditory pallial inactivation impaired responses to song specifically within the lateral ventromedial nucleus of the hypothalamus (VMHl), providing the first evidence in vertebrates of a connection between auditory pallium and the SBN. This same treatment elevated feeding behavior, which also correlated with VMHl activation. This suggests that signals from auditory pallium to VMHl can tune the balance between social attention and feeding drive. A descending influence of sensory pallium on hypothalamic circuits could therefore provide a functional connection for the integration of social stimuli with internal state to influence social decision-making. Significance Sensory cues such as vocalizations contain important social information. These social signals can be substantially nuanced, containing information about vocalizer identity, prior experience, valence, and emotional state. Processing these features of vocalizations necessitates processing the fast, complex sound streams in song or speech, which depends on circuits in pallial cortex. But whether and how this information is then transferred to social circuits in limbic and hypothalamic regions remains a mystery. Here, we identify a top-down influence of the songbird auditory pallium on one specific node of the social behavior network within the hypothalamus. Descending functional connections such as these may be critical for the wide range of vertebrate species that rely on intricate sensory communication signals to guide social decision-making.
Collapse
|
32
|
Massa MG, Scott RL, Cara AL, Cortes LR, Sandoval NP, Park JW, Ali S, Velez LM, Tesfaye B, Reue K, van Veen JE, Seldin M, Correa SM. Feeding Neurons Integrate Metabolic and Reproductive States in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525595. [PMID: 36747631 PMCID: PMC9900829 DOI: 10.1101/2023.01.25.525595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Trade-offs between metabolic and reproductive processes are important for survival, particularly in mammals that gestate their young. Puberty and reproduction, as energetically taxing life stages, are often gated by metabolic availability in animals with ovaries. How the nervous system coordinates these trade-offs is an active area of study. We identify somatostatin neurons of the tuberal nucleus (TNSST) as a node of the feeding circuit that alters feeding in a manner sensitive to metabolic and reproductive states in mice. Whereas chemogenetic activation of TNSST neurons increased food intake across sexes, selective ablation decreased food intake only in female mice during proestrus. Interestingly, this ablation effect was only apparent in animals with a low body mass. Fat transplantation and bioinformatics analysis of TNSST neuronal transcriptomes revealed white adipose as a key modulator of the effects of TNSST neurons on food intake. Together, these studies point to a mechanism whereby TNSST hypothalamic neurons modulate feeding by responding to varying levels of circulating estrogens differentially based on energy stores. This research provides insight into how neural circuits integrate reproductive and metabolic signals, and illustrates how gonadal steroid modulation of neuronal circuits can be context-dependent and gated by metabolic status.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Rachel L Scott
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Alexandra L Cara
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Laura R Cortes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Norma P Sandoval
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Jae W Park
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Sahara Ali
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Leandro M Velez
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA
| | - Bethlehem Tesfaye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - Marcus Seldin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| |
Collapse
|
33
|
Briski KP, Napit PR, Alhamyani A, Leprince J, Mahmood AH. Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion. ASN Neuro 2023; 15:17590914231167230. [PMID: 37194319 PMCID: PMC10196551 DOI: 10.1177/17590914231167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) was administered intracerebroventricularly (icv) to euglycemic rats of each sex; additional groups were pretreated icv with the ODN isoactive surrogate ODN11-18 (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.
Collapse
Affiliation(s)
- Karen P. Briski
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Prabhat R. Napit
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Jérôme Leprince
- Neuronal and Neuroendocrine Differentiation
and Communication Laboratory, Normandy University, INSERM U1239, PRIMACEN, Rouen,
France
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| |
Collapse
|
34
|
López-González L, Martínez-de-la-Torre M, Puelles L. Populational heterogeneity and partial migratory origin of the ventromedial hypothalamic nucleus: genoarchitectonic analysis in the mouse. Brain Struct Funct 2023; 228:537-576. [PMID: 36598560 PMCID: PMC9944059 DOI: 10.1007/s00429-022-02601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/27/2022] [Indexed: 01/05/2023]
Abstract
The ventromedial hypothalamic nucleus (VMH) is one of the most distinctive hypothalamic tuberal structures, subject of numerous classic and modern functional studies. Commonly, the adult VMH has been divided in several portions, attending to differences in cell aggregation, cell type, connectivity, and function. Consensus VMH partitions in the literature comprise the dorsomedial (VMHdm), and ventrolateral (VMHvl) subnuclei, which are separated by an intermediate or central (VMHc) population (topographic names based on the columnar axis). However, some recent transcriptome analyses have identified a higher number of different cell types in the VMH, suggesting additional subdivisions, as well as the possibility of separate origins. We offer a topologic and genoarchitectonic developmental study of the mouse VMH complex using the prosomeric axis as a reference. We analyzed genes labeling specific VMH subpopulations, with particular focus upon the Nkx2.2 transcription factor, a marker of the alar-basal boundary territory of the prosencephalon, from where some cells seem to migrate dorsoventrally into VMH. We also identified separate neuroepithelial origins of a Nr2f1-positive subpopulation, and a new Six3-positive component, as well as subtle differences in origin of Nr5a1 positive versus Nkx2.2-positive cell populations entering dorsoventrally the VMH. Several of these migrating cell types are born in the dorsal tuberal domain and translocate ventralwards to reach the intermediate tuberal domain, where the adult VMH mass is located in the adult. This work provides a more detailed area map on the intrinsic organization of the postmigratory VMH complex, helpful for deeper functional studies of this basal hypothalamic entity.
Collapse
Affiliation(s)
- Lara López-González
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Margaret Martínez-de-la-Torre
- grid.10586.3a0000 0001 2287 8496University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120 Murcia, Spain
| | - Luis Puelles
- University of Murcia, IMIB-Arrixaca Institute of Biomedical Research, El Palmar, 30120, Murcia, Spain.
| |
Collapse
|
35
|
Lewis JE, Woodward OR, Nuzzaci D, Smith CA, Adriaenssens AE, Billing L, Brighton C, Phillips BU, Tadross JA, Kinston SJ, Ciabatti E, Göttgens B, Tripodi M, Hornigold D, Baker D, Gribble FM, Reimann F. Relaxin/insulin-like family peptide receptor 4 (Rxfp4) expressing hypothalamic neurons modulate food intake and preference in mice. Mol Metab 2022; 66:101604. [PMID: 36184065 PMCID: PMC9579047 DOI: 10.1016/j.molmet.2022.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations. METHODS We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5. Rxfp4-expressing cells were chemogenetically manipulated in global Cre-reporter mice using designer receptors exclusively activated by designer drugs (DREADDs) or after stereotactic injection of a Cre-dependent AAV-DIO-Dq-DREADD targeting a population located in the ventromedial hypothalamus (RXFP4VMH). Food intake and feeding motivation were assessed in the presence and absence of a DREADD agonist. Rxfp4-expressing cells in the hypothalamus were characterised by single-cell RNA-sequencing (scRNAseq) and the connectivity of RXFP4VMH cells was investigated using viral tracing. RESULTS Rxfp4-Cre mice displayed Cre-reporter expression in the hypothalamus. Active expression of Rxfp4 in the adult mouse brain was confirmed by RT-qPCR and RNAscope. Functional receptor expression was supported by cyclic AMP-responses to INSL5 application in ex vivo brain slices and increased HFD and highly palatable liquid meal (HPM), but not chow, intake after intra-VMH INSL5 infusion. scRNAseq of hypothalamic RXFP4 neurons defined a cluster expressing VMH markers, alongside known appetite-modulating neuropeptide receptors (Mc4r, Cckar and Nmur2). Viral tracing demonstrated RXFP4VMH neural projections to nuclei implicated in hedonic feeding behaviour. Whole body chemogenetic inhibition (Di-DREADD) of Rxfp4-expressing cells, mimicking physiological INSL5-RXFP4 Gi-signalling, increased intake of the HFD and HPM, but not chow, whilst activation (Dq-DREADD), either at whole body level or specifically within the VMH, reduced HFD and HPM intake and motivation to work for the HPM. CONCLUSION These findings identify RXFP4VMH neurons as regulators of food intake and preference, and hypothalamic RXFP4 signalling as a target for feeding behaviour manipulation.
Collapse
Affiliation(s)
- Jo E Lewis
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Orla Rm Woodward
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Danaé Nuzzaci
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Christopher A Smith
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Alice E Adriaenssens
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lawrence Billing
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Cheryl Brighton
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Benjamin U Phillips
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - John A Tadross
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Sarah J Kinston
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ernesto Ciabatti
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Marco Tripodi
- MRC Laboratory of Molecular Biology, Neurobiology Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Hornigold
- Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Ltd, Cambridge, UK
| | - David Baker
- Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Ltd, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
36
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
37
|
Abstract
Across vertebrate species, gonadal hormones coordinate physiology with behavior to facilitate social interactions essential for reproduction and survival. In adulthood, these hormones activate neural circuits that regulate behaviors presenting differently in females and males, such as parenting and territorial aggression. Yet long before sex-typical behaviors emerge at puberty, transient hormone production during sensitive periods of neurodevelopment establish the circuits upon which adult hormones act. How transitory waves of early-life hormone signaling exert lasting effects on the brain remains a central question. Here we discuss how perinatal estradiol signaling organizes cellular and molecular sex differences in the rodent brain. We review classic anatomic studies revealing sex differences in cell number, volume, and neuronal projections, and consider how single-cell sequencing methods enable distinction between sex-biased cell-type abundance and gene expression. Finally, we highlight the recent discovery of a gene regulatory program activated by estrogen receptor α (ERα) following the perinatal hormone surge. A subset of this program displays sustained sex-biased gene expression and chromatin accessibility throughout the postnatal sensitive period, demonstrating a bona fide epigenetic mechanism. We propose that ERα-expressing neurons throughout the social behavior network use similar gene regulatory programs to coordinate brain sexual differentiation.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
38
|
González-Flores O, Pfaus JG, Luna-Hernández A, Montes-Narváez O, Domínguez-Ordóñez R, Tecamachaltzi-Silvarán MB, García-Juárez M. Estradiol and progesterone-induced lordosis behavior is modulated by both the Kisspeptin receptor and melanin-concentrating hormone in estradiol benzoate-primed rats. Horm Behav 2022; 146:105257. [PMID: 36115135 DOI: 10.1016/j.yhbeh.2022.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (ICV) administration of estradiol benzoate (E2B) and progesterone (P) induces intense lordosis behavior in ovariectomized rats primed peripherally with E2B. The present study tested the hypothesis that the Kisspeptin (Kiss) and melanin-concentrating hormone (MCH) pathways regulate female sexual behavior induced by these steroid hormones. In Experiment 1, we tested the relevance of the Kiss pathway by ICV infusion of its inhibitor, kiss-234, before administration of E2B or P in estrogen-primed rats. Lordosis induced by E2B alone or with the addition of P was reduced significantly at 30, 120, and 240 min. In Experiment 2, ICV infusion of MCH 30 min before E2B or P significantly reduced lordosis in rats primed with E2B alone. These data support the hypothesis that the Kiss and MCH pathways, which can release or modulate gonadotropin-releasing hormone (GnRH), are involved in E2B- and P-induced lordosis.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México
| | - James G Pfaus
- Department of Psychology and Life Sciences, Charles University, Prague, Czech Republic; Czech National Institute of Mental Health, Klecany, Czech Republic
| | - Ailyn Luna-Hernández
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Raymundo Domínguez-Ordóñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México; Licenciatura en Ingeniería Agronómica y Zootecnia, CRC, Benemérita Universidad Autónoma de Puebla, México
| | | | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, México.
| |
Collapse
|
39
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
40
|
Ali MH, Alshamrani AA, Napit PR, Briski KP. Single-cell multiplex qPCR evidence for sex-dimorphic glutamate decarboxylase, estrogen receptor, and 5'-AMP-activated protein kinase alpha subunit mRNA expression by ventromedial hypothalamic nucleus GABAergic neurons. J Chem Neuroanat 2022; 124:102132. [PMID: 35772680 PMCID: PMC9474596 DOI: 10.1016/j.jchemneu.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
The inhibitory amino acid transmitter γ-aminobutryic acid (GABA) acts within the ventromedial hypothalamus to regulate systemic glucose homeostasis, but the issue of whether this neurochemical signal originates locally or is supplied by afferent innervation remains controversial. Here, combinatory in situ immunocytochemistry/laser-catapult microdissection/single-cell multiplex qPCR techniques were used to investigate the premise that ventromedial hypothalamic nucleus ventrolateral (VMNvl) and/or dorsomedial (VMNdm) division neurons contain mRNAs that encode glutamate decarboxylase (GAD)65 or GAD67 and metabolic-sensory biomarkers, and that expression of these genes is sex-dimorphic. In male and female rats, GAD65 mRNA was elevated in VMNvl versus VMNdm GAD65/67-immunopositive (-ir) neurons, yet the female exhibited higher GAD67 transcript content in VMNdm versus VMNvl GABAergic nerve cells. Estrogen receptor (ER)-alpha transcripts were lower in female versus male GABA neurons from either VMN division; ER-beta and G-protein-coupled ER-1 mRNA expression profiles were also comparatively reduced in cells from female versus male VMNvl. VMNvl and VMNdm GAD65/67-ir-positive neurons showed equivalent levels of glucokinase and sulfonylurea receptor-1 mRNA between sexes. 5'-AMP-activated protein kinase-alpha 1 (AMPKα1) and -alpha 2 (AMPKα2) transcripts were lower in female versus male VMNdm GABAergic neurons, yet AMPKα2 mRNA levels were higher in cells acquired from female versus male VMNvl. Current studies document GAD65 and -67 gene expression in VMNvl and VMNdm GAD65/67-ir-positive neurons in each sex. Results infer that GABAergic neurons in each division may exhibit sex differences in receptiveness to estradiol. Outcomes also support the prospect that energy sensory function by this neurotransmitter cell type may predominate in the VMNvl in female versus VMNdm in the male.
Collapse
Affiliation(s)
- Md Haider Ali
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Ayed A Alshamrani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
41
|
Wang Q, Zhang B, Stutz B, Liu ZW, Horvath TL, Yang X. Ventromedial hypothalamic OGT drives adipose tissue lipolysis and curbs obesity. SCIENCE ADVANCES 2022; 8:eabn8092. [PMID: 36044565 PMCID: PMC9432828 DOI: 10.1126/sciadv.abn8092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/14/2022] [Indexed: 05/31/2023]
Abstract
The ventromedial hypothalamus (VMH) is known to regulate body weight and counterregulatory response. However, how VMH neurons regulate lipid metabolism and energy balance remains unknown. O-linked β-d-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), catalyzed by O-GlcNAc transferase (OGT), is considered a cellular sensor of nutrients and hormones. Here, we report that genetic ablation of OGT in VMH neurons inhibits neuronal excitability. Mice with VMH neuron-specific OGT deletion show rapid weight gain, increased adiposity, and reduced energy expenditure, without significant changes in food intake or physical activity. The obesity phenotype is associated with adipocyte hypertrophy and reduced lipolysis of white adipose tissues. In addition, OGT deletion in VMH neurons down-regulates the sympathetic activity and impairs the sympathetic innervation of white adipose tissues. These findings identify OGT in the VMH as a homeostatic set point that controls body weight and underscore the importance of the VMH in regulating lipid metabolism through white adipose tissue-specific innervation.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Bichen Zhang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Bernardo Stutz
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Torres Irizarry VC, Jiang Y, He Y, Xu P. Hypothalamic Estrogen Signaling and Adipose Tissue Metabolism in Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:898139. [PMID: 35757435 PMCID: PMC9218066 DOI: 10.3389/fendo.2022.898139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity has become a global epidemic, and it is a major risk factor for other metabolic disorders such as type 2 diabetes and cardiometabolic disease. Accumulating evidence indicates that there is sex-specific metabolic protection and disease susceptibility. For instance, in both clinical and experimental studies, males are more likely to develop obesity, insulin resistance, and diabetes. In line with this, males tend to have more visceral white adipose tissue (WAT) and less brown adipose tissue (BAT) thermogenic activity, both leading to an increased incidence of metabolic disorders. This female-specific fat distribution is partially mediated by sex hormone estrogens. Specifically, hypothalamic estrogen signaling plays a vital role in regulating WAT distribution, WAT beiging, and BAT thermogenesis. These regulatory effects on adipose tissue metabolism are primarily mediated by the activation of estrogen receptor alpha (ERα) in neurons, which interacts with hormones and adipokines such as leptin, ghrelin, and insulin. This review discusses the contribution of adipose tissue dysfunction to obesity and the role of hypothalamic estrogen signaling in preventing metabolic diseases with a particular focus on the VMH, the central regulator of energy expenditure and glucose homeostasis.
Collapse
Affiliation(s)
- Valeria C. Torres Irizarry
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yuwei Jiang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
43
|
Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2022; 13:394-421. [PMID: 33826123 PMCID: PMC9095790 DOI: 10.1007/s13238-021-00834-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.
Collapse
Affiliation(s)
- Tiemin Liu
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Genetic Engineering, Department of Endocrinology and Metabolism, Institute of Metabolism and Integrative Biology, Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong Xu
- grid.39382.330000 0001 2160 926XChildren’s Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Chun-Xia Yi
- grid.7177.60000000084992262Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, Netherlands
| | - Qingchun Tong
- grid.453726.10000 0004 5906 7293Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Graduate Program in Neuroscience of MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030 USA
| | - Dongsheng Cai
- grid.251993.50000000121791997Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 USA
| |
Collapse
|
44
|
Jovanovic P, Riera CE. Olfactory system and energy metabolism: a two-way street. Trends Endocrinol Metab 2022; 33:281-291. [PMID: 35177346 DOI: 10.1016/j.tem.2022.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
Abstract
Olfactory perception guides daily decisions regarding food consumption, social interactions, and predator avoidance in all mammalian species. Volatile inputs, comprising odorants and pheromones, are relayed to the olfactory bulb (OB) from nasal sensory neurons cells and transferred to secondary processing regions within the brain. Olfaction has recently been shown to shape homeostatic and maladaptive processes of energy intake and expenditure through neuronal circuits involving the medial basal hypothalamus. Reciprocally, gastrointestinal hormones, such as ghrelin and leptin, the secretion of which depends on satiety and adiposity levels, might also influence olfactory sensitivity to alter food-seeking behaviors. Here, in addition to reviewing recent updates on identifying these neuronal networks, we also discuss how bidirectional neurocircuits existing between olfactory and energy processing centers can become dysregulated during obesity.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Center for Neural Science and Medicine, Biomedical Sciences Department and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA 90048, USA
| | - Celine E Riera
- Center for Neural Science and Medicine, Biomedical Sciences Department and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 127 South San Vicente Boulevard, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Movement Disorder Program, 127 South San Vicente Boulevard, Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration: Understanding How Social Behavior Emerges From Integrated Circuits. Front Integr Neurosci 2022; 16:862437. [PMID: 35431824 PMCID: PMC9010670 DOI: 10.3389/fnint.2022.862437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Complex social behaviors are emergent properties of the brain's interconnected and overlapping neural networks. Questions aimed at understanding how brain circuits produce specific and appropriate behaviors have changed over the past half century, shifting from studies of gross anatomical and behavioral associations, to manipulating and monitoring precisely targeted cell types. This technical progression has enabled increasingly deep insights into the regulation of perception and behavior with remarkable precision. The capacity of reductionist approaches to identify the function of isolated circuits is undeniable but many behaviors require rapid integration of diverse inputs. This review examines progress toward understanding integrative social circuits and focuses on specific nodes of the social behavior network including the medial amygdala, ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus (MPOA) as examples of broad integration between multiple interwoven brain circuits. Our understanding of mechanisms for producing social behavior has deepened in conjunction with advances in technologies for visualizing and manipulating specific neurons and, here, we consider emerging strategies to address brain circuit function in the context of integrative anatomy.
Collapse
Affiliation(s)
- Sarah Y. Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Diane A. Kelly
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Stephanie L. Padilla
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joseph F. Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
46
|
Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 2022; 54:358-369. [PMID: 35301430 PMCID: PMC9076616 DOI: 10.1038/s12276-022-00741-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Energy expenditure and energy intake need to be balanced to maintain proper energy homeostasis. Energy homeostasis is tightly regulated by the central nervous system, and the hypothalamus is the primary center for the regulation of energy balance. The hypothalamus exerts its effect through both humoral and neuronal mechanisms, and each hypothalamic area has a distinct role in the regulation of energy expenditure. Recent studies have advanced the understanding of the molecular regulation of energy expenditure and thermogenesis in the hypothalamus with targeted manipulation techniques of the mouse genome and neuronal function. In this review, we elucidate recent progress in understanding the mechanism of how the hypothalamus affects basal metabolism, modulates physical activity, and adapts to environmental temperature and food intake changes. The hypothalamus is a key regulator of metabolism, controlling resting metabolism, activity levels, and responses to external temperature and food intake. The balance between energy intake and expenditure must be tightly controlled, with imbalances resulting in metabolic disorders such as obesity or diabetes. Obin Kwon at Seoul National University College of Medicine and Ki Woo Kim at Yonsei University College of Dentistry, Seoul, both in South Korea, and coworkers reviewed how metabolism is regulated by the hypothalamus, a small hormone-producing brain region. They report that hormonal and neuronal signals from the hypothalamus influence the ratio of lean to fatty tissue, gender-based differences in metabolism, activity levels, and weight gain in response to food intake. They note that further studies to untangle cause-and-effect relationships and other genetic factors will improve our understanding of metabolic regulation.
Collapse
Affiliation(s)
- Le Trung Tran
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sohee Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seul Ki Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jin Sun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
47
|
Wang S, Long KLP, Manoli DS. From mating to mama bear: Distinct VMHvl cell types drive female reproductive state-dependent behavior. Neuron 2022; 110:737-739. [PMID: 35240060 DOI: 10.1016/j.neuron.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this issue of Neuron, Liu et al. (2022) molecularly identify subsets of estrogen receptor-1-positive neurons within the female ventrolateral subdivision of the ventromedial hypothalamus activated during sexual receptivity versus agonistic behaviors in distinct reproductive states and demonstrate that these subsets control state-dependent changes in social behaviors.
Collapse
Affiliation(s)
- Shuyu Wang
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158, USA
| | - Kimberly L P Long
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158, USA
| | - Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158, USA.
| |
Collapse
|
48
|
Knoedler JR, Inoue S, Bayless DW, Yang T, Tantry A, Davis CH, Leung NY, Parthasarathy S, Wang G, Alvarado M, Rizvi AH, Fenno LE, Ramakrishnan C, Deisseroth K, Shah NM. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell 2022; 185:654-671.e22. [PMID: 35065713 PMCID: PMC8956134 DOI: 10.1016/j.cell.2021.12.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sayaka Inoue
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Daniel W Bayless
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Adarsh Tantry
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha Davis
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Nicole Y Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Grace Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Maricruz Alvarado
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Abbas H Rizvi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
49
|
Abstract
The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.
Collapse
Affiliation(s)
- Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| |
Collapse
|
50
|
Ye H, Feng B, Wang C, Saito K, Yang Y, Ibrahimi L, Schaul S, Patel N, Saenz L, Luo P, Lai P, Torres V, Kota M, Dixit D, Cai X, Qu N, Hyseni I, Yu K, Jiang Y, Tong Q, Sun Z, Arenkiel BR, He Y, Xu P, Xu Y. An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. SCIENCE ADVANCES 2022; 8:eabk0185. [PMID: 35044814 PMCID: PMC8769556 DOI: 10.1126/sciadv.abk0185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Estrogen receptor–α (ERα) expressed by neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (ERαvlVMH) regulates body weight in females, but the downstream neural circuits mediating this biology remain largely unknown. Here we identified a neural circuit mediating the metabolic effects of ERαvlVMH neurons. We found that selective activation of ERαvlVMH neurons stimulated brown adipose tissue (BAT) thermogenesis, physical activity, and core temperature and that ERαvlVMH neurons provide monosynaptic glutamatergic inputs to 5-hydroxytryptamine (5-HT) neurons in the dorsal raphe nucleus (DRN). Notably, the ERαvlVMH → DRN circuit responds to changes in ambient temperature and nutritional states. We further showed that 5-HTDRN neurons mediate the stimulatory effects of ERαvlVMH neurons on BAT thermogenesis and physical activity and that ERα expressed by DRN-projecting ERαvlVMH neurons is required for the maintenance of energy balance. Together, these findings support a model that ERαvlVMH neurons activate BAT thermogenesis and physical activity through stimulating 5-HTDRN neurons.
Collapse
Affiliation(s)
- Hui Ye
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenji Saito
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Saenz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pei Luo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Valeria Torres
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maya Kota
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xing Cai
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Qu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilirjana Hyseni
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaifan Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zheng Sun
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|