1
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
2
|
Hernandez DE, Ciuparu A, Garcia da Silva P, Velasquez CM, Rebouillat B, Gross MD, Davis MB, Chae H, Muresan RC, Albeanu DF. Fast updating feedback from piriform cortex to the olfactory bulb relays multimodal identity and reward contingency signals during rule-reversal. Nat Commun 2025; 16:937. [PMID: 39843439 PMCID: PMC11754465 DOI: 10.1038/s41467-025-56023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues trigger responses in the cortical bulbar feedback axons which precede the behavioral report. Responses to the same sensory cue are strongly modulated upon changes in stimulus-reward contingency (rule-reversals). The re-shaping of individual bouton responses occurs within seconds of the rule-reversal events and is correlated with changes in behavior. Optogenetic perturbation of cortical feedback within the bulb disrupts the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback axons carry stimulus identity and reward contingency signals which are rapidly re-formatted according to changes in the behavioral context.
Collapse
Affiliation(s)
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Champalimaud Neuroscience Program, Lisbon, Portugal
| | - Cristina M Velasquez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Oxford, Oxford, UK
| | - Benjamin Rebouillat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- École Normale Supérieure, Paris, France
| | | | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Raul C Muresan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
3
|
Wolf D, Oettl LL, Winkelmeier L, Linster C, Kelsch W. Anterior Olfactory Cortices Differentially Transform Bottom-Up Odor Signals to Produce Inverse Top-Down Outputs. J Neurosci 2024; 44:e0231242024. [PMID: 39266300 PMCID: PMC11529817 DOI: 10.1523/jneurosci.0231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Odor information arrives first in the main olfactory bulb and is then broadcasted to the olfactory cortices and striatum. Downstream regions have unique cellular and connectivity architectures that may generate different coding patterns to the same odors. To reveal region-specific response features, tuning and decoding of single-unit populations, we recorded responses to the same odors under the same conditions across regions, namely, the main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the anterior piriform cortex (aPC), and the olfactory tubercle of the ventral striatum (OT), of awake male mice. We focused on chemically closely related aldehydes that still create distinct percepts. The MOB had the highest decoding accuracy for aldehydes and was the only region encoding chemical similarity. The MOB had the highest fraction of inhibited responses and narrowly tuned odor-excited responses in terms of timing and odor selectivity. Downstream, the interconnected AON and aPC differed in their response patterns to the same stimuli. While odor-excited responses dominated the AON, the aPC had a comparably high fraction of odor-inhibited responses. Both cortices share a main output target that is the MOB. This prompted us to test if the two regions convey also different net outputs. Aldehydes activated AON terminals in the MOB as a bulk signal but inhibited those from the aPC. The differential cortical projection responses generalized to complex odors. In summary, olfactory regions reveal specialized features in their encoding with AON and aPC differing in their local computations, thereby generating inverse net centrifugal and intercortical outputs.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Laurens Winkelmeier
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
4
|
Lee DH, Song J. Impaired olfactory system in metabolic imbalance-related neuropathology. Life Sci 2024; 355:122967. [PMID: 39142504 DOI: 10.1016/j.lfs.2024.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Olfactory dysfunction, influenced by factors such as aging and environmental stress, is linked to various neurological disorders. The olfactory bulb's connections to brain areas like the hypothalamus, piriform cortex, entorhinal cortex, and limbic system make olfactory dysfunction a contributor to a range of neuropathological conditions. Recent research has underscored that olfactory deficits are prevalent in individuals with both metabolic syndrome and dementia. These systemic metabolic alterations correlate with olfactory impairments, potentially affecting brain regions associated with the olfactory bulb. In cases of metabolic syndrome, phenomena such as insulin resistance and disrupted glucose metabolism may result in compromised olfactory function, leading to multiple neurological issues. This review synthesizes key findings on the interplay between metabolic-induced olfactory dysfunction and neuropathology. It emphasizes the critical role of olfactory assessment in diagnosing and managing neurological diseases related to metabolic syndrome.
Collapse
Affiliation(s)
- Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School & Hwasun Hospital, Hwasun 58128, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
5
|
Wróbel J, Średniawa W, Bramorska A, Dovgialo M, Wójcik DK, Hunt MJ. NMDA receptor antagonist high-frequency oscillations are transmitted via bottom-up feedforward processing. Sci Rep 2024; 14:21858. [PMID: 39300126 PMCID: PMC11413191 DOI: 10.1038/s41598-024-71749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
In mammals, NMDA receptor antagonists have been linked to the emergence of high-frequency oscillations (HFO, 130-180 Hz) in cortical and subcortical brain regions. The extent to which transmission of this rhythm is dependent on feedforward (bottom-up) or feedback (top-down) mechanisms is unclear. Previously, we have shown that the olfactory bulb (OB), known to orchestrate oscillations in many brain regions, is an important node in the NMDA receptor-dependent HFO network. Since the piriform cortex (PC) receives major input from the OB, and can modulate OB activity via feedback projections, it represents an ideal site to investigate transmission modalities. Here we show, using silicon probes, that NMDA receptor antagonist HFO are present in the PC associated with current dipoles, although of lower power than the OB. Granger causality and peak-lag analyses implicated the OB as the driver of HFO in the PC. Consistent with this, reversible inhibition of the OB resulted in a reduction of HFO power both locally and in the PC. In contrast, inhibition of the PC had minimal impact on OB activity. Collectively, these findings point to bottom-up mechanisms in mediating the transmission of NMDA receptor antagonist-HFO, at least in olfactory circuits.
Collapse
Affiliation(s)
- Jacek Wróbel
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Aleksandra Bramorska
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Marian Dovgialo
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Daniel Krzysztof Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Mark Jeremy Hunt
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
7
|
Almacellas Barbanoj A, Graham RT, Maffei B, Carpenter JC, Leite M, Hoke J, Hardjo F, Scott-Solache J, Chimonides C, Schorge S, Kullmann DM, Magloire V, Lignani G. Anti-seizure gene therapy for focal cortical dysplasia. Brain 2024; 147:542-553. [PMID: 38100333 PMCID: PMC10834237 DOI: 10.1093/brain/awad387] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Focal cortical dysplasias are a common subtype of malformation of cortical development, which frequently presents with a spectrum of cognitive and behavioural abnormalities as well as pharmacoresistant epilepsy. Focal cortical dysplasia type II is typically caused by somatic mutations resulting in mammalian target of rapamycin (mTOR) hyperactivity, and is the commonest pathology found in children undergoing epilepsy surgery. However, surgical resection does not always result in seizure freedom, and is often precluded by proximity to eloquent brain regions. Gene therapy is a promising potential alternative treatment and may be appropriate in cases that represent an unacceptable surgical risk. Here, we evaluated a gene therapy based on overexpression of the Kv1.1 potassium channel in a mouse model of frontal lobe focal cortical dysplasia. An engineered potassium channel (EKC) transgene was placed under control of a human promoter that biases expression towards principal neurons (CAMK2A) and packaged in an adeno-associated viral vector (AAV9). We used an established focal cortical dysplasia model generated by in utero electroporation of frontal lobe neural progenitors with a constitutively active human Ras homolog enriched in brain (RHEB) plasmid, an activator of mTOR complex 1. We characterized the model by quantifying electrocorticographic and behavioural abnormalities, both in mice developing spontaneous generalized seizures and in mice only exhibiting interictal discharges. Injection of AAV9-CAMK2A-EKC in the dysplastic region resulted in a robust decrease (∼64%) in the frequency of seizures. Despite the robust anti-epileptic effect of the treatment, there was neither an improvement nor a worsening of performance in behavioural tests sensitive to frontal lobe function. AAV9-CAMK2A-EKC had no effect on interictal discharges or behaviour in mice without generalized seizures. AAV9-CAMK2A-EKC gene therapy is a promising therapy with translational potential to treat the epileptic phenotype of mTOR-related malformations of cortical development. Cognitive and behavioural co-morbidities may, however, resist an intervention aimed at reducing circuit excitability.
Collapse
Affiliation(s)
- Amanda Almacellas Barbanoj
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Robert T Graham
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Benito Maffei
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Leite
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Justin Hoke
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Felisia Hardjo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - James Scott-Solache
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Christos Chimonides
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stephanie Schorge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Vincent Magloire
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
8
|
Trejo DH, Ciuparu A, da Silva PG, Velasquez CM, Rebouillat B, Gross MD, Davis MB, Muresan RC, Albeanu DF. Fast updating feedback from piriform cortex to the olfactory bulb relays multimodal reward contingency signals during rule-reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557267. [PMID: 37745564 PMCID: PMC10515864 DOI: 10.1101/2023.09.12.557267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigated whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engaged head-fixed mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues triggered cortical bulbar feedback responses which preceded the behavioral report. Responses to the same sensory cue were strongly modulated upon changes in stimulus-reward contingency (rule reversals). The re-shaping of individual bouton responses occurred within seconds of the rule-reversal events and was correlated with changes in the behavior. Optogenetic perturbation of cortical feedback within the bulb disrupted the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback carries reward contingency signals and is rapidly re-formatted according to changes in the behavioral context.
Collapse
Affiliation(s)
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – Champalimaud Neuroscience Program, Lisbon, Portugal
| | - Cristina M. Velasquez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – University of Oxford, UK
| | - Benjamin Rebouillat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address –École Normale Supérieure, Paris, France
| | | | | | - Raul C. Muresan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dinu F. Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
9
|
Chae H, Banerjee A, Dussauze M, Albeanu DF. Long-range functional loops in the mouse olfactory system and their roles in computing odor identity. Neuron 2022; 110:3970-3985.e7. [PMID: 36174573 PMCID: PMC9742324 DOI: 10.1016/j.neuron.2022.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor identity and concentration and its dependence on top-down feedback from their respective major cortical targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity of its dominant bulb projection cell type and implements different computations. Piriform feedback specifically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially controls the gain of tufted representations without altering their odor tuning. Our results identify distinct functional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to compute odor identity.
Collapse
Affiliation(s)
- Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Marie Dussauze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY, USA.
| |
Collapse
|
10
|
Schreck MR, Zhuang L, Janke E, Moberly AH, Bhattarai JP, Gottfried JA, Wesson DW, Ma M. State-dependent olfactory processing in freely behaving mice. Cell Rep 2022; 38:110450. [PMID: 35235805 PMCID: PMC8958632 DOI: 10.1016/j.celrep.2022.110450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/07/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022] Open
Abstract
Decreased responsiveness to sensory stimuli during sleep is presumably mediated via thalamic gating. Without an obligatory thalamic relay in the olfactory system, the anterior piriform cortex (APC) is suggested to be a gate in anesthetized states. However, olfactory processing in natural sleep states remains undetermined. Here, we simultaneously record local field potentials (LFPs) in hierarchical olfactory regions (olfactory bulb [OB], APC, and orbitofrontal cortex) while optogenetically activating olfactory sensory neurons, ensuring consistent peripheral inputs across states in behaving mice. Surprisingly, evoked LFPs in sleep states (both non-rapid eye movement [NREM] and rapid eye movement [REM]) are larger and contain greater gamma-band power and cross-region coherence (compared to wakefulness) throughout the olfactory pathway, suggesting the lack of a central gate. Single-unit recordings from the OB and APC reveal a higher percentage of responsive neurons during sleep with a higher incidence of suppressed firing. Additionally, nasal breathing is slower and shallower during sleep, suggesting a partial peripheral gating mechanism. Schreck et al. examine how the olfactory system responds to the same peripheral stimulus during natural sleep and wake in mice. Larger responses along the pathway during sleep suggest the lack of a central gate, but slower and shallower breathing may act as a partial peripheral gate to reduce olfactory input.
Collapse
Affiliation(s)
- Mary R Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Liujing Zhuang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew H Moberly
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Kostka JK, Bitzenhofer SH. Postnatal Development of Centrifugal Inputs to the Olfactory Bulb. Front Neurosci 2022; 16:815282. [PMID: 35281496 PMCID: PMC8908425 DOI: 10.3389/fnins.2022.815282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 01/20/2023] Open
Abstract
Processing in primary sensory areas is influenced by centrifugal inputs from higher brain areas, providing information about behavioral state, attention, or context. Activity in the olfactory bulb (OB), the first central processing stage of olfactory information, is dynamically modulated by direct projections from a variety of areas in adult mice. Despite the early onset of olfactory sensation compared to other senses, the development of centrifugal inputs to the OB remains largely unknown. Using retrograde tracing across development, we show that centrifugal projections to the OB are established during the postnatal period in an area-specific manner. While feedback projections from the piriform cortex (PIR) are already present shortly after birth, they strongly increase in number during postnatal development with an anterior-posterior gradient. Contralateral projections from the anterior olfactory nucleus (AON) are present at birth but only appeared postnatally for the nucleus of the lateral olfactory tract (nLOT). Numbers of OB projecting neurons from the lateral entorhinal cortex (LEC), ventral hippocampus, and cortical amygdala (CoA) show a sudden increase at the beginning of the second postnatal week and a delayed development compared to more anterior areas. These anatomical data suggest that limited top-down influence on odor processing in the OB may be present at birth, but strongly increases during postnatal development and is only fully established later in life.
Collapse
Affiliation(s)
| | - Sebastian H. Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Tavoni G, Kersen DEC, Balasubramanian V. Cortical feedback and gating in odor discrimination and generalization. PLoS Comput Biol 2021; 17:e1009479. [PMID: 34634035 PMCID: PMC8530364 DOI: 10.1371/journal.pcbi.1009479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A central question in neuroscience is how context changes perception. In the olfactory system, for example, experiments show that task demands can drive divergence and convergence of cortical odor responses, likely underpinning olfactory discrimination and generalization. Here, we propose a simple statistical mechanism for this effect based on unstructured feedback from the central brain to the olfactory bulb, which represents the context associated with an odor, and sufficiently selective cortical gating of sensory inputs. Strikingly, the model predicts that both convergence and divergence of cortical odor patterns should increase when odors are initially more similar, an effect reported in recent experiments. The theory in turn predicts reversals of these trends following experimental manipulations and in neurological conditions that increase cortical excitability.
Collapse
Affiliation(s)
- Gaia Tavoni
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David E. Chen Kersen
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vijay Balasubramanian
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems. BIOSENSORS-BASEL 2021; 11:bios11090309. [PMID: 34562900 PMCID: PMC8470751 DOI: 10.3390/bios11090309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023]
Abstract
The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.
Collapse
|
14
|
Villar PS, Hu R, Araneda RC. Long-Range GABAergic Inhibition Modulates Spatiotemporal Dynamics of the Output Neurons in the Olfactory Bulb. J Neurosci 2021; 41:3610-3621. [PMID: 33687961 PMCID: PMC8055075 DOI: 10.1523/jneurosci.1498-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022] Open
Abstract
Local interneurons of the olfactory bulb (OB) are densely innervated by long-range GABAergic neurons from the basal forebrain (BF), suggesting that this top-down inhibition regulates early processing in the olfactory system. However, how GABAergic inputs modulate the OB output neurons, the mitral/tufted cells, is unknown. Here, in male and female mice acute brain slices, we show that optogenetic activation of BF GABAergic inputs produced distinct local circuit effects that can influence the activity of mitral/tufted cells in the spatiotemporal domains. Activation of the GABAergic axons produced a fast disinhibition of mitral/tufted cells consistent with a rapid and synchronous release of GABA onto local interneurons in the glomerular and inframitral circuits of the OB, which also reduced the spike precision of mitral/tufted cells in response to simulated stimuli. In addition, BF GABAergic inhibition modulated local oscillations in a layer-specific manner. The intensity of locally evoked θ oscillations was decreased on activation of top-down inhibition in the glomerular circuit, while evoked γ oscillations were reduced by inhibition of granule cells. Furthermore, BF GABAergic input reduced dendrodendritic inhibition in mitral/tufted cells. Together, these results suggest that long-range GABAergic neurons from the BF are well suited to influence temporal and spatial aspects of processing by OB circuits.SIGNIFICANCE STATEMENT Disruption of GABAergic inhibition from the basal forebrain (BF) to the olfactory bulb (OB) impairs the discrimination of similar odors, yet how this centrifugal inhibition influences neuronal circuits in the OB remains unclear. Here, we show that the BF GABAergic neurons exclusively target local inhibitory neurons in the OB, having a functional disinhibitory effect on the output neurons, the mitral cells. Phasic inhibition by BF GABAergic neurons reduces spike precision of mitral cells and lowers the intensity of oscillatory activity in the OB, while directly modulating the extent of dendrodendritic inhibition. These circuit-level effects of this centrifugal inhibition can influence the temporal and spatial dynamics of odor coding in the OB.
Collapse
Affiliation(s)
- Pablo S Villar
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Ruilong Hu
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Ricardo C Araneda
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
15
|
Średniawa W, Wróbel J, Kublik E, Wójcik DK, Whittington MA, Hunt MJ. Network and synaptic mechanisms underlying high frequency oscillations in the rat and cat olfactory bulb under ketamine-xylazine anesthesia. Sci Rep 2021; 11:6390. [PMID: 33737621 PMCID: PMC7973548 DOI: 10.1038/s41598-021-85705-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
Wake-related ketamine-dependent high frequency oscillations (HFO) can be recorded in local field potentials (LFP) from cortical and subcortical regions in rodents. The mechanisms underlying their generation and occurrence in higher mammals are unclear. Unfortunately, anesthetic doses of pure ketamine attenuate HFO, which has precluded their investigation under anesthesia. Here, we show ketamine-xylazine (KX) anesthesia is associated with a prominent 80–130 Hz rhythm in the olfactory bulb (OB) of rats, whereas 30–65 Hz gamma power is diminished. Simultaneous LFP and thermocouple recordings revealed the 80–130 Hz rhythm was dependent on nasal respiration. This rhythm persisted despite surgical excision of the piriform cortex. Silicon probes spanning the dorsoventral aspect of the OB revealed this rhythm was strongest in ventral areas and associated with microcurrent sources about the mitral layer. Pharmacological microinfusion studies revealed dependency on excitatory-inhibitory synaptic activity, but not gap junctions. Finally, a similar rhythm occurred in the OB of KX-anesthetized cats, which shared key features with our rodent studies. We conclude that the activity we report here is driven by nasal airflow, local excitatory-inhibitory interactions, and conserved in higher mammals. Additionally, KX anesthesia is a convenient model to investigate further the mechanisms underlying wake-related ketamine-dependent HFO.
Collapse
Affiliation(s)
- Władysław Średniawa
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.,University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jacek Wróbel
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Ewa Kublik
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Daniel Krzysztof Wójcik
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.,Faculty of Management and Social Communication, Jagiellonian University, 30-348, Cracow, Poland
| | | | - Mark Jeremy Hunt
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland. .,University of York, Heslington, NY, YO10 5DD, United Kingdom.
| |
Collapse
|
16
|
Hartig R, Wolf D, Schmeisser MJ, Kelsch W. Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell Tissue Res 2021; 383:581-595. [PMID: 33515293 PMCID: PMC7872953 DOI: 10.1007/s00441-020-03390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.
Collapse
Affiliation(s)
- Renée Hartig
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Michael J Schmeisser
- Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
17
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
18
|
Wu A, Yu B, Chen Q, Matthews GA, Lu C, Campbell E, Tye KM, Komiyama T. Context-dependent plasticity of adult-born neurons regulated by cortical feedback. SCIENCE ADVANCES 2020; 6:6/42/eabc8319. [PMID: 33067236 PMCID: PMC7567600 DOI: 10.1126/sciadv.abc8319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/02/2020] [Indexed: 05/26/2023]
Abstract
In a complex and dynamic environment, the brain flexibly adjusts its circuits to preferentially process behaviorally relevant information. Here, we investigated how the olfactory bulb copes with this demand by examining the plasticity of adult-born granule cells (abGCs). We found that learning of olfactory discrimination elevates odor responses of young abGCs and increases their apical dendritic spines. This plasticity did not occur in abGCs during passive odor experience nor in resident granule cells (rGCs) during learning. Furthermore, we found that feedback projections from the piriform cortex show elevated activity during learning, and activating piriform feedback elicited stronger excitatory postsynaptic currents in abGCs than rGCs. Inactivation of piriform feedback blocked abGC plasticity during learning, and activation of piriform feedback during passive experience induced learning-like plasticity of abGCs. Our work describes a neural circuit mechanism that uses adult neurogenesis to update a sensory circuit to flexibly adapt to new behavioral demands.
Collapse
Affiliation(s)
- An Wu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Bin Yu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Qiyu Chen
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Chen Lu
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Evan Campbell
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Takaki Komiyama
- Neurobiology Section, and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Dynamic Impairment of Olfactory Behavior and Signaling Mediated by an Olfactory Corticofugal System. J Neurosci 2020; 40:7269-7285. [PMID: 32817250 DOI: 10.1523/jneurosci.2667-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 01/16/2023] Open
Abstract
Processing of olfactory information is modulated by centrifugal projections from cortical areas, yet their behavioral relevance and underlying neural mechanisms remain unclear in most cases. The anterior olfactory nucleus (AON) is part of the olfactory cortex, and its extensive connections to multiple upstream and downstream brain centers place it in a prime position to modulate early sensory information in the olfactory system. Here, we show that optogenetic activation of AON neurons in awake male and female mice was not perceived as an odorant equivalent cue. However, AON activation during odorant presentation reliably suppressed behavioral odor responses. This AON-mediated effect was fast and constant across odors and concentrations. Likewise, activation of glutamatergic AON projections to the olfactory bulb (OB) transiently inhibited the excitability of mitral/tufted cells (MTCs) that relay olfactory input to the cortex. Single-unit MTC recordings revealed that optogenetic activation of glutamatergic AON terminals in the OB transiently decreased sensory-evoked MTC spiking, regardless of the strength or polarity of the sensory response. The reduction in MTC firing during optogenetic stimulation was confirmed in recordings in awake mice. These findings suggest that glutamatergic AON projections to the OB impede early olfactory signaling by inhibiting OB output neurons, thereby dynamically gating sensory throughput to the cortex.SIGNIFICANCE STATEMENT The anterior olfactory nucleus (AON) as an olfactory information processing area sends extensive projections to multiple brain centers, but the behavioral consequences of its activation have been scarcely investigated. Using behavioral tests in combination with optogenetic manipulation, we show that, in contrast to what has been suggested previously, the AON does not seem to form odor percepts but instead suppresses behavioral odor responses across odorants and concentrations. Furthermore, this study shows that AON activation inhibits olfactory bulb output neurons in both anesthetized as well as awake mice, pointing to a potential mechanism by which the olfactory cortex can actively and dynamically gate sensory throughput to higher brain centers.
Collapse
|
20
|
Malvaut S, Constantinescu VS, Dehez H, Doric S, Saghatelyan A. Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals. Front Neurosci 2020; 14:819. [PMID: 32848576 PMCID: PMC7432153 DOI: 10.3389/fnins.2020.00819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 11/19/2022] Open
Abstract
Animal behavior is regulated by environmental stimuli and is shaped by the activity of neural networks, underscoring the importance of assessing the morpho-functional properties of different populations of cells in freely behaving animals. In recent years, a number of optical tools have been developed to monitor and modulate neuronal and glial activity at the protein, cellular, or network level and have opened up new avenues for studying brain function in freely behaving animals. Tools such as genetically encoded sensors and actuators are now commonly used for studying brain activity and function through their expression in different neuronal ensembles. In parallel, microscopy has also made major progress over the last decades. The advent of miniature microscopes (mini-microscopes also called mini-endoscopes) has become a method of choice for studying brain activity at the cellular and network levels in different brain regions of freely behaving mice. This technique also allows for longitudinal investigations while animals carrying the microscope on their head are performing behavioral tasks. In this review, we will discuss mini-endoscopic imaging and the advantages that these devices offer to research. We will also discuss current limitations of and potential future improvements in mini-endoscopic imaging.
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| | | | - Sead Doric
- Doric Lenses Inc., Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Universite Laval, Quebec City, QC, Canada
| |
Collapse
|
21
|
Levinson M, Kolenda JP, Alexandrou GJ, Escanilla O, Cleland TA, Smith DM, Linster C. Context-dependent odor learning requires the anterior olfactory nucleus. Behav Neurosci 2020; 134:332-343. [PMID: 32378908 PMCID: PMC8710084 DOI: 10.1037/bne0000371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Learning to associate the context in which a stimulus occurs is an important aspect of animal learning. We propose that the association of an olfactory stimulus with its multisensory context is mediated by projections from ventral hippocampus (vHC) networks to the anterior olfactory nucleus (AON). Using a contextually cued olfactory discrimination task, rats were trained to associate 2 olfactory stimuli with different responses depending on visuospatial context. Temporary lesions of the AON or vHC impaired performance on this task. In contrast, such lesions did not impair performance on a noncontextual olfactory discrimination task. Moreover, vHC lesions also impaired performance on an analogous contextually cued texture discrimination task, whereas AON lesions affected only olfactory contextual associations. We describe a distinct role for the AON in olfactory processing and conclude that early olfactory networks such as the olfactory bulb and AON function as multimodal integration networks rather than processing olfactory signals exclusively. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Max Levinson
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jacob P. Kolenda
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | | | - Olga Escanilla
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | | | - David M. Smith
- Dept. of Psychology, Cornell University, Ithaca, NY 14853
| | - Christiane Linster
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| |
Collapse
|
22
|
Pashkovski SL, Iurilli G, Brann D, Chicharro D, Drummey K, Franks KM, Panzeri S, Datta SR. Structure and flexibility in cortical representations of odour space. Nature 2020; 583:253-258. [PMID: 32612230 PMCID: PMC7450987 DOI: 10.1038/s41586-020-2451-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
The cortex organizes sensory information to enable discrimination and generalization1-4. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus5-7. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.
Collapse
Affiliation(s)
| | - Giuliano Iurilli
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - David Brann
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Daniel Chicharro
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Kristen Drummey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | |
Collapse
|
23
|
Kermen F, Lal P, Faturos NG, Yaksi E. Interhemispheric connections between olfactory bulbs improve odor detection. PLoS Biol 2020; 18:e3000701. [PMID: 32310946 PMCID: PMC7192517 DOI: 10.1371/journal.pbio.3000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/30/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023] Open
Abstract
Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. However, the cellular and spatial organization of interhemispheric networks and the computational properties they mediate in vertebrates are still poorly understood. Thus, it remains unclear to what extent the connectivity between left and right brain hemispheres participates in sensory processing. Here, we show that the zebrafish olfactory bulbs (OBs) receive direct interhemispheric projections from their contralateral counterparts in addition to top-down inputs from the contralateral zebrafish homolog of olfactory cortex. The direct interhemispheric projections between the OBs reach peripheral layers of the contralateral OB and retain a precise topographic organization, which directly connects similarly tuned olfactory glomeruli across hemispheres. In contrast, interhemispheric top-down inputs consist of diffuse projections that broadly innervate the inhibitory granule cell layer. Jointly, these interhemispheric connections elicit a balance of topographically organized excitation and nontopographic inhibition on the contralateral OB and modulate odor responses. We show that the interhemispheric connections in the olfactory system enable the modulation of odor response and contribute to a small but significant improvement in the detection of a reproductive pheromone when presented together with complex olfactory cues by potentiating the response of the pheromone selective neurons. Taken together, our data show a previously unknown function for an interhemispheric connection between chemosensory maps of the olfactory system. Interhemispheric connections enable interaction and integration of sensory information in bilaterian nervous systems and are thought to optimize sensory computations. This study shows that interhemispheric olfactory connections in the zebrafish brain improve the detection of a reproductive pheromone within a noisy odor background.
Collapse
Affiliation(s)
- Florence Kermen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail: (FK); (EY)
| | - Pradeep Lal
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicholas G. Faturos
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Neuro-Electronics Research Flanders, Leuven, Belgium
- * E-mail: (FK); (EY)
| |
Collapse
|
24
|
Abstract
Axons from the olfactory bulb (OB) project to multiple central structures of the brain, many of which, in turn, send axons back into the OB and/or to one another. These secondary sensory regions underlie many aspects of odor representation, valence, and learning, as well as serving some nonolfactory functions, though many details remain unclear. We here describe the connectivity and essential structural and functional properties of these postbulbar olfactory regions in the mammalian brain.
Collapse
Affiliation(s)
- Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
25
|
Li A, Rao X, Zhou Y, Restrepo D. Complex neural representation of odour information in the olfactory bulb. Acta Physiol (Oxf) 2020; 228:e13333. [PMID: 31188539 PMCID: PMC7900671 DOI: 10.1111/apha.13333] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
The most important task of the olfactory system is to generate a precise representation of odour information under different brain and behavioural states. As the first processing stage in the olfactory system and a crucial hub, the olfactory bulb plays a key role in the neural representation of odours, encoding odour identity, intensity and timing. Although the neural circuits and coding strategies used by the olfactory bulb for odour representation were initially identified in anaesthetized animals, a large number of recent studies focused on neural representation of odorants in the olfactory bulb in awake behaving animals. In this review, we discuss these recent findings, covering (a) the neural circuits for odour representation both within the olfactory bulb and the functional connections between the olfactory bulb and the higher order processing centres; (b) how related factors such as sniffing affect and shape the representation; (c) how the representation changes under different states; and (d) recent progress on the processing of temporal aspects of odour presentation in awake, behaving rodents. We highlight discussion of the current views and emerging proposals on the neural representation of odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anan Li
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological systems, Wuhan institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, 430072, China
| | - Yang Zhou
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Thiebaud N, Gribble F, Reimann F, Trapp S, Fadool DA. A unique olfactory bulb microcircuit driven by neurons expressing the precursor to glucagon-like peptide 1. Sci Rep 2019; 9:15542. [PMID: 31664163 PMCID: PMC6820565 DOI: 10.1038/s41598-019-51880-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/09/2019] [Indexed: 02/02/2023] Open
Abstract
The presence of large numbers of local interneurons in the olfactory bulb has demonstrated an extensive local signaling process, yet the identification and purpose of olfactory microcircuits is poorly explored. Because the discrimination of odors in a complex environment is highly dependent on the tuning of information by local interneurons, we studied for the first time the role of preproglucagon (PPG) neurons in the granule cell layer of the olfactory bulb. Combining electrophysiological recordings and confocal microscopy, we discovered that the PPG neurons are a population of cells expressing the precursor of glucagon-like peptide 1 and are glutamatergic; able to modulate the firing pattern of the mitral cells (M/TCs). Optogenetic activation of PPG neurons resulted in a mixed excitation and inhibition that created a multiphasic response shaping the M/TCs firing pattern. This suggests that PPG neurons could drive neuromodulation of the olfactory output and change the synaptic map regulating olfactory coding.
Collapse
Affiliation(s)
- Nicolas Thiebaud
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, USA ,Present Address: Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U.S. Food & Drug Admnistration, Silver Spring, USA
| | - Fiona Gribble
- 0000000121885934grid.5335.0Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Frank Reimann
- 0000000121885934grid.5335.0Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Stefan Trapp
- 0000000121901201grid.83440.3bDepartment of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Debra Ann Fadool
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, USA ,The Florida State University, Institute of Molecular Biophysics, Tallahassee, USA
| |
Collapse
|
27
|
Greer JB, Magnuson JT, Hester K, Giroux M, Pope C, Anderson T, Liu J, Dang V, Denslow ND, Schlenk D. Effects of Chlorpyrifos on Cholinesterase and Serine Lipase Activities and Lipid Metabolism in Brains of Rainbow Trout (Oncorhynchus mykiss). Toxicol Sci 2019; 172:146-154. [PMID: 31359069 PMCID: PMC6813751 DOI: 10.1093/toxsci/kfz167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Chlorpyrifos is an organophosphorus insecticide that elicits acute toxicity through inhibition of acetylcholinesterase (AChE), leading to acetylcholine accumulation and prolonged stimulation of cholinergic receptors throughout the central and peripheral nervous systems. Previous studies have indicated that neurodevelopment may also be impaired through alternative pathways, including reduction of cAMP catalyzed downstream events. The upstream initiating events that underlie non-cholinergic neurological actions of chlorpyrifos and other organophosphorus compounds remain unclear. To investigate the potential role of disruption of fatty acid signaling as a mechanism of toxicity, lipid metabolism and fatty acid profiles were examined to identify alterations that may play a critical role in upstream signaling in the CNS. Juvenile rainbow trout were treated for 7 days with nominal chlorpyrifos concentrations previously reported to diminish olfactory responses (10, 20, and 40 μg/L). While lethality was noted higher doses, measured chlorpyrifos concentrations of 1.38 μg/L (nominal concentration 10 μg/L) significantly reduced the activity of AChE and two serine lipases, monoacylglycerol lipase and fatty acid amide hydrolase in the brain. Reductions in lysophosphatidylethanolamines (16:0; 18:0, 18:1, and 22:6) derived from the phosphatidylethanolamines and free fatty acids (Palmitic acid16:0; Linolenic acid18:3; Eicosadienoic acid 20:2; Arachidonic acid 20:4; and Docosahexaenoic acid 22:6) were also noted, suggesting that chlorpyrifos inhibited the metabolism of selected phospholipid signaling precursors at sublethal concentrations. These results indicate that in addition to AChE inhibition, environmentally relevant chlorpyrifos exposure alters serine lipase activity and lipid metabolites in the trout brain, which may compromise neuronal signaling and impact neurobehavioral responses in aquatic animals.
Collapse
Affiliation(s)
- J B Greer
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - J T Magnuson
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - K Hester
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - M Giroux
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - C Pope
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - T Anderson
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - J Liu
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - V Dang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, 2187 Mowry Rd., Gainesville, FL, United States
| | - N D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, 2187 Mowry Rd., Gainesville, FL, United States
| | - D Schlenk
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States.,Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Sanz Diez A, Najac M, De Saint Jan D. Basal forebrain GABAergic innervation of olfactory bulb periglomerular interneurons. J Physiol 2019; 597:2547-2563. [PMID: 30920662 DOI: 10.1113/jp277811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Basal forebrain long-range projections to the olfactory bulb are important for olfactory sensitivity and odour discrimination. Using optogenetics, it was confirmed that basal forebrain afferents mediate IPSCs on granule and deep short axon cells. It was also shown that they selectively innervate specific subtypes of periglomerular (PG) cells. Three different subtypes of type 2 PG cells receive GABAergic IPSCs from the basal forebrain but not from other PG cells. Type 1 PG cells, in contrast, do not receive inputs from the basal forebrain but do receive inhibition from other PG cells. These results shed new light on the complexity and specificity of glomerular inhibitory circuits, as well as on their modulation by the basal forebrain. ABSTRACT Olfactory bulb circuits are dominated by multiple inhibitory pathways that finely tune the activity of mitral and tufted cells, the principal neurons, and regulate odour discrimination. Granule cells mediate interglomerular lateral inhibition between mitral and tufted cells' lateral dendrites whereas diverse subtypes of periglomerular (PG) cells mediate intraglomerular lateral inhibition between their apical dendrites. Deep short axon cells form broad intrabulbar inhibitory circuits that regulate both populations of interneurons. Little is known about the extrabulbar GABAergic circuits that control the activity of these various interneurons. We examined this question using patch-clamp recordings and optogenetics in olfactory bulb slices from transgenic mice. We showed that axonal projections emanating from diverse basal forebrain GABAergic neurons densely project in all layers of the olfactory bulb. These long-range GABAergic projections provide a prominent synaptic input on granule and short axon cells in deep layers as well as on selective subtypes of PG cells. Specifically, three different subclasses of type 2 PG cells receive robust and target-specific basal forebrain inputs but have little local interactions with other PG cells. In contrast, type 1 PG cells are not innervated by basal forebrain fibres but do interact with other PG cells. Thus, attention-regulated basal forebrain inputs regulate inhibition in all layers of the olfactory bulb with a previously overlooked synaptic complexity that further defines interneuron subclasses.
Collapse
Affiliation(s)
- Alvaro Sanz Diez
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Université de Strasbourg, 67084, Strasbourg, France
| | - Marion Najac
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Unité Propre de Recherche 3212, Université de Strasbourg, 67084, Strasbourg, France
| |
Collapse
|
29
|
Odor Concentration Change Coding in the Olfactory Bulb. eNeuro 2019; 6:eN-NWR-0396-18. [PMID: 30834303 PMCID: PMC6397952 DOI: 10.1523/eneuro.0396-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Dynamical changes in the environment strongly impact our perception. Likewise, sensory systems preferentially represent stimulus changes, enhancing temporal contrast. In olfaction, odor concentration changes across consecutive inhalations (ΔCt) can guide odor source localization, yet the neural representation of ΔCt has not been studied in vertebrates. We have found that, in the mouse olfactory bulb, a subset of mitral/tufted (M/T) cells represents ΔCt, enhancing the contrast between different concentrations. These concentration change responses are direction selective: they respond either to increments or decrements of concentration, reminiscent of ON and OFF selectivity in the retina. This contrast enhancement scales with the magnitude, but not the duration of the concentration step. Further, ΔCt can be read out from the total spike count per sniff, unlike odor identity and intensity, which are represented by fast temporal spike patterns. Our results demonstrate that a subset of M/T cells represents ΔCt, providing a signal that may instruct navigational decisions in downstream olfactory circuits.
Collapse
|
30
|
Koldaeva A, Schaefer AT, Fukunaga I. Rapid task-dependent tuning of the mouse olfactory bulb. eLife 2019; 8:43558. [PMID: 30724732 PMCID: PMC6365054 DOI: 10.7554/elife.43558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/26/2019] [Indexed: 11/18/2022] Open
Abstract
Adapting neural representation to rapidly changing behavioural demands is a key challenge for the nervous system. Here, we demonstrate that the output of the primary olfactory area of the mouse, the olfactory bulb, is already a target of dynamic and reproducible modulation. The modulation depends on the stimulus tuning of a given neuron, making olfactory responses more discriminable through selective amplification in a demand-specific way.
Collapse
Affiliation(s)
- Anzhelika Koldaeva
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Andreas T Schaefer
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience,Physiology and Pharmacology, University College London, London, United Kingdom
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
31
|
Han Z, Chen W, Chen X, Zhang K, Tong C, Zhang X, Li CT, Liang Z. Awake and behaving mouse fMRI during Go/No-Go task. Neuroimage 2019; 188:733-742. [PMID: 30611875 DOI: 10.1016/j.neuroimage.2019.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Functional magnetic imaging (fMRI) has been widely used to examine the functional neural networks in both the evoked and resting states. However, most fMRI studies in rodents are performed under anesthesia, which greatly limits the scope of their application, and behavioral relevance. Efforts have been made to image rodents in the awake condition, either in the resting state or in response to sensory or optogenetic stimulation. However, fMRI in awake behaving rodents has not yet been achieved. In the current study, a novel fMRI paradigm for awake and behaving mice was developed, allowing functional imaging of the mouse brain in an olfaction-based go/no-go task. High resolution functional imaging with limited motion and image distortion were achieved at 9.4T with a cryogenic coil in awake and behaving mice. Distributed whole-brain spatiotemporal patterns were revealed, with drastically different activity profiles for go versus no-go trials. Therefore, we have demonstrated the feasibility of functional imaging of an olfactory behavior in awake mice. This fMRI paradigm in awake behaving mice could lead to novel insights into neural mechanisms underlying behaviors at a whole-brain level.
Collapse
Affiliation(s)
- Zhe Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xifan Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chuanjun Tong
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xiaoxing Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
32
|
Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice. J Neurosci 2018; 38:4623-4640. [PMID: 29669746 DOI: 10.1523/jneurosci.3559-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing nonspecifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and nonconditioned odors, potentially priming the system toward generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings.SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning-independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important implications for altered sensory processing in fear generalization.
Collapse
|
33
|
Li WL, Chu MW, Wu A, Suzuki Y, Imayoshi I, Komiyama T. Adult-born neurons facilitate olfactory bulb pattern separation during task engagement. eLife 2018; 7:e33006. [PMID: 29533179 PMCID: PMC5912906 DOI: 10.7554/elife.33006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
The rodent olfactory bulb incorporates thousands of newly generated inhibitory neurons daily throughout adulthood, but the role of adult neurogenesis in olfactory processing is not fully understood. Here we adopted a genetic method to inducibly suppress adult neurogenesis and investigated its effect on behavior and bulbar activity. Mice without young adult-born neurons (ABNs) showed normal ability in discriminating very different odorants but were impaired in fine discrimination. Furthermore, two-photon calcium imaging of mitral cells (MCs) revealed that the ensemble odor representations of similar odorants were more ambiguous in the ablation animals. This increased ambiguity was primarily due to a decrease in MC suppressive responses. Intriguingly, these deficits in MC encoding were only observed during task engagement but not passive exposure. Our results indicate that young olfactory ABNs are essential for the enhancement of MC pattern separation in a task engagement-dependent manner, potentially functioning as a gateway for top-down modulation.
Collapse
Affiliation(s)
- Wankun L Li
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Monica W Chu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - An Wu
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| | - Yusuke Suzuki
- Medical Innovation Center/SK Project, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and BehaviorUniversity of California, San DiegoSan DiegoUnited States
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoUnited States
| |
Collapse
|
34
|
Pouille F, Schoppa NE. Cannabinoid Receptors Modulate Excitation of an Olfactory Bulb Local Circuit by Cortical Feedback. Front Cell Neurosci 2018; 12:47. [PMID: 29551963 PMCID: PMC5840260 DOI: 10.3389/fncel.2018.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/15/2018] [Indexed: 11/16/2022] Open
Abstract
Recent studies have provided evidence that corticofugal feedback (CFF) from the olfactory cortex to the olfactory bulb (OB) can significantly impact the state of excitation of output mitral cells (MCs) and tufted cells (TCs) and also modulate neural synchrony. Interpreting these effects however has been complicated by the large number of cell targets of CFF axons in the bulb. Within the granule cell layer (GCL) alone, CFF axons target both GABAergic granule cells (GCs) as well as GABAergic deep short-axon cells (dSACs) that inhibit GCs. Because GCs are a major source of inhibition of MCs/TCs, CFF could be inhibitory to MCs (by exciting GCs) or disinhibitory (by exciting dSACs that inhibit GCs). In this study, we used patch-clamp recordings combined with optogenetic and electrical stimulation methods to investigate the role of presynaptic cannabinoid receptors in regulating CFF pathways, which could alter the weights of inhibition and disinhibition. Recording first from dSACs, we found that the cannabinoid receptor (CB-R) agonist WIN-55212.2 (WIN) reduced excitatory post-synaptic currents (CFF-EPSCs) driven by stimulation of CFF axons. The effects were reversed by the Type 1 CB-R (CB1-R)-specific antagonist SR-141716A. Furthermore, prolonged 5-s depolarizations applied to postsynaptic dSACs effectively reduced CFF-EPSCs in a CB1-R-dependent fashion, providing evidence for depolarization-induced suppression of excitation (DSE) at CFF-to-dSAC synapses. Further analysis indicated that CB1-Rs mediate widespread suppressive effects on synaptic transmission, occurring at CFF synapses onto different dSAC subtypes and CFF synapses onto GCs. Feedforward excitation of dSACs, mediated by MCs/TCs, however, was not impacted by CB1-Rs. In recordings from MCs, performed to examine the net effect of CB1-R activation on GC-to-MC transmission, we found that WIN could both increase and decrease disynaptic inhibition evoked by CFF axon stimulation. The exact effect depended on the size of the inhibitory response, reflecting the local balance of dSAC vs. GC activation. Our results taken together indicate that CB1-Rs can bidirectionally alter the weighting of inhibition and disinhibition of MCs through their effects on CFF pathways.
Collapse
Affiliation(s)
- Frederic Pouille
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
35
|
Han Z, Zhang X, Zhu J, Chen Y, Li CT. High-Throughput Automatic Training System for Odor-Based Learned Behaviors in Head-Fixed Mice. Front Neural Circuits 2018; 12:15. [PMID: 29487506 PMCID: PMC5816819 DOI: 10.3389/fncir.2018.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 01/30/2018] [Indexed: 11/17/2022] Open
Abstract
Understanding neuronal mechanisms of learned behaviors requires efficient behavioral assays. We designed a high-throughput automatic training system (HATS) for olfactory behaviors in head-fixed mice. The hardware and software were constructed to enable automatic training with minimal human intervention. The integrated system was composed of customized 3D-printing supporting components, an odor-delivery unit with fast response, Arduino based hardware-controlling and data-acquisition unit. Furthermore, the customized software was designed to enable automatic training in all training phases, including lick-teaching, shaping and learning. Using HATS, we trained mice to perform delayed non-match to sample (DNMS), delayed paired association (DPA), Go/No-go (GNG), and GNG reversal tasks. These tasks probed cognitive functions including sensory discrimination, working memory, decision making and cognitive flexibility. Mice reached stable levels of performance within several days in the tasks. HATS enabled an experimenter to train eight mice simultaneously, therefore greatly enhanced the experimental efficiency. Combined with causal perturbation and activity recording techniques, HATS can greatly facilitate our understanding of the neural-circuitry mechanisms underlying learned behaviors.
Collapse
Affiliation(s)
- Zhe Han
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxing Zhang
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jia Zhu
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yulei Chen
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
36
|
Walusinski O. Joseph Hippolyte Cloquet (1787–1840)—Physiology of smell. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x17738406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
History-Dependent Odor Processing in the Mouse Olfactory Bulb. J Neurosci 2017; 37:12018-12030. [PMID: 29109236 PMCID: PMC5719977 DOI: 10.1523/jneurosci.0755-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/15/2017] [Accepted: 10/22/2017] [Indexed: 12/02/2022] Open
Abstract
In nature, animals normally perceive sensory information on top of backgrounds. Thus, the neural substrate to perceive under background conditions is inherent in all sensory systems. Where and how sensory systems process backgrounds is not fully understood. In olfaction, just a few studies have addressed the issue of odor coding on top of continuous odorous backgrounds. Here, we tested how background odors are encoded by mitral cells (MCs) in the olfactory bulb (OB) of male mice. Using in vivo two-photon calcium imaging, we studied how MCs responded to odors in isolation versus their responses to the same odors on top of continuous backgrounds. We show that MCs adapt to continuous odor presentation and that mixture responses are different when preceded by background. In a subset of odor combinations, this history-dependent processing was useful in helping to identify target odors over background. Other odorous backgrounds were highly dominant such that target odors were completely masked by their presence. Our data are consistent in both low and high odor concentrations and in anesthetized and awake mice. Thus, odor processing in the OB is strongly influenced by the recent history of activity, which could have a powerful impact on how odors are perceived. SIGNIFICANCE STATEMENT We examined a basic feature of sensory processing in the olfactory bulb. Specifically, we measured how mitral cells adapt to continuous background odors and how target odors are encoded on top of such background. Our results show clear differences in odor coding based on the immediate history of the stimulus. Our results support the argument that odor coding in the olfactory bulb depends on the recent history of the sensory environment.
Collapse
|
38
|
Lack of Pattern Separation in Sensory Inputs to the Olfactory Bulb during Perceptual Learning. eNeuro 2017; 4:eN-NWR-0287-17. [PMID: 28955724 PMCID: PMC5615249 DOI: 10.1523/eneuro.0287-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
Recent studies revealed changes in odor representations in the olfactory bulb during active olfactory learning (Chu et al., 2016; Yamada et al., 2017). Specifically, mitral cell ensemble responses to very similar odorant mixtures sparsened and became more distinguishable as mice learned to discriminate the odorants over days (Chu et al., 2016). In this study, we explored whether changes in the sensory inputs to the bulb underlie the observed changes in mitral cell responses. Using two-photon calcium imaging to monitor the odor responses of the olfactory sensory neuron (OSN) axon terminals in the glomeruli of the olfactory bulb during a discrimination task, we found that OSN inputs to the bulb are stable during discrimination learning. During one week of training to discriminate between very similar odorant mixtures in a Go/No-go task, OSN responses did not show significant sparsening, and the responses to the trained similar odorants did not diverge throughout training. These results suggest that the adaptive changes of mitral cell responses during perceptual learning are ensured by mechanisms downstream of OSN input, possibly in local circuits within olfactory bulb.
Collapse
|
39
|
McIntyre JC, Thiebaud N, McGann JP, Komiyama T, Rothermel M. Neuromodulation in Chemosensory Pathways. Chem Senses 2017; 42:375-379. [PMID: 28379355 DOI: 10.1093/chemse/bjx014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interactions with the environment depend not only on sensory perception of external stimuli but also on processes of neuromodulation regulated by the internal state of an organism. These processes allow regulation of stimulus detection to match the demands of an organism influenced by its general brain state (satiety, wakefulness/sleep state, attentiveness, arousal, learning etc.). The sense of smell is initiated by sensory neurons located in the nasal cavity that recognize environmental odorants and project axons into the olfactory bulb (OB), where they form synapses with several types of neurons. Modulations of early synaptic circuits are particularly important since these can affect all subsequent processing steps. While the precise mechanisms have not been fully elucidated, work from many labs has demonstrated that the activity of neurons in the OB and cortex can be modulated by different factors inducing specific changes to olfactory information processing. The symposium "Neuromodulation in Chemosensory Pathways" at the International Symposium on Olfaction and Taste (ISOT 2016) highlighted some of the most recent advances in state-dependent network modulations of the mouse olfactory system including modulation mediated by specific neurotransmitters and neuroendocrine molecules, involving pharmacological, electrophysiological, learning, and behavioral approaches.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Neuroscience and.,Center for Smell and Taste, University of Florida, PO Box 100244, Gainesville, FL 32610, USA
| | - Nicolas Thiebaud
- Department of Biological Science and.,Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | - John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, New Brunswick, NJ, USA
| | - Takaki Komiyama
- Neurobiology Section and Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA and
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
40
|
Makino H, Hwang EJ, Hedrick NG, Komiyama T. Circuit Mechanisms of Sensorimotor Learning. Neuron 2017; 92:705-721. [PMID: 27883902 DOI: 10.1016/j.neuron.2016.10.029] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022]
Abstract
The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process into three hierarchical levels with distinct goals: (1) sensory perceptual learning, (2) sensorimotor associative learning, and (3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior.
Collapse
Affiliation(s)
- Hiroshi Makino
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eun Jung Hwang
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathan G Hedrick
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Diverse Representations of Olfactory Information in Centrifugal Feedback Projections. J Neurosci 2017; 36:7535-45. [PMID: 27413162 PMCID: PMC4945671 DOI: 10.1523/jneurosci.3358-15.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 06/05/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Although feedback or centrifugal projections from higher processing centers of the brain to peripheral regions have long been known to play essential functional roles, the anatomical organization of these connections remains largely unknown. Using a virus-based retrograde labeling strategy and 3D whole-brain reconstruction methods, we mapped the spatial organization of centrifugal projections from two olfactory cortical areas, the anterior olfactory nucleus (AON) and the piriform cortex, to the granule cell layer of the main olfactory bulb in the mouse. Both regions are major recipients of information from the bulb and are the largest sources of feedback to the bulb, collectively constituting circuits essential for olfactory coding and olfactory behavior. We found that, although ipsilateral inputs from the AON were uniformly distributed, feedback from the contralateral AON had a strong ventral bias. In addition, we observed that centrifugally projecting neurons were spatially clustered in the piriform cortex, in contrast to the distributed feedforward axonal inputs that these cells receive from the principal neurons of the bulb. Therefore, information carried from the bulb to higher processing structures by anatomically stereotypic projections is likely relayed back to the bulb by organizationally distinct feedback projections that may reflect different coding strategies and therefore different functional roles. SIGNIFICANCE STATEMENT Principles of anatomical organization, sometimes instantiated as "maps" in the mammalian brain, have provided key insights into the structure and function of circuits in sensory systems. Generally, these characterizations focus on projections from early sensory processing areas to higher processing structures despite considerable evidence that feedback or centrifugal projections often constitute major conduits of information flow. Our results identify structure in the organization of centrifugal feedback projections to the olfactory bulb that is fundamentally different from the organization of feedforward circuits. Our study suggests that understanding computations performed in the olfactory bulb, and more generally in the olfactory system, requires understanding interactions between feedforward and feedback "maps" both structurally and functionally.
Collapse
|
42
|
GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb. J Neurosci 2017; 36:8289-304. [PMID: 27511004 DOI: 10.1523/jneurosci.3823-15.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sensory perception emerges from the confluence of sensory inputs that encode the composition of external environment and top-down feedback that conveys information from higher brain centers. In olfaction, sensory input activity is initially processed in the olfactory bulb (OB), serving as the first central relay before being transferred to the olfactory cortex. In addition, the OB receives dense connectivity from feedback projections, so the OB has the capacity to implement a wide array of sensory neuronal computation. However, little is known about the impact and the regulation of this cortical feedback. Here, we describe a novel mechanism to gate glutamatergic feedback selectively from the anterior olfactory cortex (AOC) to the OB. Combining in vitro and in vivo electrophysiological recordings, optogenetics, and fiber-photometry-based calcium imaging applied to wild-type and conditional transgenic mice, we explore the functional consequences of circuit-specific GABA type-B receptor (GABABR) manipulation. We found that activation of presynaptic GABABRs specifically depresses synaptic transmission from the AOC to OB inhibitory interneurons, but spares direct excitation to principal neurons. As a consequence, feedforward inhibition of spontaneous and odor-evoked activity of principal neurons is diminished. We also show that tunable cortico-bulbar feedback is critical for generating beta, but not gamma, OB oscillations. Together, these results show that GABABRs on cortico-bulbar afferents gate excitatory transmission in a target-specific manner and thus shape how the OB integrates sensory inputs and top-down information. SIGNIFICANCE STATEMENT The olfactory bulb (OB) receives top-down inputs from the olfactory cortex that produce direct excitation and feedforward inhibition onto mitral and tufted cells, the principal neurons. The functional role of this feedback and the mechanisms regulating the balance of feedback excitation and inhibition remain unknown. We found that GABAB receptors are expressed in cortico-bulbar axons that synapse on granule cells and receptor activation reduces the feedforward inhibition of spontaneous and odor-driven mitral and tufted cells' firing activity. In contrast, direct excitatory inputs to these principal neurons remain unchanged. This study demonstrates that activation of GABAB receptors biases the excitation/inhibition balance provided by cortical inputs to the OB, leading to profound effects on early stages of sensory information processing.
Collapse
|
43
|
Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei. J Neurosci 2017; 36:6820-35. [PMID: 27335411 DOI: 10.1523/jneurosci.3667-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.
Collapse
|
44
|
Roland B, Deneux T, Franks KM, Bathellier B, Fleischmann A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife 2017; 6:e26337. [PMID: 28489003 PMCID: PMC5438249 DOI: 10.7554/elife.26337] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/29/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex.
Collapse
Affiliation(s)
- Benjamin Roland
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| | - Thomas Deneux
- Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, United States
| | - Brice Bathellier
- Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| |
Collapse
|
45
|
Yamaguchi M. Functional Sub-Circuits of the Olfactory System Viewed from the Olfactory Bulb and the Olfactory Tubercle. Front Neuroanat 2017; 11:33. [PMID: 28443001 PMCID: PMC5387040 DOI: 10.3389/fnana.2017.00033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/29/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding of the olfactory neural circuits has progressed beyond analysis of how odor information from the external environment is processed in the brain. While spatially-organized sub-circuits were found to exist up to the olfactory bulb (OB), the arrangement in the olfactory cortex (OC), especially in its representative piriform cortex (PC), appears diffuse and dispersed. An emerging view is that the activity of OC neurons may not simply encode odor identity but rather encode plastic odor information such as odor value. Although many studies support this notion, odor value can be either positive or negative, and the existence of sub-circuits corresponding to individual value types is not well explored. To address this question, I introduce here two olfactory areas other than the PC, OB and olfactory tubercle (OT) whose analysis may facilitate understanding of functional sub-circuits related to different odor values. Peripheral and centrifugal inputs to the OB are considered to relate to odor identity and odor value, respectively and centrifugal inputs to the OB potentially represent different odor values during different behavioral periods. The OT has spatially-segregated functional domains related to distinct motivated and hedonic behaviors. Thus, the OT provides a good starting point from which functional sub-circuits across various olfactory regions can be traced. Further analysis across wide areas of the olfactory system will likely reveal the functional sub-circuits that link odor identity with distinct odor values and direct distinct odor-induced motivated and hedonic behaviors.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi UniversityKochi, Japan
| |
Collapse
|
46
|
Ravi N, Sanchez-Guardado L, Lois C, Kelsch W. Determination of the connectivity of newborn neurons in mammalian olfactory circuits. Cell Mol Life Sci 2017; 74:849-867. [PMID: 27695873 PMCID: PMC11107630 DOI: 10.1007/s00018-016-2367-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
Abstract
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.
Collapse
Affiliation(s)
- Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Luis Sanchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
47
|
Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding. Proc Natl Acad Sci U S A 2017; 114:2407-2412. [PMID: 28196887 DOI: 10.1073/pnas.1620939114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the neocortex exhibit spontaneous spiking activity in the absence of external stimuli, but the origin and functions of this activity remain uncertain. Here, we show that spontaneous spiking is also prominent in a sensory paleocortex, the primary olfactory (piriform) cortex of mice. In the absence of applied odors, piriform neurons exhibit spontaneous firing at mean rates that vary systematically among neuronal classes. This activity requires the participation of NMDA receptors and is entirely driven by bottom-up spontaneous input from the olfactory bulb. Odor stimulation produces two types of spatially dispersed, odor-distinctive patterns of responses in piriform cortex layer 2 principal cells: Approximately 15% of cells are excited by odor, and another approximately 15% have their spontaneous activity suppressed. Our results show that, by allowing odor-evoked suppression as well as excitation, the responsiveness of piriform neurons is at least twofold less sparse than currently believed. Hence, by enabling bidirectional changes in spiking around an elevated baseline, spontaneous activity in the piriform cortex extends the dynamic range of odor representation and enriches the coding space for the representation of complex olfactory stimuli.
Collapse
|
48
|
Barnett LM, Hughes TE, Drobizhev M. Deciphering the molecular mechanism responsible for GCaMP6m's Ca2+-dependent change in fluorescence. PLoS One 2017; 12:e0170934. [PMID: 28182677 PMCID: PMC5300113 DOI: 10.1371/journal.pone.0170934] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022] Open
Abstract
The goal of this work is to determine how GCaMP6m's fluorescence is altered in response to Ca2+-binding. Our detailed spectroscopic study reveals the simplest explanation for how GCaMP6m changes fluorescence in response to Ca2+ is with a four-state model, in which a Ca2+-dependent change of the chromophore protonation state, due to a shift in pKa, is the predominant factor. The pKa shift is quantitatively explained by a change in electrostatic potential around the chromophore due to the conformational changes that occur in the protein when calmodulin binds Ca2+ and interacts with the M13 peptide. The absolute pKa values for the Ca2+-free and Ca2+-saturated states of GCaMP6m are critical to its high signal-to-noise ratio. This mechanism has important implications for further improvements to GCaMP6m and potentially for other similarly designed biosensors.
Collapse
Affiliation(s)
- Lauren M. Barnett
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
| | - Thomas E. Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
| | - Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
49
|
Chelminski Y, Magnan C, Luquet SH, Everard A, Meunier N, Gurden H, Martin C. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice. Front Physiol 2017; 8:2. [PMID: 28154537 PMCID: PMC5244437 DOI: 10.3389/fphys.2017.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/03/2017] [Indexed: 01/03/2023] Open
Abstract
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning.
Collapse
Affiliation(s)
- Yan Chelminski
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot University Orsay, France
| | - Christophe Magnan
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Serge H Luquet
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Amandine Everard
- UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité University Paris, France
| | - Nicolas Meunier
- INRA, UR1197 NeuroBiologie de l'OlfactionJouy-en-Josas, France; Université de Versailles St-Quentin en YvelinesVersailles, France
| | - Hirac Gurden
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| | - Claire Martin
- UMR 8165 Centre National de la Recherche Scientifique, IMNC, Paris Sud University, Paris Diderot UniversityOrsay, France; UMR 8251 Centre National de la Recherche Scientifique, BFA, Paris Diderot University, Sorbonne Paris Cité UniversityParis, France
| |
Collapse
|
50
|
Aqrabawi AJ, Browne CJ, Dargaei Z, Garand D, Khademullah CS, Woodin MA, Kim JC. Top-down modulation of olfactory-guided behaviours by the anterior olfactory nucleus pars medialis and ventral hippocampus. Nat Commun 2016; 7:13721. [PMID: 28004701 PMCID: PMC5192165 DOI: 10.1038/ncomms13721] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/27/2016] [Indexed: 11/09/2022] Open
Abstract
Olfactory processing is thought to be actively modulated by the top-down input from cortical regions, but the behavioural function of these signals remains unclear. Here we find that cortical feedback from the anterior olfactory nucleus pars medialis (mAON) bidirectionally modulates olfactory sensitivity and olfaction-dependent behaviours. To identify a limbic input that tunes this mAON switch, we further demonstrate that optogenetic stimulation of ventral hippocampal inputs to the mAON is sufficient to alter olfaction-dependent behaviours.
Collapse
Affiliation(s)
- Afif J. Aqrabawi
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Caleb J. Browne
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 3G3
| | - Zahra Dargaei
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Danielle Garand
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - C. Sahara Khademullah
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Melanie A. Woodin
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Jun Chul Kim
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, Ontario, Canada M5S 3G3
| |
Collapse
|