1
|
Mao L, Wang L, Huang Z, Chen JK, Tucker L, Zhang Q. Comprehensive insights into emerging advances in the Neurobiology of anorexia. J Adv Res 2025:S2090-1232(25)00206-1. [PMID: 40180244 DOI: 10.1016/j.jare.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Anorexia is a complex eating disorder influenced by genetic, environmental, psychological, and socio-cultural factors. Research into its molecular mechanisms and neural circuits has deepened our understanding of its pathogenesis. Recent advances in neuroscience, molecular biology, and genetics have revealed key molecular and neural circuit mechanisms underlying anorexia. AIM OF REVIEW Clarify the peripheral and central molecular mechanisms regulating various types of anorexia, identify key cytokines and neural circuits, and propose new strategies for its treatment. Key scientific concepts of review: Anorexia animal models, including activity-induced, genetic mutation, and inflammation-induced types, are explored for their relevance to studying the disorder. Anorexic behavior is regulated by cytokines, hormones (like GDF15, GLP-1, and leptin), and neural circuits such as AgRP, serotonergic, dopaminergic, and glutamatergic pathways. Disruptions in these pathways, including GABAergic signaling in AgRP neurons and 5-HT2C and D2 receptors, contribute to anorexia. Potential therapies target neurotransmitter receptors, ghrelin receptors, and the GDF15-GFRAL pathway, offering insights for treating anorexia, immune responses, and obesity.
Collapse
Affiliation(s)
- Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Jian-Kang Chen
- Departments of Cellular Biology & Anatomy and Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lorelei Tucker
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
2
|
Fox SN, Savage CH, Amireddy NR, McMeekin LJ, Crossman DK, Detloff PJ, Gray M, Cowell RM. Estrogen-related receptor gamma is a regulator of mitochondrial, autophagy, and immediate-early gene programs in spiny projection neurons: Relevance for transcriptional changes in Huntington disease. Neurobiol Dis 2025; 206:106818. [PMID: 39884587 DOI: 10.1016/j.nbd.2025.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Mitochondrial dysfunction, transcriptional dysregulation, and protein aggregation are hallmarks of multiple neurodegenerative disorders, including Huntington's disease (HD). Strategies are needed to counteract these processes to restore neuronal health and function in HD. Recent evidence indicates that the transcription factor estrogen-related receptor gamma (ERRγ/Esrrg) is required for normal expression of mitochondrial, synaptic, and autophagy genes in neurons. Further, overexpression of Esrrg in dopaminergic neurons reduces synuclein load in the pre-formed fibril model of synucleinopathy. For these reasons, we sought to understand ERRγ's role in transcriptional regulation in spiny projection neurons (SPNs), one of the neuronal populations vulnerable to transcriptional dysregulation, mitochondrial dysfunction, and protein aggregation in HD. Here, we demonstrate that developmental deletion of Esrrg selectively in SPNs causes a transcriptional pattern consistent with a reduction of Drd1 and Drd2-positive neurons in the mouse dorsolateral striatum. To avoid effects of developmental deletion and explore Esrrg's role within adult SPN populations, we deleted or overexpressed Esrrg in adult SPNs. While overexpression was sufficient to increase the expression of mitochondrial and lysosome-related transcripts, Esrrg deletion surprisingly caused increased expression of immediate-early genes and genes with enrichment of binding sites for transcriptional repressors. In contrast, these genes were downregulated by Esrrg overexpression. Concordantly, Esrrg-deficient mice exhibited lack of amphetamine-induced hyperactivity and further upregulation of immediate-early genes. To determine whether the alterations observed with ERRγ modulation have any relevance for understanding transcriptional changes in SPNs in neurodegeneration, we measured Esrrg and its responsive genes in two mouse models of HD. We found an increase in Esrrg expression in HD models, accompanied by a transcriptional profile with similarities to that observed with Esrrg overexpression, suggesting the existence of an ERRγ-dependent, stress-related response. Altogether, these studies suggest that ERRγ is a key activator of mitochondrial and lysosomal transcripts in SPNs with a potential bi-functional role as a mediator of immediate-early gene repression. Ongoing studies are investigating mechanisms underlying ERRγ's roles in transcriptional activation and repression in SPNs to inform strategies to promote neuroprotective actions of ERRγ in SPNs in HD.
Collapse
Affiliation(s)
- Stephanie N Fox
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA.
| | - Cody H Savage
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA
| | - Narcy R Amireddy
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | - David K Crossman
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Peter J Detloff
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Gray
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rita M Cowell
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA.
| |
Collapse
|
3
|
Vemuri K, Iqbal J, Kumar S, Logerfo A, Ibrahim M, White E, Verzi MP. Diet-induced obesity mediated through estrogen-related receptor α is independent of intestinal function. J Biol Chem 2025; 301:108197. [PMID: 39826697 PMCID: PMC11849689 DOI: 10.1016/j.jbc.2025.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Obesity has escalated to epidemic proportions, driving significant advances in therapeutic strategies aimed at combating this condition. The estrogen-related receptor α (ESRRA), a transcription factor, plays pivotal roles in energy metabolism across multiple tissues. Research has consistently shown that the absence of Esrra results in notable fat malabsorption and increased resistance to diet-induced obesity. However, existing studies primarily focusing on germline Esrra mutants fail to account for tissue-specific roles of ESRRA in obesity. Notably, Esrra exhibits high expression in the gastrointestinal tract relative to other tissues. Given the gastrointestinal tract's central role in dietary lipid absorption and metabolism, it is critical to investigate how ESRRA specifically affects this tissue. This study aims to fill this gap by employing advanced mouse genetics and genomics techniques to dissect the impact of ESRRA within the intestine. We also aim to elucidate ESRRA's specific contributions to diet-induced obesity and refine our understanding of how this transcription factor influences metabolic outcomes in the context of dietary intake.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Jahangir Iqbal
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey, USA; Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, New Jersey, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, New Jersey, USA.
| |
Collapse
|
4
|
Sato K, Takayama KI, Saito Y, Inoue S. ERRα and ERRγ coordinate expression of genes associated with Alzheimer's disease, inhibiting DKK1 to suppress tau phosphorylation. Proc Natl Acad Sci U S A 2024; 121:e2406854121. [PMID: 39231208 PMCID: PMC11406303 DOI: 10.1073/pnas.2406854121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by cognitive decline and learning/memory impairment associated with neuronal cell loss. Estrogen-related receptor α (ERRα) and ERRγ, which are highly expressed in the brain, have emerged as potential AD regulators, with unelucidated underlying mechanisms. Here, we identified genome-wide binding sites for ERRα and ERRγ in human neuronal cells. They commonly target a subset of genes associated with neurodegenerative diseases, including AD. Notably, Dickkopf-1 (DKK1), a Wnt signaling pathway antagonist, was transcriptionally repressed by both ERRα and ERRγ in human neuronal cells and brain. ERRα and ERRγ repress RNA polymerase II (RNAP II) accessibility at the DKK1 promoter by modulating a specific active histone modification, histone H3 lysine acetylation (H3K9ac), with the potential contribution of their corepressor. This transcriptional repression maintains Wnt signaling activity, preventing tau phosphorylation and promoting a healthy neuronal state in the context of AD.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo173-0015, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo173-0015, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo173-0015, Japan
| | - Yuko Saito
- Department of Neuropathology (Brain Bank for Aging Research), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo173-0015, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo173-0015, Japan
| |
Collapse
|
5
|
Anitha A, Banerjee M, Thanseem I, Prakash A, Melempatt N, Sumitha PS, Iype M, Thomas SV. Rare Pathogenic Variants Identified in Whole Exome Sequencing of Monozygotic Twins With Autism Spectrum Disorder. Pediatr Neurol 2024; 158:113-123. [PMID: 39038432 DOI: 10.1016/j.pediatrneurol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a childhood-onset complex neurodevelopmental disorder characterized by problems with communication and social interaction and restricted, repetitive, stereotyped behavior. The prevalence of ASD is one in 36 children. The genetic architecture of ASD is complex in spite of its high heritability. To identify the potential candidate genes of ASD, we carried out a comprehensive genetic study of monozygotic (MZ) twins concordant or discordant for ASD. METHODS Five MZ twins and their parents were recruited for the study. Four of the twins were concordant, whereas one was discordant for ASD. Whole exome sequencing was conducted for the twins and their parents. The exome DNA was enriched using Twist Human Customized Core Exome Kit, and paired-end sequencing was performed on HiSeq system. RESULTS We identified several rare and pathogenic variants (homozygous recessive, compound heterozygous, de novo) in ASD-affected individuals. CONCLUSION We report novel variants in individuals diagnosed with ASD. Several of these genes are involved in brain-related functions and not previously reported in ASD. Intriguingly, some of the variants were observed in the genes involved in sensory perception (auditory [MYO15A, PLEC, CDH23, UBR3, GPSM2], olfactory [OR9K2], gustatory [TAS2R31], and visual [CDH23, UBR3]). This is the first comprehensive genetic study of MZ twins in an Indian population. Further validation is required to determine whether these variants are associated with ASD.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Palakkad, Kerala, India
| | - P S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India; Department of Pediatric Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sanjeev V Thomas
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India
| |
Collapse
|
6
|
Vemuri K, Iqbal J, Kumar S, Logerfo A, Verzi MP. Diet-induced obesity mediated through Estrogen-Related Receptor α is independent of intestinal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602978. [PMID: 39071436 PMCID: PMC11275757 DOI: 10.1101/2024.07.10.602978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Obesity has become an epidemic, prompting advances in therapies targeting this condition. Estrogen-related receptor α (ESRRA), a transcription factor, plays pivotal roles in energy metabolism across diverse tissues. Studies have demonstrated that loss of Esrra leads to fat malabsorption and resistance to diet-induced obesity. However, the reliance of these studies on germline Esrra mutants overlooks the tissue-specific implications of ESRRA in diet-induced obesity. Notably, Esrra exhibits high expression in the gastrointestinal (GI) tract relative to other tissues. Given the critical role of the GI tract in dietary lipid metabolism, this study employs mouse genetics and genomics approaches to dissect the specific impact of intestinal ESRRA along with investigating its role in diet-induced obesity.
Collapse
Affiliation(s)
- Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jahangir Iqbal
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sneha Kumar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Rutgers University, New Brunswick, NJ 08901, USA
- NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Ning Z, Liu Y, Wan M, Zuo Y, Chen S, Shi Z, Xu Y, Li H, Ko H, Zhang J, Xiao S, Guo D, Tang Y. APOE2 protects against Aβ pathology by improving neuronal mitochondrial function through ERRα signaling. Cell Mol Biol Lett 2024; 29:87. [PMID: 38867189 PMCID: PMC11170814 DOI: 10.1186/s11658-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease and apolipoprotein E (APOE) genotypes (APOE2, APOE3, and APOE4) show different AD susceptibility. Previous studies indicated that individuals carrying the APOE2 allele reduce the risk of developing AD, which may be attributed to the potential neuroprotective role of APOE2. However, the mechanisms underlying the protective effects of APOE2 is still unclear. METHODS We analyzed single-nucleus RNA sequencing and bulk RNA sequencing data of APOE2 and APOE3 carriers from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort. We validated the findings in SH-SY5Y cells and AD model mice by evaluating mitochondrial functions and cognitive behaviors respectively. RESULTS The pathway analysis of six major cell types revealed a strong association between APOE2 and cellular stress and energy metabolism, particularly in excitatory and inhibitory neurons, which was found to be more pronounced in the presence of beta-amyloid (Aβ). Moreover, APOE2 overexpression alleviates Aβ1-42-induced mitochondrial dysfunction and reduces the generation of reactive oxygen species in SH-SY5Y cells. These protective effects may be due to ApoE2 interacting with estrogen-related receptor alpha (ERRα). ERRα overexpression by plasmids or activation by agonist was also found to show similar mitochondrial protective effects in Aβ1-42-stimulated SH-SY5Y cells. Additionally, ERRα agonist treatment improve the cognitive performance of Aβ injected mice in both Y maze and novel object recognition tests. ERRα agonist treatment increased PSD95 expression in the cortex of agonist-treated-AD mice. CONCLUSIONS APOE2 appears to enhance neural mitochondrial function via the activation of ERRα signaling, which may be the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Mengyao Wan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - You Zuo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Oka A, Hadano S, Ueda MT, Nakagawa S, Komaki G, Ando T. Rare CRHR2 and GRM8 variants identified as candidate factors associated with eating disorders in Japanese patients by whole exome sequencing. Heliyon 2024; 10:e28643. [PMID: 38644811 PMCID: PMC11031761 DOI: 10.1016/j.heliyon.2024.e28643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Eating disorders (EDs) are a type of psychiatric disorder characterized by pathological eating and related behavior and considered to be highly heritable. The purpose of this study was to explore rare variants expected to display biological functions associated with the etiology of EDs. We performed whole exome sequencing (WES) of affected sib-pairs corresponding to disease subtype through their lifetime and their parents. From those results, rare single nucleotide variants (SNVs) concordant with sib-pairs were extracted and estimated to be most deleterious in the examined families. Two non-synonymous SNVs located on corticotropin-releasing hormone receptor 2 (CRHR2) and glutamate metabotropic receptor 8 (GRM8) were identified as candidate disease susceptibility factors. The SNV of CRHR2 was included within the cholesterol binding motif of the transmembrane helix region, while the SNV of GRM8 was found to contribute to hydrogen bonds for an α-helix structure. CRHR2 plays important roles in the serotoninergic system of dorsal raphe nuclei, which is involved with feeding and stress-coping behavior, whereas GRM8 modulates glutamatergic neurotransmission. Moreover, GRM8 modulates glutamatergic neurotransmission, and is also considered to have effects on dopaminergic and adrenergic neurotransmission. Thus, identification of rare and deleterious variants in this study is expected to increase understanding and treatment of affected individuals. Further investigation regarding the biological function of these variants may provide an opportunity to elucidate the pathogenesis of EDs.
Collapse
Affiliation(s)
- Akira Oka
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shinji Hadano
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Physiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - So Nakagawa
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Gen Komaki
- Faculty of Medical Science, Fukuoka International University of Health and Welfare, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Tetsuya Ando
- Department of Psychosomatic Medicine, Faculty of Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8553, Japan
| |
Collapse
|
9
|
Spinelli S, Bruschi M, Passalacqua M, Guida L, Magnone M, Sturla L, Zocchi E. Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System. Int J Mol Sci 2024; 25:4796. [PMID: 38732013 PMCID: PMC11084903 DOI: 10.3390/ijms25094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| |
Collapse
|
10
|
Vanacker JM, Forcet C. ERRα: unraveling its role as a key player in cell migration. Oncogene 2024; 43:379-387. [PMID: 38129506 DOI: 10.1038/s41388-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions. ERRα is a global regulator of energy metabolism, and it is also highly involved in bone homeostasis, development, differentiation, immunity and cancer progression. Importantly, in some instances, the regulation of these biological processes relies on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely controls the cell migratory potential.
Collapse
Affiliation(s)
- Jean-Marc Vanacker
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
11
|
Chen J, Ren T, Xie L, Hu H, Li X, Maitusong M, Zhou X, Hu W, Xu D, Qian Y, Cheng S, Yu K, Wang JA, Liu X. Enhancing aortic valve drug delivery with PAR2-targeting magnetic nano-cargoes for calcification alleviation. Nat Commun 2024; 15:557. [PMID: 38228638 PMCID: PMC10792006 DOI: 10.1038/s41467-024-44726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.
Collapse
Affiliation(s)
- Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Haochang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 200030, Shanghai, P.R. China
| | - Miribani Maitusong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Wangxing Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Dilin Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Yi Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Si Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Kaixiang Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China
| | - Jian An Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, P.R. China.
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, P.R. China.
- State Key Laboratory of Transvascular Implantation Devices, 310009, Hangzhou, P.R. China.
- Cardiovascular Key Laboratory of Zhejiang Province, 310009, Hangzhou, P.R. China.
| |
Collapse
|
12
|
Sato K, Takayama KI, Inoue S. Expression and function of estrogen receptors and estrogen-related receptors in the brain and their association with Alzheimer's disease. Front Endocrinol (Lausanne) 2023; 14:1220150. [PMID: 37469978 PMCID: PMC10352578 DOI: 10.3389/fendo.2023.1220150] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023] Open
Abstract
While estrogens are well known for their pivotal role in the female reproductive system, they also play a crucial function in regulating physiological processes associated with learning and memory in the brain. Moreover, they have neuroprotective effects in the pathogenesis of Alzheimer's disease (AD). Importantly, AD has a higher incidence in older and postmenopausal women than in men, and estrogen treatment might reduce the risk of AD in these women. In general, estrogens bind to and activate estrogen receptors (ERs)-mediated transcriptional machineries, and also stimulate signal transduction through membrane ERs (mERs). Estrogen-related receptors (ERRs), which share homologous sequences with ERs but lack estrogen-binding capabilities, are widely and highly expressed in the human brain and have also been implicated in AD pathogenesis. In this review, we primarily provide a summary of ER and ERR expression patterns in the human brain. In addition, we summarize recent studies on their role in learning and memory. We then review and discuss research that has elucidated the functions and importance of ERs and ERRs in AD pathogenesis, including their role in Aβ clearance and the reduction of phosphorylated tau levels. Elucidation of the mechanisms underlying ER- and ERR-mediated transcriptional machineries and their functions in healthy and diseased brains would provide new perspectives for the diagnosis and treatment of AD. Furthermore, exploring the potential role of estrogens and their receptors, ERs, in AD will facilitate a better understanding of the sex differences observed in AD, and lead to novel sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia (IRIDE), TMIG, Tokyo, Japan
| | - Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), Tokyo, Japan
| |
Collapse
|
13
|
Singh U, Saito K, Khan MZ, Jiang J, Toth BA, Rodeghiero SR, Dickey JE, Deng Y, Deng G, Kim YC, Cui H. Collateralizing ventral subiculum melanocortin 4 receptor circuits regulate energy balance and food motivation. Physiol Behav 2023; 262:114105. [PMID: 36736416 PMCID: PMC9981473 DOI: 10.1016/j.physbeh.2023.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Hippocampal dysfunction is associated with major depressive disorder, a serious mental illness characterized by not only depressed mood but also appetite disturbance and dysregulated body weight. However, the underlying mechanisms by which hippocampal circuits regulate metabolic homeostasis remain incompletely understood. Here we show that collateralizing melanocortin 4 receptor (MC4R) circuits in the ventral subiculum (vSUB), one of the major output structures of the hippocampal formation, affect food motivation and energy balance. Viral-mediated cell type- and projection-specific input-output circuit mapping revealed that the nucleus accumbens shell (NAcSh)-projecting vSUBMC4R+ neurons send extensive collateral projections of to various hypothalamic nuclei known to be important for energy balance, including the arcuate, ventromedial and dorsomedial nuclei, and receive monosynaptic inputs mainly from the ventral CA1 and the anterior paraventricular nucleus of thalamus. Chemogenetic activation of NAcSh-projecting vSUBMC4R+neurons lead to increase in motivation to obtain palatable food without noticeable effect on homeostatic feeding. Viral-mediated restoration of MC4R signaling in the vSUB partially restores obesity in MC4R-null mice without affecting anxiety- and depression-like behaviors. Collectively, these results delineate vSUBMC4R+ circuits to the unprecedented level of precision and identify the vSUBMC4R signaling as a novel regulator of food reward and energy balance.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael Z. Khan
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A. Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R. Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E. Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Young-Cho Kim
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
14
|
Wang M, Yang Y, Xu Y. Brain nuclear receptors and cardiovascular function. Cell Biosci 2023; 13:14. [PMID: 36670468 PMCID: PMC9854230 DOI: 10.1186/s13578-023-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yongjie Yang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yong Xu
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
15
|
Lee W, Dwortz MF, Milewski TM, Champagne FA, Curley JP. Social status mediated variation in hypothalamic transcriptional profiles of male mice. Horm Behav 2022; 142:105176. [PMID: 35500322 DOI: 10.1016/j.yhbeh.2022.105176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Animals of different social status exhibit variation in aggression, territorial and reproductive behavior as well as activity patterns, feeding, drinking and status signaling. This behavioral and physiological plasticity is coordinated by underlying changes in brain gene transcription. Using Tag-based RNA sequencing (Tag-seq), we explore RNA transcriptomes from the medial preoptic area (mPOA) and ventral hypothalamus (vHYP) of male mice of different social ranks in a dominance hierarchy and detect candidate genes and cellular pathways that underlie status-related plasticity. Within the mPOA, oxytocin (Oxt) and vasopressin (Avp) are more highly expressed in subdominant mice compared to other ranks, while nitric oxide synthase (Nos1) has lower expression in subdominant mice. Within the vHYP, we find that both orexigenic and anorexigenic genes involved in feeding behavior, including agouti-related peptide (Agrp), neuropeptide-Y (Npy), galanin (Gal), proopiomelanocortin (Pomc), and Cocaine- and Amphetamine-Regulated Transcript Protein prepropeptide (Cartpt), are less expressed in dominant animals compared to more subordinate ranks. We suggest that this may represent a reshaping of feeding circuits in dominant compared to subdominant and subordinate animals. Furthermore, we determine several genes that are positively and negatively associated with the level of despotism (aggression) in dominant males. Ultimately, we identify hypothalamic genes controlling feeding and social behaviors that are differentially transcribed across animals of varying social status. These changes in brain transcriptomics likely support phenotypic variation that enable animals to adapt to their current social status.
Collapse
Affiliation(s)
- W Lee
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, CA, USA
| | - M F Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - T M Milewski
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - F A Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - J P Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Singh U, Jiang J, Saito K, Toth BA, Dickey JE, Rodeghiero SR, Deng Y, Deng G, Xue B, Zhu Z, Zingman LV, Geerling JC, Cui H. Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations. Mol Metab 2022; 55:101401. [PMID: 34823066 PMCID: PMC8689242 DOI: 10.1016/j.molmet.2021.101401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.
Collapse
Affiliation(s)
- Uday Singh
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jingwei Jiang
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jacob E Dickey
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Joel C Geerling
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States; F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
17
|
McMeekin LJ, Joyce KL, Jenkins LM, Bohannon BM, Patel KD, Bohannon AS, Patel A, Fox SN, Simmons MS, Day JJ, Kralli A, Crossman DK, Cowell RM. Estrogen-related Receptor Alpha (ERRα) is Required for PGC-1α-dependent Gene Expression in the Mouse Brain. Neuroscience 2021; 479:70-90. [PMID: 34648866 PMCID: PMC9124582 DOI: 10.1016/j.neuroscience.2021.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
Deficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha. (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons. As a transcriptional coactivator, PGC-1α requires transcription factors to specify cell-type-specific gene programs; while much is known about these factors in peripheral tissues, it is unclear if PGC-1α utilizes these same factors in neurons. Here, we identified putative transcription factors controlling PGC-1α-dependent gene expression in the brain using bioinformatics and then validated the role of the top candidate in a knockout mouse model. We transcriptionally profiled cells overexpressing PGC-1α and searched for over-represented binding motifs in the promoters of upregulated genes. Binding sites of the estrogen-related receptor (ERR) family of transcription factors were enriched, and blockade of ERRα attenuated PGC-1α-mediated induction of mitochondrial and synaptic genes in cell culture. Localization in the mouse brain revealed enrichment of ERRα expression in parvalbumin-expressing neurons with tight correlation of expression with PGC-1α across brain regions. In ERRα null mice, PGC-1α-dependent genes were reduced in multiple regions, including neocortex, hippocampus, and cerebellum, though not to the extent observed in PGC-1α null mice. Behavioral assessment revealed ambulatory hyperactivity in response to amphetamine and impairments in sensorimotor gating without the overt motor impairment characteristic of PGC-1α null mice. These data suggest that ERRα is required for normal levels of expression of PGC-1α-dependent genes in neurons but that additional factors may be involved in their regulation.
Collapse
Affiliation(s)
- L J McMeekin
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K L Joyce
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - L M Jenkins
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - B M Bohannon
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K D Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA
| | - A S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - S N Fox
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - M S Simmons
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - J J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - R M Cowell
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Borsdorf B, Dahmen B, Buehren K, Dempfle A, Egberts K, Ehrlich S, Fleischhaker C, Konrad K, Schwarte R, Timmesfeld N, Wewetzer C, Biemann R, Scharke W, Herpertz-Dahlmann B, Seitz J. BDNF levels in adolescent patients with anorexia nervosa increase continuously to supranormal levels 2.5 years after first hospitalization. J Psychiatry Neurosci 2021; 46:E568-E578. [PMID: 34654737 PMCID: PMC8526129 DOI: 10.1503/jpn.210049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) influences brain plasticity and feeding behaviour, and it has been linked to anorexia nervosa in numerous studies. Findings in mostly adult patients point to reduced serum BDNF levels in the acute stage of anorexia nervosa and rising levels with weight recovery. However, it is unclear whether this increase leads to normalization or supranormal levels, a difference that is potentially important for the etiology of anorexia nervosa and relapse. METHODS We measured serum BDNF at admission (n = 149), discharge (n = 130), 1-year follow-up (n = 116) and 2.5-year follow-up (n = 76) in adolescent female patients with anorexia nervosa hospitalized for the first time, and in healthy controls (n = 79). We analyzed associations with body mass index, eating disorder psychopathology and comorbidities. RESULTS Serum BDNF was only nominally lower at admission in patients with anorexia nervosa compared to healthy controls, but it increased continuously and reached supranormal levels at 2.5-year follow-up. BDNF was inversely associated with eating disorder psychopathology at discharge and positively associated with previous weight gain at 1-year follow-up. LIMITATIONS We compensated for attrition and batch effects using statistical measures. CONCLUSION In this largest longitudinal study to date, we found only nonsignificant reductions in BDNF in the acute stage of anorexia nervosa, possibly because of a shorter illness duration in adolescent patients. Supranormal levels of BDNF at 2.5-year follow-up could represent a pre-existing trait or a consequence of the illness. Because of the anorexigenic effect of BDNF, it might play an important predisposing role for relapse and should be explored further in studies that test causality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jochen Seitz
- From the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen, Germany (Borsdorf, Dahmen, Buehren, Scharke, Herpertz-Dahlmann, Seitz); the kbo-Heckscher Klinikum, Academic Teaching Hospital, Ludwig Maximilian University, Munich, Germany (Buehren); the Institute of Medical Informatics and Statistics, Kiel University, Germany (Dempfle); the Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Wuerzburg, Germany (Egberts); the Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany (Ehrlich); the Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany (Ehrlich); the Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Freiburg, Germany (Fleischhaker); the Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen (Konrad); the JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Juelich Research Centre, Germany (Konrad); the Oberberg Fachklinik Konraderhof, Cologne-Huerth, Germany (Schwarte); the Institute of Medical Biometry and Epidemiology, Philipps-University Marburg, Germany (Timmesfeld); the Department of Medical Informatics, Biometrics and Epidemiology, Ruhr University Bochum, Germany (Timmesfeld); the Department of Child and Adolescent Psychiatry and Psychotherapy, Cologne City Hospitals, Germany (Wewetzer); the Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany (Biemann); the Cognitive and Experimental Psychology, Institute of Psychology, RWTH Aachen University, Germany (Scharke)
| |
Collapse
|
19
|
Molecular dynamics of estrogen-related receptors and their regulatory proteins: roles in transcriptional control for endocrine and metabolic signaling. Anat Sci Int 2021; 97:15-29. [PMID: 34609710 DOI: 10.1007/s12565-021-00634-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Estrogen-related receptor (ERR) is a member of the nuclear receptor (NR) superfamily and has three subtypes α, β, and γ. Despite their strong homology with estrogen receptor (ER) α, ERRs cannot accommodate endogenous hormones. However, they are able to regulate gene expression without ligand binding. ERRα and ERRγ orchestrate the expression of genes involved in bioenergetic pathways, while ERRβ controls placental development and stem cell maintenance. Evidence from recent studies, including clinical research, has also demonstrated close associations of ERRs with the pathophysiology of hormone-related cancers and metabolic disorders including type 2 diabetes mellitus. This review summarizes the basic knowledge and recent advances in ERRs and their associated proteins, focusing on the subcellular dynamics involved in transcriptional regulation. Fluorescent protein labeling enabled monitoring of ERRs in living cells and revealed previously unrecognized characteristics. Using this technique, we demonstrated a role of ERRβ in controlling estrogen signaling by regulating the subnuclear dynamics of ligand-activated ERα. Visualization of ERRs and related proteins and subsequent analyses also revealed a function of ERRγ in promoting liver lactate metabolism in association with LRPGC1, a recently identified lactic acid-responsive protein. These findings suggest that ERRs activate unique transregulation mechanisms in response to extracellular stimuli such as hormones and metabolic signals, implying an adaptive system behind the cellular homeostatic regulation by orphan NRs. Control of subcellular ERR dynamics will contribute toward the development of therapeutic approaches to treat various diseases including hormone-related cancers and metabolic disorders associated with abnormal ERR signaling pathways.
Collapse
|
20
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
21
|
Davis KC, Saito K, Rodeghiero SR, Toth BA, Lutter M, Cui H. Behavioral Alterations in Mice Carrying Homozygous HDAC4 A778T Missense Mutation Associated With Eating Disorder. Front Neurosci 2020; 14:139. [PMID: 32153359 PMCID: PMC7046559 DOI: 10.3389/fnins.2020.00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Eating disorders (EDs) are serious mental illnesses thought to arise from the complex gene-environment interactions. DNA methylation patterns in histone deacetylase 4 (HDAC4) locus have been associated with EDs and we have previously identified a missense mutation in the HDAC4 gene (HDAC4A786T) that increases the risk of developing an ED. In order to evaluate the biological consequences of this variant and establish a useful mouse model of EDs, here we performed behavioral characterization of mice homozygous for Hdac4A778T (corresponding to human HDAC4A786T) that were further backcrossed onto C57BL/6 background. When fed high-fat diet, male, but not female, homozygous mice showed a trend toward decreased weight gain compared to their wild-type littermates. Behaviorally, male, but not female, homozygous mice spent less time in eating and exhibited reduced motivation to work for palatable food and light phase-specific decrease in locomotor activity. Additionally, homozygous Hdac4A778T female, but not male, mice display social subordination when subjected to a tube dominance test. Collectively, these results reveal a complex sex- and circadian-dependent role of ED-associated Hdac4A778T mutation in affecting mouse behaviors. Homozygous Hdac4A778T mice could therefore be a useful animal model to gain insight into the neurobiological basis of EDs.
Collapse
Affiliation(s)
- Kevin C Davis
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kenji Saito
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Samuel R Rodeghiero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Brandon A Toth
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael Lutter
- Eating Recovery Center of San Antonio, San Antonio, TX, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,F.O.E. Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
22
|
Tang Y, Min Z, Xiang XJ, Liu L, Ma YL, Zhu BL, Song L, Tang J, Deng XJ, Yan Z, Chen GJ. Estrogen-related receptor alpha is involved in Alzheimer's disease-like pathology. Exp Neurol 2018; 305:89-96. [PMID: 29641978 DOI: 10.1016/j.expneurol.2018.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Estrogen-related receptor alpha (ERRα) is a transcriptional factor associated with mitochondrial biogenesis and energy metabolism. However, little is known about the role of ERRα in Alzheimer's disease (AD). Here, we report that in APP/PS1 mice, an animal model of AD, ERRα protein and mRNA were decreased in a region- and age-dependent manner. In HEK293 cells that stably express human full-length β-amyloid precursor protein (APP), overexpression of ERRα inhibited the amyloidogenic processing of APP and consequently reduced Aβ1-40/1-42 level. ERRα overexpression also attenuated Tau phosphorylation at selective sites, with the concomitant reduction of glycogen synthase kinase 3β (GSK3β) activity. Interestingly, alterations of APP processing and Tau phosphorylation induced by hydrogen peroxide were reversed by ERRα overexpression in HEK/APP cells. These results indicated that ERRα plays a functional role in AD pathology. By attenuating both amyloidogenesis and Tau phosphorylation, ERRα may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ying Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhuo Min
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Jiao Xiang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Liu
- Thirteenth people's Hospital of Chongqing, Chongqing 400016, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
23
|
Pei L, Wallace DC. Mitochondrial Etiology of Neuropsychiatric Disorders. Biol Psychiatry 2018; 83:722-730. [PMID: 29290371 PMCID: PMC5891364 DOI: 10.1016/j.biopsych.2017.11.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
Abstract
The brain has the highest mitochondrial energy demand of any organ. Therefore, subtle changes in mitochondrial energy production will preferentially affect the brain. Considerable biochemical evidence has accumulated revealing mitochondrial defects associated with neuropsychiatric diseases. Moreover, the mitochondrial genome encompasses over a thousand nuclear DNA genes plus hundreds to thousands of copies of the maternally inherited mitochondrial DNA (mtDNA). Therefore, partial defects in either the nuclear DNA or mtDNA genes or combinations of the two can be sufficient to cause neuropsychiatric disorders. Inherited and acquired mtDNA mutations have recently been associated with autism spectrum disorder, which parallels previous evidence of mtDNA variation in other neurological diseases. Therefore, mitochondrial dysfunction may be central to the etiology of a wide spectrum of neurological diseases. The mitochondria and the nucleus communicate to coordinate energy production and utilization, providing the potential for therapeutics by manipulating nuclear regulation of mitochondrial gene expression.
Collapse
|
24
|
Heimann PM, Konrad K, Vloet TD. [Anorexia nervosa in males]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2018; 46:478-487. [PMID: 29651909 DOI: 10.1024/1422-4917/a000579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Anorexia nervosa in males Abstract. Anorexia nervosa (AN) is a rare disorder in boys and men with limited data and studies available. The recent update of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) will in all likelihood lead to an increase in the prevalence of AN in boys and men. This study aims to give an overview of the existing data in regards to gender differences in epidemiology, etiology, and symptoms of AN. We aim to highlight the differences in AN between the sexes, from a clinical point of view, and underline the need for further research on AN in boys.
Collapse
Affiliation(s)
- Pola Maria Heimann
- 1 Universitätsklinikum, Klinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, RWTH Aachen
| | - Kerstin Konrad
- 2 Lehr- und Forschungsgebiet für klinische Neuropsychologie des Kindes und Jugendalters, Universitätsklinikum der RWTH Aachen
| | - Timo D Vloet
- 3 Universitätsklinikum, Zentrum für psychische Gesundheit (ZEP), Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, Würzburg
| |
Collapse
|
25
|
Emerging Roles of Estrogen-Related Receptors in the Brain: Potential Interactions with Estrogen Signaling. Int J Mol Sci 2018; 19:ijms19041091. [PMID: 29621182 PMCID: PMC5979530 DOI: 10.3390/ijms19041091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 01/22/2023] Open
Abstract
In addition to their well-known role in the female reproductive system, estrogens can act in the brain to regulate a wide range of behaviors and physiological functions in both sexes. Over the past few decades, genetically modified animal models have greatly increased our knowledge about the roles of estrogen receptor (ER) signaling in the brain in behavioral and physiological regulations. However, less attention has been paid to the estrogen-related receptors (ERRs), the members of orphan nuclear receptors whose sequences are homologous to ERs but lack estrogen-binding ability. While endogenous ligands of ERRs remain to be determined, they seemingly share transcriptional targets with ERs and their expression can be directly regulated by ERs through the estrogen-response element embedded within the regulatory region of the genes encoding ERRs. Despite the broad expression of ERRs in the brain, we have just begun to understand the fundamental roles they play at molecular, cellular, and circuit levels. Here, we review recent research advancement in understanding the roles of ERs and ERRs in the brain, with particular emphasis on ERRs, and discuss possible cross-talk between ERs and ERRs in behavioral and physiological regulations.
Collapse
|
26
|
Abstract
Eating disorders (EDs), including anorexia nervosa, bulimia nervosa, and binge-eating disorder, constitute a class of common and deadly psychiatric disorders. While numerous studies in humans highlight the important role of neurobiological alterations in the development of ED-related behaviors, the precise neural substrate that mediates this risk is unknown. Historically, pharmacological interventions have played a limited role in the treatment of eating disorders, typically providing symptomatic relief of comorbid psychiatric issues, like depression and anxiety, in support of the standard nutritional and psychological treatments. To date there are no Food and Drug Administration-approved medications or procedures for anorexia nervosa, and only one Food and Drug Administration-approved medication each for bulimia nervosa (fluoxetine) and binge-eating disorder (lisdexamfetamine). While there is little primary interest in drug development for eating disorders, postmarket monitoring of medications and procedures approved for other indications has identified several novel treatment options for patients with eating disorders. In this review, I utilize searches of the PubMed and ClinicalTrials.gov databases to highlight emerging treatments in eating disorders.
Collapse
Affiliation(s)
- Michael Lutter
- Eating Recovery Center of Dallas, 4716 Alliance Blvd. #400, Plano, TX, 75093, USA.
| |
Collapse
|
27
|
Saul MC, Seward CH, Troy JM, Zhang H, Sloofman LG, Lu X, Weisner PA, Caetano-Anolles D, Sun H, Zhao SD, Chandrasekaran S, Sinha S, Stubbs L. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res 2017; 27:959-972. [PMID: 28356321 PMCID: PMC5453329 DOI: 10.1101/gr.214221.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.
Collapse
Affiliation(s)
- Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Illinois Informatics Institute, Urbana, Illinois 61801, USA
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Laura G Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaochen Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Patricia A Weisner
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Derek Caetano-Anolles
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hao Sun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA
- Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Computer Science
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
28
|
Lutter M, Khan MZ, Satio K, Davis KC, Kidder IJ, McDaniel L, Darbro BW, Pieper AA, Cui H. The Eating-Disorder Associated HDAC4 A778T Mutation Alters Feeding Behaviors in Female Mice. Biol Psychiatry 2017; 81:770-777. [PMID: 27884425 PMCID: PMC5386818 DOI: 10.1016/j.biopsych.2016.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/02/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND While eating disorders (EDs) are thought to result from a combination of environmental and psychological stressors superimposed on genetic vulnerability, the neurobiological basis of EDs remains incompletely understood. We recently reported that a rare missense mutation in the gene for the transcriptional repressor histone deacetylase 4 (HDAC4) is associated with the risk of developing an ED in humans. METHODS To understand the biological consequences of this missense mutation, we created transgenic mice carrying this mutation by introducing the alanine to threonine mutation at position 778 of mouse Hdac4 (corresponding to position 786 of the human protein). Bioinformatic analysis to identify Hdac4-regulated genes was performed using available databases. RESULTS Male mice heterozygous for HDAC4A778T did not show any metabolic or behavioral differences. In contrast, female mice heterozygous for HDAC4A778T display several ED-related feeding and behavioral deficits depending on housing condition. Individually housed HDAC4A778T female mice exhibit reduced effortful responding for high-fat diet and compulsive grooming, whereas group-housed female mice display increased weight gain on high-fat diet, reduced behavioral despair, and increased anxiety-like behaviors. Bioinformatic analysis identifies mitochondrial biogenesis including synthesis of glutamate/gamma-aminobutyric acid as a potential transcriptional target of HDAC4A778T activity relevant to the behavioral deficits identified in this new mouse model of disordered eating. CONCLUSIONS The HDAC4A778T mouse line is a novel model of ED-related behaviors and identifies mitochondrial biogenesis as a potential molecular pathway contributing to behavioral deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huxing Cui
- Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
29
|
De Jesús-Cortés H, Lu Y, Anderson RM, Khan MZ, Nath V, McDaniel L, Lutter M, Radley JJ, Pieper AA, Cui H. Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice. Neuroscience 2016; 329:66-73. [PMID: 27155145 PMCID: PMC8916097 DOI: 10.1016/j.neuroscience.2016.04.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/09/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice.
Collapse
Affiliation(s)
- Héctor De Jesús-Cortés
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Yuan Lu
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rachel M Anderson
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael Z Khan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Varun Nath
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Latisha McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Jason J Radley
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew A Pieper
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA; Free Radical & Radiation Biology Program, Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Huxing Cui
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|