1
|
Guo Y, Zhang Q, Zhang B, Pan T, Ronan EA, Huffman A, He Y, Inoki K, Liu J, Xu XS. Dietary cinnamon promotes longevity and extends healthspan via mTORC1 and autophagy signaling. Aging Cell 2025; 24:e14448. [PMID: 39760475 PMCID: PMC11984692 DOI: 10.1111/acel.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Cinnamon, renowned for its aromatic flavor, represents one of the most widely used spices worldwide. Cinnamon is also considered beneficial to human health with therapeutic potential for treating various diseases, ranging from diabetes and cancer to neurodegenerative diseases. However, the mechanisms underlying cinnamon's health benefits remain elusive. It is also unclear whether cinnamon has any role in aging. Using C. elegans as a model, here we show that feeding worms cinnamaldehyde (CA), the active ingredient in cinnamon oil, prolongs longevity. CA also promotes stress resistance and reduces β-Amyloid toxicity in a C. elegans model of Alzheimer's disease. Mechanistically, CA exerts its beneficial effects through mTORC1 and autophagy signaling. Interestingly, CA promotes longevity by inducing a dietary restriction-like state without affecting food intake, suggesting CA as a dietary restriction mimetic. In human cells, CA exerts a similar effect on mTORC1 and autophagy signaling, suggesting a conserved mechanism. Our results demonstrate that dietary cinnamon promotes both lifespan and healthspan and does so by regulating mTORC1 and autophagy signaling.
Collapse
Affiliation(s)
- Yuling Guo
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Qing Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Bi Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Tong Pan
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Ronan
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Anthony Huffman
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Yongqun He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- Unit for Laboratory Animal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Ken Inoki
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOEHuazhong University of Science and TechnologyWuhanHubeiChina
- Bioland LaboratoryGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhouChina
| | - X.Z. Shawn Xu
- Life Sciences Institute, University of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Martino RA, Volke DC, Tenaglia AH, Tribelli PM, Nikel PI, Smania AM. Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption. Microb Biotechnol 2025; 18:e70137. [PMID: 40172309 PMCID: PMC11963287 DOI: 10.1111/1751-7915.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
The second messenger bis-(3' → 5')-cyclic dimeric guanosine monophosphate (c-di-GMP) governs adaptive responses in the opportunistic pathogen Pseudomonas aeruginosa, including biofilm formation and the transition from acute to chronic infections. Understanding the intricate c-di-GMP signalling network remains challenging due to the overlapping activities of numerous diguanylate cyclases (DGCs). In this study, we employed a CRISPR-based multiplex genome-editing tool to disrupt all 32 GGDEF domain-containing proteins (GCPs) implicated in c-di-GMP signalling in P. aeruginosa PA14. Phenotypic and physiological analyses revealed that the resulting mutant was unable to form biofilms and had attenuated virulence. Residual c-di-GMP levels were still detected despite the extensive GCP disruption, underscoring the robustness of this regulatory network. Taken together, these findings provide insights into the complex c-di-GMP metabolism and showcase the importance of functional overlapping in bacterial signalling. Moreover, our approach overcomes the native redundancy in c-di-GMP synthesis, providing a framework to dissect individual DGC functions and paving the way for targeted strategies to address bacterial adaptation and pathogenesis.
Collapse
Affiliation(s)
- Román A. Martino
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Albano H. Tenaglia
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| | - Paula M. Tribelli
- Universidad de Buenos AiresFacultad de Ciencias Exactas y Naturales, Departamento de Química BiológicaBuenos AiresArgentina
- CONICET, Universidad de Buenos AiresInstituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)Buenos AiresArgentina
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
| | - Andrea M. Smania
- Universidad Nacional de CórdobaFacultad de Ciencias Químicas, Departamento de Química Biológica Ranwel CaputtoCórdobaArgentina
- CONICET, Universidad Nacional de CórdobaCentro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)CórdobaArgentina
| |
Collapse
|
3
|
Wei R, Peng Y, Luo Y, Wang X, Pan Z, Zhou R, Yang H, Huang Z, Liu Y, Dai L, Wang Y, Zhang Y. Doxifluridine promotes host longevity through bacterial metabolism. PLoS Genet 2025; 21:e1011648. [PMID: 40163476 PMCID: PMC11977963 DOI: 10.1371/journal.pgen.1011648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/08/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Aging is associated with alternative splicing (AS) defects that have broad implications on aging-associated disorders. However, which drug(s) can rescue age-related AS defects and extend lifespan has not been systematically explored. We performed large-scale compound screening in C. elegans using a dual-fluorescent splicing reporter system. Among the top hits, doxifluridine, a fluoropyrimidine derivative, rescues age-associated AS defects and extends lifespan. Combining bacterial DNA sequencing, proteomics, metabolomics and the three-way screen system, we further revealed that bacterial ribonucleotide metabolism plays an essential role in doxifluridine conversion and efficacy. Furthermore, doxifluridine increases production of bacterial metabolites, such as linoleic acid and agmatine, to prolong host lifespan. Together, our results identify doxifluridine as a potent lead compound for rescuing aging-associated AS defects and extending lifespan, and elucidate drug's functions through complex interplay among drug, bacteria and host.
Collapse
Affiliation(s)
- Rui Wei
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuling Peng
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Luo
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyuan Wang
- Proteomics-Metabolomics Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenzhong Pan
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ran Zhou
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, Sichuan, China
| | - Huan Yang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zongyao Huang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaojia Liu
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, Sichuan, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Sheng Y, Abreu A, Markovich Z, Ebea P, Davis L, Park E, Sheng P, Xie M, Han SM, Xiao R. A mitochondrial unfolded protein response-independent role of DVE-1 in longevity regulation. Cell Rep 2024; 43:114889. [PMID: 39423131 PMCID: PMC11648574 DOI: 10.1016/j.celrep.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
The special AT-rich sequence-binding (SATB) protein DVE-1 is widely recognized for its pivotal involvement in orchestrating the retrograde mitochondrial unfolded protein response (mitoUPR) in C. elegans. In our study of downstream factors contributing to lifespan extension in sensory ciliary mutants, we find that DVE-1 is crucial for this longevity effect independent of its canonical mitoUPR function. Additionally, DVE-1 also influences lifespan under conditions of dietary restriction and germline loss, again distinct from its role in mitoUPR. Mechanistically, while mitochondrial stress typically prompts nuclear accumulation of DVE-1 to initiate the transcriptional mitoUPR program, these long-lived mutants reduce DVE-1 nuclear accumulation, likely by enhancing its cytosolic translocation. This observation suggests a cytosolic role for DVE-1 in lifespan extension. Overall, our study implies that, in contrast to the more narrowly defined role of the mitoUPR-related transcription factor ATFS-1, DVE-1 may possess broader functions than previously recognized in modulating longevity and defending against stress.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Pearl Ebea
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Leah Davis
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eric Park
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute on Aging, University of Florida, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Kong W, Gu G, Dai T, Chen B, Wang Y, Zeng Z, Pu M. ELO-6 expression predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Commun 2024; 15:9470. [PMID: 39488532 PMCID: PMC11531548 DOI: 10.1038/s41467-024-53887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Variations of individual lifespans within genetically identical populations in homogenous environments are remarkable, with the cause largely unknown. Here, we show the expression dynamic of the Caenorhabditis elegans fatty acid elongase ELO-6 during aging predicts individual longevity in isogenic populations. elo-6 expression is reduced with age. ELO-6 expression level exhibits obvious variation between individuals in mid-aged worms and is positively correlated with lifespan and health span. Interventions that prolong longevity enhance ELO-6 expression stability during aging, indicating ELO-6 is also a populational lifespan predictor. Differentially expressed genes between short-lived and long-lived isogenic worms regulate lifespan and are enriched for PQM-1 binding sites. pqm-1 in young to mid-aged adults causes individual ELO-6 expression heterogeneity and restricts health span and life span. Thus, our study identifies ELO-6 as a predictor of individual and populational lifespan and reveals the role of pqm-1 in causing individual health span variation in the mid-aged C. elegans.
Collapse
Affiliation(s)
- Weilin Kong
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Gu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tong Dai
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Beibei Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yanli Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zheng Zeng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mintie Pu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
6
|
Muhammad T, Edwards SL, Morphis AC, Johnson MV, Oliveira VD, Chamera T, Liu S, Nguyen NGT, Li J. Non-cell-autonomous regulation of germline proteostasis by insulin/IGF-1 signaling-induced dietary peptide uptake via PEPT-1. EMBO J 2024; 43:4892-4921. [PMID: 39284915 PMCID: PMC11535032 DOI: 10.1038/s44318-024-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 11/06/2024] Open
Abstract
Gametogenesis involves active protein synthesis and is proposed to rely on proteostasis. Our previous work in C. elegans indicates that germline development requires coordinated activities of insulin/IGF-1 signaling (IIS) and HSF-1, the central regulator of the heat shock response. However, the downstream mechanisms were not identified. Here, we show that depletion of HSF-1 from germ cells impairs chaperone gene expression, causing protein degradation and aggregation and, consequently, reduced fecundity and gamete quality. Conversely, reduced IIS confers germ cell resilience to HSF-1 depletion-induced protein folding defects and various proteotoxic stresses. Surprisingly, this effect was not mediated by an enhanced stress response, which underlies longevity in low IIS conditions, but by reduced ribosome biogenesis and translation rate. We found that IIS activates the expression of intestinal peptide transporter PEPT-1 by alleviating its repression by FOXO/DAF-16, allowing dietary proteins to be efficiently incorporated into an amino acid pool that fuels germline protein synthesis. Our data suggest this non-cell-autonomous pathway is critical for proteostasis regulation during gametogenesis.
Collapse
Affiliation(s)
- Tahir Muhammad
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mary V Johnson
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Vitor De Oliveira
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siyan Liu
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | | | - Jian Li
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
7
|
Ponomarova O, Starbard AN, Belfi A, Anderson AV, Sundaram MV, Walhout AJ. idh-1 neomorphic mutation confers sensitivity to vitamin B12 in Caenorhabditis elegans. Life Sci Alliance 2024; 7:e202402924. [PMID: 39009411 PMCID: PMC11249921 DOI: 10.26508/lsa.202402924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
In humans, a neomorphic isocitrate dehydrogenase mutation (idh-1neo) causes increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a Caenorhabditis elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to ∆dhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen, we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. In addition, supplementation with alternate sources of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding of how this oncogenic mutation rewires cellular metabolism.
Collapse
Affiliation(s)
- Olga Ponomarova
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Alyxandra N Starbard
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda V Anderson
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Albertha Jm Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
9
|
Kohlbrenner T, Berger S, Laranjeira AC, Aegerter-Wilmsen T, Comi LF, deMello A, Hajnal A. Actomyosin-mediated apical constriction promotes physiological germ cell death in C. elegans. PLoS Biol 2024; 22:e3002775. [PMID: 39178318 PMCID: PMC11376560 DOI: 10.1371/journal.pbio.3002775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/05/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Germ cell apoptosis in Caenorhabditis elegans hermaphrodites is a physiological process eliminating around 60% of all cells in meiotic prophase to maintain tissue homeostasis. In contrast to programmed cell death in the C. elegans soma, the selection of germ cells undergoing apoptosis is stochastic. By live-tracking individual germ cells at the pachytene stage, we found that germ cells smaller than their neighbors are selectively eliminated through apoptosis before differentiating into oocytes. Thus, cell size is a strong predictor of physiological germ cell death. The RAS/MAPK and ECT/RHO/ROCK pathways together regulate germ cell size by controlling actomyosin constriction at the apical rachis bridges, which are cellular openings connecting the syncytial germ cells to a shared cytoplasmic core. Enhancing apical constriction reduces germ cell size and increases the rate of cell death while inhibiting the actomyosin network in the germ cells prevents their death. We propose that actomyosin contractility at the rachis bridges of the syncytial germ cells amplifies intrinsic disparities in cell size. Through this mechanism, the animals can adjust the balance between physiological germ cell death and oocyte differentiation.
Collapse
Affiliation(s)
- Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Ana Cristina Laranjeira
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | | | - Laura Filomena Comi
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- Molecular Life Science PhD Program, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Romoli O, Henrion-Lacritick A, Blanc H, Frangeul L, Saleh MC. Limitations in harnessing oral RNA interference as an antiviral strategy in Aedes aegypti. iScience 2024; 27:109261. [PMID: 38433898 PMCID: PMC10907830 DOI: 10.1016/j.isci.2024.109261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Mosquitoes, particularly Aedes aegypti, are critical vectors for globally significant pathogenic viruses. This study examines the limitations of oral RNA interference (RNAi) as a strategy to disrupt viral transmission by Ae. aegypti. We hypothesized that double-stranded RNA (dsRNA) targeting the Zika virus (ZIKV) or chikungunya virus (CHIKV) genomes produced by engineered bacterial symbionts could trigger an antiviral response. Mosquitoes mono-colonized with Escherichia coli producing dsZIK or dsCHIK did not display reduced viral titers following exposure to virus-contaminated bloodmeals and failed to generate dsZIK- or dsCHIK-derived small interfering RNAs. To address potential limitations of bacterial dsRNA release, we explored dsRNA inoculation via feeding and injection. Although viral replication was impeded in mosquitoes injected with dsZIK or dsCHIK, no antiviral effect was observed in dsRNA-fed mosquitoes. These findings highlight complexities of implementing oral RNAi as an antiviral strategy in Ae. aegypti and warrant further exploration of local and systemic RNAi mechanisms.
Collapse
Affiliation(s)
- Ottavia Romoli
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNAi Unit, F-75015 Paris, France
| | | | - Hervé Blanc
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNAi Unit, F-75015 Paris, France
| | - Lionel Frangeul
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNAi Unit, F-75015 Paris, France
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNAi Unit, F-75015 Paris, France
| |
Collapse
|
11
|
Ponomarova O, Starbard AN, Belfi A, Anderson AV, Sundaram MV, Walhout AJM. idh-1 neomorphic mutation confers sensitivity to vitamin B12 via increased dependency on one-carbon metabolism in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584865. [PMID: 38559246 PMCID: PMC10979948 DOI: 10.1101/2024.03.13.584865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The isocitrate dehydrogenase neomorphic mutation ( idh-1neo ) generates increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a C. elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to Δdhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. Additionally, supplementation with an alternate source of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding how this oncogenic mutation rewires cellular metabolism.
Collapse
|
12
|
Turner CD, Ramos CM, Curran SP. Disrupting the SKN-1 homeostat: mechanistic insights and phenotypic outcomes. FRONTIERS IN AGING 2024; 5:1369740. [PMID: 38501033 PMCID: PMC10944932 DOI: 10.3389/fragi.2024.1369740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The mechanisms that govern maintenance of cellular homeostasis are crucial to the lifespan and healthspan of all living systems. As an organism ages, there is a gradual decline in cellular homeostasis that leads to senescence and death. As an organism lives into advanced age, the cells within will attempt to abate age-related decline by enhancing the activity of cellular stress pathways. The regulation of cellular stress responses by transcription factors SKN-1/Nrf2 is a well characterized pathway in which cellular stress, particularly xenobiotic stress, is abated by SKN-1/Nrf2-mediated transcriptional activation of the Phase II detoxification pathway. However, SKN-1/Nrf2 also regulates a multitude of other processes including development, pathogenic stress responses, proteostasis, and lipid metabolism. While this process is typically tightly regulated, constitutive activation of SKN-1/Nrf2 is detrimental to organismal health, this raises interesting questions surrounding the tradeoff between SKN-1/Nrf2 cryoprotection and cellular health and the ability of cells to deactivate stress response pathways post stress. Recent work has determined that transcriptional programs of SKN-1 can be redirected or suppressed to abate negative health outcomes of constitutive activation. Here we will detail the mechanisms by which SKN-1 is controlled, which are important for our understanding of SKN-1/Nrf2 cytoprotection across the lifespan.
Collapse
Affiliation(s)
- Chris D. Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Camara H, Inan MD, Vergani-Junior CA, Pinto S, Knittel TL, Salgueiro WG, Tonon-da-Silva G, Ramirez J, de Moraes D, Braga DL, De-Souza EA, Mori MA. Tissue-specific overexpression of systemic RNA interference components limits lifespan in C. elegans. Gene 2024; 895:148014. [PMID: 37984536 DOI: 10.1016/j.gene.2023.148014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Intertissue RNA transport recently emerged as a novel signaling mechanism. In mammals, mounting evidence suggests that small RNA transfer between cells is widespread and used in various physiological contexts. In the nematode C. elegans, a similar mechanism is conferred by the systemic RNAi pathway. Members of the Systemic RNA Interference Defective (SID) family act at different steps of cellular RNA uptake and export. The limiting step in systemic RNA interference (RNAi) is the import of extracellular RNAs via the conserved double-stranded (dsRNA)-gated dsRNA channel SID-1. To better understand the role of RNAs as intertissue signaling molecules, we modified the function of SID-1 in specific tissues of C. elegans. We observed that sid-1 loss-of-function mutants are as healthy as wild-type worms. Conversely, overexpression of sid-1 in C. elegans intestine, muscle, or neurons rendered worms short-lived. The effects of intestinal sid-1 overexpression were attenuated by silencing the components of systemic RNAi sid-1, sid-2 and sid-5, implicating systemic RNA signaling in the lifespan reduction. Accordingly, tissue-specific overexpression of sid-2 and sid-5 also reduced worm lifespan. Additionally, an RNAi screen for components of several non-coding RNA pathways revealed that silencing the miRNA biogenesis proteins PASH-1 and DCR-1 rendered the lifespan of worms with intestinal sid-1 overexpression similar to controls. Collectively, our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).
Collapse
Affiliation(s)
- Henrique Camara
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Mehmet Dinçer Inan
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos A Vergani-Junior
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Silas Pinto
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Thiago L Knittel
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Willian G Salgueiro
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Guilherme Tonon-da-Silva
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana Ramirez
- Program in Molecular Biology, Universidade Federal de São Paulo, Brazil
| | - Diogo de Moraes
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Deisi L Braga
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil; Program in Molecular Biology and Biotechnology, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil; Program in Molecular Biology, Universidade Federal de São Paulo, Brazil; Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
14
|
Bellver-Sanchis A, Geng Q, Navarro G, Ávila-López PA, Companys-Alemany J, Marsal-García L, Larramona-Arcas R, Miró L, Perez-Bosque A, Ortuño-Sahagún D, Banerjee DR, Choudhary BS, Soriano FX, Poulard C, Pallàs M, Du HN, Griñán-Ferré C. G9a Inhibition Promotes Neuroprotection through GMFB Regulation in Alzheimer's Disease. Aging Dis 2024; 15:311-337. [PMID: 37307824 PMCID: PMC10796087 DOI: 10.14336/ad.2023.0424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Epigenetic alterations are a fundamental pathological hallmark of Alzheimer's disease (AD). Herein, we show the upregulation of G9a and H3K9me2 in the brains of AD patients. Interestingly, treatment with a G9a inhibitor (G9ai) in SAMP8 mice reversed the high levels of H3K9me2 and rescued cognitive decline. A transcriptional profile analysis after G9ai treatment revealed increased gene expression of glia maturation factor β (GMFB) in SAMP8 mice. Besides, a H3K9me2 ChIP-seq analysis after G9a inhibition treatment showed the enrichment of gene promoters associated with neural functions. We observed the induction of neuronal plasticity and a reduction of neuroinflammation after G9ai treatment, and more strikingly, these neuroprotective effects were reverted by the pharmacological inhibition of GMFB in mice and cell cultures; this was also validated by the RNAi approach generating the knockdown of GMFB/Y507A.10 in Caenorhabditis elegans. Importantly, we present evidence that GMFB activity is controlled by G9a-mediated lysine methylation as well as we identified that G9a directly bound GMFB and catalyzed the methylation at lysine (K) 20 and K25 in vitro. Furthermore, we found that the neurodegenerative role of G9a as a GMFB suppressor would mainly rely on methylation of the K25 position of GMFB, and thus G9a pharmacological inhibition removes this methylation promoting neuroprotective effects. Then, our findings confirm an undescribed mechanism by which G9a inhibition acts at two levels, increasing GMFB and regulating its function to promote neuroprotective effects in age-related cognitive decline.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Qizhi Geng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Department Biochemistry and Physiology, Faculty of Pharmacy. Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Laura Marsal-García
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
| | - Raquel Larramona-Arcas
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Lluisa Miró
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Anna Perez-Bosque
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, México.
| | | | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India.
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India.
| | - Francesc X Soriano
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, F-69000 Lyon, France.
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Wynen F, Krautstrunk J, Müller LM, Graf V, Brinkmann V, Fritz G. Cisplatin-induced DNA crosslinks trigger neurotoxicity in C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119591. [PMID: 37730131 DOI: 10.1016/j.bbamcr.2023.119591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
The anticancer drug cisplatin (CisPt) injures post-mitotic neuronal cells, leading to neuropathy. Furthermore, CisPt triggers cell death in replicating cells. Here, we aim to unravel the relevance of different types of CisPt-induced DNA lesions for evoking neurotoxicity. To this end, we comparatively analyzed wild-type and loss of function mutants of C. elegans lacking key players of specific DNA repair pathways. Deficiency in ercc-1, which is essential for nucleotide excision repair (NER) and interstrand crosslink (ICL) repair, revealed the most pronounced enhancement in CisPt-induced neurotoxicity with respect to the functionality of post-mitotic chemosensory AWA neurons, without inducing neuronal cell death. Potentiation of CisPt-triggered neurotoxicity in ercc-1 mutants was accompanied by complex alterations in both basal and CisPt-stimulated mRNA expression of genes involved in the regulation of neurotransmission, including cat-4, tph-1, mod-1, glr-1, unc-30 and eat-18. Moreover, xpf-1, csb-1, csb-1;xpc-1 and msh-6 mutants were significantly more sensitive to CisPt-induced neurotoxicity than the wild-type, whereas xpc-1, msh-2, brc-1 and dog-1 mutants did not distinguish from the wild-type. The majority of DNA repair mutants also revealed increased basal germline apoptosis, which was analyzed for control. Yet, only xpc-1, xpc-1;csb-1 and dog-1 mutants showed elevated apoptosis in the germline following CisPt treatment. To conclude, we provide evidence that neurotoxicity, including sensory neurotoxicity, is triggered by CisPt-induced DNA intra- and interstrand crosslinks that are subject of repair by NER and ICL repair. We hypothesize that especially ERCC1/XPF, CSB and MSH6-related DNA repair protects from chemotherapy-induced neuropathy in the context of CisPt-based anticancer therapy.
Collapse
Affiliation(s)
- Fabian Wynen
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Johannes Krautstrunk
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Lisa Marie Müller
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Viktoria Graf
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Vanessa Brinkmann
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Gerhard Fritz
- Heinrich Heine University Düsseldorf, Medical Faculty, Institute of Toxicology, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Yu C, Li J, Zhang Z, Zong M, Qin C, Mo Z, Sun D, Yang D, Zeng Q, Wang J, Ma K, Li J, Wan H, He S. Metal-Organic Framework-Based Insecticide and dsRNA Codelivery System for Insecticide Resistance Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48495-48505. [PMID: 37787656 DOI: 10.1021/acsami.3c09074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Targeted silencing of resistance-associated genes by specific double-stranded RNA (dsRNA) is an attractive strategy for overcoming insecticide resistance in insect pests. However, silencing target genes of insect pests by feeding on dsRNA transported via plants remains challenging. Herein, a codelivery system of insecticide and dsRNA is designed by encapsulating imidacloprid and dsNlCYP6ER1 within zeolitic imidazolate framework-8 (ZIF-8) nanoparticles to improve the susceptibility of Nilaparvata lugens (Stål) to imidacloprid. With an average particle size of 195 nm and a positive surface charge, the derived imidacloprid/dsNlCYP6ER1@ZIF-8 demonstrates good monodispersity. Survival curve results showed that the survival rates of N. lugens treated with imidacloprid and imidacloprid@ZIF-8 were 82 and 62%, respectively, whereas, in the imidacloprid/dsNlCYP6ER1@ZIF-8 treatment group, the survival rate of N. lugens is only 8%. Pot experiments demonstrate that the survival rate in the imidacloprid/dsNlCYP6ER1@ZIF-8 treatment group was much lower than that in the imidacloprid treatment group, decreasing from 54 to 24%. The identification of NlCYP6ER1 expression and the fluorescence tracking of ZIF-8 demonstrate that ZIF-8 can codeliver dsRNA and insecticide to insects via rice. Safety evaluation results showed that the dsNlCYP6ER1@ZIF-8 nanoparticle had desirable biocompatibility and biosafety to silkworm. This dsRNA and insecticide codelivery system may be extended to additional insecticides with potential resistance problems in the future, greatly enhancing the development of pest resistance management.
Collapse
Affiliation(s)
- Chang Yu
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jiaqing Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Zhaoyang Zhang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Mao Zong
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Chuwei Qin
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Ziyao Mo
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Dan Sun
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Disi Yang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Qinghong Zeng
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jiayin Wang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Kangsheng Ma
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jianhong Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Hu Wan
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| |
Collapse
|
17
|
Schiavi A, Cirotti C, Gerber LS, Di Lauro G, Maglioni S, Shibao PYT, Montresor S, Kirstein J, Petzsch P, Köhrer K, Schins RPF, Wahle T, Barilà D, Ventura N. Abl depletion via autophagy mediates the beneficial effects of quercetin against Alzheimer pathology across species. Cell Death Discov 2023; 9:376. [PMID: 37838776 PMCID: PMC10576830 DOI: 10.1038/s41420-023-01592-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 10/16/2023] Open
Abstract
Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (Aβ)-induced detrimental effects in different C. elegans AD models and it reduces Aβ-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against Aβ toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Claudia Cirotti
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Lora-Sophie Gerber
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Giulia Di Lauro
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Silvia Maglioni
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany
| | - Priscila Yumi Tanaka Shibao
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Janine Kirstein
- Department of Cell Biology, University of Bremen, Bremen, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Patrick Petzsch
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Tina Wahle
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany
| | - Daniela Barilà
- Department of Biology, University of Rome "Tor Vergata", 00133, Rome, Italy
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, 00179, Rome, Italy
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), 40225, Düsseldorf, Germany.
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, 40225, Duesseldorf, Germany.
| |
Collapse
|
18
|
Wu G, Baumeister R, Heimbucher T. SGK-1 mediated inhibition of iron import is a determinant of lifespan in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000970. [PMID: 37799207 PMCID: PMC10550382 DOI: 10.17912/micropub.biology.000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Maintaining iron levels is crucial for health, but iron overload has been associated with tumorigenesis. Therefore, critical enzymes involved in iron homeostasis are under tight, typically posttranslational control. In C. elegans , the mTORC2 and insulin/IGF-1 activated kinase SGK-1 is induced upon exogenous iron overload to couple iron storage and fat accumulation. Here we show that, already at physiological iron conditions, sgk-1 loss-of-function increases intracellular iron levels that may impair lifespan. Reducing iron levels by diminishing cellular or mitochondrial iron import is sufficient to extend the short lifespan of sgk-1 loss-of-function animals. Our results indicate another regulatory level of sgk-1 in iron homeostasis via negative feedback regulation on iron transporters.
Collapse
Affiliation(s)
- Gang Wu
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, ZBMZ Center of Biochemistry and Molecular Cell Research, University of Freiburg, 79104 Freiburg, Germany
- FRIAS Freiburg Institute for Advanced Studies, Albertstraße 19, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Heimbucher
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Torzone SK, Park AY, Breen PC, Cohen NR, Dowen RH. Opposing action of the FLR-2 glycoprotein hormone and DRL-1/FLR-4 MAP kinases balance p38-mediated growth and lipid homeostasis in C. elegans. PLoS Biol 2023; 21:e3002320. [PMID: 37773960 PMCID: PMC10566725 DOI: 10.1371/journal.pbio.3002320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/11/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023] Open
Abstract
Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.
Collapse
Affiliation(s)
- Sarah K. Torzone
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aaron Y. Park
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Peter C. Breen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Natalie R. Cohen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
20
|
Chinchankar MN, Taylor WB, Ko SH, Apple EC, Rodriguez KA, Chen L, Fisher AL. A novel endoplasmic reticulum adaptation is critical for the long-lived Caenorhabditis elegans rpn-10 proteasomal mutant. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194957. [PMID: 37355092 PMCID: PMC10528105 DOI: 10.1016/j.bbagrm.2023.194957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The loss of proteostasis due to reduced efficiency of protein degradation pathways plays a key role in multiple age-related diseases and is a hallmark of the aging process. Paradoxically, we have previously reported that the Caenorhabditis elegans rpn-10(ok1865) mutant, which lacks the RPN-10/RPN10/PSMD4 subunit of the 19S regulatory particle of the 26S proteasome, exhibits enhanced cytosolic proteostasis, elevated stress resistance and extended lifespan, despite possessing reduced proteasome function. However, the response of this mutant against threats to endoplasmic reticulum (ER) homeostasis and proteostasis was unknown. Here, we find that the rpn-10 mutant is highly ER stress resistant compared to the wildtype. Under unstressed conditions, the ER unfolded protein response (UPR) is activated in the rpn-10 mutant as signified by increased xbp-1 splicing. This primed response appears to alter ER homeostasis through the upregulated expression of genes involved in ER protein quality control (ERQC), including those in the ER-associated protein degradation (ERAD) pathway. Pertinently, we find that ERQC is critical for the rpn-10 mutant longevity. These changes also alter ER proteostasis, as studied using the C. elegans alpha-1 antitrypsin (AAT) deficiency model, which comprises an intestinal ER-localised transgenic reporter of an aggregation-prone form of AAT called ATZ. The rpn-10 mutant shows a significant reduction in the accumulation of the ATZ reporter, thus indicating that its ER proteostasis is augmented. Via a genetic screen for suppressors of decreased ATZ aggregation in the rpn-10 mutant, we then identified ecps-2/H04D03.3, a novel ortholog of the proteasome-associated adaptor and scaffold protein ECM29/ECPAS. We further show that ecps-2 is required for improved ER proteostasis as well as lifespan extension of the rpn-10 mutant. Thus, we propose that ECPS-2-proteasome functional interactions, alongside additional putative molecular processes, contribute to a novel ERQC adaptation which underlies the superior proteostasis and longevity of the rpn-10 mutant.
Collapse
Affiliation(s)
- Meghna N Chinchankar
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - William B Taylor
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Su-Hyuk Ko
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Ellen C Apple
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Karl A Rodriguez
- Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Lizhen Chen
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio (UTHSCSA), SA, TX, United States of America; Department of Cell Systems and Anatomy, UTHSCSA, SA, TX, United States of America
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.
| |
Collapse
|
21
|
Ponomarova O, Zhang H, Li X, Nanda S, Leland TB, Fox BW, Starbard AN, Giese GE, Schroeder FC, Yilmaz LS, Walhout AJM. A D-2-hydroxyglutarate dehydrogenase mutant reveals a critical role for ketone body metabolism in Caenorhabditis elegans development. PLoS Biol 2023; 21:e3002057. [PMID: 37043428 PMCID: PMC10096224 DOI: 10.1371/journal.pbio.3002057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/28/2023] [Indexed: 04/13/2023] Open
Abstract
In humans, mutations in D-2-hydroxyglutarate (D-2HG) dehydrogenase (D2HGDH) result in D-2HG accumulation, delayed development, seizures, and ataxia. While the mechanisms of 2HG-associated diseases have been studied extensively, the endogenous metabolism of D-2HG remains unclear in any organism. Here, we find that, in Caenorhabditis elegans, D-2HG is produced in the propionate shunt, which is transcriptionally activated when flux through the canonical, vitamin B12-dependent propionate breakdown pathway is perturbed. Loss of the D2HGDH ortholog, dhgd-1, results in embryonic lethality, mitochondrial defects, and the up-regulation of ketone body metabolism genes. Viability can be rescued by RNAi of hphd-1, which encodes the enzyme that produces D-2HG or by supplementing either vitamin B12 or the ketone bodies 3-hydroxybutyrate (3HB) and acetoacetate (AA). Altogether, our findings support a model in which C. elegans relies on ketone bodies for energy when vitamin B12 levels are low and in which a loss of dhgd-1 causes lethality by limiting ketone body production.
Collapse
Affiliation(s)
- Olga Ponomarova
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Hefei Zhang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xuhang Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Thomas B. Leland
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Bennett W. Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Alyxandra N. Starbard
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Gabrielle E. Giese
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - L. Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Albertha J. M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
22
|
Ghaddar A, Mony VK, Mishra S, Berhanu S, Johnson JC, Enriquez-Hesles E, Harrison E, Patel A, Horak MK, Smith JS, O'Rourke EJ. Increased alcohol dehydrogenase 1 activity promotes longevity. Curr Biol 2023; 33:1036-1046.e6. [PMID: 36805847 PMCID: PMC10236445 DOI: 10.1016/j.cub.2023.01.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Several molecules can extend healthspan and lifespan across organisms. However, most are upstream signaling hubs or transcription factors orchestrating complex anti-aging programs. Therefore, these molecules point to but do not reveal the fundamental mechanisms driving longevity. Instead, downstream effectors that are necessary and sufficient to promote longevity across conditions or organisms may reveal the fundamental anti-aging drivers. Toward this goal, we searched for effectors acting downstream of the transcription factor EB (TFEB), known as HLH-30 in C. elegans, because TFEB/HLH-30 is necessary across anti-aging interventions and its overexpression is sufficient to extend C. elegans lifespan and reduce biomarkers of aging in mammals including humans. As a result, we present an alcohol-dehydrogenase-mediated anti-aging response (AMAR) that is essential for C. elegans longevity driven by HLH-30 overexpression, caloric restriction, mTOR inhibition, and insulin-signaling deficiency. The sole overexpression of ADH-1 is sufficient to activate AMAR, which extends healthspan and lifespan by reducing the levels of glycerol-an age-associated and aging-promoting alcohol. Adh1 overexpression is also sufficient to promote longevity in yeast, and adh-1 orthologs are induced in calorically restricted mice and humans, hinting at ADH-1 acting as an anti-aging effector across phyla.
Collapse
Affiliation(s)
- Abbas Ghaddar
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Vinod K Mony
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Swarup Mishra
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Samuel Berhanu
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - James C Johnson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Elisa Enriquez-Hesles
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Emma Harrison
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Aaroh Patel
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Mary Kate Horak
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Eyleen J O'Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
23
|
Alonzo-De la Rosa CM, Miard S, Taubert S, Picard F. Methods to extract and study the biological effects of murine gut microbiota using Caenorhabditis elegans as a screening host. PLoS One 2023; 18:e0281887. [PMID: 36821579 PMCID: PMC9949637 DOI: 10.1371/journal.pone.0281887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Gut microbiota has been established as a main regulator of health. However, how changes in gut microbiota are directly associated with physiological and cellular alterations has been difficult to tackle on a large-scale basis, notably because of the cost and labor-extensive resources required for rigorous experiments in mammals. In the present study, we used the nematode Caenorhabditis elegans as a model organism to elucidate microbiota-host interactions. We developed a method to extract gut microbiota (MCB) from murine feces, and tested its potential as food source for and its impact on C. elegans biology compared to the standard bacterial diet Escherichia coli OP50. Although less preferred than OP50, MCB was not avoided but had a lower energy density (triglycerides and glucose). Consistently, MCB-fed worms exhibited smaller body length and size, lower fertility, and lower fat content than OP50-fed worms, but had a longer mean lifespan, which resembles the effects of calorie restriction in mammals. However, these outcomes were altered when bacteria were inactivated, suggesting an important role of symbiosis of MCB beyond nutrient source. Taken together, our findings support the effectiveness of gut MCB processing to test its effects in C. elegans. More work comparing MCB of differently treated mice or humans is required to further validate relevance to mammals before large-scale screening assays.
Collapse
Affiliation(s)
- Claudia Miriam Alonzo-De la Rosa
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - Stéphanie Miard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Stefan Taubert
- British Columbia Children’s Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Frédéric Picard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
- Faculty of Pharmacy, Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
24
|
Feng X, Wang X, Zhou L, Pang S, Tang H. The impact of glucose on mitochondria and life span is determined by the integrity of proline catabolism in Caenorhabditis elegans. J Biol Chem 2023; 299:102881. [PMID: 36626986 PMCID: PMC9932108 DOI: 10.1016/j.jbc.2023.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes involved in mitochondrial proline catabolism lead to the rare genetic disorder hyperprolinemia in humans. We have previously reported that mutations of proline catabolic genes in Caenorhabditis elegans impair mitochondrial homeostasis and shorten life span, and that these effects surprisingly occur in a diet type-dependent manner. Therefore, we speculated that a specific dietary component may mitigate the adverse effects of defective proline catabolism. Here, we discovered that high dietary glucose, which is generally detrimental to health, actually improves mitochondrial homeostasis and life span in C. elegans with faulty proline catabolism. Mechanistically, defective proline catabolism results in a shift of glucose catabolism toward the pentose phosphate pathway, which is crucial for cellular redox balance. This shift helps to maintain mitochondrial reactive oxygen species homeostasis and to extend life span, as suppression of the pentose phosphate pathway enzyme GSPD-1 prevents the favorable effects of high glucose. In addition, we demonstrate that this crosstalk between proline and glucose catabolism is mediated by the transcription factor DAF-16. Altogether, these findings suggest that a glucose-rich diet may be advantageous in certain situations and might represent a potentially viable treatment strategy for disorders involving impaired proline catabolism.
Collapse
Affiliation(s)
- Xi Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xinyu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
25
|
Zheng T, Luo Q, Han C, Zhou J, Gong J, Chun L, Xu XZS, Liu J. Cytoplasmic and mitochondrial aminoacyl-tRNA synthetases differentially regulate lifespan in Caenorhabditis elegans. iScience 2022; 25:105266. [PMID: 36304099 PMCID: PMC9593246 DOI: 10.1016/j.isci.2022.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
Reducing the rate of translation promotes longevity in multiple organisms, representing a conserved mechanism for lifespan extension. Aminoacyl-tRNA synthetases (ARSs) catalyze the loading of amino acids to their cognate tRNAs, thereby playing an essential role in translation. Mutations in ARS genes are associated with various human diseases. However, little is known about the role of ARSs in aging, particularly whether and how these genes regulate lifespan. Here, using Caenorhabditis elegans as a model, we systematically characterized the role of all three types of ARS genes in lifespan regulation, including mitochondrial, cytoplasmic, and cyto-mito bifunctional ARS genes. We found that, as expected, RNAi knockdown of mitochondrial ARS genes extended lifespan. Surprisingly, knocking down cytoplasmic or cyto-mito bifunctional ARS genes shortened lifespan, though such treatment reduced the rate of translation. These results reveal opposing roles of mitochondrial and cytoplasmic ARSs in lifespan regulation, demonstrating that inhibiting translation may not always extend lifespan. RNAi knockdown of mitochondrial ARS genes extends lifespan via UPRmt RNAi knockdown of cytoplasmic or cyto-mito bifunctional ARS genes shortens lifespan Inhibiting translation may not always extend lifespan
Collapse
Affiliation(s)
- Tianlin Zheng
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qiang Luo
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chengxuan Han
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiejun Zhou
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Chun
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
26
|
Qin S, Wang Y, Li L, Liu J, Xiao C, Duan D, Hao W, Qin C, Chen J, Yao L, Zhang R, You J, Zheng JS, Shen E, Wu L. Early-life vitamin B12 orchestrates lipid peroxidation to ensure reproductive success via SBP-1/SREBP1 in Caenorhabditis elegans. Cell Rep 2022; 40:111381. [PMID: 36130518 DOI: 10.1016/j.celrep.2022.111381] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022] Open
Abstract
Vitamin B12 (B12) deficiency is a critical problem worldwide. Such deficiency in infants has long been known to increase the propensity to develop obesity and diabetes later in life through unclear mechanisms. Here, we establish a Caenorhabditis elegans model to study how early-life B12 impacts adult health. We find that early-life B12 deficiency causes increased lipogenesis and lipid peroxidation in adult worms, which in turn induces germline defects through ferroptosis. Mechanistically, we show the central role of the methionine cycle-SBP-1/SREBP1-lipogenesis axis in programming adult traits by early-life B12. Moreover, SBP-1/SREBP1 participates in a crucial feedback loop with NHR-114/HNF4 to maintain cellular B12 homeostasis. Inhibition of SBP-1/SREBP1-lipogenesis signaling and ferroptosis later in life can reverse disorders in adulthood when B12 cannot. Overall, this study provides mechanistic insights into the life-course effects of early-life B12 on the programming of adult health and identifies potential targets for future interventions for adiposity and infertility.
Collapse
Affiliation(s)
- Shenlu Qin
- Fudan University, Shanghai, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yihan Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Junli Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Congmei Xiao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Duo Duan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chunxia Qin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jie Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Runshuai Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jia You
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Enzhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lianfeng Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Li N, Hua B, Chen Q, Teng F, Ruan M, Zhu M, Zhang L, Huo Y, Liu H, Zhuang M, Shen H, Zhu H. A sphingolipid-mTORC1 nutrient-sensing pathway regulates animal development by an intestinal peroxisome relocation-based gut-brain crosstalk. Cell Rep 2022; 40:111140. [PMID: 35905721 DOI: 10.1016/j.celrep.2022.111140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The mTOR-dependent nutrient-sensing and response machinery is the central hub for animals to regulate their cellular and developmental programs. However, equivalently pivotal nutrient and metabolite signals upstream of mTOR and developmental-regulatory signals downstream of mTOR are not clear, especially at the organism level. We previously showed glucosylceramide (GlcCer) acts as a critical nutrient and metabolite signal for overall amino acid levels to promote development by activating the intestinal mTORC1 signaling pathway. Here, through a large-scale genetic screen, we find that the intestinal peroxisome is critical for antagonizing the GlcCer-mTORC1-mediated nutrient signal. Mechanistically, GlcCer deficiency, inactive mTORC1, or prolonged starvation relocates intestinal peroxisomes closer to the apical region in a kinesin- and microtubule-dependent manner. Those apical accumulated peroxisomes further release peroxisomal-β-oxidation-derived glycolipid hormones that target chemosensory neurons and downstream nuclear hormone receptor DAF-12 to arrest the animal development. Our data illustrate a sophisticated gut-brain axis that predominantly orchestrates nutrient-sensing-dependent development in animals.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Beilei Hua
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fukang Teng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meiyu Ruan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinbo Huo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Hongqin Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huali Shen
- Institutes of Biomedical Sciences, Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
28
|
Legüe M, Caneo M, Aguila B, Pollak B, Calixto A. Interspecies effectors of a transgenerational memory of bacterial infection in Caenorhabditis elegans. iScience 2022; 25:104627. [PMID: 35800768 PMCID: PMC9254006 DOI: 10.1016/j.isci.2022.104627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
The inheritance of memory is an adaptive trait. Microbes challenge the immunity of organisms and trigger behavioral adaptations that can be inherited, but how bacteria produce inheritance of a trait is unknown. We use Caenorhabditis elegans and its bacteria to study the transgenerational RNA dynamics of interspecies crosstalk leading to a heritable behavior. A heritable response of C. elegans to microbes is the pathogen-induced diapause (PIDF), a state of suspended animation to evade infection. We identify RsmY, a small RNA involved in quorum sensing in Pseudomonas aeruginosa as a trigger of PIDF. The histone methyltransferase (HMT) SET-18/SMYD3 and the argonaute HRDE-1, which promotes multi-generational silencing in the germline, are also needed for PIDF initiation. The HMT SET-25/EHMT2 is necessary for memory maintenance in the transgenerational lineage. Our work is a starting point to understanding microbiome-induced inheritance of acquired traits, and the transgenerational influence of microbes in health and disease.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Mauricio Caneo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
- Programa de Doctorado en Microbiología, Universidad de Chile, Santiago de Chile, Chile
| | | | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| |
Collapse
|
29
|
Palikaras K, SenGupta T, Nilsen H, Tavernarakis N. Assessment of dopaminergic neuron degeneration in a C. elegans model of Parkinson’s disease. STAR Protoc 2022; 3:101264. [PMID: 35403008 PMCID: PMC8983426 DOI: 10.1016/j.xpro.2022.101264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transgenic Caenorhabditis elegans that expresses the full-length wild-type human α-synuclein in dopaminergic neurons provides a well-established Parkinson’s disease (PD) nematode model. Here, we present a detailed protocol to monitor and dissect the molecular underpinnings of age-associated neurodegeneration using this PD nematode model. This protocol includes preparation of nematode growth media and bacterial food sources, as well as procedures for nematode growth, synchronization, and treatment. We then describe procedures to assess dopaminergic neuronal death in vivo using fluorescence imaging. For complete details on the use and execution of this protocol, please refer to SenGupta et al. (2021). A Parkinson’s disease nematode model to study α-synuclein-mediated neurotoxicity Comprehensive approach for scoring cell death of dopaminergic neurons in C. elegans Genetic tools to investigate the tissue specific effects on neurodegeneration
Collapse
|
30
|
Torres TC, Moaddeli D, Averbukh M, Coakley A, Dutta N, Garcia G, Higuchi-Sanabria R. Surveying Low-Cost Methods to Measure Lifespan and Healthspan in Caenorhabditis elegans. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/64091. [PMID: 35665741 PMCID: PMC9881476 DOI: 10.3791/64091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery and development of Caenorhabditis elegans as a model organism was influential in biology, particularly in the field of aging. Many historical and contemporary studies have identified thousands of lifespan-altering paradigms, including genetic mutations, transgenic gene expression, and hormesis, a beneficial, low-grade exposure to stress. With its many advantages, including a short lifespan, easy and low-cost maintenance, and fully sequenced genome with homology to almost two-thirds of all human genes, C. elegans has quickly been adopted as an outstanding model for stress and aging biology. Here, several standardized methods are surveyed for measuring lifespan and healthspan that can be easily adapted into almost any research environment, especially those with limited equipment and funds. The incredible utility of C. elegans is featured, highlighting the capacity to perform powerful genetic analyses in aging biology without the necessity of extensive infrastructure. Finally, the limitations of each analysis and alternative approaches are discussed for consideration.
Collapse
Affiliation(s)
- Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Aeowynn Coakley
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089.,correspondence: ;
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California. 3715 McClintock Ave, University Park Campus, Los Angeles, CA 90089.,correspondence: ;
| |
Collapse
|
31
|
Xu H, Jia C, Cheng C, Wu H, Cai H, Le W. Activation of autophagy attenuates motor deficits and extends lifespan in a C. elegans model of ALS. Free Radic Biol Med 2022; 181:52-61. [PMID: 35114355 PMCID: PMC8996503 DOI: 10.1016/j.freeradbiomed.2022.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
Mutations in Cu/Zn-superoxide dismutase 1 (SOD1) are linked to amyotrophic lateral sclerosis (ALS). Using a line of ALS-related mutant human SOD1 (hSOD1) transgenic Caenorhabditis elegans, we determined the effects of metformin on the progression of ALS-like pathological abnormalities. We found that metformin significantly extended the lifespan, improved motor performance, and enhanced antioxidant activity of mutant worms. We further showed that metformin enhanced expression of lgg-1, daf-16, skn-1 and other genes known to regulate autophagy, longevity and oxidative stress in hSOD1 transgenic worms. Accordingly, overexpression of lgg-1 or daf-16 attenuated the aging and pathological abnormalities of mutant human SOD1 worms, while genetic deletion of lgg-1 or daf-16 abolished the beneficial effects of metformin. Collectively, we demonstrate that metformin protects against mutant SOD1-induced cytotoxicity in part through enhancement of autophagy and extends lifespan through daf-16 pathway. Our findings suggest that metformin could be further explored as a potential therapeutic agent in treating ALS.
Collapse
Affiliation(s)
- Hui Xu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Haifeng Wu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging (NIA), National Institutes of Health, Bethesda, MD, United States
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China; Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
32
|
Sinha DB, Pincus ZS. High temporal resolution measurements of movement reveal novel early-life physiological decline in C. elegans. PLoS One 2022; 17:e0257591. [PMID: 35108272 PMCID: PMC8809618 DOI: 10.1371/journal.pone.0257591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained “healthy” level of high function followed by a discrete “movement catastrophe”—or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.
Collapse
Affiliation(s)
- Drew Benjamin Sinha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zachary Scott Pincus
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Departments from Genetics and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: ,
| |
Collapse
|
33
|
Kumar A, Joishy T, Das S, Kalita MC, Mukherjee AK, Khan MR. A Potential Probiotic Lactobacillus plantarum JBC5 Improves Longevity and Healthy Aging by Modulating Antioxidative, Innate Immunity and Serotonin-Signaling Pathways in Caenorhabditis elegans. Antioxidants (Basel) 2022; 11:268. [PMID: 35204151 PMCID: PMC8868178 DOI: 10.3390/antiox11020268] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Since the hypothesis of Dr. Elie Metchnikoff on lactobacilli-mediated healthy aging, several microbes have been reported to extend the lifespan with different features of healthy aging. However, a microbe affecting diverse features of healthy aging is of choice for broader acceptance and marketability as a next-generation probiotic. We employed Caenorhabditis elegans as a model to understand the potential of Lactobacillus plantarum JBC5 (LPJBC5), isolated from fermented food sample on longevity and healthy aging as well as their underlying mechanisms. Firstly, LPJBC5 enhanced the mean lifespan of C. elegans by 27.81% compared with control (untreated). LPBC5-induced longevity was accompanied with better aging-associated biomarkers, such as physical functions, fat, and lipofuscin accumulation. Lifespan assay on mutant worms and gene expression studies indicated that LPJBC5-mediated longevity was due to upregulation of the skinhead-1 (skn-1) gene activated through p38 MAPK signaling cascade. Secondly, the activated transcription factor SKN-1 upregulated the expression of antioxidative, thermo-tolerant, and anti-pathogenic genes. In support, LPJBC5 conferred resistance against abiotic and biotic stresses such as oxidative, heat, and pathogen. LPJBC5 upregulated the expression of intestinal tight junction protein ZOO-1 and improved gut integrity. Thirdly, LPJBC5 improved the learning and memory of worms trained on LPJBC5 compared with naive worms. The results showed upregulation of genes involved in serotonin signaling (ser-1, mod-1, and tph-1) in LPJBC5-fed worms compared with control, suggesting that serotonin-signaling was essential for LPJBC5-mediated improved cognitive function. Fourthly, LPJBC5 decreased the fat accumulation in worms by reducing the expression of genes encoding key substrates and enzymes of fat metabolism (i.e., fat-5 and fat-7). Lastly, LPJBC5 reduced the production of reactive oxygen species and improved mitochondrial function, thereby reducing apoptosis in worms. The capability of a single bacterium on pro-longevity and the features of healthy aging, including enhancement of gut integrity and cognitive functions, makes it an ideal candidate for promotion as a next-generation probiotic.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Tulsi Joishy
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Santanu Das
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| | - Mohan C. Kalita
- Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India;
| | - Ashis K. Mukherjee
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Mojibur R. Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, Assam, India; (A.K.); (T.J.); (S.D.); (A.K.M.)
| |
Collapse
|
34
|
Context-specific regulation of lysosomal lipolysis through network-level diverting of transcription factor interactions. Proc Natl Acad Sci U S A 2021; 118:2104832118. [PMID: 34607947 DOI: 10.1073/pnas.2104832118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Plasticity in multicellular organisms involves signaling pathways converting contexts-either natural environmental challenges or laboratory perturbations-into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF-target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16-mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB-the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3 Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name "contextualized transcription."
Collapse
|
35
|
Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron 2021; 109:3930-3953. [PMID: 34653349 DOI: 10.1016/j.neuron.2021.09.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Changes in the microbiota are associated with alterations in nervous system structure-function and behavior and have been implicated in the etiology of neuropsychiatric and neurodegenerative disorders. Most of these studies have centered on mammalian models due to their phylogenetic proximity to humans. Indeed, the germ-free mouse has been a particularly useful model organism for investigating microbiota-brain interactions. However, microbiota-brain axis research on simpler genetic model organisms with a vast and diverse scientific toolkit (zebrafish, Drosophila melanogaster, and Caenorhabditis elegans) is now also coming of age. In this review, we summarize the current state of microbiota-brain axis research in rodents and humans, and then we elaborate and discuss recent research on the neurobiological and behavioral effects of the microbiota in the model systems of fish, flies, and worms. We propose that a cross-species, holistic and mechanistic approach to unravel the microbiota-brain communication is an essential step toward rational microbiota-based therapeutics to combat brain disorders.
Collapse
|
36
|
Dixit A, Bhattacharya B. Sensory perception of environmental cues as a modulator of aging and neurodegeneration: Insights from Caenorhabditis elegans. J Neurosci Res 2021; 99:2416-2426. [PMID: 34232538 DOI: 10.1002/jnr.24910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
Environmental stimuli such as temperature, food, and smell significantly influence the physiology and behavior of animals. Animals are differentially adapted to maintain their internal body functions in response to varied environmental conditions. These external cues are sensed by specialized neurons which are a part of the chemosensory and thermosensory systems. The inability to respond correctly to varied environmental conditions may result in compromised bodily functions and reduced longevity. For example, the ability to sense food is derived from the integrated action of olfactory and gustatory systems. The damage to the olfactory system will affect our decision of palatable food items which in turn can affect the response of the gustatory system, ultimately causing abnormal feeding habits. Recent studies have provided evidence that aging is regulated by sensory perception of environment. Aging is one of the most common causes of various neurodegenerative diseases and the perception of environmental cues is also found to regulate the development of neurodegenerative phenotype in several animal models. However, specific molecular signaling pathways involved in the process are not completely understood. The research conducted on one of the best-studied animal models of aging, Caenorhabditis elegans, has demonstrated multiple examples of gene-environment interaction at the neuronal level which affects life span. The findings may be useful to identify the key neuronal regulators of aging and age-related diseases in humans owing to conserved core metabolic and aging pathways from worms to humans.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| | - Bidisha Bhattacharya
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, India
| |
Collapse
|
37
|
Edwards SL, Erdenebat P, Morphis AC, Kumar L, Wang L, Chamera T, Georgescu C, Wren JD, Li J. Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development. Cell Rep 2021; 36:109623. [PMID: 34469721 PMCID: PMC8442575 DOI: 10.1016/j.celrep.2021.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Germline development is sensitive to nutrient availability and environmental perturbation. Heat shock transcription factor 1 (HSF1), a key transcription factor driving the cellular heat shock response (HSR), is also involved in gametogenesis. The precise function of HSF1 (HSF-1 in C. elegans) and its regulation in germline development are poorly understood. Using the auxin-inducible degron system in C. elegans, we uncovered a role of HSF-1 in progenitor cell proliferation and early meiosis and identified a compact but important transcriptional program of HSF-1 in germline development. Interestingly, heat stress only induces the canonical HSR in a subset of germ cells but impairs HSF-1 binding at its developmental targets. Conversely, insulin/insulin growth factor 1 (IGF-1) signaling dictates the requirement for HSF-1 in germline development and functions through repressing FOXO/DAF-16 in the soma to activate HSF-1 in germ cells. We propose that this non-cell-autonomous mechanism couples nutrient-sensing insulin/IGF-1 signaling to HSF-1 activation to support homeostasis in rapid germline growth.
Collapse
Affiliation(s)
- Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Purevsuren Erdenebat
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lalit Kumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lai Wang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jian Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
38
|
Cadena Del Castillo CE, Hannich JT, Kaech A, Chiyoda H, Brewer J, Fukuyama M, Færgeman NJ, Riezman H, Spang A. Patched regulates lipid homeostasis by controlling cellular cholesterol levels. Nat Commun 2021; 12:4898. [PMID: 34385431 PMCID: PMC8361143 DOI: 10.1038/s41467-021-24995-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.
Collapse
Affiliation(s)
| | - J Thomas Hannich
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Hirohisa Chiyoda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Sheng Y, Yang G, Markovich Z, Han SM, Xiao R. Distinct temporal actions of different types of unfolded protein responses during aging. J Cell Physiol 2021; 236:5069-5079. [PMID: 33345326 PMCID: PMC8026671 DOI: 10.1002/jcp.30215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Proteotoxic stress is a common challenge for all organisms. Among various mechanisms involved in defending such stress, the evolutionarily conserved unfolded protein responses (UPRs) play a key role across species. Interestingly, UPRs can occur in different subcellular compartments including the endoplasmic reticulum (UPRER ), mitochondria (UPRMITO ), and cytoplasm (UPRCYTO ) through distinct mechanisms. While previous studies have shown that the UPRs are intuitively linked to organismal aging, a systematic assay on the temporal regulation of different type of UPRs during aging is still lacking. Here, using Caenorhabditis elegans (C. elegans) as the model system, we found that the endogenous UPRs (UPRER , UPRMITO , and UPRCYTO ) elevate with age, but their inducibility exhibits an age-dependent decline. Moreover, we revealed that the temporal requirements to induce different types of UPRs are distinct. Namely, while the UPRMITO can only be induced during the larval stage, the UPRER can be induced until early adulthood and the inducibility of UPRCYTO is well maintained until mid-late stage of life. Furthermore, we showed that different tissues may exhibit distinct temporal profiles of UPR inducibility during aging. Collectively, our findings demonstrate that UPRs of different subcellular compartments may have distinct temporal mechanisms during aging.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida, USA
| | - Guang Yang
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida, USA
| | - Zachary Markovich
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida, USA
| | - Sung Min Han
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, Florida, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
40
|
Gao B, Sun Q. Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nat Commun 2021; 12:2689. [PMID: 33976154 PMCID: PMC8113242 DOI: 10.1038/s41467-021-22894-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
A central goal of synthetic biology is to predictably and efficiently reprogram living systems to perform computations and carry out specific biological tasks. Although there have been many advances in the bio-computational design of living systems, these advances have mainly been applied to microorganisms or cell lines; programming animal physiology remains challenging for synthetic biology because of the system complexity. Here, we present a bacteria-animal symbiont system in which engineered bacteria recognize external signals and modulate animal gene expression, twitching phenotype, and fat metabolism through RNA interference toward gfp, sbp-1, and unc-22 gene in C. elegans. By using genetic circuits in bacteria to control these RNA expressions, we are able to program the physiology of the model animal Caenorhabditis elegans with logic gates. We anticipate that engineered bacteria can be used more extensively to program animal physiology for agricultural, therapeutic, and basic science applications.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
41
|
Sheng Y, Yang G, Casey K, Curry S, Oliver M, Han SM, Leeuwenburgh C, Xiao R. A novel role of the mitochondrial iron-sulfur cluster assembly protein ISCU-1/ISCU in longevity and stress response. GeroScience 2021; 43:691-707. [PMID: 33527323 PMCID: PMC8110660 DOI: 10.1007/s11357-021-00327-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 01/02/2023] Open
Abstract
As an ancient cellular co-factor ubiquitously present in all domains of life, nearly all iron-sulfur ([Fe-S]) clusters are assembled in the mitochondrion. Although multiple mitochondrion-derived signalings are known to be key players in longevity regulation, whether the mitochondrial [Fe-S] cluster assembly machinery modulates lifespan is previously unknown. Here, we find that ISCU-1, the C. elegans ortholog of the evolutionarily conserved iron-sulfur cluster (ISC) assembly machinery central protein ISCU, regulates longevity and stress response. Specifically, ISCU-1 accelerates aging in the intestine. Moreover, we identify the Nrf2 transcription factor SKN-1 and a nuclear hormone receptor NHR-49 as the downstream factors of ISCU-1. Lastly, a mitochondrial outer membrane protein phosphatase PGAM-5 appears to link ISCU-1 to SKN-1 and NHR-49 in lifespan regulation. Together, we have identified a novel function of mitochondrial ISC assembly machinery in longevity modulation and stress response.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Kaitlyn Casey
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Shayla Curry
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Mason Oliver
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Sung Min Han
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 100143, Gainesville, FL, 32610, USA.
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
42
|
Brinkmann V, Schiavi A, Shaik A, Puchta DR, Ventura N. Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging (Albany NY) 2020; 13:104-133. [PMID: 33349622 PMCID: PMC7835051 DOI: 10.18632/aging.202316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Daniel Rüdiger Puchta
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
Stuhr NL, Curran SP. Bacterial diets differentially alter lifespan and healthspan trajectories in C. elegans. Commun Biol 2020; 3:653. [PMID: 33159120 PMCID: PMC7648844 DOI: 10.1038/s42003-020-01379-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023] Open
Abstract
Diet is one of the more variable aspects in life due to the variety of options that organisms are exposed to in their natural habitats. In the laboratory, C. elegans are raised on bacterial monocultures, traditionally the E. coli B strain OP50, and spontaneously occurring microbial contaminants are removed to limit experimental variability because diet-including the presence of contaminants-can exert a potent influence over animal physiology. In order to diversify the menu available to culture C. elegans in the lab, we have isolated and cultured three such microbes: Methylobacterium, Xanthomonas, and Sphingomonas. The nutritional composition of these bacterial foods is unique, and when fed to C. elegans, can differentially alter multiple life history traits including development, reproduction, and metabolism. In light of the influence each food source has on specific physiological attributes, we comprehensively assessed the impact of these bacteria on animal health and devised a blueprint for utilizing different food combinations over the lifespan, in order to promote longevity. The expansion of the bacterial food options to use in the laboratory will provide a critical tool to better understand the complexities of bacterial diets and subsequent changes in physiology and gene expression.
Collapse
Affiliation(s)
- Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
- Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA.
- Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA.
| |
Collapse
|
44
|
Heimbucher T, Hog J, Gupta P, Murphy CT. PQM-1 controls hypoxic survival via regulation of lipid metabolism. Nat Commun 2020; 11:4627. [PMID: 33009389 PMCID: PMC7532158 DOI: 10.1038/s41467-020-18369-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Animals have evolved responses to low oxygen conditions to ensure their survival. Here, we have identified the C. elegans zinc finger transcription factor PQM-1 as a regulator of the hypoxic stress response. PQM-1 is required for the longevity of insulin signaling mutants, but surprisingly, loss of PQM-1 increases survival under hypoxic conditions. PQM-1 functions as a metabolic regulator by controlling oxygen consumption rates, suppressing hypoxic glycogen levels, and inhibiting the expression of the sorbitol dehydrogenase-1 SODH-1, a crucial sugar metabolism enzyme. PQM-1 promotes hypoxic fat metabolism by maintaining the expression of the stearoyl-CoA desaturase FAT-7, an oxygen consuming, rate-limiting enzyme in fatty acid biosynthesis. PQM-1 activity positively regulates fat transport to developing oocytes through vitellogenins under hypoxic conditions, thereby increasing survival rates of arrested progeny during hypoxia. Thus, while pqm-1 mutants increase survival of mothers, ultimately this loss is detrimental to progeny survival. Our data support a model in which PQM-1 controls a trade-off between lipid metabolic activity in the mother and her progeny to promote the survival of the species under hypoxic conditions. Animals respond to hypoxic stress by adjusting metabolic processes to balance survival and reproduction. Here the authors identify the transcription factor PQM-1 as a metabolic regulator that balances hypoxic lipid and carbohydrate metabolism in C. elegans to limit somatic integrity and promote progeny survival.
Collapse
Affiliation(s)
- Thomas Heimbucher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. .,Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany.
| | - Julian Hog
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany
| | - Piyush Gupta
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, 79104, Baden-Wuerttemberg, Germany
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
45
|
Zhao Y, Wu C, Bai J, Li J, Cheng K, Zhou X, Dong Y, Xiao X. Fermented barley extracts with Lactobacillus plantarum dy-1 decreased fat accumulation of Caenorhabditis elegans in a daf-2-dependent mechanism. J Food Biochem 2020; 44:e13459. [PMID: 32885854 DOI: 10.1111/jfbc.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/04/2023]
Abstract
Barley, a kind of cereal, is rich in polysaccharides, phenols, proteins, β-glucan, etc. Our previous studies discovered that extracts from Lactobacillus plantarum dy-1-fermented barley (LFBE) held strong anti-obesity property in obese rats through inhibiting inflammation and suppressing the differentiation in 3T3-L1 preadipocytes; however, the precise mechanism of LFBE regulating lipid metabolism remains elusive. Results suggested LFBE and its main active components, especially the total phenols, exhibited fat-lowering effects in glucose treated Caenorhabditis elegans at a certain concentration. Additionally, LFBE and the main components changed related genes in the insulin signaling pathway, fatty acid oxidation, and synthesis. Following verification study using mutants confirmed that the daf-2 gene rather than the daf-16 gene was required in LFBE and main components regulating lipid metabolism, which also involved in the process of fatty acid β-oxidation and unsaturated fatty acid synthesis. Results demonstrated that LFBE and its main bioactivate compounds inhibited fat accumulation partly in a daf-2-dependent mechanism. PRACTICAL APPLICATIONS: Our previous studies have reported that extracts of fermented barley exhibited anti-obesity activity. However, little is known about which functional factors play a leading role in decreasing fat deposition and its precise mechanism. Results indicated that daf-2 mediated signaling pathways involved in the fat-lowering effects of LFBE and its main components. Our findings are beneficial to understand the main nutritional ingredients in LFBE which are ideal and expected in functional foods for the obese.
Collapse
Affiliation(s)
- Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Chao Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ke Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Wan QL, Meng X, Fu X, Chen B, Yang J, Yang H, Zhou Q. Intermediate metabolites of the pyrimidine metabolism pathway extend the lifespan of C. elegans through regulating reproductive signals. Aging (Albany NY) 2020; 11:3993-4010. [PMID: 31232697 PMCID: PMC6629003 DOI: 10.18632/aging.102033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
Abstract
The pyrimidine metabolism pathway has important biological functions; it not only maintains appropriate pyrimidine pools but also produces bioactive intermediate metabolites. In a previous study, we identified that the pyrimidine metabolism pathway is associated with aging regulation. However, the molecular mechanism by which the pyrimidine metabolism pathway regulates aging remains unclear. Here, we investigated the longevity effect of pyrimidine intermediates on Caenorhabditis elegans (C. elegans). Our results demonstrated that the supplementation of some pyrimidine intermediates could extend the lifespan of C. elegans. In addition, the RNAi knockdown of essential enzymes involved in pyrimidine metabolism could also significantly affect lifespan. We further investigated the molecular mechanism by which a representative intermediate metabolite, thymine, extends the lifespan of worms and found that thymine-induced longevity required the nuclear receptors DAF-12 and NHR-49, and the transcription factor DAF-16/FOXO. Further pathway analysis revealed that the longevity effect of thymine depended on the inhibition of reproductive signals. Additionally, we found that other pyrimidine intermediates functioned in a manner similar to thymine to prolong lifespan in C. elegans. Taken together, our results revealed that pyrimidine intermediates increased lifespan by inhibiting reproductive signals and subsequently inducing the function of DAF-12, NHR-49 and DAF-16 in C. elegans.
Collapse
Affiliation(s)
- Qin-Li Wan
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Xiao Meng
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Xiaodie Fu
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Bohui Chen
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Jing Yang
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Hengwen Yang
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Qinghua Zhou
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|
47
|
Dixit A, Sandhu A, Modi S, Shashikanth M, Koushika SP, Watts JL, Singh V. Neuronal control of lipid metabolism by STR-2 G protein-coupled receptor promotes longevity in Caenorhabditis elegans. Aging Cell 2020; 19:e13160. [PMID: 32432390 PMCID: PMC7294788 DOI: 10.1111/acel.13160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
The G protein-coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR-2, expressed in AWC and ASI amphid sensory neurons. STR-2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR-2 regulates expression of delta-9 desaturases, fat-5, fat-6 and fat-7, and of diacylglycerol acyltransferase dgat-2. Rescue of the STR-2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat-5, dgat-2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild-type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR-2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
- Present address:
Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaIndia
| | - Anjali Sandhu
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Souvik Modi
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Meghana Shashikanth
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Sandhya P. Koushika
- Department of Biological SciencesTata Institute of Fundamental ResearchMumbaiIndia
| | - Jennifer L. Watts
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Varsha Singh
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
48
|
Wang H, Webster P, Chen L, Fisher AL. Cell-autonomous and non-autonomous roles of daf-16 in muscle function and mitochondrial capacity in aging C. elegans. Aging (Albany NY) 2020; 11:2295-2311. [PMID: 31017874 PMCID: PMC6520005 DOI: 10.18632/aging.101914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Sarcopenia, defined as the loss of skeletal muscle mass and strength, contributes to disability and health-related conditions with aging. In vitro studies indicate that age-related mitochondrial dysfunction could play a central role in the development and progression of sarcopenia, but because of limitations in the methods employed, how aging affects muscle mitochondrial function in vivo is not fully understood. We use muscle-targeted fluorescent proteins and the ratiometric ATP reporter, ATeam, to examine changes in muscle mitochondrial mass and morphology, and intracellular ATP levels in C. elegans. We find that the preserved muscle function in aging daf-2 mutants is associated with higher muscle mitochondrial mass, preserved mitochondrial morphology, and higher levels of intracellular ATP. These phenotypes require the daf-16/FOXO transcription factor. Via the tissue-specific rescue of daf-16, we find that daf-16 activity in either muscle or neurons is sufficient to enhance muscle mitochondrial mass, whereas daf-16 activity in the muscle is required for the enhanced muscle function and mobility of the daf-2 mutants. Finally, we show through the use of drugs known to enhance mitochondrial activity that augmenting mitochondrial function leads to improved mobility during aging. These results suggest an important role for mitochondrial function in muscle aging.
Collapse
Affiliation(s)
- Hongning Wang
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Phillip Webster
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,Department of Cell Systems and Anatomy, UTHSCSA, San Antonio, TX 78229, USA
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,GRECC, South Texas VA Healthcare System, San Antonio, TX 78229, USA.,Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
49
|
Haeussler S, Köhler F, Witting M, Premm MF, Rolland SG, Fischer C, Chauve L, Casanueva O, Conradt B. Autophagy compensates for defects in mitochondrial dynamics. PLoS Genet 2020; 16:e1008638. [PMID: 32191694 PMCID: PMC7135339 DOI: 10.1371/journal.pgen.1008638] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/06/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induction of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of the 299 genes identified, 143 encode negative regulators of autophagy, many of which have previously not been implicated in this cellular quality control mechanism. We present evidence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing mitochondrial membrane potential rather than restoring mitochondrial morphology. Furthermore, we demonstrate that increased autophagic flux also suppresses UPRmt induction in response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2, which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochondrial fusion or fission leads to increased levels of certain types of triacylglycerols and that this is at least partially reverted by the induction of autophagy. We propose that the breakdown of these triacylglycerols through autophagy leads to elevated metabolic activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany
| | - Madeleine F. Premm
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Christian Fischer
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Laetitia Chauve
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Olivia Casanueva
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
50
|
Escherichia coli Metabolite Profiling Leads to the Development of an RNA Interference Strain for Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:189-198. [PMID: 31712257 PMCID: PMC6945014 DOI: 10.1534/g3.119.400741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The relationship of genotypes to phenotypes can be modified by environmental inputs. Such crucial environmental inputs include metabolic cues derived from microbes living together with animals. Thus, the analysis of genetic effects on animals' physiology can be confounded by variations in the metabolic profile of microbes. Caenorhabditis elegans exposed to distinct bacterial strains and species exhibit phenotypes different at cellular, developmental, and behavioral levels. Here we reported metabolomic profiles of three Escherichia coli strains, B strain OP50, K-12 strain MG1655, and B-K-12 hybrid strain HB101, as well as different mitochondrial and fat storage phenotypes of C. elegans exposed to MG1655 and HB101 vs. OP50. We found that these metabolic phenotypes of C. elegans are not correlated with overall metabolic patterning of bacterial strains, but their specific metabolites. In particular, the fat storage phenotype is traced to the betaine level in different bacterial strains. HT115 is another K-12 E. coli strain that is commonly utilized to elicit an RNA interference response, and we showed that C. elegans exposed to OP50 and HT115 exhibit differences in mitochondrial morphology and fat storage levels. We thus generated an RNA interference competent OP50 (iOP50) strain that can robustly and consistently knockdown endogenous C. elegans genes in different tissues. Together, these studies suggest the importance of specific bacterial metabolites in regulating the host's physiology and provide a tool to prevent confounding effects when analyzing genotype-phenotype interactions under different bacterial backgrounds.
Collapse
|