1
|
Bel Borja L, Taylor SJP, Soubigou F, Pelisch F. CENP-C-targeted PLK-1 regulates kinetochore function in C. elegans embryos. J Cell Sci 2024; 137:jcs262327. [PMID: 39355896 PMCID: PMC11634037 DOI: 10.1242/jcs.262327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Polo-like kinase 1 (PLK-1) is present in centrosomes, the nuclear envelope and kinetochores and plays a significant role in meiosis and mitosis. PLK-1 depletion or inhibition has severe consequences for spindle assembly, spindle assembly checkpoint (SAC) activation, chromosome segregation and cytokinesis. BUB-1 targets PLK-1 to the outer kinetochore and, in mammals, the inner kinetochore PLK1 targeting is mediated by the constitutive centromere associated network (CCAN). BUB-1-targeted PLK-1 plays a key role in SAC activation and has a SAC-independent role through targeting CDC-20. In contrast, whether there is a specific, non-redundant role for inner kinetochore targeted PLK-1 is unknown. Here, we used the Caenorhabditis elegans embryo to study the role of inner kinetochore PLK-1. We found that CENP-C, the sole CCAN component in C. elegans and other species, targets PLK-1 to the inner kinetochore during prometaphase and metaphase. Disruption of the CENP-C-PLK-1 interaction leads to an imbalance in kinetochore components and a defect in chromosome congression, without affecting CDC-20 recruitment. These findings indicate that PLK-1 kinetochore recruitment by CENP-C has at least partially distinct functions from outer kinetochore PLK-1, providing a platform for a better understanding of the different roles played by PLK-1 during mitosis.
Collapse
Affiliation(s)
- Laura Bel Borja
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Samuel J. P. Taylor
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Flavie Soubigou
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Federico Pelisch
- Molecular, Cellular and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
2
|
Houston J, Vissotsky C, Deep A, Hakozaki H, Crews E, Oegema K, Corbett KD, Lara-Gonzalez P, Kim T, Desai A. Phospho-KNL-1 recognition by a TPR domain targets the BUB-1-BUB-3 complex to C. elegans kinetochores. J Cell Biol 2024; 223:e202402036. [PMID: 38578284 PMCID: PMC10996584 DOI: 10.1083/jcb.202402036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.
Collapse
Affiliation(s)
- Jack Houston
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | | | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hiroyuki Hakozaki
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Enice Crews
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karen Oegema
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D. Corbett
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Biology Education, Pusan National University, Busan, Republic of Korea
| | - Arshad Desai
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Ouzounidis VR, Green M, van Capelle CDC, Gebhardt C, Crellin H, Finlayson C, Prevo B, Cheerambathur DK. The outer kinetochore components KNL-1 and Ndc80 complex regulate axon and neuronal cell body positioning in the C. elegans nervous system. Mol Biol Cell 2024; 35:ar83. [PMID: 38656792 PMCID: PMC11238089 DOI: 10.1091/mbc.e23-08-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.
Collapse
Affiliation(s)
- Vasileios R. Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Mattie Green
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Charlotte de Ceuninck van Capelle
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Clara Gebhardt
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Helena Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Cameron Finlayson
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K. Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
4
|
Ding Z, Peng L, Zeng J, Yuan K, Tang Y, Yi Q. Functions of HP1 in preventing chromosomal instability. Cell Biochem Funct 2024; 42:e4017. [PMID: 38603595 DOI: 10.1002/cbf.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Chromosomal instability (CIN), caused by errors in the segregation of chromosomes during mitosis, is a hallmark of many types of cancer. The fidelity of chromosome segregation is governed by a sophisticated cellular signaling network, one crucial orchestrator of which is Heterochromatin protein 1 (HP1). HP1 dynamically localizes to distinct sites at various stages of mitosis, where it regulates key mitotic events ranging from chromosome-microtubule attachment to sister chromatid cohesion to cytokinesis. Our evolving comprehension of HP1's multifaceted role has positioned it as a central protein in the orchestration of mitotic processes.
Collapse
Affiliation(s)
- Zexian Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Lei Peng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Jinghua Zeng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Kejia Yuan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yan Tang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Qi Yi
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
McGory JM, Verma V, Barcelos DM, Maresca TJ. Multimerization of a disordered kinetochore protein promotes accurate chromosome segregation by localizing a core dynein module. J Cell Biol 2024; 223:e202211122. [PMID: 38180477 PMCID: PMC10770731 DOI: 10.1083/jcb.202211122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Kinetochores connect chromosomes and spindle microtubules to maintain genomic integrity through cell division. Crosstalk between the minus-end directed motor dynein and kinetochore-microtubule attachment factors promotes accurate chromosome segregation by a poorly understood pathway. Here, we identify a linkage between the intrinsically disordered protein Spc105 (KNL1 orthologue) and dynein using an optogenetic oligomerization assay. Core pools of the checkpoint protein BubR1 and the adaptor complex RZZ contribute to the linkage. Furthermore, a minimal segment of Spc105 with a propensity to multimerize and which contains protein binding motifs is sufficient to link Spc105 to RZZ/dynein. Deletion of the minimal region from Spc105 compromises the recruitment of its binding partners to kinetochores and elevates chromosome missegregation due to merotelic attachments. Restoration of normal chromosome segregation and localization of BubR1 and RZZ requires both protein binding motifs and oligomerization of Spc105. Together, our results reveal that higher-order multimerization of Spc105 contributes to localizing a core pool of RZZ that promotes accurate chromosome segregation.
Collapse
Affiliation(s)
- Jessica M. McGory
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | | | - Thomas J. Maresca
- Biology Department, University of Massachusetts, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
6
|
Houston J, Vissotsky C, Deep A, Hakozaki H, Crews E, Oegema K, Corbett KD, Lara-Gonzalez P, Kim T, Desai A. Phospho-KNL-1 recognition by a TPR domain targets the BUB-1-BUB-3 complex to C. elegans kinetochores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579536. [PMID: 38370671 PMCID: PMC10871365 DOI: 10.1101/2024.02.09.579536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.
Collapse
Affiliation(s)
- Jack Houston
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | | | - Amar Deep
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Hiro Hakozaki
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Enice Crews
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Karen Oegema
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Kevin D. Corbett
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea
| | - Arshad Desai
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California 92093, USA
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
- Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Corno A, Cordeiro MH, Allan LA, Lim Q, Harrington E, Smith RJ, Saurin AT. A bifunctional kinase-phosphatase module balances mitotic checkpoint strength and kinetochore-microtubule attachment stability. EMBO J 2023; 42:e112630. [PMID: 37712330 PMCID: PMC10577578 DOI: 10.15252/embj.2022112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Two major mechanisms safeguard genome stability during mitosis: the mitotic checkpoint delays mitosis until all chromosomes have attached to microtubules, and the kinetochore-microtubule error-correction pathway keeps this attachment process free from errors. We demonstrate here that the optimal strength and dynamics of these processes are set by a kinase-phosphatase pair (PLK1-PP2A) that engage in negative feedback from adjacent phospho-binding motifs on the BUB complex. Uncoupling this feedback to skew the balance towards PLK1 produces a strong checkpoint, hypostable microtubule attachments and mitotic delays. Conversely, skewing the balance towards PP2A causes a weak checkpoint, hyperstable microtubule attachments and chromosome segregation errors. These phenotypes are associated with altered BUB complex recruitment to KNL1-MELT motifs, implicating PLK1-PP2A in controlling auto-amplification of MELT phosphorylation. In support, KNL1-BUB disassembly becomes contingent on PLK1 inhibition when KNL1 is engineered to contain excess MELT motifs. This elevates BUB-PLK1/PP2A complex levels on metaphase kinetochores, stabilises kinetochore-microtubule attachments, induces chromosome segregation defects and prevents KNL1-BUB disassembly at anaphase. Together, these data demonstrate how a bifunctional PLK1/PP2A module has evolved together with the MELT motifs to optimise BUB complex dynamics and ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Andrea Corno
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Marilia H Cordeiro
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Lindsey A Allan
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Qian‐Wei Lim
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Elena Harrington
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Richard J Smith
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Adrian T Saurin
- Cellular and Systems Medicine, School of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
8
|
Zhou KD, Zhang CX, Niu FR, Bai HC, Wu DD, Deng JC, Qian HY, Jiang YL, Ma W. Exploring Plant Meiosis: Insights from the Kinetochore Perspective. Curr Issues Mol Biol 2023; 45:7974-7995. [PMID: 37886947 PMCID: PMC10605258 DOI: 10.3390/cimb45100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Cai-Xia Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| | - Fu-Rong Niu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hao-Chen Bai
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Dan-Dan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jia-Cheng Deng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Hong-Yuan Qian
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Yun-Lei Jiang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| |
Collapse
|
9
|
Pitayu-Nugroho L, Aubry M, Laband K, Geoffroy H, Ganeswaran T, Primadhanty A, Canman JC, Dumont J. Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Nat Commun 2023; 14:4032. [PMID: 37419936 PMCID: PMC10329006 DOI: 10.1038/s41467-023-39702-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
During cell division, chromosome congression to the spindle center, their orientation along the spindle long axis and alignment at the metaphase plate depend on interactions between spindle microtubules and kinetochores, and are pre-requisite for chromosome bi-orientation and accurate segregation. How these successive phases are controlled during oocyte meiosis remains elusive. Here we provide 4D live imaging during the first meiotic division in C. elegans oocytes with wild-type or disrupted kinetochore protein function. We show that, unlike in monocentric organisms, holocentric chromosome bi-orientation is not strictly required for accurate chromosome segregation. Instead, we propose a model in which initial kinetochore-localized BHC module (comprised of BUB-1Bub1, HCP-1/2CENP-F and CLS-2CLASP)-dependent pushing acts redundantly with Ndc80 complex-mediated pulling for accurate chromosome segregation in meiosis. In absence of both mechanisms, homologous chromosomes tend to co-segregate in anaphase, especially when initially mis-oriented. Our results highlight how different kinetochore components cooperate to promote accurate holocentric chromosome segregation in oocytes of C. elegans.
Collapse
Affiliation(s)
| | - Mélanie Aubry
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Kimberley Laband
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Hélène Geoffroy
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | | | | | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
10
|
Houston J, Ohta M, Gómez-Cavazos JS, Deep A, Corbett KD, Oegema K, Lara-Gonzalez P, Kim T, Desai A. BUB-1-bound PLK-1 directs CDC-20 kinetochore recruitment to ensure timely embryonic mitoses. Curr Biol 2023; 33:2291-2299.e10. [PMID: 37137308 PMCID: PMC10270731 DOI: 10.1016/j.cub.2023.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
During mitosis, chromosomes assemble kinetochores to dynamically couple with spindle microtubules.1,2 Kinetochores also function as signaling hubs directing mitotic progression by recruiting and controlling the fate of the anaphase promoting complex/cyclosome (APC/C) activator CDC-20.3,4,5 Kinetochores either incorporate CDC-20 into checkpoint complexes that inhibit the APC/C or dephosphorylate CDC-20, which allows it to interact with and activate the APC/C.4,6 The importance of these two CDC-20 fates likely depends on the biological context. In human somatic cells, the major mechanism controlling mitotic progression is the spindle checkpoint. By contrast, progression through mitosis during the cell cycles of early embryos is largely checkpoint independent.7,8,9,10 Here, we first show that CDC-20 phosphoregulation controls mitotic duration in the C. elegans embryo and defines a checkpoint-independent temporal mitotic optimum for robust embryogenesis. CDC-20 phosphoregulation occurs at kinetochores and in the cytosol. At kinetochores, the flux of CDC-20 for local dephosphorylation requires an ABBA motif on BUB-1 that directly interfaces with the structured WD40 domain of CDC-20.6,11,12,13 We next show that a conserved "STP" motif in BUB-1 that docks the mitotic kinase PLK-114 is necessary for CDC-20 kinetochore recruitment and timely mitotic progression. The kinase activity of PLK-1 is required for CDC-20 to localize to kinetochores and phosphorylates the CDC-20-binding ABBA motif of BUB-1 to promote BUB-1-CDC-20 interaction and mitotic progression. Thus, the BUB-1-bound pool of PLK-1 ensures timely mitosis during embryonic cell cycles by promoting CDC-20 recruitment to the vicinity of kinetochore-localized phosphatase activity.
Collapse
Affiliation(s)
- Jack Houston
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Midori Ohta
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - J Sebastián Gómez-Cavazos
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen Oegema
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pablo Lara-Gonzalez
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Taekyung Kim
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea.
| | - Arshad Desai
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Macaisne N, Bellutti L, Laband K, Edwards F, Pitayu-Nugroho L, Gervais A, Ganeswaran T, Geoffroy H, Maton G, Canman JC, Lacroix B, Dumont J. Synergistic stabilization of microtubules by BUB-1, HCP-1, and CLS-2 controls microtubule pausing and meiotic spindle assembly. eLife 2023; 12:e82579. [PMID: 36799894 PMCID: PMC10005782 DOI: 10.7554/elife.82579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
During cell division, chromosome segregation is orchestrated by a microtubule-based spindle. Interaction between spindle microtubules and kinetochores is central to the bi-orientation of chromosomes. Initially dynamic to allow spindle assembly and kinetochore attachments, which is essential for chromosome alignment, microtubules are eventually stabilized for efficient segregation of sister chromatids and homologous chromosomes during mitosis and meiosis I, respectively. Therefore, the precise control of microtubule dynamics is of utmost importance during mitosis and meiosis. Here, we study the assembly and role of a kinetochore module, comprised of the kinase BUB-1, the two redundant CENP-F orthologs HCP-1/2, and the CLASP family member CLS-2 (hereafter termed the BHC module), in the control of microtubule dynamics in Caenorhabditis elegans oocytes. Using a combination of in vivo structure-function analyses of BHC components and in vitro microtubule-based assays, we show that BHC components stabilize microtubules, which is essential for meiotic spindle formation and accurate chromosome segregation. Overall, our results show that BUB-1 and HCP-1/2 do not only act as targeting components for CLS-2 at kinetochores, but also synergistically control kinetochore-microtubule dynamics by promoting microtubule pause. Together, our results suggest that BUB-1 and HCP-1/2 actively participate in the control of kinetochore-microtubule dynamics in the context of an intact BHC module to promote spindle assembly and accurate chromosome segregation in meiosis.
Collapse
Affiliation(s)
- Nicolas Macaisne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Laura Bellutti
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Kimberley Laband
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Frances Edwards
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | - Alison Gervais
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | - Hélène Geoffroy
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Gilliane Maton
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Julie C Canman
- Columbia University; Department of Pathology and Cell BiologyNew YorkUnited States
| | - Benjamin Lacroix
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de MontpellierMontpellierFrance
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| |
Collapse
|
13
|
Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Front Cell Dev Biol 2022; 10:870745. [PMID: 35646932 PMCID: PMC9136299 DOI: 10.3389/fcell.2022.870745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.
Collapse
Affiliation(s)
- Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Fang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| |
Collapse
|
14
|
Kim T. Recent Progress on the Localization of PLK1 to the Kinetochore and Its Role in Mitosis. Int J Mol Sci 2022; 23:ijms23095252. [PMID: 35563642 PMCID: PMC9102930 DOI: 10.3390/ijms23095252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
The accurate distribution of the replicated genome during cell division is essential for cell survival and healthy organismal development. Errors in this process have catastrophic consequences, such as birth defects and aneuploidy, a hallmark of cancer cells. PLK1 is one of the master kinases in mitosis and has multiple functions, including mitotic entry, chromosome segregation, spindle assembly checkpoint, and cytokinesis. To dissect the role of PLK1 in mitosis, it is important to understand how PLK1 localizes in the specific region in cells. PLK1 localizes at the kinetochore and is essential in spindle assembly checkpoint and chromosome segregation. However, how PLK1 localizes at the kinetochore remains elusive. Here, we review the recent literature on the kinetochore recruitment mechanisms of PLK1 and its roles in spindle assembly checkpoint and attachment between kinetochores and spindle microtubules. Together, this review provides an overview of how the local distribution of PLK1 could regulate major pathways in mitosis.
Collapse
Affiliation(s)
- Taekyung Kim
- Department of Biology Education, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
15
|
Elowe S, Bolanos-Garcia VM. The spindle checkpoint proteins BUB1 and BUBR1: (SLiM)ming down to the basics. Trends Biochem Sci 2022; 47:352-366. [DOI: 10.1016/j.tibs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
|
16
|
Audett MR, Johnson EL, McGory JM, Barcelos DM, Szalai EO, Przewloka MR, Maresca TJ. The microtubule- and PP1-binding activities of Drosophila melanogaster Spc105 control the kinetics of SAC satisfaction. Mol Biol Cell 2022; 33:ar1. [PMID: 34705493 PMCID: PMC8886820 DOI: 10.1091/mbc.e21-06-0307-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
KNL1 is a large intrinsically disordered kinetochore (KT) protein that recruits spindle assembly checkpoint (SAC) components to mediate SAC signaling. The N-terminal region (NTR) of KNL1 possesses two activities that have been implicated in SAC silencing: microtubule (MT) binding and protein phosphatase 1 (PP1) recruitment. The NTR of Drosophila melanogaster KNL1 (Spc105) has never been shown to bind MTs or to recruit PP1. Furthermore, the phosphoregulatory mechanisms known to control SAC protein binding to KNL1 orthologues is absent in D. melanogaster. Here, these apparent discrepancies are resolved using in vitro and cell-based assays. A phosphoregulatory circuit that utilizes Aurora B kinase promotes SAC protein binding to the central disordered region of Spc105 while the NTR binds directly to MTs in vitro and recruits PP1-87B to KTs in vivo. Live-cell assays employing an optogenetic oligomerization tag and deletion/chimera mutants are used to define the interplay of MT and PP1 binding by Spc105 and the relative contributions of both activities to the kinetics of SAC satisfaction.
Collapse
Affiliation(s)
- Margaux R. Audett
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst MA 01003
| | - Erin L. Johnson
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
| | - Jessica M. McGory
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst MA 01003
| | - Dylan M. Barcelos
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
| | - Evelin Oroszne Szalai
- Institute for Life Sciences, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Marcin R. Przewloka
- Institute for Life Sciences, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas J. Maresca
- Biology Department, University of Massachusetts, Amherst, Amherst MA 01003
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Amherst MA 01003
| |
Collapse
|
17
|
Lara-Gonzalez P, Pines J, Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin Cell Dev Biol 2021; 117:86-98. [PMID: 34210579 PMCID: PMC8406419 DOI: 10.1016/j.semcdb.2021.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that promotes accurate chromosome segregation in mitosis. The checkpoint senses the attachment state of kinetochores, the proteinaceous structures that assemble onto chromosomes in mitosis in order to mediate their interaction with spindle microtubules. When unattached, kinetochores generate a diffusible inhibitor that blocks the activity of the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase required for sister chromatid separation and exit from mitosis. Work from the past decade has greatly illuminated our understanding of the mechanisms by which the diffusible inhibitor is assembled and how it inhibits the APC/C. However, less is understood about how SAC proteins are recruited to kinetochores in the absence of microtubule attachment, how the kinetochore catalyzes formation of the diffusible inhibitor, and how attachments silence the SAC at the kinetochore. Here, we summarize current understanding of the mechanisms that activate and silence the SAC at kinetochores and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Arshad Desai
- Ludwig Institute for Cancer Research, USA; Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Kops GJPL, Snel B, Tromer EC. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr Biol 2021; 30:R589-R602. [PMID: 32428500 DOI: 10.1016/j.cub.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous diversity in eukaryotic life forms can ultimately be traced back to evolutionary modifications at the level of molecular networks. Deep understanding of these modifications will not only explain cellular diversity, but will also uncover different ways to execute similar processes and expose the evolutionary 'rules' that shape the molecular networks. Here, we review the evolutionary dynamics of the spindle assembly checkpoint (SAC), a signaling network that guards fidelity of chromosome segregation. We illustrate how the interpretation of divergent SAC systems in eukaryotic species is facilitated by combining detailed molecular knowledge of the SAC and extensive comparative genome analyses. Ultimately, expanding this to other core cellular systems and experimentally interrogating such systems in organisms from all major lineages may start outlining the routes to and eventual manifestation of the cellular diversity of eukaryotic life.
Collapse
Affiliation(s)
- Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Lara-Gonzalez P, Kim T, Oegema K, Corbett K, Desai A. A tripartite mechanism catalyzes Mad2-Cdc20 assembly at unattached kinetochores. Science 2021; 371:64-67. [PMID: 33384372 DOI: 10.1126/science.abc1424] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
During cell division, kinetochores couple chromosomes to spindle microtubules. To protect against chromosome gain or loss, kinetochores lacking microtubule attachment locally catalyze association of the checkpoint proteins Cdc20 and Mad2, which is the key event in the formation of a diffusible checkpoint complex that prevents mitotic exit. We elucidated the mechanism of kinetochore-catalyzed Mad2-Cdc20 assembly with a probe that specifically monitors this assembly reaction at kinetochores in living cells. We found that catalysis occurs through a tripartite mechanism that includes localized delivery of Mad2 and Cdc20 substrates and two phosphorylation-dependent interactions that geometrically constrain their positions and prime Cdc20 for interaction with Mad2. These results reveal how unattached kinetochores create a signal that ensures genome integrity during cell division.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Taekyung Kim
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Karen Oegema
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Kevin Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| | - Arshad Desai
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research, San Diego Branch, 9500 Gilman Drive, La Jolla, CA, USA
| |
Collapse
|
20
|
Cairo G, MacKenzie AM, Lacefield S. Differential requirement for Bub1 and Bub3 in regulation of meiotic versus mitotic chromosome segregation. J Cell Biol 2020; 219:133770. [PMID: 32328625 PMCID: PMC7147105 DOI: 10.1083/jcb.201909136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/02/2020] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Accurate chromosome segregation depends on the proper attachment of kinetochores to spindle microtubules before anaphase onset. The Ipl1/Aurora B kinase corrects improper attachments by phosphorylating kinetochore components and so releasing aberrant kinetochore–microtubule interactions. The localization of Ipl1 to kinetochores in budding yeast depends upon multiple pathways, including the Bub1–Bub3 pathway. We show here that in meiosis, Bub3 is crucial for correction of attachment errors. Depletion of Bub3 results in reduced levels of kinetochore-localized Ipl1 and concomitant massive chromosome missegregation caused by incorrect chromosome–spindle attachments. Depletion of Bub3 also results in shorter metaphase I and metaphase II due to premature localization of protein phosphatase 1 (PP1) to kinetochores, which antagonizes Ipl1-mediated phosphorylation. We propose a new role for the Bub1–Bub3 pathway in maintaining the balance between kinetochore localization of Ipl1 and PP1, a balance that is essential for accurate meiotic chromosome segregation and timely anaphase onset.
Collapse
Affiliation(s)
- Gisela Cairo
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
21
|
Cordeiro MH, Smith RJ, Saurin AT. Kinetochore phosphatases suppress autonomous Polo-like kinase 1 activity to control the mitotic checkpoint. J Cell Biol 2020; 219:e202002020. [PMID: 33125045 PMCID: PMC7608062 DOI: 10.1083/jcb.202002020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Local phosphatase regulation is needed at kinetochores to silence the mitotic checkpoint (a.k.a. spindle assembly checkpoint [SAC]). A key event in this regard is the dephosphorylation of MELT repeats on KNL1, which removes SAC proteins from the kinetochore, including the BUB complex. We show here that PP1 and PP2A-B56 phosphatases are primarily required to remove Polo-like kinase 1 (PLK1) from the BUB complex, which can otherwise maintain MELT phosphorylation in an autocatalytic manner. This appears to be their principal role in the SAC because both phosphatases become redundant if PLK1 is inhibited or BUB-PLK1 interaction is prevented. Surprisingly, MELT dephosphorylation can occur normally under these conditions even when the levels or activities of PP1 and PP2A are strongly inhibited at kinetochores. Therefore, these data imply that kinetochore phosphatase regulation is critical for the SAC, but primarily to restrain and extinguish autonomous PLK1 activity. This is likely a conserved feature of the metazoan SAC, since the relevant PLK1 and PP2A-B56 binding motifs have coevolved in the same region on MADBUB homologues.
Collapse
Affiliation(s)
| | | | - Adrian T. Saurin
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
22
|
Ólafsson G, Thorpe PH. Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA. PLoS Genet 2020; 16:e1008990. [PMID: 32810142 PMCID: PMC7455000 DOI: 10.1371/journal.pgen.1008990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The kinetochore, a multi-protein complex assembled on centromeres, is essential to segregate chromosomes during cell division. Deficiencies in kinetochore function can lead to chromosomal instability and aneuploidy-a hallmark of cancer cells. Kinetochore function is controlled by recruitment of regulatory proteins, many of which have been documented, however their function often remains uncharacterized and many are yet to be identified. To identify candidates of kinetochore regulation we used a proteome-wide protein association strategy in budding yeast and detected many proteins that are involved in post-translational modifications such as kinases, phosphatases and histone modifiers. We focused on the Polo-like kinase, Cdc5, and interrogated which cellular components were sensitive to constitutive Cdc5 localization. The kinetochore is particularly sensitive to constitutive Cdc5 kinase activity. Targeting Cdc5 to different kinetochore subcomplexes produced diverse phenotypes, consistent with multiple distinct functions at the kinetochore. We show that targeting Cdc5 to the inner kinetochore, the constitutive centromere-associated network (CCAN), increases the levels of centromeric RNA via an SPT4 dependent mechanism.
Collapse
Affiliation(s)
- Guðjón Ólafsson
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Peter H. Thorpe
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
23
|
Landmann C, Pierre-Elies P, Goutte-Gattat D, Montembault E, Claverie MC, Royou A. The Mre11-Rad50-Nbs1 complex mediates the robust recruitment of Polo to DNA lesions during mitosis in Drosophila. J Cell Sci 2020; 133:jcs244442. [PMID: 32487663 DOI: 10.1242/jcs.244442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
The DNA damage sensor Mre11-Rad50-Nbs1 complex and Polo kinase are recruited to DNA lesions during mitosis. However, their mechanism of recruitment is elusive. Here, using live-cell imaging combined with micro-irradiation of single chromosomes, we analyze the dynamics of Polo and Mre11 at DNA lesions during mitosis in Drosophila These two proteins display distinct kinetics. Whereas Polo kinetics at double-strand breaks (DSBs) are Cdk1-driven, Mre11 promptly but briefly associates with DSBs regardless of the phase of mitosis and re-associates with DSBs in the proceeding interphase. Mechanistically, Polo kinase activity is required for its own recruitment and that of the mitotic proteins BubR1 and Bub3 to DSBs. Moreover, depletion of Rad50 severely impaired Polo kinetics at mitotic DSBs. Conversely, ectopic tethering of Mre11 to chromatin was sufficient to recruit Polo. Our study highlights a novel pathway that links the DSB sensor Mre11-Rad50-Nbs1 complex and Polo kinase to initiate a prompt, decisive response to the presence of DNA damage during mitosis.
Collapse
Affiliation(s)
- Cedric Landmann
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Priscillia Pierre-Elies
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Damien Goutte-Gattat
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
24
|
Etemad B, Vertesy A, Kuijt TEF, Sacristan C, van Oudenaarden A, Kops GJPL. Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy. J Cell Sci 2019; 132:jcs.231589. [PMID: 31138679 DOI: 10.1242/jcs.231589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by monitoring kinetochore-microtubule interactions. SAC proteins are shed from kinetochores once stable attachments are achieved. Human kinetochores consist of hundreds of SAC protein recruitment modules and bind up to 20 microtubules, raising the question of how the SAC responds to intermediate attachment states. We show that one protein module ('RZZS-MAD1-MAD2') of the SAC is removed from kinetochores at low microtubule occupancy and remains absent at higher occupancies, while another module ('BUB1-BUBR1') is retained at substantial levels irrespective of attachment states. These behaviours reflect different silencing mechanisms: while BUB1 displacement is almost fully dependent on MPS1 inactivation, MAD1 (also known as MAD1L1) displacement is not. Artificially tuning the affinity of kinetochores for microtubules further shows that ∼50% occupancy is sufficient to shed MAD2 and silence the SAC. Kinetochores thus respond as a single unit to shut down SAC signalling at submaximal occupancy states, but retain one SAC module. This may ensure continued SAC silencing on kinetochores with fluctuating occupancy states while maintaining the ability for fast SAC re-activation.
Collapse
Affiliation(s)
- Banafsheh Etemad
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Abel Vertesy
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Timo E F Kuijt
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Carlos Sacristan
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
25
|
Vallardi G, Cordeiro MH, Saurin AT. A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:457-484. [PMID: 28840249 DOI: 10.1007/978-3-319-58592-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Giulia Vallardi
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
26
|
Developmental Control of the Cell Cycle: Insights from Caenorhabditis elegans. Genetics 2019; 211:797-829. [PMID: 30846544 PMCID: PMC6404260 DOI: 10.1534/genetics.118.301643] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
During animal development, a single fertilized egg forms a complete organism with tens to trillions of cells that encompass a large variety of cell types. Cell cycle regulation is therefore at the center of development and needs to be carried out in close coordination with cell differentiation, migration, and death, as well as tissue formation, morphogenesis, and homeostasis. The timing and frequency of cell divisions are controlled by complex combinations of external and cell-intrinsic signals that vary throughout development. Insight into how such controls determine in vivo cell division patterns has come from studies in various genetic model systems. The nematode Caenorhabditis elegans has only about 1000 somatic cells and approximately twice as many germ cells in the adult hermaphrodite. Despite the relatively small number of cells, C. elegans has diverse tissues, including intestine, nerves, striated and smooth muscle, and skin. C. elegans is unique as a model organism for studies of the cell cycle because the somatic cell lineage is invariant. Somatic cells divide at set times during development to produce daughter cells that adopt reproducible developmental fates. Studies in C. elegans have allowed the identification of conserved cell cycle regulators and provided insights into how cell cycle regulation varies between tissues. In this review, we focus on the regulation of the cell cycle in the context of C. elegans development, with reference to other systems, with the goal of better understanding how cell cycle regulation is linked to animal development in general.
Collapse
|
27
|
Recent Progress on the Localization of the Spindle Assembly Checkpoint Machinery to Kinetochores. Cells 2019; 8:cells8030278. [PMID: 30909555 PMCID: PMC6468716 DOI: 10.3390/cells8030278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful chromosome segregation during mitosis is crucial for maintaining genome stability. The spindle assembly checkpoint (SAC) is a surveillance mechanism that ensures accurate mitotic progression. Defective SAC signaling leads to premature sister chromatid separation and aneuploid daughter cells. Mechanistically, the SAC couples the kinetochore microtubule attachment status to the cell cycle progression machinery. In the presence of abnormal kinetochore microtubule attachments, the SAC prevents the metaphase-to-anaphase transition through a complex kinase-phosphatase signaling cascade which results in the correct balance of SAC components recruited to the kinetochore. The correct kinetochore localization of SAC proteins is a prerequisite for robust SAC signaling and, hence, accurate chromosome segregation. Here, we review recent progresses on the kinetochore recruitment of core SAC factors.
Collapse
|
28
|
Pachis ST, Kops GJPL. Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biol 2019; 8:rsob.180109. [PMID: 30111590 PMCID: PMC6119859 DOI: 10.1098/rsob.180109] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
Discovered in 1991 in a screen for genes involved in spindle pole body duplication, the monopolar spindle 1 (Mps1) kinase has since claimed a central role in processes that ensure error-free chromosome segregation. As a result, Mps1 kinase activity has become an attractive candidate for pharmaceutical companies in the search for compounds that target essential cellular processes to eliminate, for example, tumour cells or pathogens. Research in recent decades has offered many insights into the molecular function of Mps1 and its regulation. In this review, we integrate the latest knowledge regarding the regulation of Mps1 activity and its spatio-temporal distribution, highlight gaps in our understanding of these processes and propose future research avenues to address them.
Collapse
Affiliation(s)
- Spyridon T Pachis
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Pintard L, Bowerman B. Mitotic Cell Division in Caenorhabditis elegans. Genetics 2019; 211:35-73. [PMID: 30626640 PMCID: PMC6325691 DOI: 10.1534/genetics.118.301367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Mitotic cell divisions increase cell number while faithfully distributing the replicated genome at each division. The Caenorhabditis elegans embryo is a powerful model for eukaryotic cell division. Nearly all of the genes that regulate cell division in C. elegans are conserved across metazoan species, including humans. The C. elegans pathways tend to be streamlined, facilitating dissection of the more redundant human pathways. Here, we summarize the virtues of C. elegans as a model system and review our current understanding of centriole duplication, the acquisition of pericentriolar material by centrioles to form centrosomes, the assembly of kinetochores and the mitotic spindle, chromosome segregation, and cytokinesis.
Collapse
Affiliation(s)
- Lionel Pintard
- Equipe labellisée Ligue contre le Cancer, Institut Jacques Monod, Team Cell Cycle and Development UMR7592, Centre National de la Recherche Scientifique - Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
30
|
Chen C, Whitney IP, Banerjee A, Sacristan C, Sekhri P, Kern DM, Fontan A, Kops GJPL, Tyson JJ, Cheeseman IM, Joglekar AP. Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design. Curr Biol 2018; 29:104-119.e10. [PMID: 30595520 DOI: 10.1016/j.cub.2018.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 11/27/2022]
Abstract
Switch-like activation of the spindle assembly checkpoint (SAC) is critical for accurate chromosome segregation and for cell division in a timely manner. To determine the mechanisms that achieve this, we engineered an ectopic, kinetochore-independent SAC activator: the "eSAC." The eSAC stimulates SAC signaling by artificially dimerizing Mps1 kinase domain and a cytosolic KNL1 phosphodomain, the kinetochore signaling scaffold. By exploiting variable eSAC expression in a cell population, we defined the dependence of the eSAC-induced mitotic delay on eSAC concentration in a cell to reveal the dose-response behavior of the core signaling cascade of the SAC. These quantitative analyses and subsequent mathematical modeling of the dose-response data uncover two crucial properties of the core SAC signaling cascade: (1) a cellular limit on the maximum anaphase-inhibitory signal that the cascade can generate due to the limited supply of SAC proteins and (2) the ability of the KNL1 phosphodomain to produce the anaphase-inhibitory signal synergistically, when it recruits multiple SAC proteins simultaneously. We propose that these properties together achieve inverse, non-linear scaling between the signal output per kinetochore and the number of signaling kinetochores. When the number of kinetochores is low, synergistic signaling by KNL1 enables each kinetochore to produce a disproportionately strong signal output. However, when many kinetochores signal concurrently, they compete for a limited supply of SAC proteins. This frustrates synergistic signaling and lowers their signal output. Thus, the signaling activity of unattached kinetochores will adapt to the changing number of signaling kinetochores to enable the SAC to approximate switch-like behavior.
Collapse
Affiliation(s)
- Chu Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ian P Whitney
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Anand Banerjee
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Carlos Sacristan
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Palak Sekhri
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David M Kern
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Adrienne Fontan
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Ajit P Joglekar
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
31
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
32
|
Luo Y, Ahmad E, Liu ST. MAD1: Kinetochore Receptors and Catalytic Mechanisms. Front Cell Dev Biol 2018; 6:51. [PMID: 29868582 PMCID: PMC5949338 DOI: 10.3389/fcell.2018.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
The mitotic checkpoint monitors kinetochore-microtubule attachment, delays anaphase onset and prevents aneuploidy when unattached or tensionless kinetochores are present in cells. Mitotic arrest deficiency 1 (MAD1) is one of the evolutionarily conserved core mitotic checkpoint proteins. MAD1 forms a cell cycle independent complex with MAD2 through its MAD2 interaction motif (MIM) in the middle region. Such a complex is enriched at unattached kinetochores and functions as an unusual catalyst to promote conformational change of additional MAD2 molecules, constituting a crucial signal amplifying mechanism for the mitotic checkpoint. Only MAD2 in its active conformation can be assembled with BUBR1 and CDC20 to form the Mitotic Checkpoint Complex (MCC), which is a potent inhibitor of anaphase onset. Recent research has shed light on how MAD1 is recruited to unattached kinetochores, and how it carries out its catalytic activity. Here we review these advances and discuss their implications for future research.
Collapse
Affiliation(s)
- Yibo Luo
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Ejaz Ahmad
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Song-Tao Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
33
|
Raab M, Sanhaji M, Matthess Y, Hörlin A, Lorenz I, Dötsch C, Habbe N, Waidmann O, Kurunci-Csacsko E, Firestein R, Becker S, Strebhardt K. PLK1 has tumor-suppressive potential in APC-truncated colon cancer cells. Nat Commun 2018; 9:1106. [PMID: 29549256 PMCID: PMC5856809 DOI: 10.1038/s41467-018-03494-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) acts as a molecular safeguard in ensuring faithful chromosome transmission during mitosis, which is regulated by a complex interplay between phosphatases and kinases including PLK1. Adenomatous polyposis coli (APC) germline mutations cause aneuploidy and are responsible for familial adenomatous polyposis (FAP). Here we study the role of PLK1 in colon cancer cells with chromosomal instability promoted by APC truncation (APC-ΔC). The expression of APC-ΔC in colon cells reduces the accumulation of mitotic cells upon PLK1 inhibition, accelerates mitotic exit and increases the survival of cells with enhanced chromosomal abnormalities. The inhibition of PLK1 in mitotic, APC-∆C-expressing cells reduces the kinetochore levels of Aurora B and hampers the recruitment of SAC component suggesting a compromised mitotic checkpoint. Furthermore, Plk1 inhibition (RNAi, pharmacological compounds) promotes the development of adenomatous polyps in two independent Apc Min/+ mouse models. High PLK1 expression increases the survival of colon cancer patients expressing a truncated APC significantly.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
- German Cancer Consortium (DKTK)/ German Cancer Research Center, 69120, Heidelberg, Germany
| | - Albrecht Hörlin
- Institute of Pathology at the Department of Pathology, Goethe-University, 60590, Frankfurt, Germany
| | - Ioana Lorenz
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Christina Dötsch
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Nils Habbe
- Department of General and Visceral Surgery, Goethe-University, 60590, Frankfurt, Germany
| | - Oliver Waidmann
- Department of Gastroenterology and Hepatology, Goethe-University, 60590, Frankfurt, Germany
| | | | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, AU 31681, Australia
- Department of Molecular Translational Medicine, Monash University, Clayton, VIC, 3800, Australia
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK)/ German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Itoh G, Ikeda M, Iemura K, Amin MA, Kuriyama S, Tanaka M, Mizuno N, Osakada H, Haraguchi T, Tanaka K. Lateral attachment of kinetochores to microtubules is enriched in prometaphase rosette and facilitates chromosome alignment and bi-orientation establishment. Sci Rep 2018; 8:3888. [PMID: 29497093 PMCID: PMC5832872 DOI: 10.1038/s41598-018-22164-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Faithful chromosome segregation is ensured by the establishment of bi-orientation; the attachment of sister kinetochores to the end of microtubules extending from opposite spindle poles. In addition, kinetochores can also attach to lateral surfaces of microtubules; called lateral attachment, which plays a role in chromosome capture and transport. However, molecular basis and biological significance of lateral attachment are not fully understood. We have addressed these questions by focusing on the prometaphase rosette, a typical chromosome configuration in early prometaphase. We found that kinetochores form uniform lateral attachments in the prometaphase rosette. Many transient kinetochore components are maximally enriched, in an Aurora B activity-dependent manner, when the prometaphase rosette is formed. We revealed that rosette formation is driven by rapid poleward motion of dynein, but can occur even in its absence, through slow kinetochore movements caused by microtubule depolymerization that is supposedly dependent on kinetochore tethering at microtubule ends by CENP-E. We also found that chromosome connection to microtubules is extensively lost when lateral attachment is perturbed in cells defective in end-on attachment. Our findings demonstrate that lateral attachment is an important intermediate in bi-orientation establishment and chromosome alignment, playing a crucial role in incorporating chromosomes into the nascent spindle.
Collapse
Affiliation(s)
- Go Itoh
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Mohammed Abdullahel Amin
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Natsuki Mizuno
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
35
|
Combes G, Barysz H, Garand C, Gama Braga L, Alharbi I, Thebault P, Murakami L, Bryne DP, Stankovic S, Eyers PA, Bolanos-Garcia VM, Earnshaw WC, Maciejowski J, Jallepalli PV, Elowe S. Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint. Curr Biol 2018; 28:872-883.e5. [PMID: 29502948 PMCID: PMC5863767 DOI: 10.1016/j.cub.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a “prone-to-autophosphorylate” Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells. Mps1 autophosphorylation at the NTE promotes activity independent of localization NTE phosphorylation relieves an NTE-dependent autoinhibition Mps1 autophosphorylation at its NTE is essential for the SAC, but not congression
Collapse
Affiliation(s)
- Guillaume Combes
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Helena Barysz
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chantal Garand
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Luciano Gama Braga
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Ibrahim Alharbi
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Philippe Thebault
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Luc Murakami
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Dominic P Bryne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stasa Stankovic
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sabine Elowe
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
36
|
Miyazaki S, Kim J, Sakuno T, Watanabe Y. Hierarchical Regulation of Centromeric Cohesion Protection by Meikin and Shugoshin during Meiosis I. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:259-266. [PMID: 29196561 DOI: 10.1101/sqb.2017.82.033811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kinetochore is the key apparatus regulating chromosome segregation. Particularly in meiosis, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation), and sister chromatid cohesion mediated by cohesin is protected at centromeres in the following anaphase. Shugoshin, which localizes to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, Moa1 (meikin), which was initially characterized as a mono-orientation factor in fission yeast, also regulates cohesion protection. Moa1, which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1), inducing the persistent accumulation of Bub1 at kinetochores. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Further, molecular genetic analyses reveal a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin during meiosis I.
Collapse
Affiliation(s)
- Seira Miyazaki
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.,Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Jihye Kim
- Research Institute, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Takeshi Sakuno
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.,Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.,Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| |
Collapse
|
37
|
Taming the Beast: Control of APC/C Cdc20-Dependent Destruction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:111-121. [PMID: 29133301 DOI: 10.1101/sqb.2017.82.033712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multisubunit ubiquitin ligase that triggers the metaphase-to-anaphase transition in the cell cycle by targeting the substrates cyclin B and securin for destruction. APC/C activity toward these two key substrates requires the coactivator Cdc20. To ensure that cells enter mitosis and partition their duplicated genome with high accuracy, APC/CCdc20 activity must be tightly controlled. Here, we discuss the mechanisms that regulate APC/CCdc20 activity both before and during mitosis. We focus our discussion primarily on the chromosomal pathways that both accelerate and delay APC/C activation by targeting Cdc20 to opposing fates. The findings discussed provide an overview of how cells control the activation of this major cell cycle regulator to ensure both accurate and timely cell division.
Collapse
|
38
|
Komaki S, Schnittger A. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress. Dev Cell 2017; 43:172-185.e5. [PMID: 29065308 DOI: 10.1016/j.devcel.2017.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022]
Abstract
The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution.
Collapse
Affiliation(s)
- Shinichiro Komaki
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| |
Collapse
|
39
|
Combes G, Alharbi I, Braga LG, Elowe S. Playing polo during mitosis: PLK1 takes the lead. Oncogene 2017; 36:4819-4827. [PMID: 28436952 DOI: 10.1038/onc.2017.113] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1), the prototypical member of the polo-like family of serine/threonine kinases, is a pivotal regulator of mitosis and cytokinesis in eukaryotes. Many layers of regulation have evolved to target PLK1 to different subcellular structures and to its various mitotic substrates in line with its numerous functions during mitosis. Collective work is starting to illuminate an important set of substrates for PLK1: the mitotic kinases that together ensure the fidelity of the cell division process. Amongst these, recent developments argue that PLK1 regulates the activity of the histone kinases Aurora B and Haspin to define centromere identity, of MPS1 to initiate spindle checkpoint signaling, and of BUB1 and its pseudokinase paralog BUBR1 to coordinate spindle checkpoint activation and inactivation. Here, we review the recent work describing the regulation of these kinases by PLK1. We highlight common themes throughout and argue that a major mitotic function of PLK1 is as a master regulator of these key kinases.
Collapse
Affiliation(s)
- G Combes
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - I Alharbi
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - L G Braga
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
| | - S Elowe
- Program in Molecular and Cellular biology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Axe of Reproduction, Mother and Youth Health, CHU de Québec Research Centre, Quebec City, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
40
|
Ikeda M, Tanaka K. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis. Sci Rep 2017; 7:8794. [PMID: 28821799 PMCID: PMC5562746 DOI: 10.1038/s41598-017-09114-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
For faithful chromosome segregation, the formation of stable kinetochore-microtubule attachment and its monitoring by the spindle assembly checkpoint (SAC) are coordinately regulated by mechanisms that are currently ill-defined. Here, we show that polo-like kinase 1 (Plk1), which is instrumental in forming stable kinetochore-microtubule attachments, is also involved in the maintenance of SAC activity by binding to Bub1, but not by binding to CLASP2 or CLIP-170. The effect of Plk1 on the SAC was found to be mediated through phosphorylation of Mps1, an essential kinase for the SAC, as well as through phosphorylation of the MELT repeats in Knl1. Bub1 acts as a platform for assembling other SAC components on the phosphorylated MELT repeats. We propose that Bub1-bound Plk1 is important for the maintenance of SAC activity by supporting Bub1 localization to kinetochores in prometaphase, a time when the kinetochore Mps1 level is reduced, until the formation of stable kinetochore-microtubule attachment is completed. Our study reveals an intricate mechanism for coordinating the formation of stable kinetochore-microtubule attachment and SAC activity.
Collapse
Affiliation(s)
- Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
41
|
Miyazaki S, Kim J, Yamagishi Y, Ishiguro T, Okada Y, Tanno Y, Sakuno T, Watanabe Y. Meikin-associated polo-like kinase specifies Bub1 distribution in meiosis I. Genes Cells 2017; 22:552-567. [PMID: 28497540 DOI: 10.1111/gtc.12496] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 01/09/2023]
Abstract
In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse.
Collapse
Affiliation(s)
- Seira Miyazaki
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Jihye Kim
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
- Research Institute, National Cancer Center, Goyang, Gyeonggi, 410-769, Korea
| | - Yuya Yamagishi
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Ave, New York, NY, 10065, USA
| | - Tadashi Ishiguro
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Yuji Tanno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Takeshi Sakuno
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Yoshinori Watanabe
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| |
Collapse
|
42
|
Lee SJ, Rodriguez-Bravo V, Kim H, Datta S, Foley EA. The PP2A B56 phosphatase promotes the association of Cdc20 with APC/C in mitosis. J Cell Sci 2017; 130:1760-1771. [PMID: 28404789 DOI: 10.1242/jcs.201608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
PP2A comprising B56 regulatory subunit isoforms (PP2AB56) is a serine/threonine phosphatase essential for mitosis. At the kinetochore, PP2AB56 both stabilizes microtubule binding and promotes silencing of the spindle assembly checkpoint (SAC) through its association with the SAC protein BubR1. Cells depleted of the B56 regulatory subunits of PP2A are delayed in activation of Cdc20-containing APC/C (APC/CCdc20), which is an essential step for mitotic exit. It has been hypothesized that this delay arises from increased production of the mitotic checkpoint complex (MCC), an APC/CCdc20 inhibitor formed at unattached kinetochores through SAC signaling. In contrast to this prediction, we show that depletion of B56 subunits does not increase the amount or stability of the MCC. Rather, delays in APC/CCdc20 activation in B56-depleted cells correlate with impaired Cdc20 binding to APC/C. Stimulation of APC/CCdc20 assembly does not require binding between PP2AB56 and BubR1, and thus this contribution of PP2AB56 towards mitotic exit is distinct from its functions at kinetochores. PP2AB56 associates with APC/C constitutively in a BubR1-independent manner. A mitotic phosphorylation site on Cdc20, known to be a substrate of PP2AB56, modulates APC/CCdc20 assembly. These results elucidate the contributions of PP2AB56 towards completion of mitosis.
Collapse
Affiliation(s)
- Sun Joo Lee
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Hyunjung Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sutirtha Datta
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
43
|
Aurora-A promotes the establishment of spindle assembly checkpoint by priming the Haspin-Aurora-B feedback loop in late G2 phase. Cell Discov 2017; 3:16049. [PMID: 28101375 PMCID: PMC5223110 DOI: 10.1038/celldisc.2016.49] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Aurora-A kinase functions mainly in centrosome maturation, separation and spindle formation. It has also been found to be amplified or overexpressed in a range of solid tumors, which is linked with tumor progression and poor prognosis. Importantly, Aurora-A inhibitors are being studied in a number of ongoing clinical trials. However, whether and how Aurora-A has a role in the regulation of the mitotic checkpoint is controversial. Additionally, the function of nuclear-accumulated Aurora-A in late G2 phase is not clear. Here we show that knockout, inhibition or blockade of the nuclear entry of Aurora-A severely decreased the centromere localization of Aurora-B and the phosphorylation of histone H3 threonine 3 (H3T3-ph) mediated by the kinase Haspin in late G2 phase. We further reveal that nuclear-accumulated Aurora-A phosphorylates Haspin at multiple sites at its N-terminus and that this promotes H3T3-ph and the rapid recruitment to the centromere of the chromosomal passenger complex. In addition, Aurora-A facilitates the association of Aurora-B with their common substrates: Haspin and Plk1. Notably, these functions of Aurora-A are mostly independent of Plk1. Thus we demonstrate that, in late G2 and prophase, Aurora-A phosphorylates Haspin to trigger the Haspin-H3T3-ph-Aurora-B positive feedback loop that supports the timely establishment of the chromosomal passenger complex and the mitotic checkpoint before spindle assembly.
Collapse
|
44
|
Jemaà M, Manic G, Lledo G, Lissa D, Reynes C, Morin N, Chibon F, Sistigu A, Castedo M, Vitale I, Kroemer G, Abrieu A. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget 2016; 7:885-901. [PMID: 26637805 PMCID: PMC4808040 DOI: 10.18632/oncotarget.6432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
Several lines of evidence indicate that whole-genome duplication resulting in tetraploidy facilitates carcinogenesis by providing an intermediate and metastable state more prone to generate oncogenic aneuploidy. Here, we report a novel strategy to preferentially kill tetraploid cells based on the abrogation of the spindle assembly checkpoint (SAC) via the targeting of TTK protein kinase (better known as monopolar spindle 1, MPS1). The pharmacological inhibition as well as the knockdown of MPS1 kills more efficiently tetraploid cells than their diploid counterparts. By using time-lapse videomicroscopy, we show that tetraploid cells do not survive the aborted mitosis due to SAC abrogation upon MPS1 depletion. On the contrary diploid cells are able to survive up to at least two more cell cycles upon the same treatment. This effect might reflect the enhanced difficulty of cells with whole-genome doubling to tolerate a further increase in ploidy and/or an elevated level of chromosome instability in the absence of SAC functions. We further show that MPS1-inhibited tetraploid cells promote mitotic catastrophe executed by the intrinsic pathway of apoptosis, as indicated by the loss of mitochondrial potential, the release of the pro-apoptotic cytochrome c from mitochondria, and the activation of caspases. Altogether, our results suggest that MPS1 inhibition could be used as a therapeutic strategy for targeting tetraploid cancer cells.
Collapse
Affiliation(s)
- Mohamed Jemaà
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | | | - Gwendaline Lledo
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | - Delphine Lissa
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France.,INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Christelle Reynes
- EA 2415, Laboratoire de Biostatistique, d'Epidémiologie et de Recherche Clinique, Université de Montpellier, Montpellier, France
| | - Nathalie Morin
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| | - Frédéric Chibon
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France.,INSERM U916, Bordeaux, France
| | | | - Maria Castedo
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France.,INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- INSERM, UMRS1138, Paris, France.,Equipe 11 Labelisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ariane Abrieu
- CRBM, CNRS UMR5237, Université de Montpellier, Montpellier, France
| |
Collapse
|
45
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
46
|
Gurden MD, Anderhub SJ, Faisal A, Linardopoulos S. Aurora B prevents premature removal of spindle assembly checkpoint proteins from the kinetochore: A key role for Aurora B in mitosis. Oncotarget 2016; 9:19525-19542. [PMID: 29731963 PMCID: PMC5929406 DOI: 10.18632/oncotarget.10657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
Accurate chromosome segregation is dependent on the spindle assembly checkpoint (SAC). In current models, the key direct role of Aurora B in the SAC has been suggested to be to promote rapid kinetochore localisation of MPS1, allowing MPS1 to generate the checkpoint signal. However, Aurora B is also thought to play an indirect role in the SAC through the destabilisation of kinetochore-microtubule (KT-MT) attachments. Here, we demonstrate that Aurora B activity is not required for the kinetochore recruitment of the majority of SAC proteins. More importantly, we show that the primary role of Aurora B in the SAC is to prevent the premature removal of SAC proteins from the kinetochore, which is strictly dependent on KT-MT interactions. Moreover, in the presence of KT-MT interactions, Aurora B inhibition silences a persistent SAC induced by tethering MPS1 to the kinetochore. This explains the highly synergistic interaction between Aurora B and MPS1 inhibitors to override the SAC, which is lost when cells are pre-arrested in nocodazole. Furthermore, we show that Aurora B and MPS1 inhibitors synergistically kill a panel of breast and colon cancer cell lines, including cells that are otherwise insensitive to Aurora B inhibitors alone. These data demonstrate that the major role of Aurora B in SAC is to prevent the removal of SAC proteins from tensionless kinetochores, thus inhibiting premature SAC silencing, and highlights a therapeutic strategy through combination of Aurora B and MPS1 inhibitors.
Collapse
Affiliation(s)
- Mark D Gurden
- Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Simon J Anderhub
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.,Present address: Phenex Pharmaceuticals, Ludwigshafen am Rhein, Germany
| | - Amir Faisal
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.,Present address: Lahore University of Management Sciences, D.H.A. Lahore Cantt, Lahore, Pakistan
| | - Spiros Linardopoulos
- Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.,Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
47
|
Drinnenberg IA, Henikoff S, Malik HS. Evolutionary Turnover of Kinetochore Proteins: A Ship of Theseus? Trends Cell Biol 2016; 26:498-510. [PMID: 26877204 PMCID: PMC4914419 DOI: 10.1016/j.tcb.2016.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The kinetochore is a multiprotein complex that mediates the attachment of a eukaryotic chromosome to the mitotic spindle. The protein composition of kinetochores is similar across species as divergent as yeast and human. However, recent findings have revealed an unexpected degree of compositional diversity in kinetochores. For example, kinetochore proteins that are essential in some species have been lost in others, whereas new kinetochore proteins have emerged in other lineages. Even in lineages with similar kinetochore composition, individual kinetochore proteins have functionally diverged to acquire either essential or redundant roles. Thus, despite functional conservation, the repertoire of kinetochore proteins has undergone recurrent evolutionary turnover.
Collapse
Affiliation(s)
- Ines A Drinnenberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Current address: Chromatin Dynamics Unit, UMR2664, Institut Curie, Paris, France.
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
48
|
Wilson-Kubalek EM, Cheeseman IM, Milligan RA. Structural comparison of the Caenorhabditis elegans and human Ndc80 complexes bound to microtubules reveals distinct binding behavior. Mol Biol Cell 2016; 27:1197-203. [PMID: 26941333 PMCID: PMC4831874 DOI: 10.1091/mbc.e15-12-0858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/23/2016] [Indexed: 11/11/2022] Open
Abstract
During cell division, kinetochores must remain tethered to the plus ends of dynamic microtubule polymers. However, the molecular basis for robust kinetochore-microtubule interactions remains poorly understood. The conserved four-subunit Ndc80 complex plays an essential and direct role in generating dynamic kinetochore-microtubule attachments. Here we compare the binding of theCaenorhabditis elegansand human Ndc80 complexes to microtubules at high resolution using cryo-electron microscopy reconstructions. Despite the conserved roles of the Ndc80 complex in diverse organisms, we find that the attachment mode of these complexes for microtubules is distinct. The human Ndc80 complex binds every tubulin monomer along the microtubule protofilament, whereas theC. elegansNdc80 complex binds more tightly to β-tubulin. In addition, theC. elegansNdc80 complex tilts more toward the adjacent protofilament. These structural differences in the Ndc80 complex between different species may play significant roles in the nature of kinetochore-microtubule interactions.
Collapse
Affiliation(s)
- Elizabeth M Wilson-Kubalek
- Laboratory of Structure Cell Biology, Department of Integrative Structure and Computational Biology, Scripps Research Institute, La Jolla, CA 92037
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Ronald A Milligan
- Laboratory of Structure Cell Biology, Department of Integrative Structure and Computational Biology, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
49
|
A Centromere-Signaling Network Underlies the Coordination among Mitotic Events. Trends Biochem Sci 2015; 41:160-174. [PMID: 26705896 DOI: 10.1016/j.tibs.2015.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/28/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
Abstract
There is increasing evidence that regulators of the spindle checkpoint, kinetochore-microtubule attachments, and sister chromatid cohesion are part of an interconnected mitotic regulatory circuit with two positive feedback loops and the chromosome passenger complex (CPC) at its center. If true, this conceptual breakthrough needs to be integrated into models of mitosis. In this review, we describe this circuit and point out how the double feedback loops could provide insights into the self-organization of some mitotic processes and the autonomy of every chromosome on the mitotic spindle. We also provide working models for how mitotic events may be coordinated by this circuit.
Collapse
|
50
|
Agarwal S, Varma D. How the SAC gets the axe: Integrating kinetochore microtubule attachments with spindle assembly checkpoint signaling. BIOARCHITECTURE 2015; 5:1-12. [PMID: 26430805 DOI: 10.1080/19490992.2015.1090669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitosis entails the bona fide segregation of duplicated chromosomes. This process is accomplished by the attachment of kinetochores on chromosomes to microtubules (MTs) of the mitotic spindle. Once the appropriate attachment is achieved, the spindle assembly checkpoint (SAC) that delays the premature onset of anaphase needs to be silenced for the cell to proceed to anaphase and cytokinesis. Therefore, while it is imperative to preserve the SAC when kinetochores are unattached, it is of paramount importance that SAC components are removed post kinetochore microtubule (kMT) attachment. Precise knowledge of how kMT attachments trigger the removal of SAC components from kinetochores or how the checkpoint proteins feedback in to the attachment machinery remains elusive. This review aims to describe the recent advances that provide an insight into the interplay of molecular events that coordinate and regulate the SAC activity in response to kMT attachment during cell division.
Collapse
Affiliation(s)
- Shivangi Agarwal
- a Department of Cell and Molecular Biology ; Feinberg School of Medicine; Northwestern University ; Chicago , IL USA
| | - Dileep Varma
- a Department of Cell and Molecular Biology ; Feinberg School of Medicine; Northwestern University ; Chicago , IL USA
| |
Collapse
|