1
|
Ku HY, Bilder D. Basement membrane patterning by spatial deployment of a secretion-regulating protease. Proc Natl Acad Sci U S A 2025; 122:e2412161122. [PMID: 40359035 DOI: 10.1073/pnas.2412161122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
While paradigms for patterning of cell fates in development are well established, paradigms for patterning morphogenesis, particularly when organ shape is influenced by the extracellular matrix (ECM), are not. Morphogenesis of the Drosophila egg chamber (follicle) depends on anterior-posterior distribution of basement membrane (BM) components such as Collagen IV (Col4), whose gradient creates tissue mechanical properties that specify the degree of elongation. Here, we show that the gradient is not regulated by Col4 transcription but instead relies on posttranscriptional mechanisms. The metalloprotease ADAMTS-A, expressed in a gradient inverse to that of Col4, limits Col4 deposition in the follicle center and manipulation of its levels can cause either organ hyper- or hypoelongation. We present evidence that ADAMTS-A acts within the secretory pathway, rather than extracellularly, to limit Col4 incorporation into the BM. High levels of ADAMTS-A in follicle termini are normally dispensable but suppress Col4 incorporation when transcription is elevated. Meanwhile, the terminally expressed metalloprotease Stall increases Col4 turnover in the posterior. Our data show how an organ can employ patterned expression of ECM proteases with intracellular as well as extracellular activity to specify BM properties that control shape.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720
| |
Collapse
|
2
|
Varga V, Szinyákovics J, Bebes A, Szikszai F, Kovács T. Role of Hemocytes in the Aging of Drosophila Male Germline. Cells 2025; 14:315. [PMID: 39996785 PMCID: PMC11854897 DOI: 10.3390/cells14040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Stem cells are essential for the proper functioning of tissues, replacing damaged, senescent cells to ensure tissue regeneration. However, as age advances, the number of these stem cells can change, and their self-renewal abilities can become impaired, leading to disruption of homeostasis, loss of regenerative capacity, and, ultimately, deterioration of tissue function. In Drosophila testis, in addition to the germline and somatic cells involved in spermatogenesis, there are immune cells (hemocytes) with macrophage function. In our study, we aimed to investigate the role of hemocytes in maintaining germline stem cells throughout their lifespan. Our results show that in the absence of plasmatocytes and crystal immune cells, the number of germline stem cells (GSCs) and apoptotic germline cells also increases significantly during senescence, which may have detrimental effects on the differentiation processes of germline cells. The size of the hub increases in aged male testes. It is therefore conceivable that changes in the hub may induce dysfunction of differentiation processes. The fertility of aged immunodeficient animals is decreased. Furthermore, we show that the expression of the JAK/STAT signaling pathway, which is essential for the maintenance of the stem cell niche, is impaired in the lack of hemocytes. We found an increased expression of Socs36e, an inhibitor of JAK-STAT, which correlates with decreased JAK-STAT activity. Overexpression of Socs36e in the apical part of the germline led to a phenotype similar to the immunodeficient aged germline, where an increased GSC number and hub size were also observed. However, spermatogenesis was also disturbed in this case. Our study shows that hemocytes are required to regulate the number of GSCs. This regulation could be mediated through the JAK-STAT signaling pathway. These results may help to provide a more complex insight into the relationships between immune cells and stem cells.
Collapse
Affiliation(s)
- Virginia Varga
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Anikó Bebes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Fanni Szikszai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| |
Collapse
|
3
|
Cardoso-Jaime V, Dimopoulos G. Anopheles gambiae phagocytic hemocytes promote Plasmodium falciparum infection by regulating midgut epithelial integrity. Nat Commun 2025; 16:1465. [PMID: 39920122 PMCID: PMC11805967 DOI: 10.1038/s41467-025-56313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
For successful transmission, the malaria parasite must traverse tissue epithelia and survive attack from the insect's innate immune system. Hemocytes play a multitude of roles in mosquitoes, including defense against invading pathogens. Here, we show that hemocytes of the major malaria vector Anopheles gambiae promote Plasmodium falciparum infection by maintaining midgut epithelial integrity by controlling cell proliferation upon blood feeding. The mosquito's hemocytes also control the midgut microbiota and immune gene expression. Our study unveils novel hemocyte functions that are exploited by the human malaria parasite to evade the mosquito's immune system.
Collapse
Affiliation(s)
- Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Cui X, Wu L, Zhang C, Li Z. Implantable Self-Powered Systems for Electrical Stimulation Medical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412044. [PMID: 39587936 DOI: 10.1002/advs.202412044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Indexed: 11/27/2024]
Abstract
With the integration of bioelectronics and materials science, implantable self-powered systems for electrical stimulation medical devices have emerged as an innovative therapeutic approach, garnering significant attention in medical research. These devices achieve self-powering through integrated energy conversion modules, such as triboelectric nanogenerators (TENGs) and piezoelectric nanogenerators (PENGs), significantly enhancing the portability and long-term efficacy of therapeutic equipment. This review delves into the design strategies and clinical applications of implantable self-powered systems, encompassing the design and optimization of energy harvesting modules, the selection and fabrication of adaptable electrode materials, innovations in systematic design strategies, and the extensive utilization of implantable self-powered systems in biological therapies, including the treatment of neurological disorders, tissue regeneration engineering, drug delivery, and tumor therapy. Through a comprehensive analysis of the latest research progress, technical challenges, and future directions in these areas, this paper aims to provide valuable insights and inspiration for further research and clinical applications of implantable self-powered systems.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Li Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
6
|
Ku HY, Bilder D. Basement membrane patterning by spatial deployment of a secretion-regulating protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602330. [PMID: 39026720 PMCID: PMC11257494 DOI: 10.1101/2024.07.06.602330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
While paradigms for patterning of cell fates in development are well-established, paradigms for patterning morphogenesis, particularly when organ shape is influenced by the extracellular matrix (ECM), are less so. Morphogenesis of the Drosophila egg chamber (follicle) depends on anterior-posterior distribution of basement membrane (BM) components such as Collagen IV (Col4), whose symmetric gradient creates tissue mechanical properties that specify the degree of elongation. Here we show that the gradient is not regulated by Col4 transcription but instead relies on post-transcriptional mechanisms. The metalloprotease ADAMTS-A, expressed in a gradient inverse to that of Col4, limits Col4 deposition in the follicle center and manipulation of its levels can cause either organ hyper- or hypo-elongation. We present evidence that ADAMTS-A acts within the secretory pathway, rather than extracellularly, to limit Col4 incorporation into the BM. High levels of ADAMTS-A in follicle termini are normally dispensable but suppress Col4 incorporation when transcription is elevated. Our data show how an organ can employ patterned expression of ECM proteases with intracellular as well as extracellular activity to specify BM properties that control shape.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Department of Molecular and Cell Biology, University of California-Berkeley Berkeley CA, 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley Berkeley CA, 94720, USA
| |
Collapse
|
7
|
Monticelli S, Sommer A, AlHajj Hassan Z, Garcia Rodriguez C, Adé K, Cattenoz P, Delaporte C, Gomez Perdiguero E, Giangrande A. Early-wave macrophages control late hematopoiesis. Dev Cell 2024; 59:1284-1301.e8. [PMID: 38569551 DOI: 10.1016/j.devcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Alina Sommer
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Zeinab AlHajj Hassan
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Clarisabel Garcia Rodriguez
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kémy Adé
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France
| | - Pierre Cattenoz
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Claude Delaporte
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Elisa Gomez Perdiguero
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France.
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France.
| |
Collapse
|
8
|
Díaz-de-la-Loza MDC, Stramer BM. The extracellular matrix in tissue morphogenesis: No longer a backseat driver. Cells Dev 2024; 177:203883. [PMID: 37935283 DOI: 10.1016/j.cdev.2023.203883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The forces driving tissue morphogenesis are thought to originate from cellular activities. While it is appreciated that extracellular matrix (ECM) may also be involved, ECM function is assumed to be simply instructive in modulating the cellular behaviors that drive changes to tissue shape. However, there is increasing evidence that the ECM may not be the passive player portrayed in developmental biology textbooks. In this review we highlight examples of embryonic ECM dynamics that suggest cell-independent activity, along with developmental processes during which localized ECM alterations and ECM-autonomous forces are directing changes to tissue shape. Additionally, we discuss experimental approaches to unveil active ECM roles during tissue morphogenesis. We propose that it may be time to rethink our general definition of morphogenesis as a cellular-driven phenomenon and incorporate an underappreciated, and surprisingly dynamic ECM.
Collapse
Affiliation(s)
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
9
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
10
|
Ridwan SM, Twillie A, Poursaeid S, Beard EK, Bener MB, Antel M, Cowan AE, Matsuda S, Inaba M. Diffusible fraction of niche BMP ligand safeguards stem-cell differentiation. Nat Commun 2024; 15:1166. [PMID: 38326318 PMCID: PMC10850516 DOI: 10.1038/s41467-024-45408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Drosophila male germline stem cells (GSCs) reside at the tip of the testis and surround a cluster of niche cells. Decapentaplegic (Dpp) is one of the well-established ligands and has a major role in maintaining stem cells located in close proximity. However, the existence and the role of the diffusible fraction of Dpp outside of the niche have been unclear. Here, using genetically-encoded nanobodies called Morphotraps, we physically block Dpp diffusion without interfering with niche-stem cell signaling and find that a diffusible fraction of Dpp is required to ensure differentiation of GSC daughter cells, opposite of its role in maintenance of GSC in the niche. Our work provides an example in which a soluble niche ligand induces opposed cellular responses in stem cells versus in differentiating descendants to ensure spatial control of the niche. This may be a common mechanism to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Autumn Twillie
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Samaneh Poursaeid
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Emma Kristine Beard
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Muhammed Burak Bener
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ann E Cowan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Shinya Matsuda
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
11
|
Bakopoulos D, Golenkina S, Dark C, Christie EL, Sánchez-Sánchez BJ, Stramer BM, Cheng LY. Convergent insulin and TGF-β signalling drives cancer cachexia by promoting aberrant fat body ECM accumulation in a Drosophila tumour model. EMBO Rep 2023; 24:e57695. [PMID: 38014610 DOI: 10.15252/embr.202357695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-β signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-β signalling to regulate ECM accumulation in the fat body. TGF-β signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-β signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.
Collapse
Affiliation(s)
- Daniel Bakopoulos
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Callum Dark
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Brian M Stramer
- Kings College London, Randall Centre for Cell & Molecular Biophysics, London, UK
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
12
|
McIntyre DC, Nance J. Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling. Development 2023; 150:dev201640. [PMID: 37497562 PMCID: PMC10445801 DOI: 10.1242/dev.201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
Collapse
Affiliation(s)
- Daniel C. McIntyre
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- University of Virginia, Department of Biology, 90 Geldard Drive, Physical Life Science Building Room 318, Charlottesville, VA 22904, USA
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Ready DF, Chang HC. Interommatidial cells build a tensile collagen network during Drosophila retinal morphogenesis. Curr Biol 2023; 33:2223-2234.e3. [PMID: 37209679 PMCID: PMC10247444 DOI: 10.1016/j.cub.2023.04.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Drosophila compound eye morphogenesis transforms a simple epithelium into an approximate hollow hemisphere comprised of ∼700 ommatidia, packed as tapering hexagonal prisms between a rigid external array of cuticular lenses and a parallel, rigid internal floor, the fenestrated membrane (FM). Critical to vision, photosensory rhabdomeres are sprung between these two surfaces, grading their length and shape accurately across the eye and aligning them to the optical axis. Using fluorescently tagged collagen and laminin, we show that that the FM assembles sequentially, emerging in the larval eye disc in the wake of the morphogenetic furrow as the original collagen-containing basement membrane (BM) separates from the epithelial floor and is replaced by a new, laminin-rich BM, which advances around axon bundles of newly differentiated photoreceptors as they exit the retina, forming fenestrae in this new, laminin-rich BM. In mid-pupal development, the interommatidial cells (IOCs) autonomously deposit collagen at fenestrae, forming rigid, tension-resisting grommets. In turn, stress fibers assemble in the IOC basal endfeet, where they contact grommets at anchorages mediated by integrin linked kinase (ILK). The hexagonal network of IOC endfeet tiling the retinal floor couples nearest-neighbor grommets into a supracellular tri-axial tension network. Late in pupal development, IOC stress fiber contraction folds pliable BM into a hexagonal grid of collagen-stiffened ridges, concomitantly decreasing the area of convex FM and applying essential morphogenetic longitudinal tension to rapidly growing rhabdomeres. Together, our results reveal an orderly program of sequential assembly and activation of a supramolecular tensile network that governs Drosophila retinal morphogenesis.
Collapse
Affiliation(s)
- Donald F Ready
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
14
|
Serna-Morales E, Sánchez-Sánchez BJ, Marcotti S, Nichols A, Bhargava A, Dragu A, Hirvonen LM, Díaz-de-la-Loza MDC, Mink M, Cox S, Rayfield E, Lee RM, Hobson CM, Chew TL, Stramer BM. Extracellular matrix assembly stress initiates Drosophila central nervous system morphogenesis. Dev Cell 2023; 58:825-835.e6. [PMID: 37086718 PMCID: PMC10390342 DOI: 10.1016/j.devcel.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 12/12/2022] [Accepted: 03/05/2023] [Indexed: 04/24/2023]
Abstract
Forces controlling tissue morphogenesis are attributed to cellular-driven activities, and any role for extracellular matrix (ECM) is assumed to be passive. However, all polymer networks, including ECM, can develop autonomous stresses during their assembly. Here, we examine the morphogenetic function of an ECM before reaching homeostatic equilibrium by analyzing de novo ECM assembly during Drosophila ventral nerve cord (VNC) condensation. Asymmetric VNC shortening and a rapid decrease in surface area correlate with the exponential assembly of collagen IV (Col4) surrounding the tissue. Concomitantly, a transient developmentally induced Col4 gradient leads to coherent long-range flow of ECM, which equilibrates the Col4 network. Finite element analysis and perturbation of Col4 network formation through the generation of dominant Col4 mutations that affect assembly reveal that VNC morphodynamics is partially driven by a sudden increase in ECM-driven surface tension. These data suggest that ECM assembly stress and associated network instabilities can actively participate in tissue morphogenesis.
Collapse
Affiliation(s)
- Eduardo Serna-Morales
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | | | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Angus Nichols
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Anushka Bhargava
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Liisa M Hirvonen
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | | | - Matyas Mink
- Institute of Medical Biology, University of Szeged, 6720 Szeged, Hungary
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Emily Rayfield
- School of Earth Sciences, University of Bristol, BS8 1QU Bristol, UK
| | - Rachel M Lee
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Chad M Hobson
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA 20147, USA
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK.
| |
Collapse
|
15
|
Matsubayashi Y. Dynamic movement and turnover of extracellular matrices during tissue development and maintenance. Fly (Austin) 2022; 16:248-274. [PMID: 35856387 PMCID: PMC9302511 DOI: 10.1080/19336934.2022.2076539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrices (ECMs) are essential for the architecture and function of animal tissues. ECMs have been thought to be highly stable structures; however, too much stability of ECMs would hamper tissue remodelling required for organ development and maintenance. Regarding this conundrum, this article reviews multiple lines of evidence that ECMs are in fact rapidly moving and replacing components in diverse organisms including hydra, worms, flies, and vertebrates. Also discussed are how cells behave on/in such dynamic ECMs, how ECM dynamics contributes to embryogenesis and adult tissue homoeostasis, and what molecular mechanisms exist behind the dynamics. In addition, it is highlighted how cutting-edge technologies such as genome engineering, live imaging, and mathematical modelling have contributed to reveal the previously invisible dynamics of ECMs. The idea that ECMs are unchanging is to be changed, and ECM dynamics is emerging as a hitherto unrecognized critical factor for tissue development and maintenance.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Dorset, Poole, Dorset, UK
| |
Collapse
|
16
|
The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Rep 2022; 39:110734. [PMID: 35476979 DOI: 10.1016/j.celrep.2022.110734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Biological tubes are fundamental units of most metazoan organs. Their defective morphogenesis can cause malformations and pathologies. An integral component of biological tubes is the extracellular matrix, present apically (aECM) and basally (BM). Studies using the Drosophila tracheal system established an essential function for the aECM in tubulogenesis. Here, we demonstrate that the BM also plays a critical role in this process. We find that BM components are deposited in a spatial-temporal manner in the trachea. We show that laminins, core BM components, control size and shape of tracheal tubes and their topology within the embryo. At a cellular level, laminins control cell shape changes and distribution of the cortical cytoskeleton component α-spectrin. Finally, we report that the BM and aECM act independently-yet cooperatively-to control tube elongation and together to guarantee tissue integrity. Our results unravel key roles for the BM in shaping, positioning, and maintaining biological tubes.
Collapse
|
17
|
Arinda BN, Innabi YA, Grasis JA, Oviedo NJ. Non-traditional roles of immune cells in regeneration: an evolutionary perspective. Development 2022; 149:275269. [PMID: 35502784 PMCID: PMC9124569 DOI: 10.1242/dev.199903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune cells are known to engage in pathogen defense. However, emerging research has revealed additional roles for immune cells, which are independent of their function in the immune response. Here, we underscore the ability of cells outside of the adaptive immune system to respond to recurring infections through the lens of evolution and cellular memory. With this in mind, we then discuss the bidirectional crosstalk between the immune cells and stem cells and present examples where these interactions regulate tissue repair and regeneration. We conclude by suggesting that comprehensive analyses of the immune system may enable biomedical applications in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Beryl N Arinda
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Yacoub A Innabi
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Juris A Grasis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
18
|
Establishment of an immortalized cell line derived from the pupal ovary of Mythimna separata (Lepidoptera: Noctuidae) and identification of the cell source. Cell Tissue Res 2021; 386:661-677. [PMID: 34599689 DOI: 10.1007/s00441-021-03528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Determining the source of primary cells is conductive to enriching sufficient cells with immortal potential thereby improving the success rate of establishing cell lines. However, most of the existing insect cell lines are established by mixing and fragmentation of explants. At present, the origin of cell lines can only be determined according to the cultured tissues, so it is impossible to determine which cell types they come from. In this study, a new cell line designated IOZCAS-Myse-1 was generated from pupal ovaries of the migratory pest Mythimna separata by explant tissues to derive adherent cultures. This paper mainly shows the further descriptive information on the origin of primary cells in the process of ovarian tissue isolation and culture. Phospho-histone H3 antibody-labeled cells with mitotic activity showed that the rapidly developing somatic cells in vivo gradually stopped proliferation when cultured ex vivo. The primary cells dissociated outside the tissue originated from the lumen cells, rather than the germ cells or the follicular epithelium cells. The results suggest that the newly established cell line IOZCAS-Myse-1 had two possible sources. One is the mutation of lumen cells in the vitellarium, and the other is the stem cells with differentiation potential in the germarium of the ovarioles. Moreover, the newly established cell line is sensitive to the infection of Autographa californica multiple nucleopolyhedrovirus, responds to 20-hydroxyecdysone and has weak encapsulation ability. Therefore, the new cell line can be a useful platform for replication of viral insecticides, screening of hormone-based insecticides and immunology research.
Collapse
|
19
|
Luo W, Liu S, Zhang W, Yang L, Huang J, Zhou S, Feng Q, Palli SR, Wang J, Roth S, Li S. Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. Proc Natl Acad Sci U S A 2021; 118:e2104461118. [PMID: 34544864 PMCID: PMC8488625 DOI: 10.1073/pnas.2104461118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
It is well documented that the juvenile hormone (JH) can function as a gonadotropic hormone that stimulates vitellogenesis by activating the production and uptake of vitellogenin in insects. Here, we describe a phenotype associated with mutations in the Drosophila JH receptor genes, Met and Gce: the accumulation of mature eggs with reduced egg length in the ovary. JH signaling is mainly activated in ovarian muscle cells and induces laminin gene expression in these cells. Meanwhile, JH signaling induces collagen IV gene expression in the adult fat body, from which collagen IV is secreted and deposited onto the ovarian muscles. Laminin locally and collagen IV remotely contribute to the assembly of ovarian muscle extracellular matrix (ECM); moreover, the ECM components are indispensable for ovarian muscle contraction. Furthermore, ovarian muscle contraction externally generates a mechanical force to promote ovulation and maintain egg shape. This work reveals an important mechanism for JH-regulated insect reproduction.
Collapse
Affiliation(s)
- Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Wenqiang Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Siegfried Roth
- Institute for Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
20
|
Montanari MP, Tran NV, Shimmi O. Regulation of spatial distribution of BMP ligands for pattern formation. Dev Dyn 2021; 251:198-212. [PMID: 34241935 DOI: 10.1002/dvdy.397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-ß (TGF-ß) family, have been shown to contribute to embryogenesis and organogenesis during animal development. Relevant studies provide support for the following concepts: (a) BMP signals are evolutionarily highly conserved as a genetic toolkit; (b) spatiotemporal distributions of BMP signals are precisely controlled at the post-translational level; and (c) the BMP signaling network has been co-opted to adapt to diversified animal development. These concepts originated from the historical findings of the Spemann-Mangold organizer and the subsequent studies about how this organizer functions at the molecular level. In this Commentary, we focus on two topics. First, we review how the BMP morphogen gradient is formed to sustain larval wing imaginal disc and early embryo growth and patterning in Drosophila. Second, we discuss how BMP signal is tightly controlled in a context-dependent manner, and how the signal and tissue dynamics are coupled to facilitate complex tissue structure formation. Finally, we argue how these concepts might be developed in the future for further understanding the significance of BMP signaling in animal development.
Collapse
Affiliation(s)
| | - Ngan Vi Tran
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
21
|
Khalili D, Kalcher C, Baumgartner S, Theopold U. Anti-Fibrotic Activity of an Antimicrobial Peptide in a Drosophila Model. J Innate Immun 2021; 13:376-390. [PMID: 34000729 PMCID: PMC8613551 DOI: 10.1159/000516104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Fibrotic lesions accompany several pathological conditions, including tumors. We show that expression of a dominant-active form of the Ras oncogene in Drosophila salivary glands (SGs) leads to redistribution of components of the basement membrane (BM) and fibrotic lesions. Similar to several types of mammalian fibrosis, the disturbed BM attracts clot components, including insect transglutaminase and phenoloxidase. SG epithelial cells show reduced apicobasal polarity accompanied by a loss of secretory activity. Both the fibrotic lesions and the reduced cell polarity are alleviated by ectopic expression of the antimicrobial peptide drosomycin (Drs), which also restores the secretory activity of the SGs. In addition to extracellular matrix components, both Drs and F-actin localize to fibrotic lesions.
Collapse
Affiliation(s)
- Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Christina Kalcher
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
22
|
Coates JA, Brooks E, Brittle AL, Armitage EL, Zeidler MP, Evans IR. Identification of functionally distinct macrophage subpopulations in Drosophila. eLife 2021; 10:e58686. [PMID: 33885361 PMCID: PMC8062135 DOI: 10.7554/elife.58686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Vertebrate macrophages are a highly heterogeneous cell population, but while Drosophila blood is dominated by a macrophage-like lineage (plasmatocytes), until very recently these cells were considered to represent a homogeneous population. Here, we present our identification of enhancer elements labelling plasmatocyte subpopulations, which vary in abundance across development. These subpopulations exhibit functional differences compared to the overall population, including more potent injury responses and differential localisation and dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves wound responses, causing the overall population to resemble more closely the subpopulation marked by the Calnexin14D-associated enhancer. Finally, we show that exposure to increased levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this demonstrates macrophage heterogeneity in Drosophila, identifies mechanisms involved in subpopulation specification and function and facilitates the use of Drosophila to study macrophage heterogeneity in vivo.
Collapse
Affiliation(s)
- Jonathon Alexis Coates
- Department of Biomedical Science and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Elliot Brooks
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Amy Louise Brittle
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Emma Louise Armitage
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Martin Peter Zeidler
- Department of Biomedical Science and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| | - Iwan Robert Evans
- Department of Infection, Immunity and Cardiovascular Disease and the Bateson Centre, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
23
|
Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proc Natl Acad Sci U S A 2021; 118:2021251118. [PMID: 33859045 PMCID: PMC8072372 DOI: 10.1073/pnas.2021251118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comprehensive assessment of matrisome genes identified collagen IV as one of the many extracellular matrix (ECM) proteins regulating the stem cell pool in planarian tissue homeostasis and regeneration. While collagen IV has been shown to be involved in stem cell biology, our finding links it to pluripotent stem cells in vivo, including self-renewal and differentiation into tissue-specific progenitors. We show a link between the ECM niches in the parenchyma/gut region and EGF/neuregulin-secreting neurons, thus providing mechanistic insight into interactions between cell niches. The conservation of basement membranes between planarian and mammalian gut niches suggests a similar interplay may exist in the mammalian systems, worthy of further investigation. The extracellular matrix (ECM) provides a precise physical and molecular environment for cell maintenance, self-renewal, and differentiation in the stem cell niche. However, the nature and organization of the ECM niche is not well understood. The adult freshwater planarian Schmidtea mediterranea maintains a large population of multipotent stem cells (neoblasts), presenting an ideal model to study the role of the ECM niche in stem cell regulation. Here we tested the function of 165 planarian homologs of ECM and ECM-related genes in neoblast regulation. We identified the collagen gene family as one with differential effects in promoting or suppressing proliferation of neoblasts. col4-1, encoding a type IV collagen α-chain, had the strongest effect. RNA interference (RNAi) of col4-1 impaired tissue maintenance and regeneration, causing tissue regression. Finally, we provide evidence for an interaction between type IV collagen, the discoidin domain receptor, and neuregulin-7 (NRG-7), which constitutes a mechanism to regulate the balance of symmetric and asymmetric division of neoblasts via the NRG-7/EGFR pathway.
Collapse
|
24
|
Mad dephosphorylation at the nuclear pore is essential for asymmetric stem cell division. Proc Natl Acad Sci U S A 2021; 118:2006786118. [PMID: 33753475 DOI: 10.1073/pnas.2006786118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stem cells divide asymmetrically to generate a stem cell and a differentiating daughter cell. Yet, it remains poorly understood how a stem cell and a differentiating daughter cell can receive distinct levels of niche signal and thus acquire different cell fates (self-renewal versus differentiation), despite being adjacent to each other and thus seemingly exposed to similar levels of niche signaling. In the Drosophila ovary, germline stem cells (GSCs) are maintained by short range bone morphogenetic protein (BMP) signaling; the BMP ligands activate a receptor that phosphorylates the downstream molecule mothers against decapentaplegic (Mad). Phosphorylated Mad (pMad) accumulates in the GSC nucleus and activates the stem cell transcription program. Here, we demonstrate that pMad is highly concentrated in the nucleus of the GSC, while it quickly decreases in the nucleus of the differentiating daughter cell, the precystoblast (preCB), before the completion of cytokinesis. We show that a known Mad phosphatase, Dullard (Dd), is required for the asymmetric partitioning of pMad. Our mathematical modeling recapitulates the high sensitivity of the ratio of pMad levels to the Mad phosphatase activity and explains how the asymmetry arises in a shared cytoplasm. Together, these studies reveal a mechanism for breaking the symmetry of daughter cells during asymmetric stem cell division.
Collapse
|
25
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
Cattenoz PB, Monticelli S, Pavlidaki A, Giangrande A. Toward a Consensus in the Repertoire of Hemocytes Identified in Drosophila. Front Cell Dev Biol 2021; 9:643712. [PMID: 33748138 PMCID: PMC7969988 DOI: 10.3389/fcell.2021.643712] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/12/2021] [Indexed: 01/16/2023] Open
Abstract
The catalog of the Drosophila immune cells was until recently limited to three major cell types, based on morphology, function and few molecular markers. Three recent single cell studies highlight the presence of several subgroups, revealing a large diversity in the molecular signature of the larval immune cells. Since these studies rely on somewhat different experimental and analytical approaches, we here compare the datasets and identify eight common, robust subgroups associated to distinct functions such as proliferation, immune response, phagocytosis or secretion. Similar comparative analyses with datasets from different stages and tissues disclose the presence of larval immune cells resembling embryonic hemocyte progenitors and the expression of specific properties in larval immune cells associated with peripheral tissues.
Collapse
Affiliation(s)
- Pierre B. Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Sara Monticelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
27
|
Van De Bor V, Loreau V, Malbouyres M, Cerezo D, Placenti A, Ruggiero F, Noselli S. A dynamic and mosaic basement membrane controls cell intercalation in Drosophila ovaries. Development 2021; 148:dev.195511. [PMID: 33526583 DOI: 10.1242/dev.195511] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
Basement membranes (BM) are extracellular matrices assembled into complex and highly organized networks essential for organ morphogenesis and function. However, little is known about the tissue origin of BM components and their dynamics in vivo Here, we unravel the assembly and role of the BM main component, Collagen type IV (ColIV), in Drosophila ovarian stalk morphogenesis. Stalks are short strings of cells assembled through cell intercalation that link adjacent follicles and maintain ovarian integrity. We show that stalk ColIV has multiple origins and is assembled following a regulated pattern leading to a unique BM organisation. Absence of ColIV leads to follicle fusion, as observed upon ablation of stalk cells. ColIV and integrins are both required to trigger cell intercalation and maintain mechanically strong cell-cell attachment within the stalk. These results show how the dynamic assembly of a mosaic BM controls complex tissue morphogenesis and integrity.
Collapse
Affiliation(s)
| | | | - Marilyne Malbouyres
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - INRA USC 1370, 46, allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - INRA USC 1370, 46, allée d'Italie, 69364 Lyon cedex 07, France
| | | |
Collapse
|
28
|
Díaz-Torres A, Rosales-Nieves AE, Pearson JR, Santa-Cruz Mateos C, Marín-Menguiano M, Marshall OJ, Brand AH, González-Reyes A. Stem cell niche organization in the Drosophila ovary requires the ECM component Perlecan. Curr Biol 2021; 31:1744-1753.e5. [PMID: 33621481 PMCID: PMC8405445 DOI: 10.1016/j.cub.2021.01.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
Stem cells reside in specialized microenvironments or niches that balance stem cell proliferation and differentiation.1,2 The extracellular matrix (ECM) is an essential component of most niches, because it controls niche homeostasis, provides physical support, and conveys extracellular signals.3, 4, 5, 6, 7, 8, 9, 10, 11 Basement membranes (BMs) are thin ECM sheets that are constituted mainly by Laminins, Perlecan, Collagen IV, and Entactin/Nidogen and surround epithelia and other tissues.12 Perlecans are secreted proteoglycans that interact with ECM proteins, ligands, receptors, and growth factors such as FGF, PDGF, VEGF, Hedgehog, and Wingless.13, 14, 15, 16, 17, 18 Thus, Perlecans have structural and signaling functions through the binding, storage, or sequestering of specific ligands. We have used the Drosophila ovary to assess the importance of Perlecan in the functioning of a stem cell niche. Ovarioles in the adult ovary are enveloped by an ECM sheath and possess a tapered structure at their anterior apex termed the germarium. The anterior tip of the germarium hosts the germline niche, where two to four germline stem cells (GSCs) reside together with a few somatic cells: terminal filament cells (TFCs), cap cells (CpCs), and escort cells (ECs).19 We report that niche architecture in the developing gonad requires trol, that niche cells secrete an isoform-specific Perlecan-rich interstitial matrix, and that DE-cadherin-dependent stem cell-niche adhesion necessitates trol. Hence, we provide evidence to support a structural role for Perlecan in germline niche establishment during larval stages and in the maintenance of a normal pool of stem cells in the adult niche. The Drosophila ovarian niche contains a Perlecan-rich interstitial matrix Niche cells express and secrete specific Perlecan isoforms Absence of trol results in aberrant niches containing fewer niche and stem cells trol regulates DE-cadherin levels in larval and adult niche cells
Collapse
Affiliation(s)
- Alfonsa Díaz-Torres
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Alicia E Rosales-Nieves
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - John R Pearson
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Carmen Santa-Cruz Mateos
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miriam Marín-Menguiano
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Owen J Marshall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 1QN, UK; Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS 7000, Australia
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 1QN, UK
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain.
| |
Collapse
|
29
|
Bonche R, Chessel A, Boisivon S, Smolen P, Thérond P, Pizette S. Two different sources of Perlecan cooperate for its function in the basement membrane of the Drosophila wing imaginal disc. Dev Dyn 2020; 250:542-561. [PMID: 33269518 DOI: 10.1002/dvdy.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The basement membrane (BM) provides mechanical shaping of tissues during morphogenesis. The Drosophila BM proteoglycan Perlecan is vital for this process in the wing imaginal disc. This function is thought to be fostered by the heparan sulfate chains attached to the domain I of vertebrate Perlecan. However, this domain is not present in Drosophila, and the source of Perlecan for the wing imaginal disc BM remains unclear. Here, we tackle these two issues. RESULTS In silico analysis shows that Drosophila Perlecan holds a domain I. Moreover, by combining in situ hybridization of Perlecan mRNA and protein staining, together with tissue-specific Perlecan depletion, we find that there is an autonomous and a non-autonomous source for Perlecan deposition in the wing imaginal disc BM. We further show that both sources cooperate for correct distribution of Perlecan in the wing imaginal disc and morphogenesis of this tissue. CONCLUSIONS These results show that Perlecan is fully conserved in Drosophila, providing a valuable in vivo model system to study its role in BM function. The existence of two different sources for Perlecan incorporation in the wing imaginal disc BM raises the possibility that inter-organ communication mediated at the level of the BM is involved in organogenesis.
Collapse
Affiliation(s)
- Raphaël Bonche
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Aline Chessel
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Séverine Boisivon
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Prune Smolen
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Pascal Thérond
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Sandrine Pizette
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
30
|
Yoshinari Y, Ameku T, Kondo S, Tanimoto H, Kuraishi T, Shimada-Niwa Y, Niwa R. Neuronal octopamine signaling regulates mating-induced germline stem cell increase in female Drosophila melanogaster. eLife 2020; 9:57101. [PMID: 33077027 PMCID: PMC7591258 DOI: 10.7554/elife.57101] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Stem cells fuel the development and maintenance of tissues. Many studies have addressed how local signals from neighboring niche cells regulate stem cell identity and their proliferative potential. However, the regulation of stem cells by tissue-extrinsic signals in response to environmental cues remains poorly understood. Here we report that efferent octopaminergic neurons projecting to the ovary are essential for germline stem cell (GSC) increase in response to mating in female Drosophila. The neuronal activity of the octopaminergic neurons is required for mating-induced GSC increase as they relay the mating signal from sex peptide receptor-positive cholinergic neurons. Octopamine and its receptor Oamb are also required for mating-induced GSC increase via intracellular Ca2+ signaling. Moreover, we identified Matrix metalloproteinase-2 as a downstream component of the octopamine-Ca2+ signaling to induce GSC increase. Our study provides a mechanism describing how neuronal system couples stem cell behavior to environmental cues through stem cell niche signaling.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
31
|
Lan W, Liu S, Zhao L, Su Y. Regulation of Drosophila Hematopoiesis in Lymph Gland: From a Developmental Signaling Point of View. Int J Mol Sci 2020; 21:ijms21155246. [PMID: 32722007 PMCID: PMC7432643 DOI: 10.3390/ijms21155246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila hematopoietic system is becoming increasingly attractive for its simple blood cell lineage and its developmental and functional parallels with the vertebrate system. As the dedicated organ for Drosophila larval hematopoiesis, the lymph gland harbors both multipotent stem-like progenitor cells and differentiated blood cells. The balance between progenitor maintenance and differentiation in the lymph gland must be precisely and tightly controlled. Multiple developmental signaling pathways, such as Notch, Hedgehog, and Wnt/Wingless, have been demonstrated to regulate the hematopoietic processes in the lymph gland. Focusing on blood cell maintenance and differentiation, this article summarizes the functions of several classic developmental signaling pathways for lymph gland growth and patterning, highlighting the important roles of developmental signaling during lymph gland development as well as Drosophila larval hematopoiesis.
Collapse
Affiliation(s)
- Wenwen Lan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Sumin Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- Fisheries College, Ocean University of China, Qingdao 266003, China
- Correspondence: (L.Z.); (Y.S.)
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Correspondence: (L.Z.); (Y.S.)
| |
Collapse
|
32
|
Ramond E, Dudzic JP, Lemaitre B. Comparative RNA-Seq analyses of Drosophila plasmatocytes reveal gene specific signatures in response to clean injury and septic injury. PLoS One 2020; 15:e0235294. [PMID: 32598400 PMCID: PMC7323993 DOI: 10.1371/journal.pone.0235294] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Drosophila melanogaster's blood cells (hemocytes) play essential roles in wound healing and are involved in clearing microbial infections. Here, we report the transcriptional changes of larval plasmatocytes after clean injury or infection with the Gram-negative bacterium Escherichia coli or the Gram-positive bacterium Staphylococcus aureus compared to hemocytes recovered from unchallenged larvae via RNA-Sequencing. This study reveals 676 differentially expressed genes (DEGs) in hemocytes from clean injury samples compared to unchallenged samples, and 235 and 184 DEGs in E. coli and S. aureus samples respectively compared to clean injury samples. The clean injury samples showed enriched DEGs for immunity, clotting, cytoskeleton, cell migration, hemocyte differentiation, and indicated a metabolic reprogramming to aerobic glycolysis, a well-defined metabolic adaptation observed in mammalian macrophages. Microbial infections trigger significant transcription of immune genes, with significant differences between the E. coli and S. aureus samples suggesting that hemocytes have the ability to engage various programs upon infection. Collectively, our data bring new insights on Drosophila hemocyte function and open the route to post-genomic functional analysis of the cellular immune response.
Collapse
Affiliation(s)
- Elodie Ramond
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Paul Dudzic
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
33
|
Rapid Homeostatic Turnover of Embryonic ECM during Tissue Morphogenesis. Dev Cell 2020; 54:33-42.e9. [PMID: 32585131 PMCID: PMC7332994 DOI: 10.1016/j.devcel.2020.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022]
Abstract
The extracellular matrix (ECM) is a polymer network hypothesized to form a stable cellular scaffold. While the ECM can undergo acute remodeling during embryogenesis, it is experimentally difficult to determine whether basal turnover is also important. Most studies of homeostatic turnover assume an initial steady-state balance of production and degradation and measure half-life by quantifying the rate of decay after experimental intervention (e.g., pulse labeling). Here, we present an intervention-free approach to mathematically model basal ECM turnover during embryogenesis by exploiting our ability to live image de novo ECM development in Drosophila to quantify production from initiation to homeostasis. This reveals rapid turnover (half-life ∼7–10 h), which we confirmed by in vivo pulse-chase experiments. Moreover, ECM turnover is partially dependent on proteolysis and network interactions, and slowing turnover affects tissue morphogenesis. These data demonstrate that embryonic ECM undergoes constant replacement, which is likely necessary to maintain network plasticity to accommodate growth and morphogenesis. Labeled ECM in fly embryos can be examined from initiation to homeostasis Quantifying ECM levels to homeostasis allows for modeling of basal turnover rate Embryonic ECM has a half-life of ∼10 h, which was confirmed by pulse-chase analysis Inhibiting MMPs or ECM interactions alters the basal turnover rate
Collapse
|
34
|
Zhang H, Cai Y. Signal transduction pathways regulating Drosophila ovarian germline stem cells. CURRENT OPINION IN INSECT SCIENCE 2020; 37:1-7. [PMID: 31726320 DOI: 10.1016/j.cois.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Drosophila female germline stem cells (GSCs) serve as one of the best understood stem cell types. GSCs reside in a special microenvironment, the stem cell niche, and their activity is tightly regulated by niche-derived signals. In addition to the stemness-promoting signaling molecules, the niche also generates other signaling molecules that regulate GSC differentiation. Recent studies are beginning to appreciate the intricate interactions among these signaling molecules in the niche and their effects on GSC behaviour. This review summarizes recent advances to demonstrate how the niche functions as a signaling hub to integrate these niche-derived local signals as well as other organ-produced systemic signals to control GSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 117558, Singapore.
| |
Collapse
|
35
|
Modulation of Cell-Cell Interactions in Drosophila Oocyte Development. Cells 2020; 9:cells9020274. [PMID: 31979180 PMCID: PMC7072342 DOI: 10.3390/cells9020274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.
Collapse
|
36
|
Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, Alexander B, Kukar K, Corcoran S, Jacobs T, Ouyang D, Wong C, Ramond EJV, Rhiner C, Moreno E, Lemaitre B, Geissmann F, Brückner K. Adult Drosophila Lack Hematopoiesis but Rely on a Blood Cell Reservoir at the Respiratory Epithelia to Relay Infection Signals to Surrounding Tissues. Dev Cell 2019; 51:787-803.e5. [PMID: 31735669 PMCID: PMC7263735 DOI: 10.1016/j.devcel.2019.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/08/2019] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
The use of adult Drosophila melanogaster as a model for hematopoiesis or organismal immunity has been debated. Addressing this question, we identify an extensive reservoir of blood cells (hemocytes) at the respiratory epithelia (tracheal air sacs) of the thorax and head. Lineage tracing and functional analyses demonstrate that the majority of adult hemocytes are phagocytic macrophages (plasmatocytes) from the embryonic lineage that parallels vertebrate tissue macrophages. Surprisingly, we find no sign of adult hemocyte expansion. Instead, hemocytes play a role in relaying an innate immune response to the blood cell reservoir: through Imd signaling and the Jak/Stat pathway ligand Upd3, hemocytes act as sentinels of bacterial infection, inducing expression of the antimicrobial peptide Drosocin in respiratory epithelia and colocalizing fat body domains. Drosocin expression in turn promotes animal survival after infection. Our work identifies a multi-signal relay of organismal humoral immunity, establishing adult Drosophila as model for inter-organ immunity.
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Leire Herboso
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Katrina S Gold
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Baginsky
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Katelyn Kukar
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Sean Corcoran
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Thea Jacobs
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Debra Ouyang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Corinna Wong
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Frederic Geissmann
- King's College London, London, UK; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katja Brückner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Drummond-Barbosa D. Local and Physiological Control of Germline Stem Cell Lineages in Drosophila melanogaster. Genetics 2019; 213:9-26. [PMID: 31488592 PMCID: PMC6727809 DOI: 10.1534/genetics.119.300234] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The long-term survival of any multicellular species depends on the success of its germline in producing high-quality gametes and maximizing survival of the offspring. Studies in Drosophila melanogaster have led our growing understanding of how germline stem cell (GSC) lineages maintain their function and adjust their behavior according to varying environmental and/or physiological conditions. This review compares and contrasts the local regulation of GSCs by their specialized microenvironments, or niches; discusses how diet and diet-dependent factors, mating, and microorganisms modulate GSCs and their developing progeny; and briefly describes the tie between physiology and development during the larval phase of the germline cycle. Finally, it concludes with broad comparisons with other organisms and some future directions for further investigation.
Collapse
Affiliation(s)
- Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
38
|
Wilcockson SG, Ashe HL. Drosophila Ovarian Germline Stem Cell Cytocensor Projections Dynamically Receive and Attenuate BMP Signaling. Dev Cell 2019; 50:296-312.e5. [PMID: 31178401 PMCID: PMC6688100 DOI: 10.1016/j.devcel.2019.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 03/26/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
In the Drosophila ovarian germline, Bone Morphogenetic Protein (BMP) signals released by niche cells promote germline stem cell (GSC) maintenance. Although BMP signaling is known to repress expression of a key differentiation factor, it remains unclear whether BMP-responsive transcription also contributes positively to GSC identity. Here, we identify the GSC transcriptome using RNA sequencing (RNA-seq), including the BMP-induced transcriptional network. Based on these data, we provide evidence that GSCs form two types of cellular projections. Genetic manipulation and live ex vivo imaging reveal that both classes of projection allow GSCs to access a reservoir of Dpp held away from the GSC-niche interface. Moreover, microtubule-rich projections, termed "cytocensors", form downstream of BMP and have additional functionality, which is to attenuate BMP signaling. In this way, cytocensors allow dynamic modulation of signal transduction to facilitate differentiation following GSC division. This ability of cytocensors to attenuate the signaling response expands the repertoire of functions associated with signaling projections.
Collapse
Affiliation(s)
- Scott G Wilcockson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
39
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
40
|
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 2018; 155:186-201. [PMID: 29908065 PMCID: PMC6142291 DOI: 10.1111/imm.12972] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
The role of the host extracellular matrix (ECM) in infection tends to be neglected. However, the complex interactions between invading pathogens, host tissues and immune cells occur in the context of the ECM. On the pathogen side, a variety of surface and secreted molecules, including microbial surface components recognizing adhesive matrix molecules and tissue-degrading enzymes, are employed that interact with different ECM proteins to effectively establish an infection at specific sites. Microbial pathogens can also hijack or misuse host proteolytic systems to modify the ECM, evade immune responses or process biologically active molecules such as cell surface receptors and cytokines that direct cell behaviour and immune defence. On the host side, the ECM composition and three-dimensional ultrastructure undergo significant modifications, which have a profound impact on the specific signals that the ECM conveys to immune cells at the forefront of infection. Unexpectedly, activated immune cells participate in the remodelling of the local ECM by synthesizing ECM glycoproteins, proteoglycans and collagen molecules. The close interplay between the ECM and the innate immune response to microbial pathogens ultimately affects the outcome of infection. This review explores and discusses recent data that implicate an active role for the ECM in the immune response to infection, encompassing antimicrobial activities, microbial recognition, macrophage activation, phagocytosis, leucocyte population balance, and transcriptional and post-transcriptional regulation of inflammatory networks, and may foster novel antimicrobial approaches.
Collapse
Affiliation(s)
- Hannah Tomlin
- School of PharmacyUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
41
|
Liu Y, Xu J, Zhu F, Ye H, Hu C, Huang J, Zheng Y. Research advances in the regulation of the putative ovarian germline stem cell niche on female germline stem cells. Syst Biol Reprod Med 2018; 65:121-128. [PMID: 30204491 DOI: 10.1080/19396368.2018.1515272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stem cells are ideal seeding cells, which have the potential for self-renewal and multiple differentiation, and they play a fundamental role in maintaining homeostasis and regenerating and repairing tissue. The discovery of female germline stem cells (FGSCs) brings much hope for the postnatal renewal of oocytes and solving some female infertility problems. Ovarian function declines with increasing female age. Moreover, ovarian germline stem cell niche-aging could be the main cause of ovarian senescence, which ultimately leads to decreased follicle generation, declining female fertility, and age-related diseases, such as osteoporosis and ovarian cancer. The ovarian germline stem cell niche is the surrounding microenvironment in which FGSCs live, and it helps control the biological characteristics of FGSCs in many ways, such as nutritional supply and immunological cytokine secretion. This paper reviews the knowledge about the ovarian germline stem cell niche and its probable regulatory mechanisms on FGSCs, which provides valuable scientific information and scope for the prevention and treatment of ovarian senescence. Abbreviations: BMP: bone morphogenetic protein; Dpp: decapentaplegic; FGSC: female germline stem cell; IL, interleukin; OGSC: ovarian germline stem cells; ROS: reactive oxygen species; TGF, transforming growth factor; TNF, tumor necrosis factor.
Collapse
Affiliation(s)
- Yangchun Liu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,b Queen Mary College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Jiao Xu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,c First Clinical College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Feiyin Zhu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,b Queen Mary College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Haifeng Ye
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| | - Chuan Hu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| | - Jian Huang
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| | - Yuehui Zheng
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| |
Collapse
|
42
|
Weaver LN, Drummond-Barbosa D. Maintenance of Proper Germline Stem Cell Number Requires Adipocyte Collagen in Adult Drosophila Females. Genetics 2018; 209:1155-1166. [PMID: 29884747 PMCID: PMC6063239 DOI: 10.1534/genetics.118.301137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in specialized niches and are regulated by a variety of physiological inputs. Adipocytes influence whole-body physiology and stem cell lineages; however, the molecular mechanisms linking adipocytes to stem cells are poorly understood. Here, we report that collagen IV produced in adipocytes is transported to the ovary to maintain proper germline stem cell (GSC) number in adult Drosophila females. Adipocyte-derived collagen IV acts through β-integrin signaling to maintain normal levels of E-cadherin at the niche, thereby ensuring proper adhesion to GSCs. These findings demonstrate that extracellular matrix components produced in adipocytes can be transported to and incorporated into an established adult tissue to influence stem cell number.
Collapse
Affiliation(s)
- Lesley N Weaver
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
43
|
Unbiased classification of mosquito blood cells by single-cell genomics and high-content imaging. Proc Natl Acad Sci U S A 2018; 115:E7568-E7577. [PMID: 30038005 PMCID: PMC6094101 DOI: 10.1073/pnas.1803062115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mosquito blood cells are immune cells that help control infection by vector-borne pathogens. Despite their importance, little is known about mosquito blood cell biology beyond morphological and functional criteria used for their classification. Here, we combined the power of single-cell RNA sequencing, high-content imaging flow cytometry, and single-molecule RNA hybridization to analyze a subset of blood cells of the malaria mosquito Anopheles gambiae By demonstrating that blood cells express nearly half of the mosquito transcriptome, our dataset represents an unprecedented view into their transcriptional program. Analyses of differentially expressed genes identified transcriptional signatures of two cell types and provide insights into the current classification of these cells. We further demonstrate the active transfer of a cellular marker between blood cells that may confound their identification. We propose that cell-to-cell exchange may contribute to cellular diversity and functional plasticity seen across biological systems.
Collapse
|
44
|
Chen DY, Crest J, Bilder D. A Cell Migration Tracking Tool Supports Coupling of Tissue Rotation to Elongation. Cell Rep 2018; 21:559-569. [PMID: 29045826 DOI: 10.1016/j.celrep.2017.09.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022] Open
Abstract
Cell migration is indispensable to morphogenesis and homeostasis. Live imaging allows mechanistic insights, but long-term observation can alter normal biology, and tools to track movements in vivo without perturbation are lacking. We develop here a tool called M-TRAIL (matrix-labeling technique for real-time and inferred location), which reveals migration histories in fixed tissues. Using clones that overexpress GFP-tagged extracellular matrix (ECM) components, motility trajectories are mapped based on durable traces deposited onto basement membrane. We applied M-TRAIL to Drosophila follicle rotation, comparing in vivo and ex vivo migratory dynamics. The rate, trajectory, and cessation of rotation in wild-type (WT) follicles measured in vivo and ex vivo were identical, as was rotation failure in fat2 mutants. However, follicles carrying intracellularly truncated Fat2, previously reported to lack rotation ex vivo, in fact rotate in vivo at a reduced speed, thus revalidating the hypothesis that rotation is required for tissue elongation. The M-TRAIL approach could be applied to track and quantitate in vivo cell motility in other tissues and organisms.
Collapse
Affiliation(s)
- Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin Crest
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
45
|
Allbee AW, Rincon-Limas DE, Biteau B. Lmx1a is required for the development of the ovarian stem cell niche in Drosophila. Development 2018; 145:dev.163394. [PMID: 29615466 DOI: 10.1242/dev.163394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
The Drosophila ovary serves as a model for pioneering studies of stem cell niches, with defined cell types and signaling pathways supporting both germline and somatic stem cells. The establishment of the niche units begins during larval stages with the formation of terminal filament-cap structures; however, the genetics underlying their development remains largely unknown. Here, we show that the transcription factor Lmx1a is required for ovary morphogenesis. We found that Lmx1a is expressed in early ovarian somatic lineages and becomes progressively restricted to terminal filaments and cap cells. We show that Lmx1a is required for the formation of terminal filaments, during the larval-pupal transition. Finally, our data demonstrate that Lmx1a functions genetically downstream of Bric-à-Brac, and is crucial for the expression of key components of several conserved pathways essential to ovarian stem cell niche development. Importantly, expression of chicken Lmx1b is sufficient to rescue the null Lmx1a phenotype, indicating functional conservation across the animal kingdom. These results significantly expand our understanding of the mechanisms controlling stem cell niche development in the fly ovary.
Collapse
Affiliation(s)
- Andrew W Allbee
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, FL 32611, USA
| | - Benoît Biteau
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
46
|
Ramos-Lewis W, Page-McCaw A. Basement membrane mechanics shape development: Lessons from the fly. Matrix Biol 2018; 75-76:72-81. [PMID: 29656148 DOI: 10.1016/j.matbio.2018.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
Basement membrane plays a foundational role in the structure and maintenance of many tissues throughout the animal kingdom. In addition to signaling to cells through cell-surface receptors, basement membrane directly influences the development and maintenance of organ shape via its mechanical properties. The mechanical properties of basement membrane are dictated by its composition, geometry, and crosslinking. Distinguishing between the ways the basement membrane influences morphology in vivo poses a major challenge. Drosophila melanogaster, already established as a powerful model for the analysis of cell signaling, has in recent years emerged as a tractable model for understanding the roles of basement membrane stiffness in vivo, in shaping and maintaining the morphology of tissues and organs. In addition to the plethora of genetic tools available in flies, the major proteins found in vertebrate basement membranes are all present in Drosophila. Furthermore, Drosophila has fewer copies of the genes encoding these proteins, making flies more amenable to genetic manipulation than vertebrate models. Because the development of Drosophila organs has been well-characterized, these different organ systems offer a variety of contexts for analyzing the role of basement membrane in development. The developing egg chamber and central nervous system, for example, have been important models for assessing the role of basement membrane stiffness in influencing organ shape. Studies in the nervous system have also shown how basement membrane stiffness can influence cellular migration in vivo. Finally, work in the imaginal wing disc has illuminated a distinct mechanism by which basement membrane can alter organ shape and size, by sequestering signaling ligands. This mini-review highlights the recent discoveries pertaining to basement membrane mechanics during Drosophila development.
Collapse
Affiliation(s)
- William Ramos-Lewis
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Program in Developmental Biology, Center for Matrix Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
Gyoergy A, Roblek M, Ratheesh A, Valoskova K, Belyaeva V, Wachner S, Matsubayashi Y, Sánchez-Sánchez BJ, Stramer B, Siekhaus DE. Tools Allowing Independent Visualization and Genetic Manipulation of Drosophila melanogaster Macrophages and Surrounding Tissues. G3 (BETHESDA, MD.) 2018; 8:845-857. [PMID: 29321168 PMCID: PMC5844306 DOI: 10.1534/g3.117.300452] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 12/31/2017] [Indexed: 12/19/2022]
Abstract
Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sorting (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers, allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult.
Collapse
Affiliation(s)
- Attila Gyoergy
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marko Roblek
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Aparna Ratheesh
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Katarina Valoskova
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Vera Belyaeva
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Stephanie Wachner
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Yutaka Matsubayashi
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Besaiz J Sánchez-Sánchez
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, SE1 1UL, United Kingdom
| | - Daria E Siekhaus
- The Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
48
|
From Drosophila Blood Cells to Human Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:195-214. [PMID: 29951821 DOI: 10.1007/978-981-13-0529-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hematopoietic system plays a critical role in establishing the proper response against invading pathogens or in removing cancerous cells. Furthermore, deregulations of the hematopoietic differentiation program are at the origin of numerous diseases including leukemia. Importantly, many aspects of blood cell development have been conserved from human to Drosophila. Hence, Drosophila has emerged as a potent genetic model to study blood cell development and leukemia in vivo. In this chapter, we give a brief overview of the Drosophila hematopoietic system, and we provide a protocol for the dissection and the immunostaining of the larval lymph gland, the most studied hematopoietic organ in Drosophila. We then focus on the various paradigms that have been used in fly to investigate how conserved genes implicated in leukemogenesis control blood cell development. Specific examples of Drosophila models for leukemia are presented, with particular attention to the most translational ones. Finally, we discuss some limitations and potential improvements of Drosophila models for studying blood cell cancer.
Collapse
|
49
|
Matsubayashi Y, Louani A, Dragu A, Sánchez-Sánchez BJ, Serna-Morales E, Yolland L, Gyoergy A, Vizcay G, Fleck RA, Heddleston JM, Chew TL, Siekhaus DE, Stramer BM. A Moving Source of Matrix Components Is Essential for De Novo Basement Membrane Formation. Curr Biol 2017; 27:3526-3534.e4. [PMID: 29129537 PMCID: PMC5714436 DOI: 10.1016/j.cub.2017.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
The basement membrane (BM) is a thin layer of extracellular matrix (ECM) beneath nearly all epithelial cell types that is critical for cellular and tissue function. It is composed of numerous components conserved among all bilaterians [1]; however, it is unknown how all of these components are generated and subsequently constructed to form a fully mature BM in the living animal. Although BM formation is thought to simply involve a process of self-assembly [2], this concept suffers from a number of logistical issues when considering its construction in vivo. First, incorporation of BM components appears to be hierarchical [3, 4, 5], yet it is unclear whether their production during embryogenesis must also be regulated in a temporal fashion. Second, many BM proteins are produced not only by the cells residing on the BM but also by surrounding cell types [6, 7, 8, 9], and it is unclear how large, possibly insoluble protein complexes [10] are delivered into the matrix. Here we exploit our ability to live image and genetically dissect de novo BM formation during Drosophila development. This reveals that there is a temporal hierarchy of BM protein production that is essential for proper component incorporation. Furthermore, we show that BM components require secretion by migrating macrophages (hemocytes) during their developmental dispersal, which is critical for embryogenesis. Indeed, hemocyte migration is essential to deliver a subset of ECM components evenly throughout the embryo. This reveals that de novo BM construction requires a combination of both production and distribution logistics allowing for the timely delivery of core components. Macrophages are major producers of basement membrane in the Drosophila embryo Basement membrane components require hierarchical deposition during development Macrophage migration is essential to evenly deliver a subset of matrix components Uneven macrophage dispersal leads to uneven matrix incorporation and lethality
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | - Adam Louani
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Anca Dragu
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Eduardo Serna-Morales
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Lawrence Yolland
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Attila Gyoergy
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gema Vizcay
- Centre for Ultrastructure Imaging, King's College London, London SE1 1UL, UK
| | - Roland A Fleck
- Centre for Ultrastructure Imaging, King's College London, London SE1 1UL, UK
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Daria E Siekhaus
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
50
|
Chlasta J, Milani P, Runel G, Duteyrat JL, Arias L, Lamiré LA, Boudaoud A, Grammont M. Variations in basement membrane mechanics are linked to epithelial morphogenesis. Development 2017; 144:4350-4362. [PMID: 29038305 DOI: 10.1242/dev.152652] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
The regulation of morphogenesis by the basement membrane (BM) may rely on changes in its mechanical properties. To test this, we developed an atomic force microscopy-based method to measure BM mechanical stiffness during two key processes in Drosophila ovarian follicle development. First, follicle elongation depends on epithelial cells that collectively migrate, secreting BM fibrils perpendicularly to the anteroposterior axis. Our data show that BM stiffness increases during this migration and that fibril incorporation enhances BM stiffness. In addition, stiffness heterogeneity, due to oriented fibrils, is important for egg elongation. Second, epithelial cells change their shape from cuboidal to either squamous or columnar. We prove that BM softens around the squamous cells and that this softening depends on the TGFβ pathway. We also demonstrate that interactions between BM constituents are necessary for cell flattening. Altogether, these results show that BM mechanical properties are modified during development and that, in turn, such mechanical modifications influence both cell and tissue shapes.
Collapse
Affiliation(s)
- Julien Chlasta
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Pascale Milani
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Gaël Runel
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Jean-Luc Duteyrat
- Institut NeuroMyoGene, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, 16 rue R. Dubois, Villeurbanne Cedex F-69622, France
| | - Leticia Arias
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Laurie-Anne Lamiré
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Muriel Grammont
- Laboratoire de Biologie et de Modélisation de la Cellule, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, F-69342, Lyon, France
| |
Collapse
|