1
|
Prasad R, Rehman A, Rehman L, Darbaniyan F, Blumenberg V, Schubert ML, Mor U, Zamir E, Schmidt S, Hayase T, Chang CC, McDaniel L, Flores I, Strati P, Nair R, Chihara D, Fayad LE, Ahmed S, Iyer SP, Wang M, Jain P, Nastoupil LJ, Westin J, Arora R, Turner J, Khawaja F, Wu R, Dennison JB, Menges M, Hidalgo-Vargas M, Reid K, Davila ML, Dreger P, Korell F, Schmitt A, Tanner MR, Champlin RE, Flowers CR, Shpall EJ, Hanash S, Neelapu SS, Schmitt M, Subklewe M, Francois-Fahrmann J, Stein-Thoeringer CK, Elinav E, Jain MD, Hayase E, Jenq RR, Saini NY. Antibiotic-induced loss of gut microbiome metabolic output correlates with clinical responses to CAR T-cell therapy. Blood 2025; 145:823-839. [PMID: 39441941 DOI: 10.1182/blood.2024025366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Antibiotic (ABX)-induced microbiome dysbiosis is widespread in oncology, adversely affecting outcomes and side effects of various cancer treatments, including immune checkpoint inhibitors and chimeric antigen receptor T-cell (CAR-T) therapies. In this study, we observed that prior exposure to broad-spectrum ABXs with extended anaerobic coverage such as piperacillin-tazobactam and meropenem was associated with worse anti-CD19 CAR-T therapy survival outcomes in patients with large B-cell lymphoma (N = 422) than other ABX classes. In a discovery subset of these patients (n = 67), we found that the use of these ABXs was in turn associated with substantial dysbiosis of gut microbiome function, resulting in significant alterations of the gut and blood metabolome, including microbial effectors such as short-chain fatty acids (SCFAs) and other anionic metabolites, findings that were largely reproduced in an external validation cohort (n = 58). Broader evaluation of circulating microbial metabolites revealed reductions in indole and cresol derivatives, as well as trimethylamine N-oxide, in patients who received ABX treatment (discovery, n = 40; validation, n = 28). These findings were recapitulated in an immune-competent CAR-T mouse model, in which meropenem-induced dysbiosis led to a systemic dysmetabolome and decreased murine anti-CD19 CAR-T efficacy. Furthermore, we demonstrate that SCFAs can enhance the metabolic fitness of CAR-Ts, leading to improved tumor killing capacity. Together, these results suggest that broad-spectrum ABX deplete metabolically active commensals whose metabolites are essential for enhancing CAR-T efficacy, shedding light on the intricate relationship between ABX exposure, microbiome function and their impact on CAR-T efficacy. This highlights the potential for modulating the microbiome to augment CAR-T immunotherapy. This trial was registered at www.clinicaltrials.gov as #NCT06218602.
Collapse
Affiliation(s)
- Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abdur Rehman
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lubna Rehman
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Faezeh Darbaniyan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Viktoria Blumenberg
- Department of Medicine III, Ludwig Maximilian University of Munich University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Ludwig Maximilian University of Munich Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
- German Cancer Consortium and Bavarian Center for Cancer Research, Partner Site Munich, Munich, Germany
| | - Maria-Luisa Schubert
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Uria Mor
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Zamir
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Sabine Schmidt
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dai Chihara
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Swaminathan P Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Loretta J Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reetakshi Arora
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joel Turner
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Meghan Menges
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Melanie Hidalgo-Vargas
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Kayla Reid
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Marco L Davila
- Department of Stem Cell Transplantation and Cellular Therapy, Roswell Cancer Institute, Buffalo, NY
| | - Peter Dreger
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Felix Korell
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Anita Schmitt
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Mark R Tanner
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Schmitt
- Department of Hematology, Oncology, and Rheumatology, University Clinic Heidelberg, Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, Ludwig Maximilian University of Munich University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Ludwig Maximilian University of Munich Gene Center, Ludwig Maximilian University of Munich, Munich, Germany
- German Cancer Consortium and Bavarian Center for Cancer Research, Partner Site Munich, Munich, Germany
| | - Johannes Francois-Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - C K Stein-Thoeringer
- Department of Internal Medicine I, University Clinic Tüebingen, Tüebingen, Germany
- M3 Research Institute, Faculty of Medicine, University of Tüebingen, Tüebingen, Germany
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Division of Microbiome and Cancer, German Cancer Consortium, Heidelberg, Germany
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Neeraj Y Saini
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Duong QA, Curtis N, Zimmermann P. The association between prenatal antibiotic exposure and adverse long-term health outcomes in children: A systematic review and meta-analysis. J Infect 2025; 90:106377. [PMID: 39675435 DOI: 10.1016/j.jinf.2024.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Antibiotics are the most commonly prescribed drugs during pregnancy. The long-term health risks to children associated with prenatal antibiotic exposure are uncertain. OBJECTIVE To identify the association between prenatal antibiotics and adverse long-term health outcomes in children. METHODS A systematic search was done to identify original studies investigating the association between prenatal antibiotic exposure and adverse long-term health outcomes in children. Studies were excluded if: (i) antibiotics were only given during delivery or (ii) the outcome was present before antibiotic exposure. RESULTS We included 158 studies, reporting 23 outcomes in 21,943,763 children, in our analysis. For the following adverse health outcomes, there was a significant association with antibiotic exposure found in two or more studies: atopic dermatitis (OR 1.27, 95% CI 1.06-1.52, p=0.01), food allergies (OR 1.25, 95% CI 1.09-1.44, p<0.01), allergic rhinoconjunctivitis (OR 1.16, 95% CI 1.15-1.17, p<0.01), wheezing (OR 1.39, 95% CI 1.14-1.69, p<0.01), asthma (OR 1.36, 95% CI 1.24-1.50, p<0.01), obesity (OR 1.36, 95% CI 1.12-1.64, p<0.01), cerebral palsy (OR 1.25, 95% CI 1.10-1.43, p<0.01), epilepsy or febrile seizure (OR 1.16, 95% CI 1.08-1.24, p<0.01), and cancer (OR 1.13, 95% CI 1.01-1.26, p=0.04). CONCLUSION Although causality cannot be implied, these findings support antibiotic stewardship efforts to ensure judicious use of antibiotics during pregnancy to avoid potential long-term health risks.
Collapse
Affiliation(s)
- Quynh A Duong
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| | - Petra Zimmermann
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland.
| |
Collapse
|
3
|
Luo K, Yang Z, Wen X, Wang D, Liu J, Wang L, Fan R, Tian X. Recovery of intestinal microbial community in Penaeus vannamei after florfenicol perturbation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136158. [PMID: 39405716 DOI: 10.1016/j.jhazmat.2024.136158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
The concept and application of probiotic intervention for restoring intestinal microbial dysbiosis induced by antibiotics in aquaculture are still in early stages. This study aimed to investigate potential responses of various recovery strategies, including natural recovery and probiotic intervention, in restoring the growth and intestinal microbial community of Penaeus vannamei following florfenicol perturbation. The basal diet (control, CN) was supplemented with florfenicol (FC) or Lactobacillus plantarum W2 (LM) throughout the entire feeding trial. Meanwhile, the basal diet was supplemented with florfenicol for 7 days, followed by a period without florfenicol (natural recovery, FB), or with live strain W2 (probiotic recovery, FM), for a duration of 35 days. Results indicated that dietary supplementation of strain W2, whether continuous or following florfenicol perturbation, along with continuous florfenicol supplementation, significantly enhanced the growth performance of shrimp. Early natural recovery and probiotic intervention did not induce significant alterations in microbial diversity and community structure. Florfenicol perturbation resulted in a decrease in the abundance of potentially beneficial bacteria in intestinal microbial community of shrimp. However, both probiotic intervention and natural recovery strategies gradually reduced the abundance of potentially pathogenic bacteria while increasing the abundance of potentially beneficial ones. The robustness of microbial network decreased during florfenicol perturbation, showed gradual improvement during probiotic recovery, and remained relatively low during natural recovery and continuous florfenicol supplementation. Moreover, the microbial community composition in intestinal habitat significantly differed under various recovery strategies compared to the control. Notably, the microbial community composition of intestinal habitat following probiotic recovery exhibited greater similarity to that of continuous strain W2 supplementation without florfenicol perturbation. In summary, dietary supplementation of florfenicol perturbed intestinal microbial community stability of shrimp, whereas probiotic intervention and natural recovery facilitated the attainment of new stable states by altering keystone taxa. Considering intestinal microbial community stability of shrimp, the recovery of microbial community through probiotic intervention appears to be more effective than natural recovery.
Collapse
Affiliation(s)
- Kai Luo
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Zixin Yang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xianghai Wen
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Dehao Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Jianfeng Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Luping Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Ruiyong Fan
- Qingdao Ruizi Marine Engineering Research Institute Co., Qingdao 266400, China
| | - Xiangli Tian
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
4
|
Sun T, Liu J, An Z. Exploring the correlation between gut microbiota and benign gastric tumors: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39247. [PMID: 39121289 PMCID: PMC11315536 DOI: 10.1097/md.0000000000039247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/11/2024] Open
Abstract
Recent scientific research has verified a link between malignant tumors in the stomach and the gut microbiota. This research employed Mendelian randomization (MR) techniques to explore the association between gut microbiota and benign gastric malignancies. The data were derived from genome wide association studies-aggregated data consisting of 211 gut microbes and benign gastric lesions and analyzed by MR. Five statistical tools, including inverse variance weighting, weighted median, MR-Egger, simple mode, and weighted mode, were employed in the statistical analysis. The utilization of the leave-one-out approach served as an effective means of detecting data outliers. Furthermore, implementing Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and MR-Egger intercepts was employed to mitigate the impact of horizontal pleiotropy. The Cochran Q scores for inverse variance weighting and MR-Egger were utilized to determine the extent of heterogeneity. The findings indicate that the family Porphyromonadaceae (odds ratio [OR] = 2.185, 95% confidence interval [CI]: 1.239-3.855, P = .007), class Bacilli (OR = 1.556, 95%CI: 1.091 - 2.220, P = .015), family Lactobacillaceae (OR = 1.437, 95%CI: 1.049 - 1.969, P = .024), family Oxalobacteraceae (OR = 1.290, 95%CI: 1.035 - 1.608, P = .023) are positively associated with the occurrence of benign gastric tumors. Conversely, the family Pasteurellaceae (OR = 0.752, 95%CI: 0.566 - 0.999, P = .049) and family Peptococcaceae (OR = 0.622, 95%CI: 0.425 - 0.908, P = .014) exhibit a protective effect and significantly decrease the likelihood of benign gastric tumors. The findings of this study suggest that the probability of developing benign gastric tumors is positively associated with the presence of the family Porphyromonadaceae, class Bacilli, family Lactobacillaceae and family Oxalobacteraceae, In contrast, the presence of the family Pasteurellaceae and family Peptococcaceae is negatively associated with this risk. Therefore, regulating gut microbiota may be a potential strategy to reduce the incidence of benign gastric tumors.
Collapse
Affiliation(s)
- Tao Sun
- Department of Hematology and Oncology Laboratory, The Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
| | - Jun Liu
- Department of Scientific Research, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan Province, China
| | - Zhen An
- Department of Hematology and Oncology Laboratory, The Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
| |
Collapse
|
5
|
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024; 12:1496. [PMID: 39062068 PMCID: PMC11274472 DOI: 10.3390/biomedicines12071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The field of multi-omics has witnessed unprecedented growth, converging multiple scientific disciplines and technological advances. This surge is evidenced by a more than doubling in multi-omics scientific publications within just two years (2022-2023) since its first referenced mention in 2002, as indexed by the National Library of Medicine. This emerging field has demonstrated its capability to provide comprehensive insights into complex biological systems, representing a transformative force in health diagnostics and therapeutic strategies. However, several challenges are evident when merging varied omics data sets and methodologies, interpreting vast data dimensions, streamlining longitudinal sampling and analysis, and addressing the ethical implications of managing sensitive health information. This review evaluates these challenges while spotlighting pivotal milestones: the development of targeted sampling methods, the use of artificial intelligence in formulating health indices, the integration of sophisticated n-of-1 statistical models such as digital twins, and the incorporation of blockchain technology for heightened data security. For multi-omics to truly revolutionize healthcare, it demands rigorous validation, tangible real-world applications, and smooth integration into existing healthcare infrastructures. It is imperative to address ethical dilemmas, paving the way for the realization of a future steered by omics-informed personalized medicine.
Collapse
Affiliation(s)
- Alex E. Mohr
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Corrie M. Whisner
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Judith Klein-Seetharaman
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
| |
Collapse
|
6
|
Li G, Hou Y, Zhang C, Zhou X, Bao F, Yang Y, Chen L, Yu D. Interplay Between Drug-Induced Liver Injury and Gut Microbiota: A Comprehensive Overview. Cell Mol Gastroenterol Hepatol 2024; 18:101355. [PMID: 38729523 PMCID: PMC11260867 DOI: 10.1016/j.jcmgh.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Drug-induced liver injury is a prevalent severe adverse event in clinical settings, leading to increased medical burdens for patients and presenting challenges for the development and commercialization of novel pharmaceuticals. Research has revealed a close association between gut microbiota and drug-induced liver injury in recent years. However, there has yet to be a consensus on the specific mechanism by which gut microbiota is involved in drug-induced liver injury. Gut microbiota may contribute to drug-induced liver injury by increasing intestinal permeability, disrupting intestinal metabolite homeostasis, and promoting inflammation and oxidative stress. Alterations in gut microbiota were found in drug-induced liver injury caused by antibiotics, psychotropic drugs, acetaminophen, antituberculosis drugs, and antithyroid drugs. Specific gut microbiota and their abundance are associated closely with the severity of drug-induced liver injury. Therefore, gut microbiota is expected to be a new target for the treatment of drug-induced liver injury. This review focuses on the association of gut microbiota with common hepatotoxic drugs and the potential mechanisms by which gut microbiota may contribute to the pathogenesis of drug-induced liver injury, providing a more comprehensive reference for the interaction between drug-induced liver injury and gut microbiota.
Collapse
Affiliation(s)
- Guolin Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province and Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Furong Bao
- Department of Nursing, Guanghan People's Hospital, Guanghan, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Castañeda-Monsalve V, Fröhlich LF, Haange SB, Homsi MN, Rolle-Kampczyk U, Fu Q, von Bergen M, Jehmlich N. High-throughput screening of the effects of 90 xenobiotics on the simplified human gut microbiota model (SIHUMIx): a metaproteomic and metabolomic study. Front Microbiol 2024; 15:1349367. [PMID: 38444810 PMCID: PMC10912515 DOI: 10.3389/fmicb.2024.1349367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The human gut microbiota is a complex microbial community with critical functions for the host, including the transformation of various chemicals. While effects on microorganisms has been evaluated using single-species models, their functional effects within more complex microbial communities remain unclear. In this study, we investigated the response of a simplified human gut microbiota model (SIHUMIx) cultivated in an in vitro bioreactor system in combination with 96 deep-well plates after exposure to 90 different xenobiotics, comprising 54 plant protection products and 36 food additives and dyes, at environmentally relevant concentrations. We employed metaproteomics and metabolomics to evaluate changes in bacterial abundances, the production of Short Chain Fatty Acids (SCFAs), and the regulation of metabolic pathways. Our findings unveiled significant changes induced by 23 out of 54 plant protection products and 28 out of 36 food additives across all three categories assessed. Notable highlights include azoxystrobin, fluroxypyr, and ethoxyquin causing a substantial reduction (log2FC < -0.5) in the concentrations of the primary SCFAs: acetate, butyrate, and propionate. Several food additives had significant effects on the relative abundances of bacterial species; for example, acid orange 7 and saccharin led to a 75% decrease in Clostridium butyricum, with saccharin causing an additional 2.5-fold increase in E. coli compared to the control. Furthermore, both groups exhibited up- and down-regulation of various pathways, including those related to the metabolism of amino acids such as histidine, valine, leucine, and isoleucine, as well as bacterial secretion systems and energy pathways like starch, sucrose, butanoate, and pyruvate metabolism. This research introduces an efficient in vitro technique that enables high-throughput screening of the structure and function of a simplified and well-defined human gut microbiota model against 90 chemicals using metaproteomics and metabolomics. We believe this approach will be instrumental in characterizing chemical-microbiota interactions especially important for regulatory chemical risk assessments.
Collapse
Affiliation(s)
- Victor Castañeda-Monsalve
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Laura-Fabienne Fröhlich
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Masun Nabhan Homsi
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Qiuguo Fu
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| |
Collapse
|
8
|
de Nies L, Kobras CM, Stracy M. Antibiotic-induced collateral damage to the microbiota and associated infections. Nat Rev Microbiol 2023; 21:789-804. [PMID: 37542123 DOI: 10.1038/s41579-023-00936-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/06/2023]
Abstract
Antibiotics have transformed medicine, saving millions of lives since they were first used to treat a bacterial infection. However, antibiotics administered to target a specific pathogen can also cause collateral damage to the patient's resident microbial population. These drugs can suppress the growth of commensal species which provide protection against colonization by foreign pathogens, leading to an increased risk of subsequent infection. At the same time, a patient's microbiota can harbour potential pathogens and, hence, be a source of infection. Antibiotic-induced selection pressure can cause overgrowth of resistant pathogens pre-existing in the patient's microbiota, leading to hard-to-treat superinfections. In this Review, we explore our current understanding of how antibiotic therapy can facilitate subsequent infections due to both loss of colonization resistance and overgrowth of resistant microorganisms, and how these processes are often interlinked. We discuss both well-known and currently overlooked examples of antibiotic-associated infections at various body sites from various pathogens. Finally, we describe ongoing and new strategies to overcome the collateral damage caused by antibiotics and to limit the risk of antibiotic-associated infections.
Collapse
Affiliation(s)
- Laura de Nies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mathew Stracy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
10
|
Baniasad M, Kim Y, Shaffer M, Sabag-Daigle A, Leleiwi I, Daly RA, Ahmer BMM, Wrighton KC, Wysocki VH. Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces. Anal Bioanal Chem 2022; 414:2317-2331. [PMID: 35106611 PMCID: PMC9393048 DOI: 10.1007/s00216-022-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 11/01/2022]
Abstract
Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris-HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.
Collapse
Affiliation(s)
- Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO, USA
| | - Anice Sabag-Daigle
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Ikaia Leleiwi
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO, USA
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO, USA
| | - Brian M M Ahmer
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, The Colorado State University, Fort Collins, CO, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Bian X, Shi T, Wang Y, Ma Y, Yu Y, Gao W, Guo C. Gut dysbiosis induced by antibiotics is improved by tangerine pith extract in mice. Nutr Res 2022; 101:1-13. [DOI: 10.1016/j.nutres.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
12
|
Larsen OFA, van de Burgwal LHM. On the Verge of a Catastrophic Collapse? The Need for a Multi-Ecosystem Approach to Microbiome Studies. Front Microbiol 2021; 12:784797. [PMID: 34925292 PMCID: PMC8674555 DOI: 10.3389/fmicb.2021.784797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
While the COVID-19 pandemic has led to increased focus on pathogenic microbes that cross the animal-human species barrier, calls to include non-pathogenic interactions in our perspective on public health are gaining traction in the academic community. Over generations, the diversity of the human gut microbiota is being challenged by external perturbations and reduced acquisition of symbiotic species throughout life. When such reduced diversity concerns not only the microbial species, but also the higher taxonomic levels and even the guild level, adequate compensation for possible losses may be lacking. Shifts from a high-abundance to a low-abundance state, known as a tipping point, may result in simultaneous shifts in covarying taxa and ultimately to a catastrophic collapse in which the ecosystem abruptly and possibly irreversibly shifts to an alternative state. Here, we propose that co-occurrence patterns within and between microbial communities across human, animal, soil, water, and other environmental domains should be studied in light of such critical transitions. Improved mechanistic understanding of factors that shape structure and function is needed to understand whether interventions can sustainably remodel disease-prone microbiota compositions to robust and resilient healthy microbiota. Prerequisites for a rational approach are a better understanding of the microbial interaction network, both within and inter-domain, as well as the identification of early warning signs for a catastrophic collapse, warranting a timely response for intervention. We should not forget that mutualism and pathogenicity are two sides of the same coin. Building upon the planetary health concept, we argue that microbiome research should include system level approaches to conserve ecosystem resilience. HIGHLIGHTS 1. Non-pathogenic interactions between ecosystems play a key role in maintaining health. 2. The human gut microbiome may be on the verge of a catastrophic collapse. 3. Research should identify keystone taxa and guilds that interconnect different domains. 4. We should not forget that mutualism and pathogenicity are two sides of the same coin.
Collapse
Affiliation(s)
- Olaf F A Larsen
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda H M van de Burgwal
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Vallianou N, Dalamaga M, Stratigou T, Karampela I, Tsigalou C. Do Antibiotics Cause Obesity Through Long-term Alterations in the Gut Microbiome? A Review of Current Evidence. Curr Obes Rep 2021; 10:244-262. [PMID: 33945146 PMCID: PMC8093917 DOI: 10.1007/s13679-021-00438-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW In this review, we summarize current evidence on the association between antibiotics and the subsequent development of obesity through modulation of the gut microbiome. Particular emphasis is given on (i) animal and human studies and their limitations; (ii) the reservoir of antibiotics in animal feed, emerging antibiotic resistance, gut dysbiosis, and obesity; (iii) the role of infections, specifically viral infections, as a cause of obesity; and (iv) the potential therapeutic approaches other than antibiotics to modulate gut microbiome. RECENT FINDINGS Overall, the majority of animal studies and meta-analyses of human studies on the association between antibiotics and subsequent development of obesity are suggestive of a link between exposure to antibiotics, particularly early exposure in life, and the development of subsequent obesity as a result of alterations in the diversity of gut microbiota. The evidence is strong in animal models whereas evidence in humans is inconclusive requiring well-designed, long-term longitudinal studies to examine this association. Based on recent meta-analyses and epidemiologic studies in healthy children, factors, such as the administration of antibiotics during the first 6 months of life, repeated exposure to antibiotics for ≥ 3 courses, treatment with broad-spectrum antibiotics, and male gender have been associated with increased odds of overweight/obesity. Early antibiotic exposure in animal models has shown that reductions in the population size of specific microbiota, such as Lactobacillus, Allobaculum, Rikenellaceae, and Candidatus Arthromitus, are related to subsequent adiposity. These data suggest that the loss of diversity of the gut microbiome, especially early in life, may have potential long-term detrimental effects on the adult host gut microbiome and metabolic health. Genetic, environmental, and age-related factors influence the gut microbiome throughout the lifetime. More large-scale, longer-term, longitudinal studies are needed to determine whether changes that occur in the microbiome after exposure to antibiotics, particularly early exposure, are causal of subsequent weight gain or consequent of weight gain in humans. Further well-designed, large-scale RCTs in humans are required to evaluate the effects of administration of antibiotics, particularly early administration, and the subsequent development of overweight/obesity. Therapeutic interventions, such as bacteriophage treatment or the use of probiotics, especially genetically engineered ones, need to be evaluated in terms of prevention and management of obesity.
Collapse
Affiliation(s)
- Natalia Vallianou
- grid.414655.70000 0004 4670 4329Department of Internal Medicine and Endocrinology, ‘Evangelismos’ General Hospital of Athens, 45-47 Ypsilantou Street, 10676 Athens, Greece
| | - Maria Dalamaga
- grid.5216.00000 0001 2155 0800Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
| | - Theodora Stratigou
- grid.414655.70000 0004 4670 4329Department of Internal Medicine and Endocrinology, ‘Evangelismos’ General Hospital of Athens, 45-47 Ypsilantou Street, 10676 Athens, Greece
| | - Irene Karampela
- grid.5216.00000 0001 2155 0800Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527 Athens, Greece
- grid.5216.00000 0001 2155 0800Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462 Athens, Greece
| | - Christina Tsigalou
- grid.12284.3d0000 0001 2170 8022Laboratory of Microbiology, Medical School, Democritus University of Thrace, 6th Km Alexandroupolis-Makri, Alexandroupolis, Greece
| |
Collapse
|
14
|
Wang Z, Guo K, Gao P, Pu Q, Lin P, Qin S, Xie N, Hur J, Li C, Huang C, Wu M. Microbial and genetic-based framework identifies drug targets in inflammatory bowel disease. Theranostics 2021; 11:7491-7506. [PMID: 34158863 PMCID: PMC8210594 DOI: 10.7150/thno.59196] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/14/2021] [Indexed: 02/05/2023] Open
Abstract
Rationale: With increasing incidence and prevalence of inflammatory bowel disease (IBD), it has become one of the major public health threats, and there is an urgent need to develop new therapeutic agents. Although the pathogenesis of IBD is still unclear, previous research has provided evidence for complex interplays between genetic, immune, microbial, and environmental factors. Here, we constructed a gene-microbiota interaction-based framework to discover IBD biomarkers and therapeutics. Methods: We identified candidate biomarkers for IBD by analyzing the publicly available transcriptomic and microbiome data from IBD cohorts. Animal models of IBD and diarrhea were established. The inflammation-correlated microbial and genetic variants in gene knockout mice were identified by 16S rRNA sequences and PCR array. We performed bioinformatic analysis of microbiome functional prediction and drug repurposing. Our validation experiments with cells and animals confirmed anti-inflammatory properties of a drug candidate. Results: We identified the DNA-sensing enzyme cyclic GMP-AMP synthase (cGAS) as a potential biomarker for IBD in both patients and murine models. cGAS knockout mice were less susceptible to DSS-induced colitis. cGAS-associated gut microbiota and host genetic factors relating to IBD pathogenesis were also identified. Using a computational drug repurposing approach, we predicted 43 candidate drugs with high potency to reverse colitis-associated gene expression and validated that brefeldin-a mitigates inflammatory response in colitis mouse model and colon cancer cell lines. Conclusions: By integrating computational screening, microbiota interference, gene knockout techniques, and in vitro and in vivo validation, we built a framework for predicting biomarkers and host-microbe interaction targets and identifying repurposing drugs for IBD, which may be tested further for clinical application. This approach may also be a tool for repurposing drugs for treating other diseases.
Collapse
Affiliation(s)
- Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
15
|
Antibiotics Modulate Intestinal Regeneration. BIOLOGY 2021; 10:biology10030236. [PMID: 33808600 PMCID: PMC8003396 DOI: 10.3390/biology10030236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Simple Summary The impact of the microbial community on host’s biological functions has uncovered the potential outcomes of antibiotics on host physiology, introducing the caveats of the antibiotic usage. Within animals, the digestive function is closely related to the microorganisms that inhabit this organ. The proper maintenance of the digestive system requires constant regeneration. These processes vary from self-renewal of some cells or tissues in some species to the complete regeneration of the organ in others. Whether antibiotics influence digestive organ regeneration remains unknown. We employ the sea cucumber, Holothuria glaberrima, for its capacity to regenerate the whole intestine after ejection from its internal cavity. We explored the antibiotics’ effects on several intestinal regeneration processes. In parallel, we studied the effect of antibiotics on the animals’ survival, toxicity, and gut bacteria growth. Our results show that tested antibiotics perturbed key cellular processes that occur during intestinal regeneration. Moreover, this happens at doses that inhibited bacteria growth but did not alter holothurian’s metabolic activity. We propose that antibiotics can perturb the cellular events of intestinal regeneration via their impact on the microbiota. These results highlight H. glaberrima as a promising model to study the importance of the microbiota during organ regeneration. Abstract The increased antibiotics usage in biomedical and agricultural settings has been well documented. Antibiotics have now been shown to exert effects outside their purposive use, including effects on physiological and developmental processes. We explored the effect of various antibiotics on intestinal regeneration in the sea cucumber Holothuria glaberrima. For this, holothurians were eviscerated and left to regenerate for 10 days in seawater with different penicillin/streptomycin-based cocktails (100 µg/mL PS) including: 100 µg/mL kanamycin (KPS), 5 µg/mL vancomycin (VPS), and 4 µg/mL (E4PS) or 20 µg/mL (E20PS) erythromycin. Immunohistological and histochemical analyses were performed to analyze regenerative processes, including rudiment size, extracellular matrix (ECM) remodeling, cell proliferation, and muscle dedifferentiation. A reduction in muscle dedifferentiation was observed in all antibiotic-treated animals. ECM remodeling was decreased by VPS, E4PS, and E20PS treatments. In addition, organisms subjected to E20PS displayed a significant reduction in the size of their regenerating rudiments while VPS exposure altered cell proliferation. MTT assays were used to discard the possibility that the antibiotics directly affect holothurian metabolic activity while bacterial cultures were used to test antibiotic effects on holothurian enteric microbiota. Our results demonstrate a negative effect on intestinal regeneration and strongly suggest that these effects are due to alterations in the microbial community.
Collapse
|
16
|
Yu X, Lv K, Guan S, Zhang X, Sun L. Long-term exposure to phenanthrene at environmental-level induces intestinal dysbiosis and disrupted hepatic lipid metabolism in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115738. [PMID: 33022571 DOI: 10.1016/j.envpol.2020.115738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Phenanthrene (Phe), among the most ubiquitous polycyclic aromatic hydrocarbons (PAHs) existing in nature and foodstuffs, has severe effects on hepatic lipids metabolism. However, the detailed mechanism involved is still unknown. For environmental chemicals can disturb intestinal microbiota, which plays a vital role in lipids metabolism, we hypothesized that oral exposure to Phe may disrupt the intestinal microbiota, leading to the induction of an abnormal inflammatory response and lipid metabolism dysfunction. Herein, male mice were orally exposed to Phe (0.05, 0.5 and 5 mg/kg/2d) for ten weeks and the results showed that long term exposure to Phe induced significant alteration in relative Bacteroidetes, Firmicutes and Proteobacteria abundance in male mice. Histopathological anomalies, and significantly increased hepatic levels of free fatty acid, cholesterol and triglyceride were observed as well. The expression of hepatic proteins linked to lipid metabolism including peroxisome proliferator-activated receptors (PPARs), liver X receptor β (LXRβ) and retinoid X receptors (RXRs) were upregulated. The importance of the gut microbiota in Phe-altered lipid metabolism disorder was further confirmed by fecal microbiota transplantation (FMT). FMT intervention boosted microbial diversity and attenuated Phe-induced elevation in liver somatic index and hepatic total lipids levels. These results demonstrated that environmental-level Phe altered the composition of gastrointestinal bacteria and subsequently induced hepatic lipid metabolism disorder. These results would be helpful for understanding the health risk posed by Phe.
Collapse
Affiliation(s)
- Xiu Yu
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Kongpeng Lv
- Department of Infectious Disease, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, China
| | - Shuyuan Guan
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xinyun Zhang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Lingbin Sun
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Department of Infectious Disease, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, China.
| |
Collapse
|
17
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Chen P, Xu H, Tang H, Zhao F, Yang C, Kwok L, Cong C, Wu Y, Zhang W, Zhou X, Zhang H. Modulation of gut mucosal microbiota as a mechanism of probiotics-based adjunctive therapy for ulcerative colitis. Microb Biotechnol 2020; 13:2032-2043. [PMID: 32969200 PMCID: PMC7533322 DOI: 10.1111/1751-7915.13661] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
This was a pilot study aiming to evaluate the effects of probiotics as adjunctive treatment for ulcerative colitis (UC). Twenty-five active patients with UC were assigned to the probiotic (n = 12) and placebo (n = 13) groups. The probiotic group received mesalazine (60 mg kg-1 day-1 ) and oral probiotics (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8 and Bifidobacterium animalis subsp. lactis V9) twice daily for 12 weeks, while the placebo group received the same amounts of mesalazine and placebo. The clinical outcomes were assessed. The gut mucosal microbiota was profiled by PacBio single-molecule, real-time (SMRT) sequencing of the full-length 16S rRNA of biopsy samples obtained by colonoscopy. A significantly greater magnitude of reduction was observed in the UC disease activity index (UCDAI) in the probiotic group compared with the placebo group (P = 0.043), accompanying by a higher remission rate (91.67% for probiotic-receivers versus 69.23% for placebo-receivers, P = 0.034). The probiotics could protect from diminishing of the microbiota diversity and richness. Moreover, the gut mucosal microbiota of the probiotic-receivers had significantly more beneficial bacteria like Eubacterium ramulus (P < 0.05), Pediococcus pentosaceus (P < 0.05), Bacteroides fragilis (P = 0.02) and Weissella cibaria (P = 0.04). Additionally, the relative abundances of the beneficial bacteria correlated significantly but negatively with the UCDAI score, suggesting that the probiotics might alleviate UC symptoms by modulating the gut mucosal microbiota. Our research has provided new insights into the mechanism of symptom alleviation in UC by applying probiotic-based adjunctive treatment.
Collapse
Affiliation(s)
- Ping Chen
- The Affiliated Hospital of Inner Mongolia Medical UniversityHohhot010050China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Hai Tang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Lai‐Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | - Chunli Cong
- The Affiliated Hospital of Inner Mongolia Medical UniversityHohhot010050China
| | - YanFang Wu
- The Affiliated Hospital of Inner Mongolia Medical UniversityHohhot010050China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| | | | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P. R. C.Key Laboratory of Dairy Products Processing Ministry of Agriculture and Rural Affairs P. R. C.Inner Mongolia Agricultural UniversityHohhot010018China
| |
Collapse
|
19
|
Enrofloxacin Shifts Intestinal Microbiota and Metabolic Profiling and Hinders Recovery from Salmonella enterica subsp. enterica Serovar Typhimurium Infection in Neonatal Chickens. mSphere 2020; 5:5/5/e00725-20. [PMID: 32907952 PMCID: PMC7485687 DOI: 10.1128/msphere.00725-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enrofloxacin is an important antibiotic used for prevention and treatment of Salmonella infection in poultry in many countries. However, oral administration of enrofloxacin may lead to the alterations in the microbiota and metabolome in the chicken intestine, thereby reducing colonization resistance to the Salmonella infection. To study the effect of enrofloxacin on Salmonella in the chicken cecum, we used different concentrations of enrofloxacin to feed 1-day-old chickens, followed by oral challenge with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium). We then explored the distribution pattern of S. Typhimurium in cecum contents in vivo and analyzed the microbial community structure of cecum contents using microbial 16S amplicon sequencing. Untargeted metabolomics was used to explore the gut metabolome on day 14. Faecalibacterium and Anaerostipes, which are closely related to the chicken intestinal metabolome, were screened using a multi-omics technique. The abundance of S. Typhimurium was significantly higher in the enrofloxacin-treated group than in the untreated group, and S. Typhimurium persisted longer. Moreover, the cecal colony structures of the three groups exhibited different characteristics, with Lactobacillus reaching its highest abundance on day 21. Notably, S. Typhimurium infection is known to affect the fecal metabolome of chickens differently. Thus, our results suggested that enrofloxacin and Salmonella infections completely altered the intestinal microbiota and metabolism of chickens.IMPORTANCE In this study, we examined the effects of S. Typhimurium infection and enrofloxacin treatment on the microbiota and metabolite synthesis in chicken cecum, in order to identify target metabolites that may promote S. Typhimurium colonization and aggravate inflammation and to evaluate the important microbiota that may be associated with these metabolites. Our findings may facilitate the use of antibiotics to prevent S. Typhimurium infection.
Collapse
|
20
|
Tao C, Zeng W, Zhang Q, Liu G, Wu F, Shen H, Zhang W, Bo H, Shao H. Effects of the prebiotic inulin-type fructans on post-antibiotic reconstitution of the gut microbiome. J Appl Microbiol 2020; 130:634-649. [PMID: 32813896 DOI: 10.1111/jam.14827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
AIMS Interventions using prebiotic inulin-type fructans (ITFs) are widely prescribed to modulate the gut microbiota composition and activity to promote health. However, the impacts of ITFs on post-antibiotic reconstitution of the gut microbiome remain incompletely understood. The aim of the present study was to investigate the effects of ITFs supplementation on intestinal inflammation, the composition of the intestinal microbiota and the colonic transcriptome after antibiotic treatment. METHODS AND RESULTS Male BALB/c mice were subjected to an antibiotic cocktail (ABx) treatment for 7 days, and their microbiomes were then reconstituted either spontaneously or with ITFs supplementation (5%) for 14 days. Our data showed that ITFs supplementation delayed the recovery of antibiotic-induced colitis compared with the spontaneous recovery. Neither ITFs supplementation nor spontaneous recovery could restore the microbial community composition at the genus level back to its initial composition. ITFs supplementation increased the relative abundance of some beneficial bacteria and butyrate levels, but resulted in selective blooms of some opportunistic pathogens and elevated the pathways associated with diseases linked to gut microbiota function. Both ITFs supplementation and spontaneous recovery could restore the colonic transcriptome nearly to the initial profile to a certain extent; however, ITFs supplementation delayed the restoration of the immunoglobulin genes compared to spontaneous recovery. CONCLUSION These data showed that post-antibiotic ITFs consumption did not always lead to beneficial effects but might lead to potential adverse effects in the context of dysbiosis. SIGNIFICANCE AND IMPACT OF THE STUDY These findings highlighted that caution is required when supplementing ITFs to restore intestinal homeostasis in the context of dysbiosis resulting from broad-spectrum antibiotics.
Collapse
Affiliation(s)
- C Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - W Zeng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Q Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - G Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - F Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - H Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - W Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - H Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - H Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
21
|
Queen J, Zhang J, Sears CL. Oral antibiotic use and chronic disease: long-term health impact beyond antimicrobial resistance and Clostridioides difficile. Gut Microbes 2020; 11:1092-1103. [PMID: 32037950 PMCID: PMC7524332 DOI: 10.1080/19490976.2019.1706425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently reported an increased colon cancer risk associated with oral antibiotic use in a large United Kingdom population. This association between antibiotic exposure and cancer risk adds to a growing body of evidence that antibiotic use has unintended off-target long-term health consequences. This addendum highlights major studies linking antibiotic use and chronic disease in pediatric and adult populations. Microbiota dysbiosis is the key proposed mechanism underlying antibiotic:disease associations, resulting in alterations in gene expression, epigenetic modification, colonization by pathogenic bacteria, instigation of biofilms, and immune regulation and inflammation. These adverse outcomes of antibiotic exposure underscore the need for diagnostic and antibiotic stewardship, as well as the urgency for further development of non-antibiotic therapies for bacterial infections.
Collapse
Affiliation(s)
- Jessica Queen
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,CONTACT Cynthia Sears The Johns Hopkins University School of Medicine, 1550Orleans Street, CRB 2 Bldg., Suite 1M-05, Baltimore, MD21287, USA
| | - Jiajia Zhang
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Gonzalez CG, Wastyk HC, Topf M, Gardner CD, Sonnenburg JL, Elias JE. High-Throughput Stool Metaproteomics: Method and Application to Human Specimens. mSystems 2020; 5:e00200-20. [PMID: 32606025 PMCID: PMC7329322 DOI: 10.1128/msystems.00200-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Stool-based proteomics is capable of significantly augmenting our understanding of host-gut microbe interactions. However, compared to competing technologies, such as metagenomics and 16S rRNA sequencing, it is underutilized due to its low throughput and the negative impact sample contaminants can have on highly sensitive mass spectrometry equipment. Here, we present a new stool proteomic processing pipeline that addresses these shortcomings in a highly reproducible and quantitative manner. Using this method, 290 samples from a dietary intervention study were processed in approximately 1.5 weeks, largely done by a single researcher. These data indicated a subtle but distinct monotonic increase in the number of significantly altered proteins between study participants on fiber- or fermented food-enriched diets. Lastly, we were able to classify study participants based on their diet-altered proteomic profiles and demonstrated that classification accuracies of up to 89% could be achieved by increasing the number of subjects considered. Taken together, this study represents the first high-throughput proteomic method for processing stool samples in a technically reproducible manner and has the potential to elevate stool-based proteomics as an essential tool for profiling host-gut microbiome interactions in a clinical setting.IMPORTANCE Widely available technologies based on DNA sequencing have been used to describe the kinds of microbes that might correlate with health and disease. However, mechanistic insights might be best achieved through careful study of the dynamic proteins at the interface between the foods we eat, our microbes, and ourselves. Mass spectrometry-based proteomics has the potential to revolutionize our understanding of this complex system, but its application to clinical studies has been hampered by low-throughput and laborious experimentation pipelines. In response, we developed SHT-Pro, the first high-throughput pipeline designed to rapidly handle large stool sample sets. With it, a single researcher can process over one hundred stool samples per week for mass spectrometry analysis, conservatively approximately 10× to 100× faster than previous methods, depending on whether isobaric labeling is used or not. Since SHT-Pro is fairly simple to implement using commercially available reagents, it should be easily adaptable to large-scale clinical studies.
Collapse
Affiliation(s)
- Carlos G Gonzalez
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Hannah C Wastyk
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Madeline Topf
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Christopher D Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | | |
Collapse
|
23
|
Li Y, Xiao H, Dong J, Luo D, Wang H, Zhang S, Zhu T, Zhu C, Cui M, Fan S. Gut Microbiota Metabolite Fights Against Dietary Polysorbate 80-Aggravated Radiation Enteritis. Front Microbiol 2020; 11:1450. [PMID: 32670255 PMCID: PMC7332576 DOI: 10.3389/fmicb.2020.01450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is a cornerstone of modern management methods for malignancies but is accompanied by diverse side effects. In the present study, we showed that food additives such as polysorbate 80 (P80) exacerbate irradiation-induced gastrointestinal (GI) tract toxicity. A 16S ribosomal RNA high-throughput sequencing analysis indicated that P80 consumption altered the abundance and composition of the gut microbiota, leading to severe radiation-induced GI tract injury. Mice harboring fecal microbes from P80-treated mice were highly susceptible to irradiation, and antibiotics-challenged mice also represented more sensitive to radiation following P80 treatment. Importantly, butyrate, a major metabolite of enteric microbial fermentation of dietary fibers, exhibited beneficial effects against P80 consumption-aggravated intestinal toxicity via the activation of G-protein-coupled receptors (GPCRs) and maintenance of the intestinal bacterial composition in irradiated animals. Moreover, butyrate had broad therapeutic effects on common radiation-induced injury. Collectively, our findings demonstrate that P80 are potential risk factors for cancer patients during radiotherapy and indicate that butyrate might be employed as a therapeutic option to mitigate the complications associated with radiotherapy.
Collapse
Affiliation(s)
- Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dan Luo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Haichao Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY, United States.,Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
24
|
de Bruijn V, Behr C, Sperber S, Walk T, Ternes P, Slopianka M, Haake V, Beekmann K, van Ravenzwaay B. Antibiotic-Induced Changes in Microbiome-Related Metabolites and Bile Acids in Rat Plasma. Metabolites 2020; 10:metabo10060242. [PMID: 32545183 PMCID: PMC7344402 DOI: 10.3390/metabo10060242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Various environmental factors can alter the gut microbiome’s composition and functionality, and modulate host health. In this study, the effects of oral and parenteral administration of two poorly bioavailable antibiotics (i.e., vancomycin and streptomycin) on male Wistar Crl/Wi(Han) rats for 28 days were compared to distinguish between microbiome-derived or -associated and systemic changes in the plasma metabolome. The resulting changes in the plasma metabolome were compared to the effects of a third reference compound, roxithromycin, which is readily bioavailable. A community analysis revealed that the oral administration of vancomycin and roxithromycin in particular leads to an altered microbial population. Antibiotic-induced changes depending on the administration routes were observed in plasma metabolite levels. Indole-3-acetic acid (IAA) and hippuric acid (HA) were identified as key metabolites of microbiome modulation, with HA being the most sensitive. Even though large variations in the plasma bile acid pool between and within rats were observed, the change in microbiome community was observed to alter the composition of the bile acid pool, especially by an accumulation of taurine-conjugated primary bile acids. In-depth investigation of the relationship between microbiome variability and their functionality, with emphasis on the bile acid pool, will be necessary to better assess the potential adverseness of environmentally induced microbiome changes.
Collapse
Affiliation(s)
- Véronique de Bruijn
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands;
| | - Christina Behr
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
| | - Saskia Sperber
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
| | - Tilmann Walk
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Philipp Ternes
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Markus Slopianka
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Volker Haake
- BASF Metabolome Solutions, Tegeler Weg 33, 10589 Berlin, Germany; (T.W.); (P.T.); (M.S.); (V.H.)
| | - Karsten Beekmann
- Division of Toxicology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands;
| | - Bennard van Ravenzwaay
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany; (V.d.B.); (C.B.); (S.S.)
- Correspondence:
| |
Collapse
|
25
|
Ma KGL, Lertpiriyapong K, Piersigilli A, Dobtsis I, Wipf JRK, Littmann ER, Leiner I, Pamer EG, Ricart Arbona RJ, Lipman NS. Outbreaks of Typhlocolitis Caused by Hypervirulent Group ST1 Clostridioides difficile in Highly Immunocompromised Strains of Mice. Comp Med 2020; 70:277-290. [PMID: 32404234 PMCID: PMC7287380 DOI: 10.30802/aalas-cm-19-000109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile is an enteric pathogen that can cause significant clinical disease in both humans and animals. However, clinical disease arises most commonly after treatment with broad-spectrum antibiotics. The organism's ability to cause naturally occurring disease in mice is rare, and little is known about its clinical significance in highly immunocompromised mice. We report on 2 outbreaks of diarrhea associated with C. difficile in mice. In outbreak 1, 182 of approximately 2, 400 NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and related strains of mice became clinically ill after cessation of a 14-d course of 0.12% amoxicillin feed to control an increase in clinical signs associated with Corynebacterium bovis infection. Most mice had been engrafted with human tumors; the remainder were experimentally naïve. Affected animals exhibited 1 of 3 clinical syndromes: 1) peracute death; 2) severe diarrhea leading to euthanasia or death; or 3) mild to moderate diarrhea followed by recovery. A given cage could contain both affected and unaffected mice. Outbreak 2 involved a small breeding colony (approximately 50 mice) of NOD. CB17-Prkdcscid/NCrCrl (NOD-scid) mice that had not received antibiotics or experimental manipulations. In both outbreaks, C. difficile was isolated, and toxins A and B were detected in intestinal content or feces. Histopathologic lesions highly suggestive of C. difficile enterotoxemia included fibrinonecrotizing and neutrophilic typhlocolitis with characteristic 'volcano' erosions or pseudomembrane formation. Genomic analysis of 4 isolates (3 from outbreak 1 and 1 from outbreak 2) revealed that these isolates were closely related to a pathogenic human isolate, CD 196. To our knowledge, this report is the first to describe naturally occurring outbreaks of C. difficile-associated typhlocolitis with significant morbidity and mortality in highly immunocompromised strains of mice.
Collapse
Affiliation(s)
- Kathleen G L Ma
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Kvin Lertpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Alessandra Piersigilli
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Laboratory for Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, New York
| | - Irina Dobtsis
- Laboratory for Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, New York
| | - Juliette R K Wipf
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Laboratory for Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, New York, New York
| | - Eric R Littmann
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ingrid Leiner
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eric G Pamer
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rodolfo J Ricart Arbona
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center for Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medicine, New York, New York;,
| |
Collapse
|
26
|
Putting the microbiota to work: Epigenetic effects of early life antibiotic treatment are associated with immune-related pathways and reduced epithelial necrosis following Salmonella Typhimurium challenge in vitro. PLoS One 2020; 15:e0231942. [PMID: 32339193 PMCID: PMC7185588 DOI: 10.1371/journal.pone.0231942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/04/2020] [Indexed: 01/03/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an animal welfare and public health concern due to its ability to parasite livestock and potentially contaminate pork products. To reduce Salmonella shedding and the risk of pork contamination, antibiotic therapy is used and can contribute to antimicrobial resistance. Here we hypothesized that immune system education by the microbiota can play a role in intestinal resilience to infection. We used amoxicillin (15mg/Kg) to modulate the intestinal microbiome of 10 piglets, paired with same age pigs that received a placebo (n = 10) from 0 to 14 days of age. Animals were euthanized at 4-weeks old. Each pig donated colon sections for ex vivo culture (n = 20 explants/pig). Explants were inoculated with S. Typhimurium, PBS or LPS (n = 6 explants/pig/group, plus technical controls). The gut bacteriome was characterized by sequencing of the 16S rRNA at 7, 21 days of age, and upon in vitro culture. Explants response to infection was profiled through high-throughput mRNA sequencing. In vivo antibiotic treatment led to β-diversity differences between groups at all times (P<0.05), while α-diversity did not differ between amoxicillin and placebo groups on day 21 and at euthanasia (P<0.03 on day 7). Explant microbiomes were not different from in vivo. In vitro challenge with S. Typhimurium led to lower necrosis scores in explants from amoxicillin-treated pigs, when compared to explants placebo-treated pigs (P<0.05). This was coupled with the activation of immune-related pathways in explants from amoxicillin-treated pigs (IL-2 production, NO production, BCR activation), when compared to placebo-treated pigs. In addition, several DNA repair and intestinal wound healing pathways were also only activated in explants from amoxicillin-treated pigs. Taken together, these findings suggest that immune education by the amoxicillin-disturbed microbiota may have contributed to mitigate intestinal lesions following pathogen exposure.
Collapse
|
27
|
Inflammation in Primary and Metastatic Liver Tumorigenesis-Under the Influence of Alcohol and High-Fat Diets. Nutrients 2020; 12:nu12040933. [PMID: 32230953 PMCID: PMC7230665 DOI: 10.3390/nu12040933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The liver plays an outsized role in oncology. Liver tumors are one of the most frequently found tumors in cancer patients and these arise from either primary or metastatic disease. Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer and the 6th most common cancer type overall, is expected to become the 3rd leading cause of cancer mortality in the US by the year 2030. The liver is also the most common site of distant metastasis from solid tumors. For instance, colorectal cancer (CRC) metastasizes to the liver in two-thirds of cases, and CRC liver metastasis is the leading cause of mortality in these patients. The interplay between inflammation and cancer is unmistakably evident in the liver. In nearly every case, HCC is diagnosed in chronic liver disease (CLD) and cirrhosis background. The consumption of a Western-style high-fat diet is a major risk factor for the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), both of which are becoming more prevalent in parallel with the obesity epidemic. Excessive alcohol intake also contributes significantly to the CLD burden in the form of alcoholic liver disease (ALD). Inflammation is a key component in the development of all CLDs. Additionally, during the development of liver metastasis, pro-inflammatory signaling is crucial in eliminating invading cancer cells but ironically also helps foster a pro-metastatic environment that supports metastatic seeding and colonization. Here we review how Westernized high-fat diets and excessive alcohol intake can influence inflammation within the liver microenvironment, stimulating both primary and metastatic liver tumorigenesis.
Collapse
|
28
|
Xie G, Wu Y, Zheng T, Shen K, Tan Z. Effect of Debaryomyces hansenii combined with Qiweibaizhu powder extract on the gut microbiota of antibiotic-treated mice with diarrhea. 3 Biotech 2020; 10:127. [PMID: 32140379 PMCID: PMC7033264 DOI: 10.1007/s13205-020-2121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate the effects of an extract of Qiweibaizhu powder combined with Debaryomyces hansenii on the gut microbiota of antibiotic-treated mice with diarrhea. Mice were gavaged with a mixture of gentamycin sulfate and cefradine to induce diarrhea. After diarrhea was observed, 25% dose of ultra-micro Qiweibaizhu powder extract combined with 25% dose of Debaryomyces hansenii (QCD) was gavaged to mice with diarrhea. DNA of intestinal contents in mice was extracted for 16S rRNA gene sequence analysis by high-throughput sequencing following treatment finished. The results showed that the QCD increased the species richness and diversity, but did not recover the diversity to the original level. Antibiotics and QCD significantly altered the composition of gut microbiota at different taxonomic levels. At the genus level, the relative abundance of Bacteroidales S24-7 group_unidentified and Bacteroides returned to baseline after QCD treatment. Additionally, QCD suppressed the growth of Oscillospira and Ruminococcus, and promoted the proliferation of Erysipelotrichaceae_norank and Blautia compared with the healthy and diarrheal mice. Our results indicated that QCD modulated the diversity and composition of the gut microbiota in antibiotic-treated mice with diarrhea. The synergistic effect between Qiweibaizhu powder extract and Debaryomyces hansenii may be related to Bifidobacterium and Bacteroidales S24-7 group_unidentified.
Collapse
Affiliation(s)
- Guozhen Xie
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan China
| | - Yi Wu
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan China
| | - Tao Zheng
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan China
| | - Kejia Shen
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan China
| | - Zhoujin Tan
- Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan China
| |
Collapse
|
29
|
Clostridium butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis. iScience 2019; 23:100772. [PMID: 31954979 PMCID: PMC6970176 DOI: 10.1016/j.isci.2019.100772] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium butyricum MIYAIRI 588 (CBM 588) is a probiotic bacterium that has previously been used to prevent antibiotic-associated diarrhea. However, the underlying mechanism by which CBM 588 protects the gut epithelial barrier remains unclear. Here, we show that CBM 588 increased the abundance of Bifidobacterium, Lactobacillus, and Lactococcus species in the gut microbiome and also enhanced the intestinal barrier function of mice with antibiotic-induced dysbiosis. Additionally, CBM 588 significantly promoted the expansion of IL-17A-producing γδT cells and IL-17A-producing CD4 cells in the colonic lamina propria (cLP), which was closely associated with changes in the intestinal microbial composition. Additionally, CBM 588 plays an important role in controlling antibiotic-induced gut inflammation through upregulation of anti-inflammatory lipid metabolites such as palmitoleic acid, 15d-prostaglandin J2, and protectin D1. This study reveals a previously unrecognized mechanism of CBM 588 and provides new insights into gut epithelial barrier protection with probiotics under conditions of antibiotic-induced dysbiosis. CBM 588 increases the abundance of Bifidobacterium, Lactobacillus, and Lactococcus Microbiota-driven TGF-β1 controls the differentiation of lymphocytes to γδT cells CBM 588 promotes the expansion of IL-17A-producing γδT cells and CD4 cells CBM 588 upregulates anti-inflammatory lipid metabolites
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The host-microbiota relationship is integral in human health and can be rapidly disrupted in ways that may contribute to poor recovery from surgery or acute illness. We review key studies by organ system to understand the effect of perioperative and critical illness stress on the microbiota. Throughout the review, our focus is on potential interventions that may be mediated by the microbiome. RECENT FINDINGS Although any perioperative intervention can have a profound impact on the gut microbiota, it is less clear how such changes translate into altered health outcomes. Preoperative stress (anxiety, lack of sleep, fasting), intraoperative stress (surgery itself, volatile anesthetics, perioperative antibiotics, blood transfusions), and postoperative stress (sepsis, surgical site infections, acute respiratory distress syndrome, catecholamines, antibiotics, opioids, proton pump inhibitors) have all been associated with alterations of the commensal microflora. These factors (e.g. administration of antibiotics or opioids) can create a favorable environment for emergence of pathogen virulence and development of serious infections and multiorgan failure. Data to recommend therapies aimed at restoring a disrupted microbiota, such as probiotics/prebiotics and fecal microbiota transplants is currently scarce. SUMMARY The microbiome is likely to play an important role in the perioperative and ICU setting but existing data is largely descriptive. There is an expanding number of mechanistic studies that attempt to disentangle the complicated bi-directional relationship between the host and the resident microbiota. When these results are combined with ongoing clinical studies, we should be able to offer better therapies aimed at restoring the microbiota in the future.
Collapse
|
31
|
Gonzalez CG, Tankou SK, Cox LM, Casavant EP, Weiner HL, Elias JE. Latent-period stool proteomic assay of multiple sclerosis model indicates protective capacity of host-expressed protease inhibitors. Sci Rep 2019; 9:12460. [PMID: 31462662 PMCID: PMC6713765 DOI: 10.1038/s41598-019-48495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 01/20/2023] Open
Abstract
Diseases are often diagnosed once overt symptoms arise, ignoring the prior latent period when effective prevention may be possible. Experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, exhibits such disease latency, but the molecular processes underlying this asymptomatic period remain poorly characterized. Gut microbes also influence EAE severity, yet their impact on the latent period remains unknown. Here, we show the latent period between immunization and EAE's overt symptom onset is characterized by distinct host responses as measured by stool proteomics. In particular, we found a transient increase in protease inhibitors that inversely correlated with disease severity. Vancomycin administration attenuated both EAE symptoms and protease inhibitor induction potentially by decreasing immune system reactivity, supporting a subset of the microbiota's role in modulating the host's latent period response. These results strengthen previous evidence of proteases and their inhibitors in EAE and highlight the utility stool-omics for revealing complex, dynamic biology.
Collapse
Affiliation(s)
- Carlos G Gonzalez
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA
| | - Stephanie K Tankou
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
- Department Of Neurology, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School Of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Cox
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Ellen P Casavant
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA
| | - Howard L Weiner
- Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Joshua E Elias
- Chemical and Systems Biology Department, Stanford University School of Medicine, Stanford, USA.
- Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
32
|
Leshem A, Horesh N, Elinav E. Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome. Front Immunol 2019; 10:1341. [PMID: 31258528 PMCID: PMC6587678 DOI: 10.3389/fimmu.2019.01341] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Newly revealed links between inflammation, obesity, and cardiometabolic syndrome have created opportunities to try previously unexplored therapeutic modalities in these common and life-risking disorders. One potential modulator of these complex disorders is the gut microbiome, which was described in recent years to be altered in patients suffering from features of cardiometabolic syndrome and to transmit cardiometabolic phenotypes upon transfer into germ-free mice. As a result, there is great interest in developing new modalities targeting the altered commensal bacteria as a means of treatment for cardiometabolic syndrome. Fecal microbiota transplantation (FMT) is one such modality in which a disease-associated microbiome is replaced by a healthy microbiome configuration. So far clinical use of FMT has been overwhelmingly successful in recurrent Clostridium difficile infection and is being extensively studied in other microbiome-associated pathologies such as cardiometabolic syndrome. This review will focus on the rationale, promises and challenges in FMT utilization in human disease. In particular, it will overview the role of the gut microbiota in cardiometabolic syndrome and the rationale, experience, and prospects of utilizing FMT treatment as a potential preventive and curative treatment of metabolic human disease.
Collapse
Affiliation(s)
- Avner Leshem
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Horesh
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of General Surgery B and Organ Transplantation, Sheba Medical Center, Ramat Gan, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, Zur M, Regev-Lehavi D, Ben-Zeev Brik R, Federici S, Horn M, Cohen Y, Moor AE, Zeevi D, Korem T, Kotler E, Harmelin A, Itzkovitz S, Maharshak N, Shibolet O, Pevsner-Fischer M, Shapiro H, Sharon I, Halpern Z, Segal E, Elinav E. Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT. Cell 2019; 174:1406-1423.e16. [PMID: 30193113 DOI: 10.1016/j.cell.2018.08.047] [Citation(s) in RCA: 715] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.
Collapse
Affiliation(s)
- Jotham Suez
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Niv Zmora
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel; Internal Medicine Department, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel
| | | | - Uria Mor
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Mally Dori-Bachash
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Maya Zur
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dana Regev-Lehavi
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rotem Ben-Zeev Brik
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sara Federici
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Max Horn
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yotam Cohen
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Andreas E Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - David Zeevi
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tal Korem
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eran Kotler
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nitsan Maharshak
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel; Research Center for Digestive tract and Liver Diseases, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Oren Shibolet
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel; Research Center for Digestive tract and Liver Diseases, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | | | - Hagit Shapiro
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, 11016 Kiryat Shmona, Israel; Tel Hai College, Upper Galilee, 1220800, Israel
| | - Zamir Halpern
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel; Research Center for Digestive tract and Liver Diseases, Tel Aviv Sourasky Medical Center, 6423906 Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
34
|
Rolak S, Di Bartolomeo S, Jorgenson MR, Saddler CM, Singh T, Astor BC, Parajuli S. Outcomes of Norovirus diarrheal infections and Clostridioides difficile infections in kidney transplant recipients: A single-center retrospective study. Transpl Infect Dis 2019; 21:e13053. [PMID: 30689283 DOI: 10.1111/tid.13053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/02/2019] [Accepted: 01/20/2019] [Indexed: 01/25/2023]
Abstract
Recently, Norovirus has been recognized as an important cause of diarrheal infection in kidney transplant recipients (KTRs). We assessed the risk factors and outcomes of Norovirus diarrheal infections (NVDI) and Clostridioides difficile infection (CDI) on graft and patient survival following kidney transplant (KT). We examined KTRs transplanted at our center between 1994 and 2014, and compared those who suffered from NVDI and CDI with patients who did not develop either infection. Each patient with NVDI or CDI was matched with five controls based on time from transplant. Of the 4941 KTs performed during the study period, there were 2112 evaluable cases: 66 NVDI cases, 286 CDI cases, and 1760 controls. Median uncensored graft survival following infection was 497.5 days for the NVDI group, 440 days for the CDI group, and 1271 days for controls. Those with CDI had significantly inferior graft survival than controls (HR 2.41; CI 2.01, 2.90; P < 0.001), and those with NVDI had a 23% lower risk of graft survival than controls (HR 1.23; CI 1.0, 1.52; P = 0.054). Diarrheal infection after KT is associated with reduced long-term graft survival.
Collapse
Affiliation(s)
- Stacey Rolak
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sarah Di Bartolomeo
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Christopher M Saddler
- Division of Infection Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tripti Singh
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Brad C Astor
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
35
|
Pidot SJ, Herisse M, Sharkey L, Atkin L, Porter JL, Seemann T, Howden BP, Rizzacasa MA, Stinear TP. Biosynthesis and Ether‐Bridge Formation in Nargenicin Macrolides. Angew Chem Int Ed Engl 2019; 58:3996-4001. [DOI: 10.1002/anie.201900290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Marion Herisse
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Liam Sharkey
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Liselle Atkin
- School of ChemistryThe Bio21 Molecular Science and Biotechnology InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
- Microbioloigical Diagnostic UnitUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
- Microbioloigical Diagnostic UnitUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Mark A. Rizzacasa
- School of ChemistryThe Bio21 Molecular Science and Biotechnology InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| |
Collapse
|
36
|
Oberc AM, Fiebig-Comyn AA, Tsai CN, Elhenawy W, Coombes BK. Antibiotics Potentiate Adherent-Invasive E. coli Infection and Expansion. Inflamm Bowel Dis 2019; 25:711-721. [PMID: 30496418 DOI: 10.1093/ibd/izy361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Crohn's disease (CD) is an inflammatory bowel disease with a complex etiology. Paradoxically, CD is associated with the use of antibiotics and with an increased abundance of an unusual phenotypic group of Escherichia coli known as adherent-invasive E. coli (AIEC). However, the impact of antibiotics on AIEC infection has not been well studied in controlled models of infection. METHODS We infected mice with AIEC before or after treatment with a variety of different classes of antibiotics. We assessed levels of AIEC in the feces and tissues, AIEC localization by immunofluorescence microscopy, and tissue pathology. RESULTS We found that a wide range of antibiotic classes strongly potentiated initial AIEC infection and expanded AIEC in chronically infected mice. We found that the ability of antibiotics to potentiate AIEC infection did not correlate with a stereotyped shift in the gut bacterial community but was correlated with a decrease in overall diversity and a divergence from the pre-antibiotic state. We found that antibiotic-induced inflammation provided a fitness advantage for AIEC expansion through their use of oxidized metabolites in the postantibiotic period. CONCLUSIONS Our results show that antibiotics can render hosts more susceptible to initial AIEC infection and can worsen infection in previously colonized hosts. AIEC appears to exploit host inflammatory responses that arise in the postantibiotic period, highlighting a previously unknown interaction between CD risk factors.
Collapse
Affiliation(s)
- Alexander M Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Aline A Fiebig-Comyn
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada.,Farncombe Family Digestive Health Research Institute, Hamilton, ON, Canada
| |
Collapse
|
37
|
Parmeciano Di Noto G, Molina MC, Quiroga C. Insights Into Non-coding RNAs as Novel Antimicrobial Drugs. Front Genet 2019; 10:57. [PMID: 30853970 PMCID: PMC6395445 DOI: 10.3389/fgene.2019.00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant bacteria are a serious worldwide problem, especially carbapenem-resistant Enterobacteriaceae (such as Klebsiella pneumoniae and Escherichia coli), Acinetobacter baumannii and Pseudomonas aeruginosa. Since the emergence of extensive and pan-drug resistant bacteria there are few antibiotics left to treat patients, thus novel RNA-based strategies are being considered. Here, we examine the current situation of different non-coding RNAs found in bacteria as well as their function and potential application as antimicrobial agents. Furthermore, we discuss the factors that may contribute in the efficient development of RNA-based drugs, the limitations for their implementation and the use of nanocarriers for delivery.
Collapse
Affiliation(s)
- Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Carolina Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
38
|
Pidot SJ, Herisse M, Sharkey L, Atkin L, Porter JL, Seemann T, Howden BP, Rizzacasa MA, Stinear TP. Biosynthesis and Ether‐Bridge Formation in Nargenicin Macrolides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Marion Herisse
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Liam Sharkey
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Liselle Atkin
- School of ChemistryThe Bio21 Molecular Science and Biotechnology InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
- Microbioloigical Diagnostic UnitUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
- Microbioloigical Diagnostic UnitUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Mark A. Rizzacasa
- School of ChemistryThe Bio21 Molecular Science and Biotechnology InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology at the Doherty InstituteUniversity of Melbourne Melbourne VIC 3000 Australia
| |
Collapse
|
39
|
Li X, Song L, Zhu S, Xiao Y, Huang Y, Hua Y, Chu Q, Ren Z. Two Strains of Lactobacilli Effectively Decrease the Colonization of VRE in a Mouse Model. Front Cell Infect Microbiol 2019; 9:6. [PMID: 30761273 PMCID: PMC6363661 DOI: 10.3389/fcimb.2019.00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022] Open
Abstract
Vancomycin-resistant Enterococcus (VRE) infection is a serious challenge for clinical management and there is no effective treatment at present. Fecal microbiota transplantation (FMT) and probiotic intervention have been shown to be promising approaches for reducing the colonization of certain pathogenic bacteria in the gastrointestinal tract, however, no such studies have been done on VRE. In this study, we evaluated the effect of FMT and two Lactobacillus strains (Y74 and HT121) on the colonization of VRE in a VRE-infection mouse model. We found that both Lactobacilli strains reduced VRE colonization rapidly. Fecal microbiota and colon mRNA expression analyses further showed that mice in FMT and the two Lactobacilli treatment groups restored their intestinal microbiota diversity faster than those in the phosphate buffer saline (PBS) treated group. Administration of Lactobacilli restored Firmicutes more quickly to the normal level, compared to FMT or PBS treatment, but restored Bacteroides to their normal level less quickly than FMT did. Furthermore, these treatments also had an impact on the relative abundance of intestinal microbiota composition from phylum to species level. RNA-seq showed that FMT treatment induced the expression of more genes in the colon, compared to the Lactobacilli treatment. Defense-related genes such as defensin α, Apoa1, and RegIII were down-regulated in both FMT and the two Lactobacilli treatment groups. Taken together, our findings indicate that both FMT and Lactobacilli treatments were effective in decreasing the colonization of VRE in the gut.
Collapse
Affiliation(s)
- Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liqiong Song
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Siyi Zhu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuchun Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanming Huang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuting Hua
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiongfang Chu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention - Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
40
|
Hathaway-Schrader JD, Steinkamp HM, Chavez MB, Poulides NA, Kirkpatrick JE, Chew ME, Huang E, Alekseyenko AV, Aguirre JI, Novince CM. Antibiotic Perturbation of Gut Microbiota Dysregulates Osteoimmune Cross Talk in Postpubertal Skeletal Development. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:370-390. [PMID: 30660331 DOI: 10.1016/j.ajpath.2018.10.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
Abstract
Commensal gut microbiota-host immune responses are experimentally delineated via gnotobiotic animal models or alternatively by antibiotic perturbation of gut microbiota. Osteoimmunology investigations in germ-free mice, revealing that gut microbiota immunomodulatory actions critically regulate physiologic skeletal development, highlight that antibiotic perturbation of gut microbiota may dysregulate normal osteoimmunological processes. We investigated the impact of antibiotic disruption of gut microbiota on osteoimmune response effects in postpubertal skeletal development. Sex-matched C57BL/6T mice were administered broad-spectrum antibiotics or vehicle-control from the age of 6 to 12 weeks. Antibiotic alterations in gut bacterial composition and skeletal morphology were sex dependent. Antibiotics did not influence osteoblastogenesis or endochondral bone formation, but notably enhanced osteoclastogenesis. Unchanged Tnf or Ccl3 expression in marrow and elevated tumor necrosis factor-α and chemokine (C-C motif) ligand 3 in serum indicated that the pro-osteoclastic effects of the antibiotics are driven by increased systemic inflammation. Antibiotic-induced broad changes in adaptive and innate immune cells in mesenteric lymph nodes and spleen demonstrated that the perturbation of gut microbiota drives a state of dysbiotic hyperimmune response at secondary lymphoid tissues draining local gut and systemic circulation. Antibiotics up-regulated the myeloid-derived suppressor cells, immature myeloid progenitor cells known for immunosuppressive properties in pathophysiologic inflammatory conditions. Myeloid-derived suppressor cell-mediated immunosuppression can be antigen specific. Therefore, antibiotic-induced broad suppression of major histocompatibility complex class II antigen presentation genes in bone marrow discerns that antibiotic perturbation of gut microbiota dysregulates critical osteoimmune cross talk.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Heidi M Steinkamp
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Pediatric Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Michael B Chavez
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Nicole A Poulides
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Joy E Kirkpatrick
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Michael E Chew
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Emily Huang
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Department of Public Health Sciences, Medical University of South Carolina College of Medicine, Charleston, South Carolina
| | - Jose I Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Chad M Novince
- Department of Oral Health Sciences, Medical University of South Carolina College of Dental Medicine, Charleston, South Carolina; Endocrinology Division, Department of Pediatrics, Medical University of South Carolina College of Medicine, Charleston, South Carolina.
| |
Collapse
|
41
|
Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem 2018; 63:101-108. [PMID: 30366260 DOI: 10.1016/j.jnutbio.2018.10.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus (T2D) is a highly prevalent metabolic disorder characterized by an imbalance in blood glucose level, altered lipid profile and high blood pressure. Genetic constituents, high-fat and high-energy dietary habits, and a sedentary lifestyle are three major factors that contribute to high risk of T2D. Several studies have reported gut microbiome dysbiosis as a factor in rapid progression of insulin resistance in T2D that accounts for about 90% of all diabetes cases worldwide. The gut microbiome dysbiosis may reshape intestinal barrier functions and host metabolic and signaling pathways, which are directly or indirectly related to the insulin resistance in T2D. Thousands of the metabolites derived from microbes interact with the epithelial, hepatic and cardiac cell receptors that modulate host physiology. Xenobiotics including dietary components, antibiotics and nonsteroidal anti-inflammatory drugs strongly affect the gut microbial composition and can promote dysbiosis. Any change in the gut microbiota can shift the host metabolism towards increased energy harvest during diabetes and obesity. However, the exact mechanisms behind the dynamics of gut microbes and their impact on host metabolism at the molecular level are yet to be deciphered. We reviewed the published literature for better understanding of the dynamics of gut microbiota, factors that potentially induce gut microbiome dysbiosis and their relation to the progression of T2D. Special emphasis was also given to understand the gut microbiome induced breaching of intestinal barriers and/or tight junctions and their relation to insulin resistance.
Collapse
Affiliation(s)
- Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Prabhanshu Tripathi
- Centre for Human Microbial Ecology, Translational Health Science, and Technological Institute, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
42
|
Antibiotic-Induced Dysbiosis Predicts Mortality in an Animal Model of Clostridium difficile Infection. Antimicrob Agents Chemother 2018; 62:AAC.00925-18. [PMID: 30061286 DOI: 10.1128/aac.00925-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Antibiotic disruption of the intestinal microbiota favors colonization by Clostridium difficile Using a charcoal-based adsorbent to decrease intestinal antibiotic concentrations, we studied the relationship between antibiotic concentrations in feces and the intensity of dysbiosis and quantified the link between this intensity and mortality. We administered either moxifloxacin (n = 70) or clindamycin (n = 60) to hamsters by subcutaneous injection from day 1 (D1) to D5 and challenged them with a C. difficile toxigenic strain at D3 Hamsters received various doses of a charcoal-based adsorbent, DAV131A, to modulate intestinal antibiotic concentrations. Gut dysbiosis was evaluated at D0 and D3 using diversity indices determined from 16S rRNA gene profiling. Survival was monitored until D16 We analyzed the relationship between fecal antibiotic concentrations and dysbiosis at the time of C. difficile challenge and studied their capacity to predict subsequent death of the animals. Increasing doses of DAV131A reduced fecal concentrations of both antibiotics, lowered dysbiosis, and increased survival from 0% to 100%. Mortality was related to the level of dysbiosis (P < 10-5 for the change of Shannon index in moxifloxacin-treated animals and P < 10-9 in clindamycin-treated animals). The Shannon diversity index and unweighted UniFrac distance best predicted death, with areas under the receiver operating curve (ROC) of 0.89 (95% confidence interval [CI], 0.82, 0.95) and 0.95 (0.90, 0.98), respectively. Altogether, moxifloxacin and clindamycin disrupted the diversity of the intestinal microbiota with a dependency on the DAV131A dose; mortality after C. difficile challenge was related to the intensity of dysbiosis in similar manners with the two antibiotics.
Collapse
|
43
|
Behr C, Sperber S, Jiang X, Strauss V, Kamp H, Walk T, Herold M, Beekmann K, Rietjens I, van Ravenzwaay B. Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics. Toxicol Appl Pharmacol 2018; 355:198-210. [DOI: 10.1016/j.taap.2018.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/09/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
|
44
|
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, Corsetti PP, de Almeida LA. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci 2018; 207:480-491. [DOI: 10.1016/j.lfs.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|
45
|
NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 2018; 11:1011-1023. [PMID: 29743611 DOI: 10.1038/s41385-018-0021-8] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS), initially categorized as toxic by-products of aerobic metabolism, have often been called a double-edged sword. ROS are considered indispensable when host defense and redox signaling is concerned and a threat in inflammatory or degenerative diseases. This generalization does not take in account the diversity of oxygen metabolites being generated, their physicochemical characteristics and their production by distinct enzymes in space and time. NOX/DUOX NADPH oxidases are the only enzymes solely dedicated to ROS production and the prime ROS producer for intracellular and intercellular communication due to their widespread expression and intricate regulation. Here we discuss new insights of how NADPH oxidases act via ROS as multifaceted regulators of the intestinal barrier in homeostasis, infectious disease and intestinal inflammation. A closer look at monogenic VEOIBD and commensals as ROS source supports the view of H2O2 as key beneficial messenger in the barrier ecosystem.
Collapse
|
46
|
Palomba A, Tanca A, Addis MF, Pagnozzi D, Uzzau S. The Sarda Sheep Host Fecal Proteome. Proteomics 2018; 18. [PMID: 29328543 DOI: 10.1002/pmic.201700272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/20/2017] [Indexed: 12/16/2022]
Abstract
The first characterization of the sheep fecal microbiota was recently reported, as obtained by using a multi meta-omic approach. Here, the mass spectra generated by single-run LC/high-resolution MS in the context of that study were reanalyzed using a host-specific database, in order to gain insights for the first time into the host fecal proteome of healthy Sarda sheep. On the whole, 5349 non-redundant tryptic peptide sequences were identified, belonging to 1046 different proteins. The "core" fecal proteome (common to all animals) comprised 431 proteins, mainly related to biological processes as immune response and proteolysis. Proteins involved in the immune/inflammatory response and peptidases were specifically investigated. This dataset provides novel insights into the repertoire of proteins secreted in the sheep intestinal lumen, and constitutes the basis for future shotgun and targeted proteomics studies aimed at monitoring changes in the sheep fecal proteome in response to production variables, infectious/inflammatory states, and variations in the gut microbiota. Data are available via ProteomeXchange with identifier PXD006145.
Collapse
Affiliation(s)
- Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Alessandro Tanca
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Alghero, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
47
|
Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, Knight R, Manjurano A, Changalucha J, Elias JE, Dominguez-Bello MG, Sonnenburg JL. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 2017; 357:802-806. [PMID: 28839072 DOI: 10.1126/science.aan4834] [Citation(s) in RCA: 552] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022]
Abstract
Although humans have cospeciated with their gut-resident microbes, it is difficult to infer features of our ancestral microbiome. Here, we examine the microbiome profile of 350 stool samples collected longitudinally for more than a year from the Hadza hunter-gatherers of Tanzania. The data reveal annual cyclic reconfiguration of the microbiome, in which some taxa become undetectable only to reappear in a subsequent season. Comparison of the Hadza data set with data collected from 18 populations in 16 countries with varying lifestyles reveals that gut community membership corresponds to modernization: Notably, the taxa within the Hadza that are the most seasonally volatile similarly differentiate industrialized and traditional populations. These data indicate that some dynamic lineages of microbes have decreased in prevalence and abundance in modernized populations.
Collapse
Affiliation(s)
- Samuel A Smits
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeff Leach
- Human Food Project, 53600 Highway 118, Terlingua, TX 79852, USA.,The Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | - Erica D Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carlos G Gonzalez
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | - Joshua S Lichtman
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | - Gregor Reid
- Lawson Health Research Institute and Western University, London, Ontario N6A 4V2, Canada
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering and Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
| | | | | | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94025, USA
| | | | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Pham HL, Ho CL, Wong A, Lee YS, Chang MW. Applying the design-build-test paradigm in microbiome engineering. Curr Opin Biotechnol 2017; 48:85-93. [DOI: 10.1016/j.copbio.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 12/11/2022]
|
49
|
Metabolic phenotyping for understanding the gut microbiome and host metabolic interplay. Emerg Top Life Sci 2017; 1:325-332. [PMID: 33525773 DOI: 10.1042/etls20170079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
There is growing interest in the role of the gut microbiome in human health and disease. This unique complex ecosystem has been implicated in many health conditions, including intestinal disorders, inflammatory skin diseases and metabolic syndrome. However, there is still much to learn regarding its capacity to affect host health. Many gut microbiome research studies focus on compositional analysis to better understand the causal relationships between microbial communities and disease phenotypes. Yet, microbial diversity and complexity is such that community structure alone does not provide full understanding of microbial function. Metabolic phenotyping is an exciting field in systems biology that provides information on metabolic outputs taking place in the system at a given moment in time. These readouts provide information relating to by-products of endogenous metabolic pathways, exogenous signals arising from diet, drugs and other lifestyle and environmental stimuli, as well as products of microbe-host co-metabolism. Thus, better understanding of the gut microbiome and host metabolic interplay can be gleaned using such analytical approaches. In this review, we describe research findings focussed on gut microbiota-host interactions, for functional insights into the impact of microbiome composition on host health. We evaluate different analytical approaches for capturing metabolic activity and discuss analytical methodological advancements that have made a contribution to the field. This information will aid in developing novel approaches to improve host health in the future, and therapeutic modulation of the microbiome may soon augment conventional clinical strategies.
Collapse
|
50
|
Affiliation(s)
- Johnathan R Lex
- a College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| | | |
Collapse
|