1
|
Xu JJ, Scoca V, Chen Y, Zhan YA, Fisher A, Udoh EO, Fernando S, Alija B, Pantazi J, Sudunagunta V, Stewart E, Galang AMD, Williams M, Bhagat G, Gebhard C, Visconte V, Ondrejka S, Delwel R, Hu M, Koche R, Viny AD. Enhanced FLI1 accessibility mediates STAG2-mutant leukemogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646632. [PMID: 40236115 PMCID: PMC11996548 DOI: 10.1101/2025.04.01.646632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Transcription factors (TFs) influencing cell fate can be dysregulated in cancer. FLI1 is crucial for hematopoietic stem/progenitor cell (HSPC) function, with STAG2 regulating FLI1 target accessibility. STAG2 depletion enhances HSPC self-renewal, but its role in leukemic transformation is unclear. We uncovered that STAG2 loss maintains FLI1 target accessibility in murine HSPCs and enhances FLI1 binding in NPM1c leukemia. In our Stag2/Npm1c/+ murine model, myeloid-biased HSPCs with increased FLI1 accessibility are reservoirs for transformation, leading to a fully penetrant leukemia. STAG2 deleted NPM1c cell lines exhibit increased chromatin accessibility and chromatin-looping of key stem and leukemia genes including FLI1-target genes CD34 and MEN1. Similarly, enrichment for a CD34+ immunophenotype was observed in co-mutant leukemia patients. STAG2 deficient cells show increased chromatin-bound MENIN and increased sensitivity to MENIN inhibition. Our findings demonstrate that altered chromatin architecture can co-opt oncogenic TF signaling, such as FLI1, as a hallmark of leukemogenesis. Key Findings Loss of STAG2 results in aberrant increased accessibility at FLI1 targets in mouse and human hematopoietic stem and progenitor cellsIncreased accessibility results in an increased fraction of chromatin-bound FLI1, which overlap with NPM1c targets in STAG2 NPM1c AML cellsStag2 Npm1c co-mutation leads to dysplastic murine AML phenotype arising from myeloid biased progenitors that exhibit increased Fli1 target accessibilityIn addition to higher chromatin-bound FLI1, co-mutant cells have higher chromatin-bound MENIN, including at the HOXA cluster, rendering cells highly sensitive to MENIN inhibition. Statement of Significance Here, we identify enhanced FLI1 chromatin accessibility as a driver of stemness and leukemic transformation in STAG2 mutant leukemia. Through comprehensive in vivo and in vitro modeling, we demonstrate that altered chromatin architecture can co-opt oncogenic TF activity, like FLI1, to drive divergent leukemia development and therapeutic response.
Collapse
|
2
|
Gimenez G, Kalev-Zylinska ML, Morison I, Bohlander SK, Horsfield JA, Antony J. Cohesin rad21 mutation dysregulates erythropoiesis and granulopoiesis output within the whole kidney marrow of adult zebrafish. Am J Physiol Cell Physiol 2025; 328:C9-C19. [PMID: 39548947 DOI: 10.1152/ajpcell.00657.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Cohesin complex is essential for cell division and regulating cell type-specific gene expression programs. Mutations in genes encoding the cohesin subunits are associated with hematological malignancies, preleukemia, and clonal hematopoiesis of indeterminate potential. In this study, we examined how cohesin mutation impacts hematopoiesis using adult zebrafish that carry heterozygous germline nonsense mutation in the cohesin subunit, rad21 (rad21+/-) that is orthologous to human RAD21. Single-cell RNA sequencing analyses showed that adult zebrafish harboring rad21+/- mutation exhibit significant transcriptional dysregulation within the whole kidney marrow and have altered erythroid and granulocyte output. Erythroid progenitors were expanded in rad21+/- and erythroid differentiation was altered. The expression profile of several erythroid genes, including gata1a, was dysregulated in rad21+/- erythroid cells. Mature granulocyte population declined in rad21+/-, and the transcriptional program of granulocytes was impaired but granulocytic maturation was maintained. Granulocytes from rad21+/- showed upregulation of stress hematopoiesis factor, cebpb. These findings show that normal rad21 is required to maintain steady erythropoiesis and granulopoiesis in the adult zebrafish marrow.NEW & NOTEWORTHY Mutations in cohesin subunit genes are early events in leukemogenesis. This study characterizes the hematopoietic compartment of adult zebrafish that carry germline heterozygous mutation in cohesin subunit, rad21. Our results show that despite normal appearance, rad21 mutant adult zebrafish exhibit transcriptional dysregulation and altered erythroid and granulocyte output. No obvious morphological dysplasia was observed in the rad21 mutant hematopoietic cells. These results suggest that rad21 mutation can cause underlying hematopoietic disturbances.
Collapse
Affiliation(s)
- Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Maggie L Kalev-Zylinska
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ian Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Jann JC, Hergott CB, Winkler M, Liu Y, Braun B, Charles A, Copson KM, Barua S, Meggendorfer M, Nadarajah N, Shimony S, Winer ES, Wadleigh M, Stone RM, DeAngelo DJ, Garcia JS, Haferlach T, Lindsley RC, Luskin MR, Stahl M, Tothova Z. Subunit-specific analysis of cohesin-mutant myeloid malignancies reveals distinct ontogeny and outcomes. Leukemia 2024; 38:1992-2002. [PMID: 39033241 PMCID: PMC11347381 DOI: 10.1038/s41375-024-02347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Mutations in the cohesin complex components (STAG2, RAD21, SMC1A, SMC3, and PDS5B) are recurrent genetic drivers in myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). Whether the different cohesin subunit mutations share clinical characteristics and prognostic significance is not known. We analyzed 790 cohesin-mutant patients from the Dana-Farber Cancer Institute (DFCI) and the Munich Leukemia Laboratory (MLL), 390 of which had available outcome data, and identified subunit-specific clinical, prognostic, and genetic characteristics suggestive of distinct ontogenies. We found that STAG2 mutations are acquired at MDS stage and are associated with secondary AML, adverse prognosis, and co-occurrence of secondary AML-type mutations. In contrast, mutations in RAD21, SMC1A and SMC3 share features with de novo AML with better prognosis, and co-occurrence with de novo AML-type lesions. The findings show the heterogeneous nature of cohesin complex mutations, and inform clinical and prognostic classification, as well as distinct biology of the cohesin complex.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Christopher B Hergott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Marisa Winkler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Element Iowa City (JMI Laboratories), North Liberty, IA, 52317, USA
| | - Yiwen Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Benjamin Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anne Charles
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kevin M Copson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Shougat Barua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Niroshan Nadarajah
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Eric S Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Martha Wadleigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Marlise R Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Cancer Program, Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
4
|
Fischer A, Hernández-Rodríguez B, Mulet-Lazaro R, Nuetzel M, Hölzl F, van Herk S, Kavelaars FG, Stanewsky H, Ackermann U, Niang AH, Diaz N, Reuschel E, Strieder N, Hernández-López I, Valk PJM, Vaquerizas JM, Rehli M, Delwel R, Gebhard C. STAG2 mutations reshape the cohesin-structured spatial chromatin architecture to drive gene regulation in acute myeloid leukemia. Cell Rep 2024; 43:114498. [PMID: 39084219 DOI: 10.1016/j.celrep.2024.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Cohesin shapes the chromatin architecture, including enhancer-promoter interactions. Its components, especially STAG2, but not its paralog STAG1, are frequently mutated in myeloid malignancies. To elucidate the underlying mechanisms of leukemogenesis, we comprehensively characterized genetic, transcriptional, and chromatin conformational changes in acute myeloid leukemia (AML) patient samples. Specific loci displayed altered cohesin occupancy, gene expression, and local chromatin activation, which were not compensated by the remaining STAG1-cohesin. These changes could be linked to disrupted spatial chromatin looping in cohesin-mutated AMLs. Complementary depletion of STAG2 or STAG1 in primary human hematopoietic progenitors (HSPCs) revealed effects resembling STAG2-mutant AML-specific changes following STAG2 knockdown, not invoked by the depletion of STAG1. STAG2-deficient HSPCs displayed impaired differentiation capacity and maintained HSPC-like gene expression. This work establishes STAG2 as a key regulator of chromatin contacts, gene expression, and differentiation in the hematopoietic system and identifies candidate target genes that may be implicated in human leukemogenesis.
Collapse
MESH Headings
- Humans
- Cohesins
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Mutation/genetics
- Hematopoietic Stem Cells/metabolism
- Cell Differentiation/genetics
- Gene Expression Regulation, Leukemic
- Antigens, Nuclear/metabolism
- Antigens, Nuclear/genetics
- Nuclear Proteins
Collapse
Affiliation(s)
- Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Margit Nuetzel
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Fabian Hölzl
- Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Stanley van Herk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - François G Kavelaars
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hanna Stanewsky
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ute Ackermann
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Amadou H Niang
- Regulatory Genomics, Max Plank Institute for Molecular Medicine, Münster, Germany
| | - Noelia Diaz
- Regulatory Genomics, Max Plank Institute for Molecular Medicine, Münster, Germany
| | - Edith Reuschel
- Department of Obstetrics and Gynecology, Hospital St. Hedwig of the Order of St. John, Regensburg, Germany
| | | | | | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Juan M Vaquerizas
- Regulatory Genomics, Max Plank Institute for Molecular Medicine, Münster, Germany; Department of Developmental Epigenomics, MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | | |
Collapse
|
5
|
Lu Z, Wang Y, Assumpção ALFV, Liu P, Kopp A, Saka S, Mcilwain SJ, Viny AD, Brand M, Pan X. Yin Yang 1 regulates cohesin complex protein SMC3 in mouse hematopoietic stem cells. Blood Adv 2024; 8:3076-3091. [PMID: 38531064 PMCID: PMC11222949 DOI: 10.1182/bloodadvances.2023011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
ABSTRACT Yin Yang 1 (YY1) and structural maintenance of chromosomes 3 (SMC3) are 2 critical chromatin structural factors that mediate long-distance enhancer-promoter interactions and promote developmentally regulated changes in chromatin architecture in hematopoietic stem/progenitor cells (HSPCs). Although YY1 has critical functions in promoting hematopoietic stem cell (HSC) self-renewal and maintaining HSC quiescence, SMC3 is required for proper myeloid lineage differentiation. However, many questions remain unanswered regarding how YY1 and SMC3 interact with each other and affect hematopoiesis. We found that YY1 physically interacts with SMC3 and cooccupies with SMC3 at a large cohort of promoters genome wide, and YY1 deficiency deregulates the genetic network governing cell metabolism. YY1 occupies the Smc3 promoter and represses SMC3 expression in HSPCs. Although deletion of 1 Smc3 allele partially restores HSC numbers and quiescence in YY1 knockout mice, Yy1-/-Smc3+/- HSCs fail to reconstitute blood after bone marrow transplant. YY1 regulates HSC metabolic pathways and maintains proper intracellular reactive oxygen species levels in HSCs, and this regulation is independent of the YY1-SMC3 axis. Our results establish a distinct YY1-SMC3 axis and its impact on HSC quiescence and metabolism.
Collapse
Affiliation(s)
- Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Yinghua Wang
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Anna L. F. V. Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Audrey Kopp
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sahitya Saka
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Sean J. Mcilwain
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Aaron D. Viny
- Division of Hematology & Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY
| | - Marjorie Brand
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| |
Collapse
|
6
|
Xu JJ, Viny AD. Chromatin organization in myelodysplastic syndrome. Exp Hematol 2024; 134:104216. [PMID: 38582293 DOI: 10.1016/j.exphem.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Disordered chromatin organization has emerged as a new aspect of the pathogenesis of myelodysplastic syndrome (MDS). Characterized by lineage dysplasia and a high transformation rate to acute myeloid leukemia (AML), the genetic determinant of MDS is thought to be the main driver of the disease's progression. Among the recurrently mutated pathways, alterations in chromatin organization, such as the cohesin complex, have a profound impact on hematopoietic stem cell (HSC) function and lineage commitment. The cohesin complex is a ring-like structure comprised of structural maintenance of chromosomes (SMC), RAD21, and STAG proteins that involve three-dimensional (3D) genome organization via loop extrusion in mammalian cells. The partial loss of the functional cohesin ring leads to altered chromatin accessibility specific to key hematopoietic transcription factors, which is thought to be the molecular mechanism of cohesin dysfunction. Currently, there are no specific targeting agents for cohesin mutant MDS/AML. Potential therapeutic strategies have been proposed based on the current understanding of cohesin mutant leukemogenesis. Here, we will review the recent advances in investigation and targeting approaches against cohesin mutant MDS/AML.
Collapse
Affiliation(s)
- Jane Jialu Xu
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York City, New York.
| |
Collapse
|
7
|
Kwok M, Agathanggelou A, Stankovic T. DNA damage response defects in hematologic malignancies: mechanistic insights and therapeutic strategies. Blood 2024; 143:2123-2144. [PMID: 38457665 DOI: 10.1182/blood.2023019963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT The DNA damage response (DDR) encompasses the detection and repair of DNA lesions and is fundamental to the maintenance of genome integrity. Germ line DDR alterations underlie hereditary chromosome instability syndromes by promoting the acquisition of pathogenic structural variants in hematopoietic cells, resulting in increased predisposition to hematologic malignancies. Also frequent in hematologic malignancies are somatic mutations of DDR genes, typically arising from replication stress triggered by oncogene activation or deregulated tumor proliferation that provides a selective pressure for DDR loss. These defects impair homology-directed DNA repair or replication stress response, leading to an excessive reliance on error-prone DNA repair mechanisms that results in genomic instability and tumor progression. In hematologic malignancies, loss-of-function DDR alterations confer clonal growth advantage and adverse prognostic impact but may also provide therapeutic opportunities. Selective targeting of functional dependencies arising from these defects could achieve synthetic lethality, a therapeutic concept exemplified by inhibition of poly-(adenosine 5'-diphosphate ribose) polymerase or the ataxia telangiectasia and Rad 3 related-CHK1-WEE1 axis in malignancies harboring the BRCAness phenotype or genetic defects that increase replication stress. Furthermore, the role of DDR defects as a source of tumor immunogenicity, as well as their impact on the cross talk between DDR, inflammation, and tumor immunity are increasingly recognized, thus providing rationale for combining DDR modulation with immune modulation. The nature of the DDR-immune interface and the cellular vulnerabilities conferred by DDR defects may nonetheless be disease-specific and remain incompletely understood in many hematologic malignancies. Their comprehensive elucidation will be critical for optimizing therapeutic strategies to target DDR defects in these diseases.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Bhattacharya SA, Dias E, Nieto-Aliseda A, Buschbeck M. The consequences of cohesin mutations in myeloid malignancies. Front Mol Biosci 2023; 10:1319804. [PMID: 38033389 PMCID: PMC10684907 DOI: 10.3389/fmolb.2023.1319804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Recurrent somatic mutations in the genes encoding the chromatin-regulatory cohesin complex and its modulators occur in a wide range of human malignancies including a high frequency in myeloid neoplasms. The cohesin complex has a ring-like structure which can enclose two strands of DNA. A first function for the complex was described in sister chromatid cohesion during metaphase avoiding defects in chromosome segregation. Later studies identified additional functions of the cohesin complex functions in DNA replication, DNA damage response, 3D genome organisation, and transcriptional regulation through chromatin looping. In this review, we will focus on STAG2 which is the most frequently mutated cohesin subunit in myeloid malignancies. STAG2 loss of function mutations are not associated with chromosomal aneuploidies or genomic instability. We hypothesize that this points to changes in gene expression as disease-promoting mechanism and summarize the current state of knowledge on affected genes and pathways. Finally, we discuss potential strategies for targeting cohesion-deficient disease cells.
Collapse
Affiliation(s)
- Shubhra Ashish Bhattacharya
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Eve Dias
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- PhD Program of Cell Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Nieto-Aliseda
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
10
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
11
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
12
|
Bäckström A, Yudovich D, Žemaitis K, Nilsén Falck L, Subramaniam A, Larsson J. Combinatorial gene targeting in primary human hematopoietic stem and progenitor cells. Sci Rep 2022; 12:18169. [PMID: 36307542 PMCID: PMC9616885 DOI: 10.1038/s41598-022-23118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
The CRISPR/Cas9 system offers enormous versatility for functional genomics but many applications have proven to be challenging in primary human cells compared to cell lines or mouse cells. Here, to establish a paradigm for multiplexed gene editing in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs), we used co-delivery of lentiviral sgRNA vectors expressing either Enhanced Green Fluorescent Protein (EGFP) or Kusabira Orange (KuO), together with Cas9 mRNA, to simultaneously edit two genetic loci. The fluorescent markers allow for tracking of either single- or double-edited cells, and we could achieve robust double knockout of the cell surface molecules CD45 and CD44 with an efficiency of ~ 70%. As a functional proof of concept, we demonstrate that this system can be used to model gene dependencies for cell survival, by simultaneously targeting the cohesin genes STAG1 and STAG2. Moreover, we show combinatorial effects with potential synergy for HSPC expansion by targeting the Aryl Hydrocarbon Receptor (AHR) in conjunction with members of the CoREST complex. Taken together, our traceable multiplexed CRISPR/Cas9 system enables studies of genetic dependencies and cooperation in primary HSPCs, and has important implications for modelling polygenic diseases, as well as investigation of the underlying mechanisms of gene interactions.
Collapse
Affiliation(s)
- Alexandra Bäckström
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - David Yudovich
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Kristijonas Žemaitis
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Ludvig Nilsén Falck
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Agatheeswaran Subramaniam
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Jonas Larsson
- grid.4514.40000 0001 0930 2361Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| |
Collapse
|
13
|
Cuartero S, Stik G, Stadhouders R. Three-dimensional genome organization in immune cell fate and function. Nat Rev Immunol 2022; 23:206-221. [PMID: 36127477 DOI: 10.1038/s41577-022-00774-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Collapse
Affiliation(s)
- Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - Grégoire Stik
- Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
RNAi screen identifies MTA1 as an epigenetic modifier of differentiation commitment in human HSPCs. Exp Hematol 2022; 115:20-29. [PMID: 36041657 DOI: 10.1016/j.exphem.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms regulating key fate decisions of hematopoietic stem cells (HSCs) remain incompletely understood. Here, we targeted global shRNA libraries to primary human hematopoietic stem and progenitor cells (HSPCs) to screen for modifiers of self-renewal and differentiation, and identified metastasis-associated 1 (MTA1) as a negative regulator of human HSPC propagation in vitro. Knockdown of MTA1 by independent shRNAs in primary human cord blood (CB) HSPCs led to a cell expansion during culture and a relative accumulation of immature CD34+CD90+ cells with perturbed in vitro differentiation potential. Transplantation experiments in immunodeficient mice showed a significant reduction of human chimerism in both blood and bone marrow from HSPCs with knockdown of MTA1, possibly due to reduced maturation of blood cells. We further show that MTA1 associates with the nucleosome remodeling deacetylase (NuRD) complex in human HSPCs, and upon knockdown of MTA1 we observed an increase in H3K27Ac marks coupled with a downregulation of genes linked to differentiation towards the erythroid lineage. Altogether, our findings identify MTA1 as a novel regulator of human HSPCs in vitro and in vivo with critical functions for differentiation commitment.
Collapse
|
15
|
Meyer AE, Stelloh C, Pulakanti K, Burns R, Fisher JB, Heimbruch KE, Tarima S, Furumo Q, Brennan J, Zheng Y, Viny AD, Vassiliou GS, Rao S. Combinatorial genetics reveals the Dock1-Rac2 axis as a potential target for the treatment of NPM1;Cohesin mutated AML. Leukemia 2022; 36:2032-2041. [PMID: 35778533 PMCID: PMC9357218 DOI: 10.1038/s41375-022-01632-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia (AML) is driven by mutations that occur in numerous combinations. A better understanding of how mutations interact with one another to cause disease is critical to developing targeted therapies. Approximately 50% of patients that harbor a common mutation in NPM1 (NPM1cA) also have a mutation in the cohesin complex. As cohesin and Npm1 are known to regulate gene expression, we sought to determine how cohesin mutation alters the transcriptome in the context of NPM1cA. We utilized inducible Npm1cAflox/+ and core cohesin subunit Smc3flox/+ mice to examine AML development. While Npm1cA/+;Smc3Δ/+ mice developed AML with a similar latency and penetrance as Npm1cA/+ mice, RNA-seq suggests that the Npm1cA/+; Smc3Δ/+ mutational combination uniquely alters the transcriptome. We found that the Rac1/2 nucleotide exchange factor Dock1 was specifically upregulated in Npm1cA/+;Smc3Δ/+ HSPCs. Knockdown of Dock1 resulted in decreased growth and adhesion and increased apoptosis only in Npm1cA/+;Smc3Δ/+ AML. Higher Rac activity was also observed in Npm1cA/+;Smc3Δ/+ vs. Npm1cA/+ AMLs. Importantly, the Dock1/Rac pathway is targetable in Npm1cA/+;Smc3Δ/+ AMLs. Our results suggest that Dock1/Rac represents a potential target for the treatment of patients harboring NPM1cA and cohesin mutations and supports the use of combinatorial genetics to identify novel precision oncology targets.
Collapse
Affiliation(s)
| | - Cary Stelloh
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | | | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Joseph B Fisher
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinlan Furumo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - John Brennan
- Department of Pathology and Lab Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yongwei Zheng
- Guangzhou Bio-gene Technology Co., Ltd., Guangzhou, China
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
16
|
Postmitotic differentiation of human monocytes requires cohesin-structured chromatin. Nat Commun 2022; 13:4301. [PMID: 35879286 PMCID: PMC9314343 DOI: 10.1038/s41467-022-31892-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Cohesin is a major structural component of mammalian genomes and is required to maintain loop structures. While acute depletion in short-term culture models suggests a limited importance of cohesin for steady-state transcriptional circuits, long-term studies are hampered by essential functions of cohesin during replication. Here, we study genome architecture in a postmitotic differentiation setting, the differentiation of human blood monocytes (MO). We profile and compare epigenetic, transcriptome and 3D conformation landscapes during MO differentiation (either into dendritic cells or macrophages) across the genome and detect numerous architectural changes, ranging from higher level compartments down to chromatin loops. Changes in loop structures correlate with cohesin-binding, as well as epigenetic and transcriptional changes during differentiation. Functional studies show that the siRNA-mediated depletion of cohesin (and to a lesser extent also CTCF) markedly disturbs loop structures and dysregulates genes and enhancers that are primarily regulated during normal MO differentiation. In addition, gene activation programs in cohesin-depleted MO-derived macrophages are disturbed. Our findings implicate an essential function of cohesin in controlling long-term, differentiation- and activation-associated gene expression programs. How chromatin structure and gene accessibility changes during monocyte differentiation is not clearly defined. Here the authors characterize the chromatin changes during macrophage or dendritic cell maturation from monocytes and the dependence of this upon cohesin and CTCF.
Collapse
|
17
|
Bailey ML, Tieu D, Habsid A, Tong AHY, Chan K, Moffat J, Hieter P. Paralogous synthetic lethality underlies genetic dependencies of the cancer-mutated gene STAG2. Life Sci Alliance 2021; 4:e202101083. [PMID: 34462321 PMCID: PMC8408347 DOI: 10.26508/lsa.202101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
STAG2, a component of the mitotically essential cohesin complex, is highly mutated in several different tumour types, including glioblastoma and bladder cancer. Whereas cohesin has roles in many cancer-related pathways, such as chromosome instability, DNA repair and gene expression, the complex nature of cohesin function has made it difficult to determine how STAG2 loss might either promote tumorigenesis or be leveraged therapeutically across divergent cancer types. Here, we have performed whole-genome CRISPR-Cas9 screens for STAG2-dependent genetic interactions in three distinct cellular backgrounds. Surprisingly, STAG1, the paralog of STAG2, was the only negative genetic interaction that was shared across all three backgrounds. We also uncovered a paralogous synthetic lethal mechanism behind a genetic interaction between STAG2 and the iron regulatory gene IREB2 Finally, investigation of an unusually strong context-dependent genetic interaction in HAP1 cells revealed factors that could be important for alleviating cohesin loading stress. Together, our results reveal new facets of STAG2 and cohesin function across a variety of genetic contexts.
Collapse
Affiliation(s)
- Melanie L Bailey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Andrea Habsid
- Donnelly Centre, University of Toronto, Toronto, Canada
| | | | | | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Borch Jensen M, Marblestone A. In vivo Pooled Screening: A Scalable Tool to Study the Complexity of Aging and Age-Related Disease. FRONTIERS IN AGING 2021; 2:714926. [PMID: 35822038 PMCID: PMC9261400 DOI: 10.3389/fragi.2021.714926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Biological aging, and the diseases of aging, occur in a complex in vivo environment, driven by multiple interacting processes. A convergence of recently developed technologies has enabled in vivo pooled screening: direct administration of a library of different perturbations to a living animal, with a subsequent readout that distinguishes the identity of each perturbation and its effect on individual cells within the animal. Such screens hold promise for efficiently applying functional genomics to aging processes in the full richness of the in vivo setting. In this review, we describe the technologies behind in vivo pooled screening, including a range of options for delivery, perturbation and readout methods, and outline their potential application to aging and age-related disease. We then suggest how in vivo pooled screening, together with emerging innovations in each of its technological underpinnings, could be extended to shed light on key open questions in aging biology, including the mechanisms and limits of epigenetic reprogramming and identifying cellular mediators of systemic signals in aging.
Collapse
Affiliation(s)
| | - Adam Marblestone
- Astera Institute, San Francisco, CA, United States
- Federation of American Scientists, Washington D.C., CA, United States
| |
Collapse
|
19
|
Jann JC, Tothova Z. Cohesin mutations in myeloid malignancies. Blood 2021; 138:649-661. [PMID: 34157074 PMCID: PMC8394903 DOI: 10.1182/blood.2019004259] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cohesin is a multisubunit protein complex that forms a ring-like structure around DNA. It is essential for sister chromatid cohesion, chromatin organization, transcriptional regulation, and DNA damage repair and plays a major role in dynamically shaping the genome architecture and maintaining DNA integrity. The core complex subunits STAG2, RAD21, SMC1, and SMC3, as well as its modulators PDS5A/B, WAPL, and NIPBL, have been found to be recurrently mutated in hematologic and solid malignancies. These mutations are found across the full spectrum of myeloid neoplasia, including pediatric Down syndrome-associated acute megakaryoblastic leukemia, myelodysplastic syndromes, chronic myelomonocytic leukemia, and de novo and secondary acute myeloid leukemias. The mechanisms by which cohesin mutations act as drivers of clonal expansion and disease progression are still poorly understood. Recent studies have described the impact of cohesin alterations on self-renewal and differentiation of hematopoietic stem and progenitor cells, which are associated with changes in chromatin and epigenetic state directing lineage commitment, as well as genomic integrity. Herein, we review the role of the cohesin complex in healthy and malignant hematopoiesis. We discuss clinical implications of cohesin mutations in myeloid malignancies and discuss opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Johann-Christoph Jann
- Department of Hematology and Oncology, University of Heidelberg, Mannheim, Germany; and
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
20
|
de Castro CPM, Cadefau M, Cuartero S. The Mutational Landscape of Myeloid Leukaemia in Down Syndrome. Cancers (Basel) 2021; 13:4144. [PMID: 34439298 PMCID: PMC8394284 DOI: 10.3390/cancers13164144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators-such as cohesin, CTCF or EZH2-and in signalling mediators of the JAK/STAT and RAS pathways. Most of them are also found in non-DS myeloid malignancies, albeit at extremely different frequencies. Intriguingly, mutations in proteins involved in the three-dimensional organization of the genome are found in nearly 50% of cases. How the resulting mutant proteins cooperate with trisomy 21 and mutant GATA1 to promote ML-DS is not fully understood. In this review, we summarize and discuss current knowledge about the sequential acquisition of genomic alterations in ML-DS.
Collapse
Affiliation(s)
| | - Maria Cadefau
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
21
|
Ohki K, Kiyokawa N, Watanabe S, Iwafuchi H, Nakazawa A, Ishiwata K, Ogata-Kawata H, Nakabayashi K, Okamura K, Tanaka F, Fukano R, Hata K, Mori T, Moriya Saito A, Hayashi Y, Taga T, Sekimizu M, Kobayashi R. Characteristics of genetic alterations of peripheral T-cell lymphoma in childhood including identification of novel fusion genes: the Japan Children's Cancer Group (JCCG). Br J Haematol 2021; 194:718-729. [PMID: 34258755 DOI: 10.1111/bjh.17639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of heterogeneous non-Hodgkin lymphomas showing a mature T-cell or natural killer cell phenotype, but its molecular abnormalities in paediatric patients remain unclear. By employing next-generation sequencing and multiplex ligation-dependent probe amplification of tumour samples from 26 patients, we identified somatic alterations in paediatric PTCL including Epstein-Barr virus (EBV)-negative (EBV- ) and EBV-positive (EBV+ ) patients. As recurrent mutational targets for PTCL, we identified several previously unreported genes, including TNS1, ZFHX3, LRP2, NCOA2 and HOXA1, as well as genes previously reported in adult patients, e.g. TET2, CDKN2A, STAT3 and TP53. However, for other reported mutations, VAV1-related abnormalities were absent and mutations of NRAS, GATA3 and JAK3 showed a low frequency in our cohort. Concerning the association of EBV infection, two novel fusion genes: STAG2-AFF2 and ITPR2-FSTL4, and deletion and alteration of CDKN2A/2B, LMO1 and HOXA1 were identified in EBV- PTCL, but not in EBV+ PTCL. Conversely, alterations of PCDHGA4, ADAR, CUL9 and TP53 were identified only in EBV+ PTCL. Our observations suggest a clear difference in the molecular mechanism of onset between paediatric and adult PTCL and a difference in the characteristics of genetic alterations between EBV- and EBV+ paediatric PTCL.
Collapse
Affiliation(s)
- Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Watanabe
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideto Iwafuchi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Astuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Fumiko Tanaka
- Department of Pediatrics, Saiseikai Yokohamashi Nanbu Hospital, Kanagawa, Japan
| | - Reiji Fukano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tetsuya Mori
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Akiko Moriya Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Masahiro Sekimizu
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | | |
Collapse
|
22
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
23
|
Moura‐Castro LH, Peña‐Martínez P, Castor A, Galeev R, Larsson J, Järås M, Yang M, Paulsson K. Sister chromatid cohesion defects are associated with chromosomal copy number heterogeneity in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:410-417. [PMID: 33368842 PMCID: PMC8247877 DOI: 10.1002/gcc.22933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022] Open
Abstract
High hyperdiploid acute lymphoblastic leukemia (ALL) is one of the most common malignancies in children. The main driver event of this disease is a nonrandom aneuploidy consisting of gains of whole chromosomes but without overt evidence of chromosomal instability (CIN). Here, we investigated the frequency and severity of defective sister chromatid cohesion-a phenomenon related to CIN-in primary pediatric ALL. We found that a large proportion (86%) of hyperdiploid cases displayed aberrant cohesion, frequently severe, to compare with 49% of ETV6/RUNX1-positive ALL, which mostly displayed mild defects. In hyperdiploid ALL, cohesion defects were associated with increased chromosomal copy number heterogeneity, which could indicate increased CIN. Furthermore, cohesion defects correlated with RAD21 and NCAPG mRNA expression, suggesting a link to reduced cohesin and condensin levels in hyperdiploid ALL. Knockdown of RAD21 in an ALL cell line led to sister chromatid cohesion defects, aberrant mitoses, and increased heterogeneity in chromosomal copy numbers, similar to what was seen in primary hyperdiploid ALL. In summary, our study shows that aberrant sister chromatid cohesion is frequent but heterogeneous in pediatric high hyperdiploid ALL, ranging from mild to very severe defects, and possibly due to low cohesin or condensin levels. Cases with high levels of aberrant chromosome cohesion displayed increased chromosomal copy number heterogeneity, possibly indicative of increased CIN. These abnormalities may play a role in the clonal evolution of hyperdiploid pediatric ALL.
Collapse
Affiliation(s)
| | - Pablo Peña‐Martínez
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Anders Castor
- Department of Pediatrics, Skåne University HospitalLund UniversityLundSweden
| | - Roman Galeev
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell CenterLund UniversityLundSweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell CenterLund UniversityLundSweden
| | - Marcus Järås
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Minjun Yang
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| |
Collapse
|
24
|
Han C, Gao X, Li Y, Zhang J, Yang E, Zhang L, Yu L. Characteristics of Cohesin Mutation in Acute Myeloid Leukemia and Its Clinical Significance. Front Oncol 2021; 11:579881. [PMID: 33928020 PMCID: PMC8076553 DOI: 10.3389/fonc.2021.579881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of gene mutation is a major contributor to the initiation and propagation of acute myeloid leukemia (AML). Accumulating evidence suggests that genes encoding cohesin subunits have a high prevalence of mutations in AML, especially in the t(8;21) subtype. Therefore, it is important to understand how cohesin mutations contribute to leukemogenesis. However, the fundamental understanding of cohesin mutation in clonal expansion and myeloid transformation in hematopoietic cells remains ambiguous. Previous studies briefly introduced the cohesin mutation in AML; however, an in-depth summary of mutations in AML was not provided, and the correlation between cohesin and AML1-ETO in t (8;21) AML was also not analyzed. By summarizing the major findings regarding the cohesin mutation in AML, this review aims to define the characteristics of the cohesin complex mutation, identify its relationships with co-occurring gene mutations, assess its roles in clonal evolution, and discuss its potential for the prognosis of AML. In particular, we focus on the function of cohesin mutations in RUNX1-RUNX1T1 fusion.
Collapse
Affiliation(s)
- Caixia Han
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yonghui Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Erna Yang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
25
|
Heimbruch KE, Fisher JB, Stelloh CT, Phillips E, Reimer MH, Wargolet AJ, Meyer AE, Pulakanti K, Viny AD, Loppnow JJ, Levine RL, Pulikkan JA, Zhu N, Rao S. DOT1L inhibitors block abnormal self-renewal induced by cohesin loss. Sci Rep 2021; 11:7288. [PMID: 33790356 PMCID: PMC8012605 DOI: 10.1038/s41598-021-86646-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine. Heterozygous inactivating mutations in cohesin complex genes contribute to AML in adults by increasing the self-renewal capacity of hematopoietic stem and progenitor cells (HSPCs) by altering PRC2 targeting to induce HOXA9 expression, a key self-renewal transcription factor. Here we sought to delineate the epigenetic mechanism underpinning the enhanced self-renewal conferred by cohesin-haploinsufficiency. First, given the substantial difference in the mutational spectrum between pediatric and adult AML patients, we first sought to identify if HOXA9 was also elevated in children. Next, using primary HSPCs as a model we demonstrate that abnormal self-renewal due to cohesin loss is blocked by DOT1L inhibition. In cohesin-depleted cells, DOT1L inhibition is associated with H3K79me2 depletion and a concomitant increase in H3K27me3. Importantly, we find that there are cohesin-dependent gene expression changes that promote a leukemic profile, including HoxA overexpression, that are preferentially reversed by DOT1L inhibition. Our data further characterize how cohesin mutations contribute to AML development, identifying DOT1L as a potential therapeutic target for adult and pediatric AML patients harboring cohesin mutations.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph B Fisher
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Cary T Stelloh
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily Phillips
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael H Reimer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adam J Wargolet
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Alison E Meyer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica J Loppnow
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Anto Pulikkan
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Ochi Y, Ogawa S. Chromatin-Spliceosome Mutations in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061232. [PMID: 33799787 PMCID: PMC7999050 DOI: 10.3390/cancers13061232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Recent genomic studies have identified chromatin-spliceosome (CS)-acute myeloid leukemia (AML) as a new subgroup of AML. CS-AML is defined by several mutations that perturb epigenetic regulation, such as those affecting splicing factors, cohesin components, transcription factors, and chromatin modifiers, which are also frequently mutated in other myeloid malignancies, such as myelodysplastic syndrome and secondary AML. Thus, these mutations identify myeloid neoplasms that lie on the boundaries of conventional differential diagnosis. CS-AML shares several clinical characteristics with secondary AML. Therefore, the presence of CS-mutations may help to better classify and manage patients with AML and related disorders. The aim of this review is to discuss the genetic and clinical characteristics of CS-AML and roles of driver mutations defining this unique genomic subgroup of AML. Abstract Recent genetic studies on large patient cohorts with acute myeloid leukemia (AML) have cataloged a comprehensive list of driver mutations, resulting in the classification of AML into distinct genomic subgroups. Among these subgroups, chromatin-spliceosome (CS)-AML is characterized by mutations in the spliceosome, cohesin complex, transcription factors, and chromatin modifiers. Class-defining mutations of CS-AML are also frequently identified in myelodysplastic syndrome (MDS) and secondary AML, indicating the molecular similarity among these diseases. CS-AML is associated with myelodysplasia-related changes in hematopoietic cells and poor prognosis, and, thus, can be treated using novel therapeutic strategies and allogeneic stem cell transplantation. Functional studies of CS-mutations in mice have revealed that CS-mutations typically cause MDS-like phenotypes by altering the epigenetic regulation of target genes. Moreover, multiple CS-mutations often synergistically induce more severe phenotypes, such as the development of lethal MDS/AML, suggesting that the accumulation of many CS-mutations plays a crucial role in the progression of MDS/AML. Indeed, the presence of multiple CS-mutations is a stronger indicator of CS-AML than a single mutation. This review summarizes the current understanding of the genetic and clinical features of CS-AML and the functional roles of driver mutations characterizing this unique category of AML.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
- Correspondence: ; Tel.: +81-75-753-9285
| |
Collapse
|
27
|
Heimbruch KE, Meyer AE, Agrawal P, Viny AD, Rao S. A cohesive look at leukemogenesis: The cohesin complex and other driving mutations in AML. Neoplasia 2021; 23:337-347. [PMID: 33621854 PMCID: PMC7905235 DOI: 10.1016/j.neo.2021.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) affects tens of thousands of patients a year, yet survival rates are as low as 25% in certain populations. This poor survival rate is partially due to the vast genetic diversity of the disease. Rarely do 2 patients with AML have the same mutational profile, which makes the development of targeted therapies particularly challenging. However, a set of recurrent mutations in chromatin modifiers have been identified in many patients, including mutations in the cohesin complex, which have been identified in up to 20% of cases. Interestingly, the canonical function of the cohesin complex in establishing sister chromatid cohesin during mitosis is unlikely to be the affected role in leukemogenesis. Instead, the cohesin complex's role in DNA looping and gene regulation likely facilitates disease. The epigenetic mechanisms by which cohesin complex mutations promote leukemia are not completely elucidated, but alterations of enhancer-promoter interactions and differential histone modifications have been shown to drive oncogenic gene expression changes. Such changes commonly include HoxA upregulation, which may represent a common pathway that could be therapeutically targeted. As cohesin mutations rarely occur alone, examining the impact of common co-occurring mutations, including those in NPM1, the core-binding factor complex, FLT3, and ASXL1, will yield additional insight. While further study of these mutational interactions is required, current research suggests that the use of combinatorial genetics could be the key to uncovering new targets, allowing for the treatment of AML patients based on their individual genetic profiles.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Puja Agrawal
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
28
|
Carico ZM, Stefan HC, Justice M, Yimit A, Dowen JM. A cohesin cancer mutation reveals a role for the hinge domain in genome organization and gene expression. PLoS Genet 2021; 17:e1009435. [PMID: 33760811 PMCID: PMC7990204 DOI: 10.1371/journal.pgen.1009435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
The cohesin complex spatially organizes interphase chromatin by bringing distal genomic loci into close physical proximity, looping out the intervening DNA. Mutation of cohesin complex subunits is observed in cancer and developmental disorders, but the mechanisms through which these mutations may contribute to disease remain poorly understood. Here, we investigate a recurrent missense mutation to the hinge domain of the cohesin subunit SMC1A, observed in acute myeloid leukemia. Engineering this mutation into murine embryonic stem cells caused widespread changes in gene expression, including dysregulation of the pluripotency gene expression program. This mutation reduced cohesin levels at promoters and enhancers, decreased DNA loops and interactions across short genomic distances, and weakened insulation at CTCF-mediated DNA loops. These findings provide insight into how altered cohesin function contributes to disease and identify a requirement for the cohesin hinge domain in three-dimensional chromatin structure.
Collapse
Affiliation(s)
- Zachary M. Carico
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Holden C. Stefan
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Megan Justice
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Askar Yimit
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jill M. Dowen
- Cancer Epigenetics Training Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
29
|
Rybakova Y, Gonzalez JT, Bogorad R, Chauhan VP, Dong YL, Whittaker CA, Zatsepin T, Koteliansky V, Anderson DG. Identification of a long non-coding RNA regulator of liver carcinoma cell survival. Cell Death Dis 2021; 12:178. [PMID: 33589614 PMCID: PMC7884843 DOI: 10.1038/s41419-021-03453-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Genomic studies have significantly improved our understanding of hepatocellular carcinoma (HCC) biology and have led to the discovery of multiple protein-coding genes driving hepatocarcinogenesis. In addition, these studies have identified thousands of new non-coding transcripts deregulated in HCC. We hypothesize that some of these transcripts may be involved in disease progression. Long non-coding RNAs are a large class of non-coding transcripts which participate in the regulation of virtually all cellular functions. However, a majority of lncRNAs remain dramatically understudied. Here, we applied a pooled shRNA-based screen to identify lncRNAs essential for HCC cell survival. We validated our screening results using RNAi, CRISPRi, and antisense oligonucleotides. We found a lncRNA, termed ASTILCS, that is critical for HCC cell growth and is overexpressed in tumors from HCC patients. We demonstrated that HCC cell death upon ASTILCS knockdown is associated with apoptosis induction and downregulation of a neighboring gene, protein tyrosine kinase 2 (PTK2), a crucial protein for HCC cell survival. Taken together, our study describes a new, non-coding RNA regulator of HCC.
Collapse
Affiliation(s)
- Yulia Rybakova
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - John T Gonzalez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Roman Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vikash P Chauhan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yize L Dong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
30
|
Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells. Sci Rep 2020; 10:22393. [PMID: 33372184 PMCID: PMC7769964 DOI: 10.1038/s41598-020-79724-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
The CRISPR/Cas9 system is a versatile tool for functional genomics and forward genetic screens in mammalian cells. However, it has been challenging to deliver the CRISPR components to sensitive cell types, such as primary human hematopoietic stem and progenitor cells (HSPCs), partly due to lentiviral transduction of Cas9 being extremely inefficient in these cells. Here, to overcome these hurdles, we developed a combinatorial system using stable lentiviral delivery of single guide RNA (sgRNA) followed by transient transfection of Cas9 mRNA by electroporation in human cord blood-derived CD34+ HSPCs. We further applied an optimized sgRNA structure, that significantly improved editing efficiency in this context, and we obtained knockout levels reaching 90% for the cell surface proteins CD45 and CD44 in sgRNA transduced HSPCs. Our combinatorial CRISPR/Cas9 delivery approach had no negative influence on CD34 expression or colony forming capacity in vitro compared to non-treated HSPCs. Furthermore, gene edited HSPCs showed intact in vivo reconstitution capacity following transplantation to immunodeficient mice. Taken together, we developed a paradigm for combinatorial CRISPR/Cas9 delivery that enables efficient and traceable gene editing in primary human HSPCs, and is compatible with high functionality both in vitro and in vivo.
Collapse
|
31
|
Ketharnathan S, Labudina A, Horsfield JA. Cohesin Components Stag1 and Stag2 Differentially Influence Haematopoietic Mesoderm Development in Zebrafish Embryos. Front Cell Dev Biol 2020; 8:617545. [PMID: 33365313 PMCID: PMC7750468 DOI: 10.3389/fcell.2020.617545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cohesin is a multiprotein complex made up of core subunits Smc1, Smc3, and Rad21, and either Stag1 or Stag2. Normal haematopoietic development relies on crucial functions of cohesin in cell division and regulation of gene expression via three-dimensional chromatin organization. Cohesin subunit STAG2 is frequently mutated in myeloid malignancies, but the individual contributions of Stag variants to haematopoiesis or malignancy are not fully understood. Zebrafish have four Stag paralogues (Stag1a, Stag1b, Stag2a, and Stag2b), allowing detailed genetic dissection of the contribution of Stag1-cohesin and Stag2-cohesin to development. Here we characterize for the first time the expression patterns and functions of zebrafish stag genes during embryogenesis. Using loss-of-function CRISPR-Cas9 zebrafish mutants, we show that stag1a and stag2b contribute to primitive embryonic haematopoiesis. Both stag1a and stag2b mutants present with erythropenia by 24 h post-fertilization. Homozygous loss of either paralogue alters the number of haematopoietic/vascular progenitors in the lateral plate mesoderm. The lateral plate mesoderm zone of scl-positive cells is expanded in stag1a mutants with concomitant loss of kidney progenitors, and the number of spi1-positive cells are increased, consistent with skewing toward primitive myelopoiesis. In contrast, stag2b mutants have reduced haematopoietic/vascular mesoderm and downregulation of primitive erythropoiesis. Our results suggest that Stag1 and Stag2 proteins cooperate to balance the production of primitive haematopoietic/vascular progenitors from mesoderm.
Collapse
Affiliation(s)
- Sarada Ketharnathan
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Anastasia Labudina
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Chin CV, Antony J, Ketharnathan S, Labudina A, Gimenez G, Parsons KM, He J, George AJ, Pallotta MM, Musio A, Braithwaite A, Guilford P, Hannan RD, Horsfield JA. Cohesin mutations are synthetic lethal with stimulation of WNT signaling. eLife 2020; 9:e61405. [PMID: 33284104 PMCID: PMC7746233 DOI: 10.7554/elife.61405] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in genes encoding subunits of the cohesin complex are common in several cancers, but may also expose druggable vulnerabilities. We generated isogenic MCF10A cell lines with deletion mutations of genes encoding cohesin subunits SMC3, RAD21, and STAG2 and screened for synthetic lethality with 3009 FDA-approved compounds. The screen identified several compounds that interfere with transcription, DNA damage repair and the cell cycle. Unexpectedly, one of the top 'hits' was a GSK3 inhibitor, an agonist of Wnt signaling. We show that sensitivity to GSK3 inhibition is likely due to stabilization of β-catenin in cohesin-mutant cells, and that Wnt-responsive gene expression is highly sensitized in STAG2-mutant CMK leukemia cells. Moreover, Wnt activity is enhanced in zebrafish mutant for cohesin subunits stag2b and rad21. Our results suggest that cohesin mutations could progress oncogenesis by enhancing Wnt signaling, and that targeting the Wnt pathway may represent a novel therapeutic strategy for cohesin-mutant cancers.
Collapse
Affiliation(s)
- Chue Vin Chin
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Jisha Antony
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Sarada Ketharnathan
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Anastasia Labudina
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Gregory Gimenez
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Kate M Parsons
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Jinshu He
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Amee J George
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Maria Michela Pallotta
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)PisaItaly
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)PisaItaly
| | - Antony Braithwaite
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
| | - Parry Guilford
- Department of Biochemistry, University of OtagoDunedinNew Zealand
| | - Ross D Hannan
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- Department of Biochemistry and Molecular Biology, University of MelbourneParkvilleAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbourneParkvilleAustralia
- School of Biomedical Sciences, University of QueenslandSt LuciaAustralia
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| |
Collapse
|
33
|
van den Berk P, Lancini C, Company C, Serresi M, Sanchez-Bailon MP, Hulsman D, Pritchard C, Song JY, Schmitt MJ, Tanger E, Popp O, Mertins P, Huijbers IJ, Jacobs H, van Lohuizen M, Gargiulo G, Citterio E. USP15 Deubiquitinase Safeguards Hematopoiesis and Genome Integrity in Hematopoietic Stem Cells and Leukemia Cells. Cell Rep 2020; 33:108533. [PMID: 33378683 PMCID: PMC7788286 DOI: 10.1016/j.celrep.2020.108533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Altering ubiquitination by disruption of deubiquitinating enzymes (DUBs) affects hematopoietic stem cell (HSC) maintenance. However, comprehensive knowledge of DUB function during hematopoiesis in vivo is lacking. Here, we systematically inactivate DUBs in mouse hematopoietic progenitors using in vivo small hairpin RNA (shRNA) screens. We find that multiple DUBs may be individually required for hematopoiesis and identify ubiquitin-specific protease 15 (USP15) as essential for HSC maintenance in vitro and in transplantations and Usp15 knockout (KO) mice in vivo. USP15 is highly expressed in human hematopoietic tissues and leukemias. USP15 depletion in murine progenitors and leukemia cells impairs in vitro expansion and increases genotoxic stress. In leukemia cells, USP15 interacts with and stabilizes FUS (fused in sarcoma), a known DNA repair factor, directly linking USP15 to the DNA damage response (DDR). Our study underscores the importance of DUBs in preserving normal hematopoiesis and uncovers USP15 as a critical DUB in safeguarding genome integrity in HSCs and leukemia cells. In vivo shRNAs screens for deubiquitinases identify regulators of murine hematopoiesis Usp15 deletion compromises HSC maintenance and reconstitution potential in vivo USP15 loss affects genome integrity and growth of mHSPCs and human leukemia cells In human leukemia cells, USP15 stabilizes its interactor, FUS, a DNA repair factor
Collapse
Affiliation(s)
- Paul van den Berk
- Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Cesare Lancini
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Carlos Company
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | | - Danielle Hulsman
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ellen Tanger
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Oliver Popp
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| | - Elisabetta Citterio
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands.
| |
Collapse
|
34
|
Zaro BW, Noh JJ, Mascetti VL, Demeter J, George B, Zukowska M, Gulati GS, Sinha R, Flynn RA, Banuelos A, Zhang A, Wilkinson AC, Jackson P, Weissman IL. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. eLife 2020; 9:e62210. [PMID: 33236985 PMCID: PMC7688314 DOI: 10.7554/elife.62210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The balance of hematopoietic stem cell (HSC) self-renewal and differentiation is critical for a healthy blood supply; imbalances underlie hematological diseases. The importance of HSCs and their progenitors have led to their extensive characterization at genomic and transcriptomic levels. However, the proteomics of hematopoiesis remains incompletely understood. Here we report a proteomics resource from mass spectrometry of mouse young adult and old adult mouse HSCs, multipotent progenitors and oligopotent progenitors; 12 cell types in total. We validated differential protein levels, including confirmation that Dnmt3a protein levels are undetected in young adult mouse HSCs until forced into cycle. Additionally, through integrating proteomics and RNA-sequencing datasets, we identified a subset of genes with apparent post-transcriptional repression in young adult mouse HSCs. In summary, we report proteomic coverage of young and old mouse HSCs and progenitors, with broader implications for understanding mechanisms for stem cell maintenance, niche interactions and fate determination.
Collapse
Affiliation(s)
- Balyn W Zaro
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Victoria L Mascetti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Benson George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Monika Zukowska
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Ryan A Flynn
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Allison Banuelos
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Allison Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Peter Jackson
- Baxter Laboratory, Department of Microbiology and Immunology and Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology and the Stanford UC-Berkeley Stem Cell InstituteStanfordUnited States
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
35
|
Fang C, Rao S, Crispino JD, Ntziachristos P. Determinants and role of chromatin organization in acute leukemia. Leukemia 2020; 34:2561-2575. [PMID: 32690881 PMCID: PMC7999176 DOI: 10.1038/s41375-020-0981-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies.
Collapse
Affiliation(s)
- Celestia Fang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - John D Crispino
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Division of Hematology, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
36
|
Kumar P, Cheng H, Paudyal S, Nakamura LV, Zhang N, Li JT, Sasidharan R, Jeong M, Pati D. Haploinsufficiency of cohesin protease, Separase, promotes regeneration of hematopoietic stem cells in mice. Stem Cells 2020; 38:1624-1636. [PMID: 32997844 DOI: 10.1002/stem.3280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022]
Abstract
Cohesin recently emerged as a new regulator of hematopoiesis and leukemia. In addition to cohesin, whether proteins that regulate cohesin's function have any direct role in hematopoiesis and hematologic diseases have not been fully examined. Separase, encoded by the ESPL1 gene, is an important regulator of cohesin's function. Canonically, protease activity of Separase resolves sister chromatid cohesion by cleaving cohesin subunit-Rad21 at the onset of anaphase. Using a Separase haploinsufficient mouse model, we have uncovered a novel role of Separase in hematopoiesis. We report that partial disruption of Separase distinctly alters the functional characteristics of hematopoietic stem/progenitor cells (HSPCs). Although analyses of peripheral blood and bone marrow of Espl1+/Hyp mice broadly displayed unperturbed hematopoietic parameters during normal hematopoiesis, further probing of the composition of early hematopoietic cells in Espl1+/Hyp bone marrow revealed a mild reduction in the frequencies of the Lin- Sca1+ Kit- (LSK) or LSK CD48+ CD150- multipotent hematopoietic progenitors population without a significant change in either long-term or short-term hematopoietic stem cells (HSCs) subsets at steady state. Surprisingly, however, we found that Separase haploinsufficiency promotes regeneration activity of HSCs in serial in vivo repopulation assays. In vitro colony formation assays also revealed an enhanced serial replating capacity of hematopoietic progenitors isolated from Espl1+/Hyp mice. Microarray analysis of differentially expressed genes showed that Separase haploinsufficiency in HSCs (SP-KSL) leads to enrichment of gene signatures that are upregulated in HSCs compared to committed progenitors and mature cells. Taken together, our findings demonstrate a key role of Separase in promoting hematopoietic regeneration of HSCs.
Collapse
Affiliation(s)
- Praveen Kumar
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Haizi Cheng
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Samridhdi Paudyal
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lanelle V Nakamura
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nenggang Zhang
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jessica T Li
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mira Jeong
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Debananda Pati
- Texas Childrens Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
37
|
Abstract
Mutations of the cohesin complex in human cancer were first discovered ~10 years ago. Since then, researchers worldwide have demonstrated that cohesin is among the most commonly mutated protein complexes in cancer. Inactivating mutations in genes encoding cohesin subunits are common in bladder cancers, paediatric sarcomas, leukaemias, brain tumours and other cancer types. Also in those 10 years, the prevailing view of the functions of cohesin in cell biology has undergone a revolutionary transformation. Initially, the predominant view of cohesin was as a ring that encircled and cohered replicated chromosomes until its cleavage triggered the metaphase-to-anaphase transition. As such, early studies focused on the role of tumour-derived cohesin mutations in the fidelity of chromosome segregation and aneuploidy. However, over the past 5 years the cohesin field has shifted dramatically, and research now focuses on the primary role of cohesin in generating, maintaining and regulating the intra-chromosomal DNA looping events that modulate 3D genome organization and gene expression. This Review focuses on recent discoveries in the cohesin field that provide insight into the role of cohesin inactivation in cancer pathogenesis, and opportunities for exploiting these findings for the clinical benefit of patients with cohesin-mutant cancers.
Collapse
Affiliation(s)
- Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
38
|
Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws. Proc Natl Acad Sci U S A 2020; 117:21267-21273. [PMID: 32817519 PMCID: PMC7474688 DOI: 10.1073/pnas.2001367117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction of exogenous genetic material into primary stem cells is essential for studying biological function and for clinical applications. Traditional delivery methods for nucleic acids, such as electroporation, have advanced the field, but have negative effects on stem cell function and viability. We introduce nanostraw-assisted transfection as an alternative method for RNA delivery to human hematopoietic stem and progenitor cells (HSPCs). Nanostraws are hollow alumina nanotubes that can be used to deliver biomolecules to living cells. We use nanostraws to target human primary HSPCs and show efficient delivery of mRNA, short interfering RNAs (siRNAs), DNA oligonucleotides, and dextrans of sizes ranging from 6 kDa to 2,000 kDa. Nanostraw-treated cells were fully functional and viable, with no impairment in their proliferative or colony-forming capacity, and showed similar long-term engraftment potential in vivo as untreated cells. Additionally, we found that gene expression of the cells was not perturbed by nanostraw treatment, while conventional electroporation changed the expression of more than 2,000 genes. Our results show that nanostraw-mediated transfection is a gentle alternative to established gene delivery methods, and uniquely suited for nonperturbative treatment of sensitive primary stem cells.
Collapse
|
39
|
Liu Q, Garcia M, Wang S, Chen CW. Therapeutic Target Discovery Using High-Throughput Genetic Screens in Acute Myeloid Leukemia. Cells 2020; 9:cells9081888. [PMID: 32806592 PMCID: PMC7465943 DOI: 10.3390/cells9081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The development of high-throughput gene manipulating tools such as short hairpin RNA (shRNA) and CRISPR/Cas9 libraries has enabled robust characterization of novel functional genes contributing to the pathological states of the diseases. In acute myeloid leukemia (AML), these genetic screen approaches have been used to identify effector genes with previously unknown roles in AML. These AML-related genes centralize alongside the cellular pathways mediating epigenetics, signaling transduction, transcriptional regulation, and energy metabolism. The shRNA/CRISPR genetic screens also realized an array of candidate genes amenable to pharmaceutical targeting. This review aims to summarize genes, mechanisms, and potential therapeutic strategies found via high-throughput genetic screens in AML. We also discuss the potential of these findings to instruct novel AML therapies for combating drug resistance in this genetically heterogeneous disease.
Collapse
Affiliation(s)
- Qiao Liu
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Michelle Garcia
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Pomona College, Claremont, CA 91711, USA
| | - Shaoyuan Wang
- Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350108, China; (Q.L.); (S.W.)
- Union Clinical Medical College, Fujian Medical University, Fuzhou 350108, China
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
40
|
Ochi Y, Kon A, Sakata T, Nakagawa MM, Nakazawa N, Kakuta M, Kataoka K, Koseki H, Nakayama M, Morishita D, Tsuruyama T, Saiki R, Yoda A, Okuda R, Yoshizato T, Yoshida K, Shiozawa Y, Nannya Y, Kotani S, Kogure Y, Kakiuchi N, Nishimura T, Makishima H, Malcovati L, Yokoyama A, Takeuchi K, Sugihara E, Sato TA, Sanada M, Takaori-Kondo A, Cazzola M, Kengaku M, Miyano S, Shirahige K, Suzuki HI, Ogawa S. Combined Cohesin-RUNX1 Deficiency Synergistically Perturbs Chromatin Looping and Causes Myelodysplastic Syndromes. Cancer Discov 2020; 10:836-853. [PMID: 32249213 PMCID: PMC7269820 DOI: 10.1158/2159-8290.cd-19-0982] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
Abstract
STAG2 encodes a cohesin component and is frequently mutated in myeloid neoplasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer-promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer-promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodysplastic syndromes (MDS) in mice. Attenuated enhancer-promoter loops in STAG2/RUNX1-deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2-cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2-RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer-promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro M Nakagawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naotaka Nakazawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Masanori Kakuta
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | | | - Tatsuaki Tsuruyama
- Department of Drug and Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Yoda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rurika Okuda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kotani
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasunori Kogure
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomomi Nishimura
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masashi Sanada
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
41
|
Khaminets A, Ronnen-Oron T, Baldauf M, Meier E, Jasper H. Cohesin controls intestinal stem cell identity by maintaining association of Escargot with target promoters. eLife 2020; 9:e48160. [PMID: 32022682 PMCID: PMC7002041 DOI: 10.7554/elife.48160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
Intestinal stem cells (ISCs) maintain regenerative capacity of the intestinal epithelium. Their function and activity are regulated by transcriptional changes, yet how such changes are coordinated at the genomic level remains unclear. The Cohesin complex regulates transcription globally by generating topologically-associated DNA domains (TADs) that link promotor regions with distant enhancers. We show here that the Cohesin complex prevents premature differentiation of Drosophila ISCs into enterocytes (ECs). Depletion of the Cohesin subunit Rad21 and the loading factor Nipped-B triggers an ISC to EC differentiation program that is independent of Notch signaling, but can be rescued by over-expression of the ISC-specific escargot (esg) transcription factor. Using damID and transcriptomic analysis, we find that Cohesin regulates Esg binding to promoters of differentiation genes, including a group of Notch target genes involved in ISC differentiation. We propose that Cohesin ensures efficient Esg-dependent gene repression to maintain stemness and intestinal homeostasis.
Collapse
Affiliation(s)
| | | | - Maik Baldauf
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Elke Meier
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Heinrich Jasper
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
- Buck Institute for Research on AgingNovatoUnited States
- Immunology DiscoveryGenentech, IncSouth San FranciscoUnited States
| |
Collapse
|
42
|
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare malignancy affecting megakaryocytes, platelet-producing cells that reside in the bone marrow. Children with Down syndrome (DS) are particularly prone to developing the disease and have a different age of onset, distinct genetic mutations, and better prognosis as compared with individuals without DS who develop the disease. Here, we discuss the contributions of chromosome 21 genes and other genetic mutations to AMKL, the clinical features of the disease, and the differing features of DS- and non-DS-AMKL. Further studies elucidating the role of chromosome 21 genes in this disease may aid our understanding of how they function in other types of leukemia, in which they are frequently mutated or differentially expressed. Although researchers have made many insights into understanding AMKL, much more remains to be learned about its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Maureen McNulty
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| | - John D Crispino
- Northwestern University, Division of Hematology/Oncology, Chicago, Illinois 60611, USA
| |
Collapse
|
43
|
Sasca D, Yun H, Giotopoulos G, Szybinski J, Evan T, Wilson NK, Gerstung M, Gallipoli P, Green AR, Hills R, Russell N, Osborne CS, Papaemmanuil E, Göttgens B, Campbell P, Huntly BJP. Cohesin-dependent regulation of gene expression during differentiation is lost in cohesin-mutated myeloid malignancies. Blood 2019; 134:2195-2208. [PMID: 31515253 PMCID: PMC7484777 DOI: 10.1182/blood.2019001553] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cohesin complex disruption alters gene expression, and cohesin mutations are common in myeloid neoplasia, suggesting a critical role in hematopoiesis. Here, we explore cohesin dynamics and regulation of hematopoietic stem cell homeostasis and differentiation. Cohesin binding increases at active regulatory elements only during erythroid differentiation. Prior binding of the repressive Ets transcription factor Etv6 predicts cohesin binding at these elements and Etv6 interacts with cohesin at chromatin. Depletion of cohesin severely impairs erythroid differentiation, particularly at Etv6-prebound loci, but augments self-renewal programs. Together with corroborative findings in acute myeloid leukemia and myelodysplastic syndrome patient samples, these data suggest cohesin-mediated alleviation of Etv6 repression is required for dynamic expression at critical erythroid genes during differentiation and how this may be perturbed in myeloid malignancies.
Collapse
Affiliation(s)
- Daniel Sasca
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - Haiyang Yun
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - George Giotopoulos
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jakub Szybinski
- Department of Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - Theo Evan
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Nicola K Wilson
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Moritz Gerstung
- European Bioinformatic Institute, Genome Campus, Hinxton, United Kingdom
| | - Paolo Gallipoli
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R Green
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Nigel Russell
- Department of Haematology, University of Nottingham, Nottingham, United Kingdom
| | - Cameron S Osborne
- Department of Medical and Molecular Genetics, Kings College London, United Kingdom
| | - Elli Papaemmanuil
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Berthold Göttgens
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Campbell
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Cuartero S, Innes AJ, Merkenschlager M. Towards a Better Understanding of Cohesin Mutations in AML. Front Oncol 2019; 9:867. [PMID: 31552185 PMCID: PMC6746210 DOI: 10.3389/fonc.2019.00867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Classical driver mutations in acute myeloid leukemia (AML) typically affect regulators of cell proliferation, differentiation, and survival. The selective advantage of increased proliferation, improved survival, and reduced differentiation on leukemia progression is immediately obvious. Recent large-scale sequencing efforts have uncovered numerous novel AML-associated mutations. Interestingly, a substantial fraction of the most frequently mutated genes encode general regulators of transcription and chromatin state. Understanding the selective advantage conferred by these mutations remains a major challenge. A striking example are mutations in genes of the cohesin complex, a major regulator of three-dimensional genome organization. Several landmark studies have shown that cohesin mutations perturb the balance between self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPC). Emerging data now begin to uncover the molecular mechanisms that underpin this phenotype. Among these mechanisms is a role for cohesin in the control of inflammatory responses in HSPCs and myeloid cells. Inflammatory signals limit HSPC self-renewal and drive HSPC differentiation. Consistent with this, cohesin mutations promote resistance to inflammatory signals, and may provide a selective advantage for AML progression. In this review, we discuss recent progress in understanding cohesin mutations in AML, and speculate whether vulnerabilities associated with these mutations could be exploited therapeutically.
Collapse
Affiliation(s)
- Sergi Cuartero
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Andrew J Innes
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Faculty of Medicine, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Matthias Merkenschlager
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Romero-Pérez L, Surdez D, Brunet E, Delattre O, Grünewald TGP. STAG Mutations in Cancer. Trends Cancer 2019; 5:506-520. [PMID: 31421907 DOI: 10.1016/j.trecan.2019.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
Stromal Antigen 1 and 2 (STAG1/2) are key subunits of the cohesin complex that mediate sister chromatid cohesion, DNA repair, transcriptional regulation, and genome topology. Genetic alterations comprising any of the 11 cohesin-associated genes possibly occur in up to 26% of patients included in The Cancer Genome Atlas (TCGA) studies. STAG2 shows the highest number of putative driver truncating mutations. We provide a comprehensive review of the function of STAG1/2 in human physiology and disease and an integrative analysis of available omics data on STAG alterations in a wide array of cancers, comprising 53 691 patients and 1067 cell lines. Lastly, we discuss opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, Munich, Germany
| | - Didier Surdez
- INSERM U830, Équipe Labellisé LNCC "Genetics and Biology of Pediatric Cancers", fhna PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Erika Brunet
- Institut Imagine, INSERM UMR1163, Équipe Labellisé LNCC, Dynamics of the Genome and Immune System Lab, Paris, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisé LNCC "Genetics and Biology of Pediatric Cancers", fhna PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU, Munich, Germany; Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
46
|
Mazzola M, Deflorian G, Pezzotta A, Ferrari L, Fazio G, Bresciani E, Saitta C, Ferrari L, Fumagalli M, Parma M, Marasca F, Bodega B, Riva P, Cotelli F, Biondi A, Marozzi A, Cazzaniga G, Pistocchi A. NIPBL: a new player in myeloid cell differentiation. Haematologica 2019; 104:1332-1341. [PMID: 30630974 PMCID: PMC6601076 DOI: 10.3324/haematol.2018.200899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.
Collapse
MESH Headings
- Adult
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Nuclear Proteins/genetics
- Nucleophosmin
- Phenotype
- Wnt Signaling Pathway
- Zebrafish
- Cohesins
Collapse
Affiliation(s)
- Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | | | - Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Laura Ferrari
- Istituto FIRC di Oncologia Molecolare, IFOM, Milano, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Erica Bresciani
- Oncogenesis and Development Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Saitta
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Monica Fumagalli
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Matteo Parma
- Clinica Ematologica e Centro Trapianti di Midollo Osseo, Ospedale San Gerardo, Università di Milano-Bicocca, Monza, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Segrate, Italy
| |
Collapse
|
47
|
Mintzas K, Heuser M. Emerging strategies to target the dysfunctional cohesin complex in cancer. Expert Opin Ther Targets 2019; 23:525-537. [PMID: 31020869 DOI: 10.1080/14728222.2019.1609943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mutations in cohesin genes have been described in numerous solid cancers and hematologic malignancies; subsequent experimental evidence has linked these mutations with carcinogenesis. Areas covered: In this review, we present current information about the physiological role of the cohesin complex in normal and malignant cells and describe current therapeutic strategies that are being explored in cohesin-mutated cancers. We discuss a range of targets and strategies that should be explored to develop targeted therapies for patients with aberrant cohesin. Expert opinion: Targeting of the cohesin complex is an underexplored area of drug development. There is a high frequency of cohesin mutations in multiple cancers, hence specific targeting strategies should be explored. Cohesins play a crucial role in cellular organization; therefore, we expect a narrow therapeutic window of direct inhibitors of cohesin components. Exploiting experimental approaches that correct dysfunctional cohesins and coupling them with current therapeutic strategies can provide novel, innovative and more effective treatment regimens.
Collapse
Affiliation(s)
- Konstantinos Mintzas
- a Department of Hematology , Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | - Michael Heuser
- a Department of Hematology , Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| |
Collapse
|
48
|
Güneş C, Paszkowski-Rogacz M, Rahmig S, Khattak S, Camgöz A, Wermke M, Dahl A, Bornhäuser M, Waskow C, Buchholz F. Comparative RNAi Screens in Isogenic Human Stem Cells Reveal SMARCA4 as a Differential Regulator. Stem Cell Reports 2019; 12:1084-1098. [PMID: 31031192 PMCID: PMC6523874 DOI: 10.1016/j.stemcr.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Large-scale RNAi screens are a powerful approach to identify functions of genes in a cell-type-specific manner. For model organisms, genetically identical (isogenic) cells from different cell types are readily available, making comparative studies meaningful. However, large-scale screens in isogenic human primary cells remain challenging. Here, we show that RNAi screens are possible in genetically identical human stem cells, using induced pluripotent stem cells as intermediates. The screens revealed SMARCA4 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4) as a stemness regulator, while balancing differentiation distinctively for each cell type. SMARCA4 knockdown in hematopoietic stem and progenitor cells caused impaired self-renewal in vitro and in vivo with skewed myeloid differentiation; whereas, in neural stem cells, it impaired self-renewal while biasing differentiation toward neural lineage, through combinatorial SWI/SNF subunit assembly. Our findings pose a powerful approach for deciphering human stem cell biology and attribute distinct roles to SMARCA4 in stem cell maintenance. Comparative RNAi screens on isogenic hHSPCs and hNSCs, using iPSCs as bridging cell type SMARCA4 is a differential regulator of self-renewal and differentiation SMARCA4 loss impairs HSPC engraftment in vivo and myeloid differentiation in vitro SMARCA4 loss in NSCs causes exit from self-renewal and biased neural differentiation
Collapse
Affiliation(s)
- Ceren Güneş
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany
| | - Susann Rahmig
- Regeneration in Hematopoiesis, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Shahryar Khattak
- Stem Cell Engineering Facility, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Aylin Camgöz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Martin Wermke
- Department of Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; Medical Faculty and University Hospital Carl Gustav Carus, Early Clinical Trial Unit, 01307 Dresden, Germany
| | - Andreas Dahl
- Dresden Genome Center (DGC), TU Dresden, 01307 Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany; Department of Medicine III, Faculty of Medicine, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Faculty and University Hospital Carl Gustav Carus, UCC Section Medical Systems Biology, TU Dresden, 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Research Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
49
|
Pezzotta A, Mazzola M, Spreafico M, Marozzi A, Pistocchi A. Enigmatic Ladies of the Rings: How Cohesin Dysfunction Affects Myeloid Neoplasms Insurgence. Front Cell Dev Biol 2019; 7:21. [PMID: 30873408 PMCID: PMC6400976 DOI: 10.3389/fcell.2019.00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/05/2019] [Indexed: 12/04/2022] Open
Abstract
The genes of the cohesin complex exert different functions, ranging from the adhesion of sister chromatids during the cell cycle, DNA repair, gene expression and chromatin architecture remodeling. In recent years, the improvement of DNA sequencing technologies allows the identification of cohesin mutations in different tumors such as acute myeloid leukemia (AML), acute megakaryoblastic leukemia (AMKL), and myelodysplastic syndromes (MDS). However, the role of cohesin dysfunction in cancer insurgence remains elusive. In this regard, cells harboring cohesin mutations do not show any increase in aneuploidy that might explain their oncogenic activity, nor cohesin mutations are sufficient to induce myeloid neoplasms as they have to co-occur with other causative mutations such as NPM1, FLT3-ITD, and DNMT3A. Several works, also using animal models for cohesin haploinsufficiency, correlate cohesin activity with dysregulated expression of genes involved in myeloid development and differentiation. These evidences support the involvement of cohesin mutations in myeloid neoplasms.
Collapse
Affiliation(s)
- Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
50
|
Cuartero S, Weiss FD, Dharmalingam G, Guo Y, Ing-Simmons E, Masella S, Robles-Rebollo I, Xiao X, Wang YF, Barozzi I, Djeghloul D, Amano MT, Niskanen H, Petretto E, Dowell RD, Tachibana K, Kaikkonen MU, Nasmyth KA, Lenhard B, Natoli G, Fisher AG, Merkenschlager M. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat Immunol 2018; 19:932-941. [PMID: 30127433 PMCID: PMC6195188 DOI: 10.1038/s41590-018-0184-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Cohesin is important for 3D genome organization. Nevertheless, even the complete removal of cohesin has surprisingly little impact on steady-state gene transcription and enhancer activity. Here we show that cohesin is required for the core transcriptional response of primary macrophages to microbial signals, and for inducible enhancer activity that underpins inflammatory gene expression. Consistent with a role for inflammatory signals in promoting myeloid differentiation of hematopoietic stem and progenitor cells (HPSCs), cohesin mutations in HSPCs led to reduced inflammatory gene expression and increased resistance to differentiation-inducing inflammatory stimuli. These findings uncover an unexpected dependence of inducible gene expression on cohesin, link cohesin with myeloid differentiation, and may help explain the prevalence of cohesin mutations in human acute myeloid leukemia.
Collapse
Affiliation(s)
- Sergi Cuartero
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Felix D Weiss
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Gopuraja Dharmalingam
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ya Guo
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Elizabeth Ing-Simmons
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Computational Regulatory Genomics Group, Integrative Biology Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Silvia Masella
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Irene Robles-Rebollo
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Xiaolin Xiao
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Iros Barozzi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Surgery and Cancer, Department of Medicine, Imperial College London, London, UK
| | - Dounia Djeghloul
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Mariane T Amano
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enrico Petretto
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Robin D Dowell
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Kikuë Tachibana
- Department of Biochemistry, University of Oxford, Oxford, UK
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, Integrative Biology Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Gioacchino Natoli
- Humanitas Clinical and Research Center, Milan, Italy
- Humanitas University, Milan, Italy
| | - Amanda G Fisher
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, Epigenetics Section, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|