1
|
Mohammed F, Willcox CR, Willcox BE. A Brief Molecular History of Vγ9Vδ2 TCR-Mediated Phosphoantigen Sensing. Immunol Rev 2025; 331:e70023. [PMID: 40181561 PMCID: PMC11969061 DOI: 10.1111/imr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/08/2025] [Indexed: 04/05/2025]
Abstract
Vγ9Vδ2 T-cells are universally present in humans and represent one of the most prevalent TCR reactivities, evolutionarily conserved across diverse mammalian species. They are an innate-like subset featuring a semi-invariant TCR repertoire that drives their well-recognized reactivity to small, non-peptidic phosphoantigens (pAg). Crucially, they can distinguish between highly immunostimulatory microbially derived pAg and much less potent host-derived pAg, with the former effectively acting as a pathogen associated molecular pattern (PAMP) and the Vγ9Vδ2 TCR as a surrogate pattern recognition receptor (PRR). Ample evidence supports important Vγ9Vδ2-mediated contributions to immunity against diverse pathogenic bacteria and parasites, mediated by their potent effector and immunoregulatory functions. The molecular basis of the pAg sensing mechanism underpinning such responses has, however, remained highly mysterious. Despite this, past studies have established that pAg sensing is MHC-independent, extremely fast, exquisitely pAg-sensitive, and dependent upon target cell expression of key BTN-family molecules, notably BTN3A and BTN2A1. Here we contextualize these findings and several recent studies addressing pAg sensing. We integrate these into a single unified theory of pAg sensing interpretable from different perspectives, both intracellular and extracellular, biophysical, and topological. We prioritize critical questions to address in the context of this proposed model. Finally, we suggest the model will provide a molecular template for antigen recognition by other related γδ T-cell subsets.
Collapse
Affiliation(s)
- Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- Cancer Immunology and Immunotherapy Centre, College of Medicine and HealthUniversity of BirminghamBirminghamUK
| | - Carrie R. Willcox
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- Cancer Immunology and Immunotherapy Centre, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- National Institute for Health and Care Research (NIHR)Birmingham Biomedical Research CentreBirminghamUK
| | - Benjamin E. Willcox
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- Cancer Immunology and Immunotherapy Centre, College of Medicine and HealthUniversity of BirminghamBirminghamUK
- National Institute for Health and Care Research (NIHR)Birmingham Biomedical Research CentreBirminghamUK
| |
Collapse
|
2
|
Zhu Y, Gao W, Zheng J, Bai Y, Tian X, Huang T, Lu Z, Dong D, Zhang A, Guo C, Huang Z. Phosphoantigen-induced inside-out stabilization of butyrophilin receptor complexes drives dimerization-dependent γδ TCR activation. Immunity 2025:S1074-7613(25)00175-X. [PMID: 40334665 DOI: 10.1016/j.immuni.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/14/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Phosphoantigens (pAgs), produced by infected or cancer cells, trigger the assembly of a membrane receptor complex comprising butyrophilin (BTN) members BTN3A1 and BTN2A1, leading to the activation of γδ T cells. BTN3A2 or BTN3A3 forms heteromers with BTN3A1, exhibiting higher γδ T cell receptor (TCR)-stimulating activity than BTN3A1 homomers. Cryoelectron microscopy (cryo-EM) structure reveals a pAg-induced BTN2A1-BTN3A1 heterotetramer with a 2:2 stoichiometry, stabilized by interactions between the intracellular B30.2 domains and the extracellular immunoglobulin V (IgV) domains. BTN3A2 or BTN3A3 heterodimerizes with BTN3A1, forming a pAg-induced tetrameric complex with BTN2A1. However, BTN3A1 heterodimers are more stable than BTN3A1 homodimers in this interaction. Cryo-EM reveals that BTN2A1-BTN3A1-BTN3A2 binds two γδ TCR ectodomains, with one being sandwiched between the IgV domains of BTN2A1 and BTN3A2, while the other interacts with the free BTN2A1 IgV in the complex, as evidenced by functional data. Together, our findings uncover the mechanism of ligand-induced inside-out stabilization of BTN receptor complexes for dimeric activation of γδ TCR.
Collapse
Affiliation(s)
- Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Wenbo Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jianlin Zheng
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Bai
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Tian
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zebin Lu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - De Dong
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; New Cornerstone Science Institute, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
3
|
Vazaios K, Hernández López P, Aarts-Riemens T, Daudeij A, Kemp V, Hoeben RC, Straetemans T, Hulleman E, Calkoen FG, van der Lugt J, Kuball J. Unusual Partners: γδ-TCR-Based T Cell Therapy in Combination with Oncolytic Virus Treatment for Diffuse Midline Gliomas. Int J Mol Sci 2025; 26:2167. [PMID: 40076788 PMCID: PMC11900589 DOI: 10.3390/ijms26052167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Due to the minimal survival benefits of existing therapies for pediatric diffuse midline glioma (DMG) patients, new therapeutic modalities are being investigated. Immunotherapies such as CAR-T cells and oncolytic viruses (OVs) are part of these efforts, as evidenced by the increasing number of clinical trials. αβ T cells engineered with a high-affinity γ9δ2 T-cell receptor (TEGs) are immune cells designed to target metabolic changes in malignant or virally infected cells via BTN2A1 and BTN3A. Because the expression of BTN2A1 and BTN3A can be altered in tumor and infected cells, combining TEGs and OVs could potentially enhance the anti-tumor response. We investigated this hypothesis in the following study. We demonstrate that TEGs can indeed target DMG, which expresses BTN2A1 and BTN3A at varying levels, and that OVs can further enhance the expression of BTN3A-but not BTN2A1-in DMG. Functionally, TEGs killed DMG cell cultures, and this killing was further increased after OV infection of the DMGs with either adenovirus Δ24-RGD or reovirus R124 under suboptimal conditions. However, this additive effect was lost when γ9δ2 TCR-ligand interaction was boosted by pamidronate. This study demonstrates the additive effect of combining OVs and Vγ9Vδ2 TCR-engineered immune cells under suboptimal conditions and supports a combination strategy to enhance the efficacy of both therapeutic modalities.
Collapse
MESH Headings
- Humans
- Glioma/therapy
- Glioma/immunology
- Glioma/pathology
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/immunology
- Oncolytic Viruses/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Brain Neoplasms/therapy
- Brain Neoplasms/immunology
- Combined Modality Therapy
Collapse
Affiliation(s)
- Konstantinos Vazaios
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Patricia Hernández López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Tineke Aarts-Riemens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Annet Daudeij
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden University, 2333 ZC Leiden, The Netherlands; (V.K.); (R.C.H.)
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden University, 2333 ZC Leiden, The Netherlands; (V.K.); (R.C.H.)
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
| | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
- Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Liu Y, Lui KS, Ye Z, Chen L, Cheung AKL. Epstein-Barr Virus BRRF1 Induces Butyrophilin 2A1 in Nasopharyngeal Carcinoma NPC43 Cells via the IL-22/JAK3-STAT3 Pathway. Int J Mol Sci 2024; 25:13452. [PMID: 39769218 PMCID: PMC11677325 DOI: 10.3390/ijms252413452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Epstein-Barr virus is highly associated with nasopharyngeal carcinoma (NPC) with genes expressed for tumor transformation or maintenance of viral latency, but there are certain genes that can modulate immune molecules. Butyrophilin 2A1 (BTN2A1) is an important activating protein for presenting phosphoantigens for recognition by Vγ9Vδ2 T cells to achieve antitumor activities. We have previously shown that Vγ9Vδ2 T cells achieve efficacy against NPC when BTN2A1 and BTN3A1 are upregulated by stimulating EBV gene expression, particularly LMP1. While BTN3A1 can be induced by the LMP1-mediated IFN-γ/JNK/NLRC5 pathway, the viral gene that can regulate BTN2A1 remains elusive. We showed that BTN2A1 expression is directly mediated by EBV BRRF1, which can trigger the BTN2A1 promoter and downstream JAK3-STAT3 pathway in NPC43 cells, as shown by RNA-seq data and verified via inhibitor experiments. Furthermore, BRRF1 downregulated IL-22 binding protein (IL-22RA2) to complement the EBNA1-targeting probe (P4)-induced IL-22 expression. Therefore, this study elucidated a new mechanism of stimulating BTN2A1 expression in NPC cells via the EBV gene BRRF1. The JAK3-STAT3 pathway could act in concordance with IL-22 to enhance the expression of BTN2A1, which likely leads to increased tumor cell killing by Vγ9Vδ2 T cells for enhanced potential as immunotherapy against the cancer.
Collapse
Affiliation(s)
- Yue Liu
- Medical School, Fuyang Normal University, Fuyang 236000, China;
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Ka Sin Lui
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Zuodong Ye
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| | - Luo Chen
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China;
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; (K.S.L.); (Z.Y.)
| |
Collapse
|
5
|
Herrmann T, Karunakaran MM. Phosphoantigen recognition by Vγ9Vδ2 T cells. Eur J Immunol 2024; 54:e2451068. [PMID: 39148158 DOI: 10.1002/eji.202451068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg). PAg are small pyrophosphorylated intermediates of isoprenoid synthesis of microbial or host origin, with the latter elevated in some tumors and after administration of aminobisphosphonates. This review summarizes the progress in understanding PAg-recognition, with emphasis on the interaction between butyrophilins (BTN) and PAg and insights gained by phylogenetic studies on BTNs and Vγ9Vδ2 T cells, especially the comparison of human and alpaca. It proposes a composite ligand model in which BTN3A1-A2/A3-heteromers and BTN2A1 homodimers form a Vγ9Vδ2 TCR activating complex. An initiating step is the binding of PAg to the intracellular BTN3A1-B30.2 domain and formation of a complex with the B30.2 domains of BTN2A1. On the extracellular surface this results in BTN2A1-IgV binding to Vγ9-TCR framework determinants and BTN3A-IgV to additional complementarity determining regions of both TCR chains. Unresolved questions of this model are discussed, as well as questions on the structural basis and the physiological consequences of PAg-recognition.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
6
|
Gleeson PJ, Monteiro RC. The Role of Mucosal Immunity: What Can We Learn From Animal and Human Studies? Semin Nephrol 2024; 44:151566. [PMID: 40082160 DOI: 10.1016/j.semnephrol.2025.151566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Immunoglobulin A (IgA) is a key actor in the mucosal immune system, which moderates interactions between the host and environmental factors such as food antigens and commensal microorganisms. The pathogenesis of IgA nephropathy (IgAN) involves a multistep process starting with deglycosylation of mucosally derived, polymeric IgA1 (dg-IgA1) that reaches the circulation. Modified O-glycans on dg-IgA1 are targeted by IgG-autoantibodies, leading to the formation of circulating immune complexes that deposit in the glomerular mesangium. Infections of mucosal surfaces trigger flares of primary IgAN, while inflammatory bowel disease and liver cirrhosis are important causes of secondary IgAN, supporting a mucosal source of nephritogenic IgA1. In the presence of microbial pathogens or food antigens, activated dendritic cells in the gut mucosa induce T-cell-dependent or T-cell-independent B-cell differentiation into IgA-secreting plasma cells. Herein we review the literature concerning mucosal immune function and how it is altered in this disease. We discuss recent evidence supporting a causal role of gut microbiota dysbiosis in IgAN pathogenesis.
Collapse
Affiliation(s)
- Patrick J Gleeson
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Nephrology Department.
| | - Renato C Monteiro
- Paris Cité University, Center for Research on Inflammation, Paris, France; Inserm, UMR1149; CNRS EMR8252; Inflamex Laboratory of Excellence; Immunology laboratory of Bichat hospital, Paris, France
| |
Collapse
|
7
|
Verkerk T, Pappot AT, Jorritsma T, King LA, Duurland MC, Spaapen RM, van Ham SM. Isolation and expansion of pure and functional γδ T cells. Front Immunol 2024; 15:1336870. [PMID: 38426099 PMCID: PMC10902048 DOI: 10.3389/fimmu.2024.1336870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
γδ T cells are important components of the immune system due to their ability to elicit a fast and strong response against infected and transformed cells. Because they can specifically and effectively kill target cells in an MHC independent fashion, there is great interest to utilize these cells in anti-tumor therapies where antigen presentation may be hampered. Since only a small fraction of T cells in the blood or tumor tissue are γδ T cells, they require extensive expansion to allow for fundamental, preclinical and ex vivo research. Although expansion protocols can be successful, most are based on depletion of other cell types rather than γδ T cell specific isolation, resulting in unpredictable purity of the isolated fraction. Moreover, the primary focus only lies with expansion of Vδ2+ T cells, while Vδ1+ T cells likewise have anti-tumor potential. Here, we investigated whether γδ T cells directly isolated from blood could be efficiently expanded while maintaining function. γδ T cell subsets were isolated using MACS separation, followed by FACS sorting, yielding >99% pure γδ T cells. Isolated Vδ1+ and Vδ2+ T cells could effectively expand immediately after isolation or upon freeze/thawing and reached expansion ratios between 200 to 2000-fold starting from varying numbers using cytokine supported feeder stimulations. MACS/FACS isolated and PHA stimulated γδ T cells expanded as good as immobilized antibody mediated stimulated cells in PBMCs, but delivered purer cells. After expansion, potential effector functions of γδ T cells were demonstrated by IFN-γ, TNF-α and granzyme B production upon PMA/ionomycin stimulation and effective killing capacity of multiple tumor cell lines was confirmed in killing assays. In conclusion, pure γδ T cells can productively be expanded while maintaining their anti-tumor effector functions against tumor cells. Moreover, γδ T cells could be expanded from low starting numbers suggesting that this protocol may even allow for expansion of cells extracted from tumor biopsies.
Collapse
Affiliation(s)
- Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Anouk T Pappot
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Lisa A King
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mariël C Duurland
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Hernández-López P, van Diest E, Brazda P, Heijhuurs S, Meringa A, Hoorens van Heyningen L, Riillo C, Schwenzel C, Zintchenko M, Johanna I, Nicolasen MJT, Cleven A, Kluiver TA, Millen R, Zheng J, Karaiskaki F, Straetemans T, Clevers H, de Bree R, Stunnenberg HG, Peng WC, Roodhart J, Minguet S, Sebestyén Z, Beringer DX, Kuball J. Dual targeting of cancer metabolome and stress antigens affects transcriptomic heterogeneity and efficacy of engineered T cells. Nat Immunol 2024; 25:88-101. [PMID: 38012415 DOI: 10.1038/s41590-023-01665-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αβ T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs. In vivo, the NKG2D-CD28WT chimera enabled control only of liquid tumors, whereas the NKG2D-4-1BBCD28TM chimera prolonged persistence of TEGs and improved control of liquid and solid tumors. The CD277-targeting chimera (103-4-1BB) was the most optimal co-stimulation format, eradicating both liquid and solid tumors. Single-cell transcriptomic analysis revealed that NKG2D-4-1BBCD28TM and 103-4-1BB chimeras reprogram TEGs through NF-κB. Owing to competition with naturally expressed NKG2D in CD8+ TEGs, the NKG2D-4-1BBCD28TM chimera mainly skewed CD4+ TEGs toward adhesion, proliferation, cytotoxicity and less exhausted signatures, whereas the 103-4-1BB chimera additionally shaped the CD8+ subset toward a proliferative state.
Collapse
Affiliation(s)
- Patricia Hernández-López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eline van Diest
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter Brazda
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Sabine Heijhuurs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Angelo Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lauren Hoorens van Heyningen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Caterina Riillo
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caroline Schwenzel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency, University Clinics and Medical Faculty, Freiburg, Germany
| | - Marina Zintchenko
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency, University Clinics and Medical Faculty, Freiburg, Germany
| | - Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mara J T Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Astrid Cleven
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Rosemary Millen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Jiali Zheng
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jeanine Roodhart
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency (CCI) and Institute for Immunodeficiency, University Clinics and Medical Faculty, Freiburg, Germany
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dennis X Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Department of Hematology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Yuan L, Ma X, Yang Y, Qu Y, Li X, Zhu X, Ma W, Duan J, Xue J, Yang H, Huang JW, Yi S, Zhang M, Cai N, Zhang L, Ding Q, Lai K, Liu C, Zhang L, Liu X, Yao Y, Zhou S, Li X, Shen P, Chang Q, Malwal SR, He Y, Li W, Chen C, Chen CC, Oldfield E, Guo RT, Zhang Y. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells. Nature 2023; 621:840-848. [PMID: 37674084 PMCID: PMC10533412 DOI: 10.1038/s41586-023-06525-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
In both cancer and infections, diseased cells are presented to human Vγ9Vδ2 T cells through an 'inside out' signalling process whereby structurally diverse phosphoantigen (pAg) molecules are sensed by the intracellular domain of butyrophilin BTN3A11-4. Here we show how-in both humans and alpaca-multiple pAgs function as 'molecular glues' to promote heteromeric association between the intracellular domains of BTN3A1 and the structurally similar butyrophilin BTN2A1. X-ray crystallography studies visualized that engagement of BTN3A1 with pAgs forms a composite interface for direct binding to BTN2A1, with various pAg molecules each positioned at the centre of the interface and gluing the butyrophilins with distinct affinities. Our structural insights guided mutagenesis experiments that led to disruption of the intracellular BTN3A1-BTN2A1 association, abolishing pAg-mediated Vγ9Vδ2 T cell activation. Analyses using structure-based molecular-dynamics simulations, 19F-NMR investigations, chimeric receptor engineering and direct measurement of intercellular binding force revealed how pAg-mediated BTN2A1 association drives BTN3A1 intracellular fluctuations outwards in a thermodynamically favourable manner, thereby enabling BTN3A1 to push off from the BTN2A1 ectodomain to initiate T cell receptor-mediated γδ T cell activation. Practically, we harnessed the molecular-glue model for immunotherapeutics design, demonstrating chemical principles for developing both small-molecule activators and inhibitors of human γδ T cell function.
Collapse
MESH Headings
- Animals
- Humans
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Butyrophilins/immunology
- Butyrophilins/metabolism
- Camelids, New World/immunology
- Lymphocyte Activation
- Molecular Dynamics Simulation
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Crystallography, X-Ray
- Nuclear Magnetic Resonance, Biomolecular
- Thermodynamics
Collapse
Affiliation(s)
- Linjie Yuan
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xianqiang Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yunyun Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yingying Qu
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Li
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Ma
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | | | - Jing Xue
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Haoyu Yang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Simin Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengting Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Ningning Cai
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lin Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingyang Ding
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Kecheng Lai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Chang Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xinyi Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yirong Yao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuqi Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Qing Chang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Wenqi Li
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Sciences, Tsinghua University, Beijing, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Yonghui Zhang
- Tsinghua-Peking Center for Life Sciences, State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
10
|
Rimailho L, Faria C, Domagala M, Laurent C, Bezombes C, Poupot M. γδ T cells in immunotherapies for B-cell malignancies. Front Immunol 2023; 14:1200003. [PMID: 37426670 PMCID: PMC10325712 DOI: 10.3389/fimmu.2023.1200003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Despite the advancements in therapy for B cell malignancies and the increase in long-term survival of patients, almost half of them lead to relapse. Combinations of chemotherapy and monoclonal antibodies such as anti-CD20 leads to mixed outcomes. Recent developments in immune cell-based therapies are showing many encouraging results. γδ T cells, with their potential of functional plasticity and their anti-tumoral properties, emerged as good candidates for cancer immunotherapies. The representation and the diversity of γδ T cells in tissues and in the blood, in physiological conditions or in B-cell malignancies such as B cell lymphoma, chronic lymphoblastic leukemia or multiple myeloma, provides the possibility to manipulate them with immunotherapeutic approaches for these patients. In this review, we summarized several strategies based on the activation and tumor-targeting of γδ T cells, optimization of expansion protocols, and development of gene-modified γδ T cells, using combinations of antibodies and therapeutic drugs and adoptive cell therapy with autologous or allogenic γδ T cells following potential genetic modifications.
Collapse
Affiliation(s)
- Léa Rimailho
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Carla Faria
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Marcin Domagala
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Camille Laurent
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
- Department of Pathology, Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France
| | - Christine Bezombes
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| | - Mary Poupot
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm-Univ. Toulouse III Paul Sabatier-ERL5294 CNRS, Toulouse, France
| |
Collapse
|
11
|
Zaoui K, Duhamel S. RhoB as a tumor suppressor: It’s all about localization. Eur J Cell Biol 2023; 102:151313. [PMID: 36996579 DOI: 10.1016/j.ejcb.2023.151313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The small GTPase RhoB is distinguished from other Rho proteins by its unique subcellular localization in endosomes, multivesicular bodies, and nucleus. Despite high sequence homology with RhoA and RhoC, RhoB is mainly associated with tumor suppressive function, while RhoA and RhoC support oncogenic transformation in most malignancies. RhoB regulates the endocytic trafficking of signaling molecules and cytoskeleton remodeling, thereby controlling growth, apoptosis, stress response, immune function, and cell motility in various contexts. Some of these functions may be ascribed to RhoB's unique subcellular localization to endocytic compartments. Here we describe the pleiotropic roles of RhoB in cancer suppression in the context of its subcellular localization, and we discuss possible therapeutic avenues to pursue and highlight priorities for future research.
Collapse
|
12
|
Eiz-Vesper B, Ravens S, Maecker-Kolhoff B. αβ and γδ T-cell responses to Epstein-Barr Virus: insights in immunocompetence, immune failure and therapeutic augmentation in transplant patients. Curr Opin Immunol 2023; 82:102305. [PMID: 36963323 DOI: 10.1016/j.coi.2023.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/26/2023]
Abstract
Epstein-Barr Virus (EBV) is a human gamma herpes virus, which causes several diseases in immunocompetent (mononucleosis, chronic fatigue syndrome, gastric cancer, endemic Burkitt's lymphoma, head and neck cancer) and immunosuppressed (post-transplant lymphoproliferative disease, EBV-associated soft tissue tumors) patients. It elicits a complex humoral and cellular immune response with both innate and adaptive immune components. Substantial progress has been made in understanding the interplay of immune cells in EBV-associated diseases in recent years, and several therapeutic approaches have been developed to augment cellular immunity toward EBV for control of EBV-associated malignancy. This review will focus on recent developments in immunosuppressed transplant recipients.
Collapse
Affiliation(s)
- Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Germany; CRC900 Microbial persistence and its control; German Center for Infection Research (DZIF)
| | - Sarina Ravens
- CRC900 Microbial persistence and its control; Institute of Immunology, Hannover Medical School, Germany
| | - Britta Maecker-Kolhoff
- CRC900 Microbial persistence and its control; German Center for Infection Research (DZIF); Department of Pediatric Hematology and Oncology, Hannover Medical School, Germany.
| |
Collapse
|
13
|
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S, Shi T. The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine 2023; 162:156108. [PMID: 36527892 DOI: 10.1016/j.cyto.2022.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Immunotherapy has been a promising, emerging treatment for various cancers. Gamma delta (γδ) T cells own a T cell receptor composed of γ- and δ- chain and act as crucial players in the anti-tumor immune effect. Currently, Vγ9Vδ2 T cells, the predominate γδ T cell subset in human peripheral blood, has been shown to exert multiple biological functions. In addition, a growing body of evidence notes that Vγ9Vδ2 T cells interact with tumor cells in many ways, such as TCR-mediated nonpeptidic-phosphorylated phosphoantigens (pAgs) recognization, NKG2D/NKG2D ligand (NKG2DL) pathway, Fas-FasL axis and antibody-dependent cellular cytotoxicity (ADCC) as well as exosome. More importantly, clinical studies with Vγ9Vδ2 T cells in cancers have propelled several clinical applications to investigate their safety and efficacy. Herein, this review summarized the underlying ways and mechanisms of interplay cancer cells and Vγ9Vδ2 T cells, which may help us to generate new strategies for tumor immunotherapy in the future.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China; Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Anjing Zhao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Lu Xia
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Haiyan Jin
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, China.
| |
Collapse
|
14
|
van Diest E, Nicolasen MJT, Kramer L, Zheng J, Hernández-López P, Beringer DX, Kuball J. The making of multivalent gamma delta TCR anti-CD3 bispecific T cell engagers. Front Immunol 2023; 13:1052090. [PMID: 36685546 PMCID: PMC9851377 DOI: 10.3389/fimmu.2022.1052090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction We have recently developed a novel T cell engager concept by utilizing γ9δ2TCR as tumor targeting domain, named gamma delta TCR anti-CD3 bispecific molecule (GAB), targeting the phosphoantigen-dependent orchestration of BTN2A1 and BTN3A1 at the surface of cancer cells. GABs are made by the fusion of the ectodomains of a γδTCR to an anti-CD3 single chain variable fragment (scFv) (γδECTO-αCD3), here we explore alternative designs with the aim to enhance GAB effectivity. Methods The first alternative design was made by linking the variable domains of the γ and δ chain to an anti-CD3 scFv (γδVAR-αCD3). The second alternative design was multimerizing γδVAR-αCD3 proteins to increase the tumor binding valency. Both designs were expressed and purified and the potency to target tumor cells by T cells of the alternative designs was compared to γδECTO-αCD3, in T cell activation and cytotoxicity assays. Results and discussion The γδVAR-αCD3 proteins were poorly expressed, and while the addition of stabilizing mutations based on finding for αβ single chain formats increased expression, generation of meaningful amounts of γδVAR-αCD3 protein was not possible. As an alternative strategy, we explored the natural properties of the original GAB design (γδECTO-αCD3), and observed the spontaneous formation of γδECTO-αCD3-monomers and -dimers during expression. We successfully enhanced the fraction of γδECTO-αCD3-dimers by shortening the linker length between the heavy and light chain in the anti-CD3 scFv, though this also decreased protein yield by 50%. Finally, we formally demonstrated with purified γδECTO-αCD3-dimers and -monomers, that γδECTO-αCD3-dimers are superior in function when compared to similar concentrations of monomers, and do not induce T cell activation without simultaneous tumor engagement. In conclusion, a γδECTO-αCD3-dimer based GAB design has great potential, though protein production needs to be further optimized before preclinical and clinical testing.
Collapse
Affiliation(s)
- Eline van Diest
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mara J. T. Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lovro Kramer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiali Zheng
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Patricia Hernández-López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dennis X. Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,*Correspondence: Jürgen Kuball,
| |
Collapse
|
15
|
Dekkers JF, Alieva M, Cleven A, Keramati F, Wezenaar AKL, van Vliet EJ, Puschhof J, Brazda P, Johanna I, Meringa AD, Rebel HG, Buchholz MB, Barrera Román M, Zeeman AL, de Blank S, Fasci D, Geurts MH, Cornel AM, Driehuis E, Millen R, Straetemans T, Nicolasen MJT, Aarts-Riemens T, Ariese HCR, Johnson HR, van Ineveld RL, Karaiskaki F, Kopper O, Bar-Ephraim YE, Kretzschmar K, Eggermont AMM, Nierkens S, Wehrens EJ, Stunnenberg HG, Clevers H, Kuball J, Sebestyen Z, Rios AC. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat Biotechnol 2023; 41:60-69. [PMID: 35879361 PMCID: PMC9849137 DOI: 10.1038/s41587-022-01397-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/14/2022] [Indexed: 01/22/2023]
Abstract
Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000 engineered T cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising T cells with potent serial killing capacity. Among other T cell concepts we also study cancer metabolome-sensing engineered T cells (TEGs) and detect behavior-specific gene signatures that include a group of 27 genes with no previously described T cell function that are expressed by super engager killer TEGs. We further show that type I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Astrid Cleven
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Farid Keramati
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Amber K L Wezenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Esmée J van Vliet
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Peter Brazda
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Angelo D Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Heggert G Rebel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Maj-Britt Buchholz
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Mario Barrera Román
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Amber L Zeeman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sam de Blank
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Domenico Fasci
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Else Driehuis
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Rosemary Millen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mara J T Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tineke Aarts-Riemens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hendrikus C R Ariese
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Hannah R Johnson
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ravian L van Ineveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Oded Kopper
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Yotam E Bar-Ephraim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Mildred Scheel Early Career Center for Cancer Research Würzburg, University Hospital Würzburg, MSNZ/IZKF, Wurzburg, Germany
| | - Alexander M M Eggermont
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
- Comprehensive Cancer Center München, Munich, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Pharma, Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
16
|
Vyborova A, Janssen A, Gatti L, Karaiskaki F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans T, Sebestyen Z, Kuball J. γ9δ2 T-Cell Expansion and Phenotypic Profile Are Reflected in the CDR3δ Repertoire of Healthy Adults. Front Immunol 2022; 13:915366. [PMID: 35874769 PMCID: PMC9301380 DOI: 10.3389/fimmu.2022.915366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
γ9δ2T cells fill a distinct niche in human immunity due to the unique physiology of the phosphoantigen-reactive γ9δ2TCR. Here, we highlight reproducible TCRδ complementarity-determining region 3 (CDR3δ) repertoire patterns associated with γ9δ2T cell proliferation and phenotype, thus providing evidence for the role of the CDR3δ in modulating in vivo T-cell responses. Features that determine γ9δ2TCR binding affinity and reactivity to the phosphoantigen-induced ligand in vitro appear to similarly underpin in vivo clonotypic expansion and differentiation. Likewise, we identify a CDR3δ bias in the γ9δ2T cell natural killer receptor (NKR) landscape. While expression of the inhibitory receptor CD94/NKG2A is skewed toward cells bearing putative high-affinity TCRs, the activating receptor NKG2D is expressed independently of the phosphoantigen-sensing determinants, suggesting a higher net NKR activating signal in T cells with TCRs of low affinity. This study establishes consistent repertoire–phenotype associations and justifies stratification for the T-cell phenotype in future research on γ9δ2TCR repertoire dynamics.
Collapse
Affiliation(s)
- Anna Vyborova
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anke Janssen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lucrezia Gatti
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Austin Yonika
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne van Dooremalen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper Sanders
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dennis X. Beringer
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Jürgen Kuball,
| |
Collapse
|
17
|
Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol 2022; 96:e13201. [PMID: 35778892 DOI: 10.1111/sji.13201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma, formerly known as Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The brain is an immunopriviledged organ and the blood brain barrier shields the brain from immune surveillance. In this review we discuss the composition of the immunosuppressive tumor micromilieu and potential immune escape mechanisms in GBM. In this respect, we focus on the role of the NKG2D receptor/ligand system. NKG2D ligands are frequently expressed on GBM tumor cells and can activate NKG2D-expressing killer cells including NK cells and γδ T cells. Soluble NKG2D ligands, however, contribute to tumor escape from immunological attack. We also discuss the current immunotherapeutic strategies to improve the survival of GBM patients. Such approaches include the modulation of the NKG2D receptor/ligand system, the application of checkpoint inhibitors, the adoptive transfer of ex vivo expanded and/or modified immune cells, or the application of antibodies and antibody constructs to target cytotoxic effector cells in vivo. In view of the multitude of pursued strategies, there is hope for improved overall survival of GBM patients in the future.
Collapse
Affiliation(s)
- Guranda Chitadze
- Unit for Hematological Diagnostics, Department of Internal Medicine II
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
18
|
Hashimoto H, Güngör D, Krickeberg N, Schmitt J, Doll L, Schmidt M, Schleicher S, Criado-Moronati E, Schilbach K. TH1 cytokines induce senescence in AML. Leuk Res 2022; 117:106842. [DOI: 10.1016/j.leukres.2022.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
19
|
Bhat J, Placek K, Faissner S. Contemplating Dichotomous Nature of Gamma Delta T Cells for Immunotherapy. Front Immunol 2022; 13:894580. [PMID: 35669772 PMCID: PMC9163397 DOI: 10.3389/fimmu.2022.894580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
γδ T cells are unconventional T cells, distinguished from αβ T cells in a number of functional properties. Being small in number compared to αβ T cells, γδ T cells have surprised us with their pleiotropic roles in various diseases. γδ T cells are ambiguous in nature as they can produce a number of cytokines depending on the (micro) environmental cues and engage different immune response mechanisms, mainly due to their epigenetic plasticity. Depending on the disease condition, γδ T cells contribute to beneficial or detrimental response. In this review, we thus discuss the dichotomous nature of γδ T cells in cancer, neuroimmunology and infectious diseases. We shed light on the importance of equal consideration for systems immunology and personalized approaches, as exemplified by changes in metabolic requirements. While providing the status of immunotherapy, we will assess the metabolic (and other) considerations for better outcome of γδ T cell-based treatments.
Collapse
Affiliation(s)
- Jaydeep Bhat
- Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| |
Collapse
|
20
|
Tian Z, Wong W, Wu Q, Zhou J, Yan K, Chen J, Zhang Z. Elevated Expressions of BTN3A1 and RhoB in Psoriasis Vulgaris Lesions by an Immunohistochemical Study. Appl Immunohistochem Mol Morphol 2022; 30:119-125. [PMID: 34545848 DOI: 10.1097/pai.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
Psoriasis is a chronic, immune-mediated inflammatory disease which pathogenesis is closely linked to γδ T cells. Recently, a critical role for butyrophilin 3A1 (BTN3A1) in mediating the activation of Vγ9Vδ2 T cells, which are reported to redistribute from blood to the perturbed skin lesions in psoriasis, has been proposed. Additional molecular partners, including RhoB and periplakin, have also been speculated to interact with BTN3A1 in modulating Vγ9Vδ2 T-cell activation. Immunohistochemical staining was performed to examine the expressions of BTN3A1, RhoB, and the plakin family members, including periplakin, epiplakin, and envoplakin in the psoriasis vulgaris lesions as compared with the normal control. The expressions of BTN3A1 and RhoB were found significantly upregulated in the psoriatic lesions. Besides, a downregulation of periplakin and an upregulation of epiplakin were noticed in the psoriasis vulgaris lesions. Our data suggest that BTN3A1 and RhoB might participate in the pathogenesis of psoriasis through Vγ9Vδ2 T-cell responses. In addition, a potential involvement of the plakin protein family, especially periplakin and epiplakin, in psoriasis pathology was proposed.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Wenghong Wong
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Qiong Wu
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jiaqing Zhou
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Kexiang Yan
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| | - Jia Chen
- Department of Dermatopathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Medical College of Fudan University
| |
Collapse
|
21
|
The Role of γδ T Cells as a Line of Defense in Viral Infections after Allogeneic Stem Cell Transplantation: Opportunities and Challenges. Viruses 2022; 14:v14010117. [PMID: 35062321 PMCID: PMC8779492 DOI: 10.3390/v14010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
In the complex interplay between inflammation and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (allo-HSCT), viral reactivations are often observed and cause substantial morbidity and mortality. As toxicity after allo-HSCT within the context of viral reactivations is mainly driven by αβ T cells, we describe that by delaying αβ T cell reconstitution through defined transplantation techniques, we can harvest the full potential of early reconstituting γδ T cells to control viral reactivations. We summarize evidence of how the γδ T cell repertoire is shaped by CMV and EBV reactivations after allo-HSCT, and their potential role in controlling the most important, but not all, viral reactivations. As most γδ T cells recognize their targets in an MHC-independent manner, γδ T cells not only have the potential to control viral reactivations but also to impact the underlying hematological malignancies. We also highlight the recently re-discovered ability to recognize classical HLA-molecules through a γδ T cell receptor, which also surprisingly do not associate with GVHD. Finally, we discuss the therapeutic potential of γδ T cells and their receptors within and outside the context of allo-HSCT, as well as the opportunities and challenges for developers and for payers.
Collapse
|
22
|
Jhita N, Raikar SS. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. EXPLORATION OF IMMUNOLOGY 2022; 2:334-350. [PMID: 35783107 PMCID: PMC9249101 DOI: 10.37349/ei.2022.00054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Collapse
Affiliation(s)
| | - Sunil S. Raikar
- Correspondence: Sunil S. Raikar, Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
van Diest E, Hernández López P, Meringa AD, Vyborova A, Karaiskaki F, Heijhuurs S, Gumathi Bormin J, van Dooremalen S, Nicolasen MJT, Gatti LCDE, Johanna I, Straetemans T, Sebestyén Z, Beringer DX, Kuball J. Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. J Immunother Cancer 2021; 9:jitc-2021-003850. [PMID: 34815357 PMCID: PMC8611453 DOI: 10.1136/jitc-2021-003850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Background γ9δ2 T cells hold great promise as cancer therapeutics because of their unique capability of reacting to metabolic changes with tumor cells. However, it has proven very difficult to translate this promise into clinical success. Methods In order to better utilize the tumor reactivity of γ9δ2T cells and combine this with the great potential of T cell engager molecules, we developed a novel bispecific molecule by linking the extracellular domains of tumor-reactive γ9δ2TCRs to a CD3-binding moiety, creating gamma delta TCR anti-CD3 bispecific molecules (GABs). GABs were tested in vitro and in vivo for ability to redirect T lymphocytes to a variety of tumor cell lines and primary patient material. Results GABs utilizing naturally occurring high affinity γ9δ2TCRs efficiently induced αβT cell mediated phosphoantigen-dependent recognition of tumor cells. Reactivity was substantially modulated by variations in the Vδ2 CDR3-region and the BTN2A1-binding HV4-region between CDR2 and CDR3 of the γ-chain was crucial for functionality. GABs redirected αβT cells against a broad range of hematopoietic and solid tumor cell lines and primary acute myeloid leukemia. Furthermore, they enhanced infiltration of immune cells in a 3D bone marrow niche and left healthy tissues intact, while eradicating primary multiple myeloma cells. Lastly, GABs constructed from natural high affinity γ9δ2TCR sequences significantly reduced tumor growth in vivo in a subcutaneous myeloma xenograft model. Conclusions We conclude that GABs allow for the introduction of metabolic targeting of cancer cells to the field of T cell engagers.
Collapse
Affiliation(s)
- Eline van Diest
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Patricia Hernández López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Angelo D Meringa
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Vyborova
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Heijhuurs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Gumathi Bormin
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sanne van Dooremalen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mara J T Nicolasen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lucrezia C D E Gatti
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Zsolt Sebestyén
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dennis X Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands .,Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Johanna I, Hernández-López P, Heijhuurs S, Scheper W, Bongiovanni L, de Bruin A, Beringer DX, Oostvogels R, Straetemans T, Sebestyen Z, Kuball J. Adding Help to an HLA-A*24:02 Tumor-Reactive γδTCR Increases Tumor Control. Front Immunol 2021; 12:752699. [PMID: 34759930 PMCID: PMC8573335 DOI: 10.3389/fimmu.2021.752699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
γδT cell receptors (γδTCRs) recognize a broad range of malignantly transformed cells in mainly a major histocompatibility complex (MHC)-independent manner, making them valuable additions to the engineered immune effector cell therapy that currently focuses primarily on αβTCRs and chimeric antigen receptors (CARs). As an exception to the rule, we have previously identified a γδTCR, which exerts antitumor reactivity against HLA-A*24:02-expressing malignant cells, however without the need for defined HLA-restricted peptides, and without exhibiting any sign of off-target toxicity in humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mouse models. This particular tumor-HLA-A*24:02-specific Vγ5Vδ1TCR required CD8αα co-receptor for its tumor reactive capacity when introduced into αβT cells engineered to express a defined γδTCR (TEG), referred to as TEG011; thus, it was only active in CD8+ TEG011. We subsequently explored the concept of additional redirection of CD4+ T cells through co-expression of the human CD8α gene into CD4+ and CD8+ TEG011 cells, later referred as TEG011_CD8α. Adoptive transfer of TEG011_CD8α cells in humanized HLA-A*24:02 transgenic NSG (NSG-A24:02) mice injected with tumor HLA-A*24:02+ cells showed superior tumor control in comparison to TEG011, and to mock control groups. The total percentage of mice with persisting TEG011_CD8α cells, as well as the total number of TEG011_CD8α cells per mice, was significantly improved over time, mainly due to a dominance of CD4+CD8+ double-positive TEG011_CD8α, which resulted in higher total counts of functional T cells in spleen and bone marrow. We observed that tumor clearance in the bone marrow of TEG011_CD8α-treated mice associated with better human T cell infiltration, which was not observed in the TEG011-treated group. Overall, introduction of transgenic human CD8α receptor on TEG011 improves antitumor reactivity against HLA-A*24:02+ tumor cells and further enhances in vivo tumor control.
Collapse
Affiliation(s)
- Inez Johanna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Sabine Heijhuurs
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Wouter Scheper
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Laura Bongiovanni
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Dennis X Beringer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rimke Oostvogels
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
25
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
26
|
αβ-T Cells Engineered to Express γδ-T Cell Receptors Can Kill Neuroblastoma Organoids Independent of MHC-I Expression. J Pers Med 2021; 11:jpm11090923. [PMID: 34575700 PMCID: PMC8471928 DOI: 10.3390/jpm11090923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.
Collapse
|
27
|
Laplagne C, Ligat L, Foote J, Lopez F, Fournié JJ, Laurent C, Valitutti S, Poupot M. Self-activation of Vγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins. Cell Mol Immunol 2021; 18:1861-1870. [PMID: 34183807 PMCID: PMC8237548 DOI: 10.1038/s41423-021-00720-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022] Open
Abstract
The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.
Collapse
Affiliation(s)
- Chloé Laplagne
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Laetitia Ligat
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Juliet Foote
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Frederic Lopez
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Jean-Jacques Fournié
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Camille Laurent
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
- IUCT-O, Toulouse, France
| | - Salvatore Valitutti
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
- ERL 5294 CNRS, Toulouse, France
| | - Mary Poupot
- Inserm UMR1037, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
- Université Toulouse III Paul-Sabatier, Toulouse, France.
- ERL 5294 CNRS, Toulouse, France.
| |
Collapse
|
28
|
de Witte M, Daenen LGM, van der Wagen L, van Rhenen A, Raymakers R, Westinga K, Kuball J. Allogeneic Stem Cell Transplantation Platforms With Ex Vivo and In Vivo Immune Manipulations: Count and Adjust. Hemasphere 2021; 5:e580. [PMID: 34095763 PMCID: PMC8171366 DOI: 10.1097/hs9.0000000000000580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 01/16/2023] Open
Abstract
Various allogeneic (allo) stem cell transplantation platforms have been developed over the last 2 decades. In this review we focus on the impact of in vivo and ex vivo graft manipulation on immune reconstitution and clinical outcome. Strategies include anti-thymocyte globulin- and post-transplantation cyclophosphamide-based regimens, as well as graft engineering, such as CD34 selection and CD19/αβT cell depletion. Differences in duration of immune suppression, reconstituting immune repertoires, and associated graft-versus-leukemia effects and toxicities mediated through viral reactivations are highlighted. In addition, we discuss the impact of different reconstituting repertoires on donor lymphocyte infusions and post allo pharmacological interventions to enhance tumor control. We advocate for precisely counting all graft ingredients and therapeutic drug monitoring during conditioning in the peripheral blood, and for adjusting dosing accordingly on an individual basis. In addition, we propose novel trial designs to better assess the impact of variations in transplantation platforms in order to better learn from our diversity of "counts" and potential "adjustments." This will, in the future, allow daily clinical practice, strategic choices, and future trial designs to be based on data guided decisions, rather than relying on dogma and habits.
Collapse
Affiliation(s)
- Moniek de Witte
- Department of Hematology, University Medical Center Utrecht, The Netherlands
| | - Laura G. M. Daenen
- Department of Hematology, University Medical Center Utrecht, The Netherlands
| | - Lotte van der Wagen
- Department of Hematology, University Medical Center Utrecht, The Netherlands
| | - Anna van Rhenen
- Department of Hematology, University Medical Center Utrecht, The Netherlands
| | - Reiner Raymakers
- Department of Hematology, University Medical Center Utrecht, The Netherlands
| | - Kasper Westinga
- Cell Therapy Facility, University Medical Center Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology, University Medical Center Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
29
|
Chen S, Li Z, Huang W, Wang Y, Fan S. Prognostic and Therapeutic Significance of BTN3A Proteins in Tumors. J Cancer 2021; 12:4505-4512. [PMID: 34149914 PMCID: PMC8210570 DOI: 10.7150/jca.57831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The Butyrophilin 3A (BTN3A) family is a type I transmembrane protein belonging to the immunoglobulin (Ig) superfamily. The family contains three members: BTN3A1, BTN3A2 and BTN3A3, which share 95% homology in the extracellular domain. The expression of BTN3A family members is different in different types of tumors, which plays an important role in tumor prognosis. Among them, there are many studies on tumor immunity of BTN3A1, which shows that it is essential for the activation of Vγ9Vδ2 T cells, while BTN3A3 is expected to become a potential therapeutic target for breast cancer. Recent studies have shown that the BTN3A family is closely related to the occurrence and development of tumors. Now the BTN3A family has become one of the research hotspots and is expected to become new tumor prediction and treatment targets.
Collapse
Affiliation(s)
- Sihan Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenyi Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou First People's Hospital, Jiangsu, China
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
30
|
αβ T-cell graft depletion for allogeneic HSCT in adults with hematological malignancies. Blood Adv 2021; 5:240-249. [PMID: 33570642 DOI: 10.1182/bloodadvances.2020002444] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
We conducted a multicenter prospective single-arm phase 1/2 study that assesses the outcome of αβ T-cell depleted allogeneic hematopoietic stem cell transplantation (allo-HSCT) of peripheral blood derived stem cells from matched related, or unrelated donors (10/10 and 9/10) in adults, with the incidence of acute graft-versus-host disease (aGVHD) as the primary end point at day 100. Thirty-five adults (median age, 59; range, 19-69 years) were enrolled. Conditioning consisted of antithymocyte globulin, busulfan, and fludarabine, followed by 28 days of mycophenolic acid after allo-HSCT. The minimal follow-up time was 24 months. The median number of infused CD34+ cells and αβ T cells were 6.1 × 106 and 16.3 × 103 cells per kg, respectively. The cumulative incidence (CI) of aGVHD grades 2-4 and 3-4 at day 100 was 26% and 14%. One secondary graft failure was observed. A prophylactic donor lymphocyte infusion (DLI) (1 × 105 CD3+ T cells per kg) was administered to 54% of the subjects, resulting in a CI of aGVHD grades 2-4 and 3-4 to 37% and 17% at 2 years. Immune monitoring revealed an early reconstitution of natural killer (NK) and γδ T cells. Cytomegalovirus reactivation associated with expansion of memory-like NK cells. The CI of relapse was 29%, and the nonrelapse mortality 32% at 2 years. The 2-year CI of chronic GVHD (cGVHD) was 23%, of which 17% was moderate. We conclude that only 26% of patients developed aGVHD 2-4 after αβ T-cell-depleted allo-HSCT within 100 days and was associated with a low incidence of cGVHD after 2 years. This trial was registered at www.trialregister.nl as #NL4767.
Collapse
|
31
|
Andrlová H, van den Brink MRM, Markey KA. An Unconventional View of T Cell Reconstitution After Allogeneic Hematopoietic Cell Transplantation. Front Oncol 2021; 10:608923. [PMID: 33680931 PMCID: PMC7930482 DOI: 10.3389/fonc.2020.608923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed as curative-intent therapy for hematologic malignancies and non-malignant hematologic, immunological and metabolic disorders, however, its broader implementation is limited by high rates of transplantation-related complications and a 2-year mortality that approaches 50%. Robust reconstitution of a functioning innate and adaptive immune system is a critical contributor to good long-term patient outcomes, primarily to prevent and overcome post-transplantation infectious complications and ensure adequate graft-versus-leukemia effects. There is increasing evidence that unconventional T cells may have an important immunomodulatory role after allo-HCT, which may be at least partially dependent on the post-transplantation intestinal microbiome. Here we discuss the role of immune reconstitution in allo-HCT outcome, focusing on unconventional T cells, specifically mucosal-associated invariant T (MAIT) cells, γδ (gd) T cells, and invariant NK T (iNKT) cells. We provide an overview of the mechanistic preclinical and associative clinical studies that have been performed. We also discuss the emerging role of the intestinal microbiome with regard to hematopoietic function and overall immune reconstitution.
Collapse
Affiliation(s)
- Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marcel R. M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Division of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
32
|
Schmid C, Kuball J, Bug G. Defining the Role of Donor Lymphocyte Infusion in High-Risk Hematologic Malignancies. J Clin Oncol 2021; 39:397-418. [PMID: 33434060 DOI: 10.1200/jco.20.01719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital, Augsburg, Germany
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gesine Bug
- Department of Medicine 2, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Translating Unconventional T Cells and Their Roles in Leukemia Antitumor Immunity. J Immunol Res 2021; 2021:6633824. [PMID: 33506055 PMCID: PMC7808823 DOI: 10.1155/2021/6633824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, cell-mediated immune response in malignant neoplasms has become the focus in immunotherapy against cancer. However, in leukemia, most studies on the cytotoxic potential of T cells have concentrated only on T cells that recognize peptide antigens (Ag) presented by polymorphic molecules of the major histocompatibility complex (MHC). This ignores the great potential of unconventional T cell populations, which include gamma-delta T cells (γδ), natural killer T cells (NKT), and mucosal-associated invariant T cells (MAIT). Collectively, these T cell populations can recognize lipid antigens, specially modified peptides and small molecule metabolites, in addition to having several other advantages, which can provide more effective applications in cancer immunotherapy. In recent years, these cell populations have been associated with a repertoire of anti- or protumor responses and play important roles in the dynamics of solid tumors and hematological malignancies, thus, encouraging the development of new investigations in the area. This review focuses on the current knowledge regarding the role of unconventional T cell populations in the antitumor immune response in leukemia and discusses why further studies on the immunotherapeutic potential of these cells are needed.
Collapse
|
34
|
Castro CD, Boughter CT, Broughton AE, Ramesh A, Adams EJ. Diversity in recognition and function of human γδ T cells. Immunol Rev 2020; 298:134-152. [PMID: 33136294 DOI: 10.1111/imr.12930] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
As interest increases in harnessing the potential power of tissue-resident cells for human health and disease, γδ T cells have been thrust into the limelight due to their prevalence in peripheral tissues, their sentinel-like phenotypes, and their unique antigen recognition capabilities. This review focuses primarily on human γδ T cells, highlighting their distinctive characteristics including antigen recognition, function, and development, with an emphasis on where they differ from their αβ T cell comparators, as well as from γδ T cell populations in the mouse. We review the antigens that have been identified thus far to regulate members of the human Vδ1 population and discuss what players are involved in transducing phosphoantigen-mediated signals to human Vγ9Vδ2 T cells. We also briefly review distinguishing features of these cells in terms of TCR signaling, use of coreceptor and costimulatory molecules and their development. These cells have great potential to be harnessed in a clinical setting, but caution must be taken to understand their unique capabilities and how they differ from the populations to which they are commonly compared.
Collapse
Affiliation(s)
- Caitlin D Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Christopher T Boughter
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Augusta E Broughton
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Amrita Ramesh
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Willcox CR, Mohammed F, Willcox BE. The distinct MHC-unrestricted immunobiology of innate-like and adaptive-like human γδ T cell subsets-Nature's CAR-T cells. Immunol Rev 2020; 298:25-46. [PMID: 33084045 DOI: 10.1111/imr.12928] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Distinct innate-like and adaptive-like immunobiological paradigms are emerging for human γδ T cells, supported by a combination of immunophenotypic, T cell receptor (TCR) repertoire, functional, and transcriptomic data. Evidence of the γδ TCR/ligand recognition modalities that respective human subsets utilize is accumulating. Although many questions remain unanswered, one superantigen-like modality features interactions of germline-encoded regions of particular TCR Vγ regions with specific BTN/BTNL family members and apparently aligns with an innate-like biology, albeit with some scope for clonal amplification. A second involves CDR3-mediated γδ TCR interaction with diverse ligands and aligns with an adaptive-like biology. Importantly, these unconventional modalities provide γδ T cells with unique recognition capabilities relative to αβ T cells, B cells, and NK cells, allowing immunosurveillance for signatures of "altered self" on target cells, via a membrane-linked γδ TCR recognizing intact non-MHC proteins on the opposing cell surface. In doing so, they permit cellular responses in diverse situations including where MHC expression is compromised, or where conventional adaptive and/or NK cell-mediated immunity is suppressed. γδ T cells may therefore utilize their TCR like a cell-surface Fab repertoire, somewhat analogous to engineered chimeric antigen receptor T cells, but additionally integrating TCR signaling with parallel signals from other surface immunoreceptors, making them multimolecular sensors of cellular stress.
Collapse
Affiliation(s)
- Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Uldrich AP, Rigau M, Godfrey DI. Immune recognition of phosphoantigen-butyrophilin molecular complexes by γδ T cells. Immunol Rev 2020; 298:74-83. [PMID: 33017054 DOI: 10.1111/imr.12923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Gamma-delta (γδ) T cells are an important component of the immune system. They are often enriched in non-lymphoid tissues and exhibit diverse functional attributes including rapid activation, cytokine production, proliferation, and acquisition of cytotoxicity following both TCR-dependent and TCR-independent stimulation, but poor capacity for immunological memory. They can detect a broad range of antigens, although typically not peptide-MHC complexes in contrast to alpha-beta (αβ) T cells. In humans, a prominent population of γδ T cells, defined as Vγ9Vδ2+ cells, reacts to small phosphorylated non-peptide "phosphoantigens" (pAgs). The molecular mechanism underpinning this recognition is poorly defined, but is known to involve butyrophilin family members and appears to involve indirect pAg recognition via alterations to butyrophilin molecular complexes. In this review, we discuss recent advances in our understanding of pAg recognition by γδ T cells including the role of butyrophilins and in particular, a newly described role for butyrophilin 2A1.
Collapse
Affiliation(s)
- Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Vic., Australia
| | - Marc Rigau
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Institute of Experimental Immunology at the University Clinic of the Rheinische Friedrich-Wilhelms, University of Bonn, Bonn, Germany
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Vic., Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
37
|
Lu H, Dai W, Guo J, Wang D, Wen S, Yang L, Lin D, Xie W, Wen L, Fang J, Wang Z. High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Front Immunol 2020; 11:573920. [PMID: 33101298 PMCID: PMC7555127 DOI: 10.3389/fimmu.2020.573920] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
γδ T cells are a small subset of unconventional T cells that are enriched in the mucosal areas, and are responsible for pathogen clearance and maintaining integrity. However, the role of γδ T cells in head and neck squamous cell carcinoma (HNSCC) is largely unknown. Here, by using RNA-seq data from The Cancer Genome Atlas (TCGA), we discovered that HNSCC patients with higher levels of γδ T cells were positively associated with lower clinical stages and better overall survival, and high abundance of γδ T cells was positively correlated with CD8+/CD4+ T cell infiltration. Gene ontology and pathway analyses showed that genes associated with T cell activation, proliferation, effector functions, cytotoxicity, and chemokine production were enriched in the group with a higher γδ T cell abundance. Furthermore, we found that the abundance of γδ T cells was positively associated with the expression of the butyrophilin (BTN) family proteins BTN3A1/BTN3A2/BTN3A3 and BTN2A1, but only MICB, one of the ligands of NKG2D, was involved in the activation of γδ T cells, indicating that the BTN family proteins might be involved in the activation and proliferation of γδ T cells in the tumor microenvironment of HNSCC. Our results indicated that γδ T cells, along with their ligands, are promising targets in HNSCC with great prognostic values and treatment potentials.
Collapse
Affiliation(s)
- Huanzi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenxiao Dai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dikan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuqiong Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lisa Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongjia Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenqiang Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
39
|
Kakimi K, Matsushita H, Masuzawa K, Karasaki T, Kobayashi Y, Nagaoka K, Hosoi A, Ikemura S, Kitano K, Kawada I, Manabe T, Takehara T, Ebisudani T, Nagayama K, Nakamura Y, Suzuki R, Yasuda H, Sato M, Soejima K, Nakajima J. Adoptive transfer of zoledronate-expanded autologous Vγ9Vδ2 T-cells in patients with treatment-refractory non-small-cell lung cancer: a multicenter, open-label, single-arm, phase 2 study. J Immunother Cancer 2020; 8:jitc-2020-001185. [PMID: 32948652 PMCID: PMC7511646 DOI: 10.1136/jitc-2020-001185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Not all non-small cell lung cancer (NSCLC) patients possess drug-targetable driver mutations, and response rates to immune checkpoint blockade therapies also remain unsatisfactory. Therefore, more effective treatments are still needed. Here, we report the results of a phase 2 clinical trial of adoptive cell therapy using zoledronate-expanded autologous Vγ9Vδ2 T-cells for treatment-refractory NSCLC. METHODS NSCLC patients who had undergone at least two regimens of standard chemotherapy for unresectable disease or had had at least one treatment including chemotherapy or radiation for recurrent disease after surgery were enrolled in this open-label, single-arm, multicenter, phase 2 study. After preliminary testing of Vγ9Vδ2 T-cell proliferation, autologous peripheral blood mononuclear cells were cultured with zoledronate and IL-2 to expand the Vγ9Vδ2 T-cells. Cultured cells (>1×109) were intravenously administered every 2 weeks for six injections. The primary endpoint of this study was progression-free survival (PFS), and secondary endpoints included overall survival (OS), best objective response rate (ORR), disease control rate (DCR), safety and immunomonitoring. Clinical efficacy was defined as median PFS significantly >4 months. RESULTS Twenty-five patients (20 adenocarcinoma, 4 squamous cell carcinoma and 1 large cell carcinoma) were enrolled. Autologous Vγ9Vδ2 T-cell therapy was administered to all 25 patients, of which 16 completed the foreseen course of 6 injections of cultured cells. Median PFS was 95.0 days (95% CI 73.0 to 132.0 days); median OS was 418.0 days (179.0-479.0 days), and best overall responses were 1 partial response, 16 stable disease (SD) and 8 progressive disease. ORR and DCR were 4.0% (0.1%-20.4%) and 68.0% (46.5%-85.1%), respectively. Severe adverse events developed in nine patients, mostly associated with disease progression. In one patient, pneumonitis and inflammatory responses resulted from Vγ9Vδ2 T-cell infusions, together with the disappearance of a massive tumor. CONCLUSIONS Although autologous Vγ9Vδ2 T-cell therapy was well tolerated and may have an acceptable DCR, this trial did not meet its primary efficacy endpoint. TRIAL REGISTRATION NUMBER UMIN000006128.
Collapse
Affiliation(s)
- Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Akihiro Hosoi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Takehara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshiaki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | - Ryuji Suzuki
- Repertoire Genesis Inc, Ibaraki-Shi, Osaka, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaaki Sato
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenzo Soejima
- Clinical and Translational Research Center, Keio University Hospital, Shinjuku-ku, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
40
|
Identification of a tumor-specific allo-HLA-restricted γδTCR. Blood Adv 2020; 3:2870-2882. [PMID: 31585951 DOI: 10.1182/bloodadvances.2019032409] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/28/2019] [Indexed: 12/25/2022] Open
Abstract
γδT cells are key players in cancer immune surveillance because of their ability to recognize malignant transformed cells, which makes them promising therapeutic tools in the treatment of cancer. However, the biological mechanisms of how γδT-cell receptors (TCRs) interact with their ligands are poorly understood. Within this context, we describe the novel allo-HLA-restricted and CD8α-dependent Vγ5Vδ1TCR. In contrast to the previous assumption of the general allo-HLA reactivity of a minor fraction of γδTCRs, we show that classic anti-HLA-directed, γδTCR-mediated reactivity can selectively act on hematological and solid tumor cells, while not harming healthy tissues in vitro and in vivo. We identified the molecular interface with proximity to the peptide-binding groove of HLA-A*24:02 as the essential determinant for recognition and describe the critical role of CD8 as a coreceptor. We conclude that alloreactive γδT-cell repertoires provide therapeutic opportunities, either within the context of haplotransplantation or as individual γδTCRs for genetic engineering of tumor-reactive T cells.
Collapse
|
41
|
van der Woude H, Krebs J, Filoche S, Gasser O. Innate-like T Cells in the Context of Metabolic Disease and Novel Therapeutic Targets. IMMUNOMETABOLISM 2020; 2. [DOI: 10.20900/immunometab20200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Metabolic diseases continue to rise in global prevalence. Although there is evidence that current methods of treatment are effective, the continued rise in prevalence indicates that alternative, more efficient treatment options are needed. Over the last several years, immune cells have been increasingly studied as important players in the development of a range of diseases, including metabolic diseases such as obesity and obesity-induced type 2 diabetes. This review explores how understanding the intrinsic metabolism of innate-like T cells could provide potential targets for treating metabolic disease, and highlights research areas needed to advance this promising therapeutic approach.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Medicine, The University of Otago, Wellington 6021, New Zealand
- Department of Pathology and Molecular Medicine, The University of Otago, Wellington, 6021, New Zealand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Jeremy Krebs
- Department of Medicine, The University of Otago, Wellington 6021, New Zealand
| | - Sara Filoche
- Department of Pathology and Molecular Medicine, The University of Otago, Wellington, 6021, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| |
Collapse
|
42
|
Vyborova A, Beringer DX, Fasci D, Karaiskaki F, van Diest E, Kramer L, de Haas A, Sanders J, Janssen A, Straetemans T, Olive D, Leusen J, Boutin L, Nedellec S, Schwartz SL, Wester MJ, Lidke KA, Scotet E, Lidke DS, Heck AJ, Sebestyen Z, Kuball J. γ9δ2T cell diversity and the receptor interface with tumor cells. J Clin Invest 2020; 130:4637-4651. [PMID: 32484803 PMCID: PMC7456241 DOI: 10.1172/jci132489] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
γ9δ2T cells play a major role in cancer immune surveillance, yet the clinical translation of their in vitro promise remains challenging. To address limitations of previous clinical attempts using expanded γ9δ2T cells, we explored the clonal diversity of γ9δ2T cell repertoires and characterized their target. We demonstrated that only a fraction of expanded γ9δ2T cells was active against cancer cells and that activity of the parental clone, or functional avidity of selected γ9δ2 T cell receptors (γ9δ2TCRs), was not associated with clonal frequency. Furthermore, we analyzed the target-receptor interface and provided a 2-receptor, 3-ligand model. We found that activation was initiated by binding of the γ9δ2TCR to BTN2A1 through the regions between CDR2 and CDR3 of the TCR γ chain and modulated by the affinity of the CDR3 region of the TCRδ chain, which was phosphoantigen independent (pAg independent) and did not depend on CD277. CD277 was secondary, serving as a mandatory coactivating ligand. We found that binding of CD277 to its putative ligand did not depend on the presence of γ9δ2TCR, did depend on usage of the intracellular CD277, created pAg-dependent proximity to BTN2A1, enhanced cell-cell conjugate formation, and stabilized the immunological synapse (IS). This process critically depended on the affinity of the γ9δ2TCR and required membrane flexibility of the γ9δ2TCR and CD277, facilitating their polarization and high-density recruitment during IS formation.
Collapse
Affiliation(s)
- Anna Vyborova
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dennis X. Beringer
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Domenico Fasci
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Froso Karaiskaki
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eline van Diest
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lovro Kramer
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aram de Haas
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper Sanders
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anke Janssen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Daniel Olive
- Centre de Recherche en Cancérologie Marseille, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Jeanette Leusen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lola Boutin
- Université de Nantes, INSERM, CNRS, CRCINA, LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
| | - Steven Nedellec
- Structure Fédérative de Recherche en Santé François Bonamy (SFR-Santé), INSERM, CNRS, CHU Nantes, Nantes, France
| | | | - Michael J. Wester
- Department of Physics and Astronomy, University of New Mexico (UNM), Albuquerque, New Mexico, USA
| | - Keith A. Lidke
- Department of Physics and Astronomy, University of New Mexico (UNM), Albuquerque, New Mexico, USA
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, LabEx IGO “Immunotherapy, Graft, Oncology,” Nantes, France
| | | | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Zsolt Sebestyen
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Hematology, UMC Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
43
|
Deseke M, Prinz I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell Mol Immunol 2020; 17:914-924. [PMID: 32709926 PMCID: PMC7608190 DOI: 10.1038/s41423-020-0503-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
T lymphocytes comprise cells expressing either an αβ or a γδ TCR. The riddle how αβ TCRs are triggered by specific peptides presented in the context of MHC was elucidated some time ago. In contrast, the mechanisms that underlie antigen recognition by γδ TCRs are still baffling the scientific community. It is clear that activation of γδ TCRs does not necessarily depend on MHC antigen presentation. To date, diverse and largely host-cell-derived molecules have been identified as cognate antigens for the γδ TCR. However, for most γδ TCRs, the activating ligand is still unknown and many open questions with regard to physiological relevance and generalizable concepts remain. Especially the question of how γδ T cells can distinguish homeostatic from stress conditions via their TCR remains largely unresolved. Recent discoveries in the field might have paved the way towards a better understanding of antigen recognition by the γδ TCR and have made it conceivable to revise the current knowledge and contextualize the new findings.
Collapse
Affiliation(s)
- Malte Deseke
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
44
|
Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 2020; 17:925-939. [PMID: 32699351 PMCID: PMC7609273 DOI: 10.1038/s41423-020-0504-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.
| | - Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Shirin Kalyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
45
|
Okuno D, Sugiura Y, Sakamoto N, Tagod MSO, Iwasaki M, Noda S, Tamura A, Senju H, Umeyama Y, Yamaguchi H, Suematsu M, Morita CT, Tanaka Y, Mukae H. Comparison of a Novel Bisphosphonate Prodrug and Zoledronic Acid in the Induction of Cytotoxicity in Human Vγ2Vδ2 T Cells. Front Immunol 2020; 11:1405. [PMID: 32793196 PMCID: PMC7385076 DOI: 10.3389/fimmu.2020.01405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
Increasing attention has been paid to human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) in the field of cancer immunotherapy. We have previously demonstrated that a novel bisphosphonate prodrug, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA), efficiently expands peripheral blood Vγ2Vδ2 T cells to purities up to 95–99% in 10–11 days. In the present study, we first examined the effect of PTA on farnesyl diphosphate synthase (FDPS) using liquid chromatography mass spectrometry (LC-MS) to analyze the mechanism underlying the PTA-mediated expansion of Vγ2Vδ2 T cells. We find that the prodrug induced the accumulation of both isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), direct upstream metabolites of FDPS. This indicates that not only IPP but also DMAPP plays an important role in PTA-mediated stimulation of Vγ2Vδ2 T cells. We next analyzed TCR-independent cytotoxicity of Vγ2Vδ2 T cells. When human lung cancer cell lines were challenged by Vγ2Vδ2 T cells, no detectable cytotoxicity was observed in 40 min. The lung cancer cell lines were, however, significantly killed by Vγ2Vδ2 T cells after 4–16 h in an effector-to-target ratio-dependent manner, demonstrating that Vγ2Vδ2 T cell-based cell therapy required a large number of cells and longer time when tumor cells were not sensitized. By contrast, pulsing tumor cell lines with 10–30 nM of PTA induced significant lysis of tumor cells by Vγ2Vδ2 T cells even in 40 min. Similar levels of cytotoxicity were elicited by ZOL at concentrations of 100–300 μM, which were much higher than blood levels of ZOL after infusion (1–2 μM), suggesting that standard 4 mg infusion of ZOL was not enough to sensitize lung cancer cells in clinical settings. In addition, Vγ2Vδ2 T cells secreted interferon-γ (IFN-γ) when challenged by lung cancer cell lines pulsed with PTA in a dose-dependent manner. Taken together, PTA could be utilized for both expansion of Vγ2Vδ2 T cells ex vivo and sensitization of tumor cells in vivo in Vγ2Vδ2 T cell-based cancer immunotherapy. For use in patients, further studies on drug delivery are essential because of the hydrophobic nature of the prodrug.
Collapse
Affiliation(s)
- Daisuke Okuno
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuto Noda
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Akihiro Tamura
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Senju
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuhiro Umeyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Craig T Morita
- Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Health Care System, Iowa City, IA, United States
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki, Japan.,Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
46
|
Laplagne C, Meddour S, Figarol S, Michelas M, Calvayrac O, Favre G, Laurent C, Fournié JJ, Cabantous S, Poupot M. Vγ9Vδ2 T Cells Activation Through Phosphoantigens Can Be Impaired by a RHOB Rerouting in Lung Cancer. Front Immunol 2020; 11:1396. [PMID: 32733462 PMCID: PMC7358576 DOI: 10.3389/fimmu.2020.01396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
Vγ9Vδ2 T cells are known to be efficient anti-tumor effectors activated through phosphoantigens (PAg) that are naturally expressed by tumor cells or induced by amino bisphosphonates treatment. This PAg-activation which is TCR and butyrophilin BTN3A dependent can be modulated by NKG2D ligands, immune checkpoint ligands, adhesion molecules, and costimulatory molecules. This could explain the immune-resistance observed in certain clinical trials based on Vγ9Vδ2 T cells therapies. In NSCLC, encouraging responses were obtained with zoledronate administrations for 50% of patients. According to the in vivo results, we showed that the in vitro Vγ9Vδ2 T cell reactivity depends on the NSCLC cell line considered. If the PAg-pretreated KRAS mutated A549 is highly recognized and killed by Vγ9Vδ2 T cells, the EGFR mutated PC9 remains resistant to these killers despite a pre-treatment either with zoledronate or with exogenous BrHPP. The immune resistance of PC9 was shown not to be due to immune checkpoint ligands able to counterbalance NKG2D ligands or adhesion molecules such as ICAM-1 highly expressed by PC9. RHOB has been shown to be involved in the Vγ9Vδ2 TCR signaling against these NSCLC cell lines, in this study we therefore focused on its intracellular behavior. In comparison to a uniform distribution of RHOB in endosomes and at the plasma membrane in A549, the presence of large endosomal clusters of RHOB was visualized by a split-GFP system, suggesting that RHOB rerouting in the PC9 tumor cell could impair the reactivity of the immune response.
Collapse
Affiliation(s)
- Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| | - Sarah Meddour
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| | - Sarah Figarol
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| | - Marie Michelas
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| | - Olivier Calvayrac
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| | - Gilles Favre
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,IUCT-O, Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France.,IUCT-O, Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,ERL 5294 CNRS, Toulouse, France
| |
Collapse
|
47
|
Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Nat Rev Immunol 2020; 20:756-770. [DOI: 10.1038/s41577-020-0345-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
|
48
|
An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells 2020; 9:cells9061433. [PMID: 32527033 PMCID: PMC7348870 DOI: 10.3390/cells9061433] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/29/2023] Open
Abstract
About 1-5% of human blood T cells are Vγ9Vδ2 T cells. Their hallmark is the expression of T cell antigen receptors (TCR) whose γ-chains contain a rearrangement of Vγ9 with JP (TRGV9JP or Vγ2Jγ1.2) and are paired with Vδ2 (TRDV2)-containing δ-chains. These TCRs respond to phosphoantigens (PAg) such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is found in many pathogens, and isopentenyl pyrophosphate (IPP), which accumulates in certain tumors or cells treated with aminobisphosphonates such as zoledronate. Until recently, these cells were believed to be restricted to primates, while no such cells are found in rodents. The identification of three genes pivotal for PAg recognition encoding for Vγ9, Vδ2, and butyrophilin (BTN) 3 in various non-primate species identified candidate species possessing PAg-reactive Vγ9Vδ2 T cells. Here, we review the current knowledge of the molecular basis of PAg recognition. This not only includes human Vγ9Vδ2 T cells and the recent discovery of BTN2A1 as Vγ9-binding protein mandatory for the PAg response but also insights gained from the identification of functional PAg-reactive Vγ9Vδ2 T cells and BTN3 in the alpaca and phylogenetic comparisons. Finally, we discuss models of the molecular basis of PAg recognition and implications for the development of transgenic mouse models for PAg-reactive Vγ9Vδ2 T cells.
Collapse
|
49
|
Mann BT, Sambrano E, Maggirwar SB, Soriano-Sarabia N. Boosting the Immune System for HIV Cure: A γδ T Cell Perspective. Front Cell Infect Microbiol 2020; 10:221. [PMID: 32509594 PMCID: PMC7248175 DOI: 10.3389/fcimb.2020.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The major barrier to HIV cure is a population of long-lived cells that harbor latent but replication-competent virus, are not eliminated by antiretroviral therapy (ART), and remain indistinguishable from uninfected cells. However, ART does not cure HIV infection, side effects to treatment still occur, and the steady global rate of new infections makes finding a sustained ART-free HIV remission or cure for HIV-seropositive individuals urgently needed. Approaches aimed to cure HIV are mostly based on the "shock and kill" method that entails the use of a drug compound to reactivate latent virus paired together with strategies to boost or supplement the existing immune system to clear reactivated latently infected cells. Traditionally, these strategies have utilized CD8+ cytotoxic lymphocytes (CTL) but have been met with a number of challenges. Enhancing innate immune cell populations, such as γδ T cells, may provide an alternative route to HIV cure. γδ T cells possess anti-viral and cytotoxic capabilities that have been shown to directly inhibit HIV infection and specifically eliminate reactivated, latently infected cells in vitro. Most notably, their access to immune privileged anatomical sites and MHC-independent antigen recognition may circumvent many of the challenges facing CTL-based strategies. In this review, we discuss the role of γδ T cells in normal immunity and HIV infection as well as their current use in strategies to treat cancer. We present this information as means to speculate about the utilization of γδ T cells for HIV cure strategies and highlight some of the fundamental gaps in knowledge that require investigation.
Collapse
Affiliation(s)
| | | | | | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| |
Collapse
|
50
|
Biernacki MA, Sheth VS, Bleakley M. T cell optimization for graft-versus-leukemia responses. JCI Insight 2020; 5:134939. [PMID: 32376800 DOI: 10.1172/jci.insight.134939] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protection from relapse after allogeneic hematopoietic cell transplantation (HCT) is partly due to donor T cell-mediated graft-versus-leukemia (GVL) immune responses. Relapse remains common in HCT recipients, but strategies to augment GVL could significantly improve outcomes after HCT. Donor T cells with αβ T cell receptors (TCRs) mediate GVL through recognition of minor histocompatibility antigens and alloantigens in HLA-matched and -mismatched HCT, respectively. αβ T cells specific for other leukemia-associated antigens, including nonpolymorphic antigens and neoantigens, may also deliver an antileukemic effect. γδ T cells may contribute to GVL, although their biology and specificity are less well understood. Vaccination or adoptive transfer of donor-derived T cells with natural or transgenic receptors are strategies with potential to selectively enhance αβ and γδ T cell GVL effects.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, and
| | - Vipul S Sheth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|