1
|
Qin H, Gao J, Xu W, Song Y, Zhang R, Wang H, Ye Y, Sun J, Jiang J, Liang H, Zhong N, Tian H, Chen X, Peng F, Tu Y. Dendritic cell-based microrobots for enhanced systemic antigen-specific immune tolerance. J Control Release 2025; 381:113566. [PMID: 40010412 DOI: 10.1016/j.jconrel.2025.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Current immunotherapeutic approaches for autoimmune disorders primarily rely on the use of generalized immunosuppressive medications. However, most immune drugs and tolerogenic immunomodulators are insufficient on their own to establish antigen-specific immunological tolerance (ASIT). Therefore, steering antigen-presenting cells (APCs) towards a tolerogenic state with minimal risk of broad immune suppression may be an effective approach. In pursuit of enhanced ASIT, magnetic nanoparticles cloaked with an erythrocyte membrane anchored with the model antigen ovalbumin have been successfully developed, allowing for the in vivo conversion of APCs into tolerogenic microrobots that respond to magnetic activation. Actuated by a rotating magnetic field (RMF), the in situ-formed cell-based microrobots can be guided to inflammatory sites, thereby augmenting systemic and local immune tolerance. These tolerogenic microrobots represent an innovative platform for active immunomodulation and provide precise control over the magnitude and direction of immune responses. This breakthrough offers new insights into the therapeutic management of allergies, autoimmune disorders, and the prevention of anti-drug antibodies in biologic therapies.
Collapse
Affiliation(s)
- Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanzhen Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiying Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ning Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaodong Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Rad LM, Hughes KR, Wheeler SN, Decker JT, Orbach SM, Galvan A, Thornhill J, Griffin KV, Turkistani H, Urie RR, Irani DN, Shea LD, Morris AH. Engineered immunological niche directs therapeutic development in models of progressive multiple sclerosis. Proc Natl Acad Sci U S A 2025; 122:e2409852122. [PMID: 39937858 PMCID: PMC11848328 DOI: 10.1073/pnas.2409852122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
Primary progressive multiple sclerosis (MS) is a demyelinating autoimmune disease with only a single class of FDA-approved treatment, B cell depletion. Novel treatments could emerge from a deeper understanding of the interplay between multiple cell types within diseased tissue throughout progression. We initially describe an engineered biomaterial-based immunological niche (IN) as a surrogate for diseased tissue to investigate immune cell function and phenotype dynamics throughout a chronic progressive mouse model of MS. Using these niches, we identify an array of dysregulated CC chemokine signaling as potential targets. We then develop antigen-loaded nanoparticles that reduce CC chemokine signaling, while delivering antigen. These nanoparticles serve as an antigen-specific treatment, and a single injection reduces disease burden, even if administered after symptomatic disease onset. This report demonstrates proof of principle of a biomaterial scaffold as a diseased tissue surrogate that can monitor immune function, identify potential drug targets, and guide the development of a therapeutic.
Collapse
Affiliation(s)
- Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kevin R. Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sydney N. Wheeler
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Angelica Galvan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Jasmine Thornhill
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kate V. Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Hamza Turkistani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - David N. Irani
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Aaron H. Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
3
|
Stiepel RT, Simpson SR, Lukesh NR, Middleton DD, Hendy DA, Ontiveros-Padilla L, Ehrenzeller SA, Islam MJ, Pena ES, Carlock MA, Ross TM, Bachelder EM, Ainslie KM. Induction of Antigen-Specific Tolerance in a Multiple Sclerosis Model without Broad Immunosuppression. ACS NANO 2025; 19:3764-3780. [PMID: 39812522 DOI: 10.1021/acsnano.4c14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disorder that wreaks havoc on the central nervous system, leading to a spectrum of motor and cognitive impairments. There is no cure, and current treatment strategies rely on broad immunosuppression, leaving patients vulnerable to infections. To address this problem, our approach aims to induce antigen-specific tolerance, a much-needed shift in MS therapy. We have engineered a tolerogenic therapy consisting of spray-dried particles made of a degradable biopolymer, acetalated dextran, and loaded with an antigenic peptide and tolerizing drug, rapamycin (Rapa). After initial characterization and optimization, particles were tested in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis model of MS. Representing the earliest possible time of diagnosis, mice were treated at symptom onset in an early therapeutic model, where particles containing MOG and particles containing Rapa+MOG evoked significant reductions in clinical score. Particles were then applied to a highly clinically relevant late therapeutic model during peak disease, where MOG particles and Rapa+MOG particles each elicited a dramatic therapeutic effect, reversing hind limb paralysis and restoring fully functional limbs. To confirm the antigen specificity of our therapy, we immunized mice against the influenza antigen hemagglutinin (HA) and treated them with MOG particles or Rapa+MOG particles. The particles did not suppress antibody responses against HA. Our findings underscore the potential of this particle-based therapy to reverse autoimmunity in disease-relevant models without compromising immune competence, setting it apart from existing treatments.
Collapse
Affiliation(s)
- Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sean R Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dylan A Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luis Ontiveros-Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen A Ehrenzeller
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Jahirul Islam
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Michael A Carlock
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, Florida 34987, United States
| | - Ted M Ross
- Florida Research and Innovation Center, Port Saint, Cleveland Clinic Florida, Port St. Lucie, Florida 34987, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
- Department of Infectious Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Anwar S, Lin PCP, Pacheco L, Imai K, Tan Z, Song Z, Wakamatsu Y, Minamiya Y, Cheng J, Ko C, Inoue M. Decreased lymph node estrogen levels cause nonremitting progressive experimental autoimmune encephalomyelitis disease. PNAS NEXUS 2025; 4:pgaf010. [PMID: 39871825 PMCID: PMC11770340 DOI: 10.1093/pnasnexus/pgaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Estrogen, a steroid hormone synthesized by both gonadal and nongonadal tissues, plays a pivotal role in modulating immune responses, including reducing relapse rates in relapsing-remitting multiple sclerosis (MS). This study explored the expression of aromatase, the enzyme responsible for estrogen synthesis, in lymph nodes (LNs) and its potential role in the pathogenesis of MS using a mouse model. We utilized Cyp19-RFP mice where cells that express or have previously expressed the Cyp19 gene (encoding aromatase) are marked by red fluorescent protein (RFP). RFP was detected in the high endothelial venules of all morphologically identifiable LNs, indicating aromatase activity within these tissues. We discovered that LNs actively synthesize 17β-estradiol, but this activity declines with age. Targeted delivery of an aromatase inhibitor specifically to LNs induced an interferon-β-resistant experimental autoimmune encephalomyelitis (EAE) phenotype. This phenotype was accompanied by significant gray matter atrophy in the spinal cord. These findings underscore LNs as crucial sites of de novo 17β-estradiol production, potentially contributing to nonremitting EAE phenotypes. The observed decline in 17β-estradiol likely exacerbates MS pathogenesis in aging mice. Importantly, aromatase expression in human cervical LNs suggests that these sites may similarly contribute to estrogen synthesis in humans, potentially opening new avenues for understanding and treating MS.
Collapse
Affiliation(s)
- Shehata Anwar
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
- Faculty of Veterinary Medicine, Department of Pathology, Beni-Suef University (BSU), Beni-Suef 62511, Egypt
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Lazaro Pacheco
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Kazuhiro Imai
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Zhengzhong Tan
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Ziyuan Song
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
| | - Yuki Wakamatsu
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Jianjun Cheng
- Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL 61801, USA
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - CheMyong Ko
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | - Makoto Inoue
- Department of Comparative Biosciences, The University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
5
|
Euliano EM, Agrawal A, Yu MH, Graf TP, Henrich EM, Kunkel AA, Hsu C, Baryakova T, McHugh KJ. Intra-lymph node crosslinking of antigen-bearing polymers enhances humoral immunity and dendritic cell activation. Bioeng Transl Med 2024; 9:e10705. [PMID: 39545089 PMCID: PMC11558197 DOI: 10.1002/btm2.10705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/17/2024] Open
Abstract
Lymph node (LN)-resident dendritic cells (DCs) are a promising target for vaccination given their professional antigen-presenting capabilities and proximity to a high concentration of immune cells. Direct intra-LN injection has been shown to greatly enhance the immune response to vaccine antigens compared to traditional intramuscular injection, but it is infeasible to implement clinically in a vaccination campaign context. Employing the passive lymphatic flow of antigens to target LNs has been shown to increase total antigen uptake by DCs more than inflammatory adjuvants, which recruit peripheral DCs. Herein, we describe a novel vaccination platform in which two complementary multi-arm poly(ethylene glycol) (PEG) polymers-one covalently bound to the model antigen ovalbumin (OVA)-are injected subcutaneously into two distinct sites. These materials then drain to the same LN through different lymphatic vessels and, upon meeting in the LN, rapidly crosslink. This system improves OVA delivery to, and residence time within, the draining LN compared to all control groups. The crosslinking of the two PEG components also improves humoral immunity without the need for any pathogen-mimicking adjuvants. Further, we observed a significant increase in non-B/T lymphocytes in LNs cross-presenting the OVA peptide SIINFEKL on MHC I over a dose-matched control containing alum, the most common clinical adjuvant, as well as an increase in DC activation in the LN. These data suggest that this platform can be used to deliver antigens to LN-resident immune cells to produce a stronger humoral and cellular immune response over materials-matched controls without the use of traditional adjuvants.
Collapse
Affiliation(s)
| | | | - Marina H. Yu
- Department of BioengineeringRice UniversityHoustonTexasUSA
| | - Tyler P. Graf
- Department of BioengineeringRice UniversityHoustonTexasUSA
| | | | | | | | | | - Kevin J. McHugh
- Department of BioengineeringRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
| |
Collapse
|
6
|
Bridgeman CJ, Shen R, McIlvaine RA, Edwards C, Ackun-Farmmer MA, Jewell CM. Synthetic organic materials for targeting immunotherapies to lymph nodes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9031-9045. [PMID: 40405914 PMCID: PMC12094523 DOI: 10.1021/acs.chemmater.4c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Immunotherapies have yielded tremendous advances over the last three decades. However even the most promising therapies, for example monoclonal antibodies, require systemic infusion that can limit dosing and lead to off target immunotoxicity. To address such challenges and improve immunotherapy, the field is investing in synthetic biomaterials to target lymph nodes (LNs) - sites of coordinated immune activation and suppression. These synthetic materials allow enhanced targeting, retention, and control over the signals that are required to elicit desired immune processes during immunotherapy. Two broad classes of materials that have been employed for LN targeting include synthetic lipids and polymers. This review will discuss how the chemistries of these materials can be leveraged to improve lymph node targeting of immunotherapies to treat disease. We will also provide commentary on translational barriers to the clinic, an outlook on current therapies that are clinically used, and a forward-looking perspective.
Collapse
Affiliation(s)
- Christopher J. Bridgeman
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, College Park, Maryland, 20742, United States
| | - Ruochen Shen
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, College Park, Maryland, 20742, United States
| | - Ryan A. McIlvaine
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, College Park, Maryland, 20742, United States
| | - Camilla Edwards
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, College Park, Maryland, 20742, United States
| | - Marian A. Ackun-Farmmer
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, College Park, Maryland, 20742, United States
| | - Christopher M. Jewell
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, College Park, Maryland, 20742, United States
- United States Department of Veterans Affairs, Baltimore, Maryland, 21201, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland, 21205, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, 21201, United States
| |
Collapse
|
7
|
Nguyen TL, Phan NM, Kim J. Administration of ROS-Scavenging Cerium Oxide Nanoparticles Simply Mixed with Autoantigenic Peptides Induce Antigen-Specific Immune Tolerance against Autoimmune Encephalomyelitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33106-33120. [PMID: 38906850 DOI: 10.1021/acsami.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The scavenging ability of cerium oxide nanoparticles (CeNPs) for reactive oxygen species has been intensively studied in the field of catalysis. However, the immunological impact of these particles has not yet been thoroughly investigated, despite intensive research indicating that modulation of the reactive oxygen species could potentially regulate cell fate and adaptive immune responses. In this study, we examined the intrinsic capability of CeNPs to induce tolerogenic dendritic cells via their reactive oxygen species-scavenging effect when the autoantigenic peptides were simply mixed with CeNPs. CeNPs effectively reduced the intracellular reactive oxygen species levels in dendritic cells in vitro, leading to the suppression of costimulatory molecules as well as NLRP3 inflammasome activation, even in the presence of pro-inflammatory stimuli. Subcutaneously administrated PEGylated CeNPs were predominantly taken up by antigen-presenting cells in lymph nodes and to suppress cell maturation in vivo. The administration of a mixture of PEGylated CeNPs and myelin oligodendrocyte glycoprotein peptides, a well-identified autoantigen associated with antimyelin autoimmunity, resulted in the generation of antigen-specific Foxp3+ regulatory T cells in mouse spleens. The induced peripheral regulatory T cells actively inhibited the infiltration of autoreactive T cells and antigen-presenting cells into the central nervous system, ultimately protecting animals from experimental autoimmune encephalomyelitis when tested using a mouse model mimicking human multiple sclerosis. Overall, our findings reveal the potential of CeNPs for generating antigen-specific immune tolerance to prevent multiple sclerosis, opening an avenue to restore immune tolerance against specific antigens by simply mixing the well-identified autoantigens with the immunosuppressive CeNPs.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Smith CT, Wang Z, Lewis JS. Engineering antigen-presenting cells for immunotherapy of autoimmunity. Adv Drug Deliv Rev 2024; 210:115329. [PMID: 38729265 DOI: 10.1016/j.addr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.
Collapse
Affiliation(s)
- Clinton T Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenyu Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Tu AB, Krishna G, Smith KR, Lewis JS. Harnessing Immunomodulatory Polymers for Treatment of Autoimmunity, Allergy, and Transplant Rejection. Annu Rev Biomed Eng 2024; 26:415-440. [PMID: 38959388 DOI: 10.1146/annurev-bioeng-110122-014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gaddam Krishna
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Kevin R Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
10
|
McBride DA, Wang JS, Johnson WT, Bottini N, Shah NJ. ABCD of IA: A multi-scale agent-based model of T cell activation in inflammatory arthritis. Biomater Sci 2024; 12:2041-2056. [PMID: 38349277 PMCID: PMC11757005 DOI: 10.1039/d3bm01674a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Biomaterial-based agents have been demonstrated to regulate the function of immune cells in models of autoimmunity. However, the complexity of the kinetics of immune cell activation can present a challenge in optimizing the dose and frequency of administration. Here, we report a model of autoreactive T cell activation, which are key drivers in autoimmune inflammatory joint disease. The model is termed a multi-scale Agent-Based, Cell-Driven model of Inflammatory Arthritis (ABCD of IA). Using kinetic rate equations and statistical theory, ABCD of IA simulated the activation and presentation of autoantigens by dendritic cells, interactions with cognate T cells and subsequent T cell proliferation in the lymph node and IA-affected joints. The results, validated with in vivo data from the T cell driven SKG mouse model, showed that T cell proliferation strongly correlated with the T cell receptor (TCR) affinity distribution (TCR-ad), with a clear transition state from homeostasis to an inflammatory state. T cell proliferation was strongly dependent on the amount of antigen in antigenic stimulus event (ASE) at low concentrations. On the other hand, inflammation driven by Th17-inducing cytokine mediated T cell phenotype commitment was influenced by the initial level of Th17-inducing cytokines independent of the amount of arthritogenic antigen. The introduction of inhibitory artificial antigen presenting cells (iaAPCs), which locally suppress T cell activation, reduced T cell proliferation in a dose-dependent manner. The findings in this work set up a framework based on theory and modeling to simulate personalized therapeutic strategies in IA.
Collapse
Affiliation(s)
- David A McBride
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - James S Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wade T Johnson
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Nunzio Bottini
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nisarg J Shah
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
McBride DA, Jones RM, Bottini N, Shah NJ. The therapeutic potential of immunoengineering for systemic autoimmunity. Nat Rev Rheumatol 2024:10.1038/s41584-024-01084-x. [PMID: 38383732 DOI: 10.1038/s41584-024-01084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Disease-modifying drugs have transformed the treatment options for many systemic autoimmune diseases. However, an evolving understanding of disease mechanisms, which might vary between individuals, is paving the way for the development of novel agents that operate in a patient-tailored manner through immunophenotypic regulation of disease-relevant cells and the microenvironment of affected tissue domains. Immunoengineering is a field that is focused on the application of engineering principles to the modulation of the immune system, and it could enable future personalized and immunoregulatory therapies for rheumatic diseases. An important aspect of immunoengineering is the harnessing of material chemistries to design technologies that span immunologically relevant length scales, to enhance or suppress immune responses by re-balancing effector and regulatory mechanisms in innate or adaptive immunity and rescue abnormalities underlying pathogenic inflammation. These materials are endowed with physicochemical properties that enable features such as localization in immune cells and organs, sustained delivery of immunoregulatory agents, and mimicry of key functions of lymphoid tissue. Immunoengineering applications already exist for disease management, and there is potential for this new discipline to improve disease modification in rheumatology.
Collapse
Affiliation(s)
- David A McBride
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Ryan M Jones
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Nunzio Bottini
- Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Nisarg J Shah
- Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Kapnick SM, Martin CA, Jewell CM. Engineering metabolism to modulate immunity. Adv Drug Deliv Rev 2024; 204:115122. [PMID: 37935318 PMCID: PMC10843796 DOI: 10.1016/j.addr.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Metabolic programming and reprogramming have emerged as pivotal mechanisms for altering immune cell function. Thus, immunometabolism has become an attractive target area for treatment of immune-mediated disorders. Nonetheless, many hurdles to delivering metabolic cues persist. In this review, we consider how biomaterials are poised to transform manipulation of immune cell metabolism through integrated control of metabolic configurations to affect outcomes in autoimmunity, regeneration, transplant, and cancer. We emphasize the features of nanoparticles and other biomaterials that permit delivery of metabolic cues to the intracellular compartment of immune cells, or strategies for altering signals in the extracellular space. We then provide perspectives on the potential for reciprocal regulation of immunometabolism by the physical properties of materials themselves. Lastly, opportunities for clinical translation are highlighted. This discussion contributes to our understanding of immunometabolism, biomaterials-based strategies for altering metabolic configurations in immune cells, and emerging concepts in this evolving field.
Collapse
Affiliation(s)
- Senta M Kapnick
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA
| | - Corinne A Martin
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10 N Green Street, Baltimore, MD, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S Greene Street, Suite N9E17, Baltimore, MD, USA.
| |
Collapse
|
14
|
Firdessa Fite R, Bechi Genzano C, Mallone R, Creusot RJ. Epitope-based precision immunotherapy of Type 1 diabetes. Hum Vaccin Immunother 2023; 19:2154098. [PMID: 36656048 PMCID: PMC9980607 DOI: 10.1080/21645515.2022.2154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Antigen-specific immunotherapies (ASITs) address important clinical needs in treating autoimmune diseases. However, Type 1 diabetes is a heterogeneous disease wherein patient characteristics influence responsiveness to ASITs. Targeting not only disease-relevant T cell populations, but also specific groups of patients using precision medicine is a new goal toward achieving effective treatment. HLA-restricted peptides provide advantages over protein as antigens, however, methods for profiling antigen-specific T cells need to improve in sensitivity, depth, and throughput to facilitate epitope selection. Delivery approaches are highly diverse, illustrating the many ways relevant antigen-presenting cell populations and anatomical locations can be targeted for tolerance induction. The role of persistence of antigen presentation in promoting durable antigen-specific tolerance requires further investigation. Based on the outcome of ASIT trials, the field is moving toward using patient-specific variations to improve efficacy, but challenges still lie on the path to delivering more effective and safer treatment to the T1D patient population.
Collapse
Affiliation(s)
- Rebuma Firdessa Fite
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires de Paris Centre-Université de Paris, Paris, France
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Phan NM, Nguyen TL, Shin H, Trinh TA, Kim J. ROS-Scavenging Lignin-Based Tolerogenic Nanoparticle Vaccine for Treatment of Multiple Sclerosis. ACS NANO 2023; 17:24696-24709. [PMID: 38051295 DOI: 10.1021/acsnano.3c04497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating autoimmune disease, in which the immune system attacks myelin. Although systemic immunosuppressive agents have been used to treat MS, long-term treatment with these drugs causes undesirable side effects such as altered glucose metabolism, insomnia, and hypertension. Herein, we propose a tolerogenic therapeutic vaccine to treat MS based on lignin nanoparticles (LNP) with intrinsic reactive oxygen species (ROS)-scavenging capacity derived from their phenolic moieties. The LNP loaded with autoantigens of MS allowed for inducing tolerogenic DCs with low-level expression of costimulatory molecules while presenting antigenic peptides. Intravenous injection of an LNP-based tolerogenic vaccine into an experimental autoimmune encephalomyelitis (EAE) model led to durable antigen-specific immune tolerance via inducing regulatory T cells (Tregs). Autoreactive T helper type 1 cells, T helper type 17 cells, and inflammatory antigen presentation cells (APCs) were suppressed in the central nervous system (CNS), ameliorating ongoing MS in early and late disease states. Additionally, the incorporation of dexamethasone into an LNP-based tolerogenic nanovaccine could further improve the recovery of EAE mice in the severe chronic stage. As lignin is the most abundant biomass and waste byproduct in the pulping industry, a lignin-based tolerogenic vaccine could be a novel, cost-effective, high-value vaccine platform with potent therapeutic efficiency in treating autoimmune diseases.
Collapse
Affiliation(s)
- Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyunsu Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Thuy An Trinh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
Vafadar A, Vosough P, Jahromi HK, Tajbakhsh A, Savardshtaki A, Butler AE, Sahebkar A. The role of efferocytosis and transplant rejection: Strategies in promoting transplantation tolerance using apoptotic cell therapy and/or synthetic particles. Cell Biochem Funct 2023; 41:959-977. [PMID: 37787641 DOI: 10.1002/cbf.3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Li C, Han Y, Luo X, Qian C, Li Y, Su H, Du G. Immunomodulatory nano-preparations for rheumatoid arthritis. Drug Deliv 2023; 30:9-19. [PMID: 36482698 PMCID: PMC9744217 DOI: 10.1080/10717544.2022.2152136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease (AD) caused by the aberrant attack of the immune system on its own joint tissues. Genetic and environmental factors are the main reasons of immune system impairment and high incidence of RA. Although there are medications on the market that lessen disease activity, there is no known cure for RA, and patients are at risk in varying degrees of systemic immunosuppression. By transporting (encapsulating or surface binding) RA-related self-antigens, nucleic acids, immunomodulators, or cytokines, tolerogenic nanoparticles-also known as immunomodulatory nano-preparations-have the potential to gently regulate local immune responses and ultimately induce antigen-specific immune tolerance. We review the recent advances in immunomodulatory nano-preparations for delivering self-antigen or self-antigen plus immunomodulator, simulating apoptotic cell avatars in vivo, acting as artificial antigen-presenting cells, and based on scaffolds and gels, to provide a reference for developing new immunotherapies for RA.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China,CONTACT Chenglong Li Department of Pharmacy, The People’s Hospital of Deyang City, Deyang618000, P.R. China
| | - Yangyun Han
- Department of Neurosurgery, The People’s Hospital of Deyang City, Deyang, P.R. China
| | - Xianjin Luo
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Can Qian
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China
| | - Yang Li
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China
| | - Huaiyu Su
- Department of Pharmacy, The People’s Hospital of Deyang City, Deyang, P.R. China,Huaiyu Su Department of Pharmacy, The People’s Hospital of Deyang City, Deyang 618000, P.R. China
| | - Guangshen Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, P.R. China,Guangshen Du Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
19
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Bridgeman CJ, Shah SA, Oakes RS, Jewell CM. Dissecting regulatory T cell expansion using polymer microparticles presenting defined ratios of self-antigen and regulatory cues. Front Bioeng Biotechnol 2023; 11:1184938. [PMID: 37441198 PMCID: PMC10334287 DOI: 10.3389/fbioe.2023.1184938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Biomaterials allow for the precision control over the combination and release of cargo needed to engineer cell outcomes. These capabilities are particularly attractive as new candidate therapies to treat autoimmune diseases, conditions where dysfunctional immune cells create pathogenic tissue environments during attack of self-molecules termed self-antigens. Here we extend past studies showing combinations of a small molecule immunomodulator co-delivered with self-antigen induces antigen-specific regulatory T cells. In particular, we sought to elucidate how different ratios of these components loaded in degradable polymer particles shape the antigen presenting cell (APC) -T cell interactions that drive differentiation of T cells toward either inflammatory or regulatory phenotypes. Using rapamycin (rapa) as a modulatory cue and myelin self-peptide (myelin oligodendrocyte glycoprotein- MOG) - self-antigen attacked during multiple sclerosis (MS), we integrate these components into polymer particles over a range of ratios and concentrations without altering the physicochemical properties of the particles. Using primary cell co-cultures, we show that while all ratios of rapa:MOG significantly decreased expression of co-stimulation molecules on dendritic cells (DCs), these levels were insensitive to the specific ratio. During co-culture with primary T cell receptor transgenic T cells, we demonstrate that the ratio of rapa:MOG controls the expansion and differentiation of these cells. In particular, at shorter time points, higher ratios induce regulatory T cells most efficiently, while at longer time points the processes are not sensitive to the specific ratio. We also found corresponding changes in gene expression and inflammatory cytokine secretion during these times. The in vitro results in this study contribute to in vitro regulatory T cell expansion techniques, as well as provide insight into future studies to explore other modulatory effects of rapa such as induction of maintenance or survival cues.
Collapse
Affiliation(s)
- Christopher J. Bridgeman
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
| | - Shrey A. Shah
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
| | - Robert S. Oakes
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
- United States Department of Veterans Affairs, Baltimore, MD, United states
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland College Park, Baltimore, MD, United states
- United States Department of Veterans Affairs, Baltimore, MD, United states
- Robert E Fischell Institute of Biomedical Devices, University of Maryland College Park, Baltimore, MD, United states
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United states
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United states
| |
Collapse
|
21
|
Edwards C, Carey ST, Jewell CM. Harnessing Biomaterials to Study and Direct Antigen-Specific Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:2017-2028. [PMID: 37068126 PMCID: PMC10330265 DOI: 10.1021/acsabm.3c00136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Immunotherapies are an evolving treatment paradigm for addressing cancer, autoimmunity, and infection. While exciting, most of the existing therapies are limited by their specificity─unable to differentiate between healthy and diseased cells at an antigen-specific level. Biomaterials are a powerful tool that enable the development of next-generation immunotherapies due to their tunable synthesis properties. Our lab harnesses biomaterials as tools to study antigen-specific immunity and as technologies to enable new therapeutic vaccines and immunotherapies to combat cancer, autoimmunity, and infections. Our efforts have spanned the study of intrinsic immune profiles of biomaterials, development of novel nanotechnologies assembled entirely from immune cues, manipulation of innate immune signaling, and advanced technologies to direct and control specialized immune niches such as skin and lymph nodes.
Collapse
Affiliation(s)
- Camilla Edwards
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sean T Carey
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher M Jewell
- University of Maryland Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, Maryland 21201, United States
- Robert E. Fischell Institute for Biomedical Devices, College Park, Maryland 20742, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201, United States
| |
Collapse
|
22
|
Rhodes KR, Tzeng SY, Iglesias M, Lee D, Storm K, Neshat SY, VanDyke D, Lowmaster SM, Spangler JB, Raimondi G, Green JJ. Bioengineered particles expand myelin-specific regulatory T cells and reverse autoreactivity in a mouse model of multiple sclerosis. SCIENCE ADVANCES 2023; 9:eadd8693. [PMID: 37267370 PMCID: PMC10413683 DOI: 10.1126/sciadv.add8693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by autoreactive immune cells damaging myelinated nerves, impairing brain function. Treatments aim for tolerance induction to reeducate the immune system to recognize myelin as "self" rather than "foreign." As peripheral immune tolerance is primarily mediated by regulatory T cells (Tregs), we developed a therapy to support Treg expansion and activity in vivo. To target, engage, and activate myelin-specific Tregs, we designed a biodegradable microparticle (MP) loaded with rapamycin and functionalized with a biased interleukin-2 (IL-2) fusion protein and a major histocompatibility complex (MHC) class II loaded with a myelin peptide. These tolerogenic MPs (Tol-MPs) were validated in vitro and then evaluated in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Tol-MPs promoted sustained disease reversal in 100% of mice and full recovery in 38% of mice with symptomatic EAE. Tol-MPs are a promising platform for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Kelly R. Rhodes
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dongwoo Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kaitlyn Storm
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sarah Y. Neshat
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shirley M. Lowmaster
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21231, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
23
|
Nguyen JH, Toskich B, Paz-Fumagalli R, Fuqua PS, Harnois DM. Ex vivo intranodal administration of sirolimus. Transpl Immunol 2023; 78:101840. [PMID: 37085123 DOI: 10.1016/j.trim.2023.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Immune-mediated adverse effects of current systemic immunosuppression therapy compromise long-term survival of liver transplant recipients. Our recently observed results showed that intranodal delivery of sirolimus induced interleukin (IL)-10-driven CD4+ CD25+ Foxp3+ regulatory T cells. The present report investigated the feasibility of intra-nodal delivery of sirolimus ex vivo into a human liver common bile duct lymph node. METHODS We used a discarded donor human liver to directly administer sirolimus into a distal common bile duct lymph node. Sirolimus was injected once using an ultrasound-guided method. RESULTS The porta hepatis and its lymph node along the distal common bile duct were exposed. A handheld ultrasound probe (L15-7io, Koninklijke Philips N.V.) with a layer of standoff Aquasonic 100 Ultrasound Transmission Gel (Parker Laboratories, Inc) was applied to the exposed lymph node. Using a 1.0-mL 25G hypodermic needle, 0.05 mL of sirolimus solution was injected directly into the exposed lymph node. CONCLUSIONS Under sonographic guidance, direct injection of sirolimus into a hepatic draining lymph node along the common bile duct is accomplished precisely and reliably. Direct administration of therapeutic agents into local lymph nodes is a viable approach for effective targeted immunotherapy.
Collapse
Affiliation(s)
- Justin H Nguyen
- Division of Transplant Surgery (Nguyen), Division of Vascular/Interventional Radiology (Toskich and Paz-Fumagalli), Department of Pharmacy (Fuqua), and Division of Hepatology and Liver Transplant (Harnois), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, United States of America.
| | - Beau Toskich
- Division of Transplant Surgery (Nguyen), Division of Vascular/Interventional Radiology (Toskich and Paz-Fumagalli), Department of Pharmacy (Fuqua), and Division of Hepatology and Liver Transplant (Harnois), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, United States of America.
| | - Ricardo Paz-Fumagalli
- Division of Transplant Surgery (Nguyen), Division of Vascular/Interventional Radiology (Toskich and Paz-Fumagalli), Department of Pharmacy (Fuqua), and Division of Hepatology and Liver Transplant (Harnois), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, United States of America.
| | - Paula S Fuqua
- Division of Transplant Surgery (Nguyen), Division of Vascular/Interventional Radiology (Toskich and Paz-Fumagalli), Department of Pharmacy (Fuqua), and Division of Hepatology and Liver Transplant (Harnois), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, United States of America.
| | - Denise M Harnois
- Division of Transplant Surgery (Nguyen), Division of Vascular/Interventional Radiology (Toskich and Paz-Fumagalli), Department of Pharmacy (Fuqua), and Division of Hepatology and Liver Transplant (Harnois), Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, United States of America.
| |
Collapse
|
24
|
Che YJ, Ren XH, Wang ZW, Wu Q, Xing K, Zhang M, Xu C, Han D, Yuan S, Zheng SH, Chen YY, Liao XR, Shi F, Zhong XH, Cai X, Cheng SX. Lymph-Node-Targeted Drug Delivery for Effective Immunomodulation to Prolong the Long-Term Survival After Heart Transplantation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207227. [PMID: 36314402 DOI: 10.1002/adma.202207227] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The chronic rejection responses and side effects of the systematic administration of immunosuppressants are the main obstacles to heart allograft and patient survival. The development of xenotransplantation also urgently requires more efficient immune regulation strategies. Herein, it is demonstrated that lymph-node (LN)-targeted drug delivery can realize LN-specific immunomodulation with attenuated immune suppression on distant peripheral immune organs to effectively prolong long-term survival after heart transplantation in a chronic murine heart transplantation model. A chemokine C-C motif ligand 21 (CCL21) specific aptamer for LN targeting is decorated onto the surface of the hybrid nanoparticular delivery vector mainly composed of CaCO3 /CaP/heparin. The targeting delivery system can dramatically enhance accumulation of the loaded immunosuppressant, fingolimod hydrochloride (FTY720), in draining lymph nodes (dLNs) for inducing powerful immune suppression. By promoting the generation of endogenous regulatory T cells (Tregs ) and decreasing the proportion of effector T cells (Teffs ) in dLNs after heart transplantation, the LN-targeting strategy can effectively regulate local immune responses instead of systemic immunity, which reduces the incidence of long-term complications. This study provides an efficient strategy to improve the survival rate after organ transplantation by precise and localized immunoregulation with minimized side effects of immunosuppression.
Collapse
Affiliation(s)
- Yan-Jia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Wei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Si-Hao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Yuan-Yang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xin-Ru Liao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xiao-Han Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xin Cai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
25
|
Chen L, Yang J, Klassen H. Immune Responses to Sequential Binocular Transplantation of Allogeneic Retinal Progenitor Cells to the Vitreous Cavity in Mice. Int J Mol Sci 2023; 24:ijms24076205. [PMID: 37047179 PMCID: PMC10093920 DOI: 10.3390/ijms24076205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Intravitreal transplantation of allogeneic human retinal progenitor cells (hRPCs) holds promise as a treatment for blinding retinal degenerations. Prior work has shown that neural progenitors are well-tolerated as allografts following single injections; however, sequential delivery of allogeneic cells raises the potential risk of host sensitization with subsequent immune rejection of grafts. The current study was designed to assess whether an immune response would be induced by repeated intravitreal transplants of allogeneic RPCs utilizing the mouse animal model. We injected murine retinal progenitor cells (gmRPCs), originally derived from donors with a C57BL/6 genetic background, into BALB/c recipient mice in order to provide safety data as to what might be expected following repeated treatment of patients with allogeneic human cell product. Immune responses to gmRPCs were mild, consisting of T cells, B cells, neutrophils, and natural killer cells, with macrophages clearly the predominating. Animals treated with repeat doses of gmRPCs did not show evidence of sensitization, nor was there immune-mediated destruction of the grafts. Despite the absence of immunosuppressive treatments, allogeneic gmRPC grafts survived following repeat dosing, thus providing support for the preliminary observation that repeated injection of allogeneic RPCs to the vitreous cavity is tolerated in patients with retinitis pigmentosa.
Collapse
|
26
|
Ackun-Farmmer MA, Jewell CM. Delivery route considerations for designing antigen-specific biomaterial strategies to combat autoimmunity. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200135. [PMID: 36938103 PMCID: PMC10019031 DOI: 10.1002/anbr.202200135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Disease modifying drugs and biologics used to treat autoimmune diseases, although promising, are non-curative. As the field moves towards development of new approaches to treat autoimmune disease, antigen-specific therapies immunotherapies (ASITs) have emerged. Despite clinical approval of ASITs for allergies, clinical trials using soluble ASITs for autoimmunity have been largely unsuccessful. A major effort to address this shortcoming is the use of biomaterials to harness the features unique to specific delivery routes. This review focuses on biomaterials being developed for delivery route-specific strategies to induce antigen-specific responses in autoimmune diseases such as multiple sclerosis, type 1 diabetes, rheumatoid arthritis, and celiac disease. We first discuss the delivery strategies used in ongoing and completed clinical trials in autoimmune ASITs. Next, we highlight pre-clinical biomaterial approaches from the most recent 3 years in the context of these same delivery route considerations. Lastly, we provide discussion on the gaps remaining in biomaterials development and comment on the need to consider delivery routes in the process of designing biomaterials for ASITs.
Collapse
Affiliation(s)
- Marian A Ackun-Farmmer
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
27
|
Kwiatkowski AJ, Helm EY, Stewart J, Leon J, Drashansky T, Avram D, Keselowsky B. Design principles of microparticle size and immunomodulatory factor formulation dictate antigen-specific amelioration of multiple sclerosis in a mouse model. Biomaterials 2023; 294:122001. [PMID: 36716589 DOI: 10.1016/j.biomaterials.2023.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Antigen-specific therapies allow for modulation of the immune system in a disease relevant context without systemic immune suppression. These therapies are especially valuable in autoimmune diseases such as multiple sclerosis (MS), where autoreactive T cells destroy myelin sheath. This work shows that an antigen-specific dual-sized microparticle (dMP) system can effectively halt and reverse disease progression in a mouse model of MS. Current MS treatments leave patients immunocompromised, but the dMP formulation spares the immune system as mice can successfully clear a Listeria Monocytogenes infection. Furthermore, we highlight design principles for particle based immunotherapies including the importance of delivering factors specific for immune cell recruitment (GM-CSF or SDF-1), differentiation (GM-CSF or FLT3L) and suppression (TGF-β or VD3) in conjunction with disease relevant antigen, as the entire formulation is required for maximum efficacy. Lastly, the dMP scheme relies on formulating phagocytosable and non-phagocytosable MP sizes to direct payload to target either cell surface receptors or intracellular targets, as the reverse sized dMP formulation failed to reverse paralysis. We also challenge the design principles of the dMP system showing that the size of the MPs impact efficacy and that GM-CSF plays two distinct roles and that both of these must be replaced to match the primary effect of the dMP system. Overall, this work shows the versatile nature of the dMP system and expands the knowledge in particle science by emphasizing design tenets to guide the next generation of particle based immunotherapies.
Collapse
Affiliation(s)
- Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joshua Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Juan Leon
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Theodore Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| | - Benjamin Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA; Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville FL, 32610, USA.
| |
Collapse
|
28
|
Carey ST, Bridgeman C, Jewell CM. Biomaterial Strategies for Selective Immune Tolerance: Advances and Gaps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205105. [PMID: 36638260 PMCID: PMC10015875 DOI: 10.1002/advs.202205105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Autoimmunity and allergies affect a large number of people across the globe. Current approaches to these diseases target cell types and pathways that drive disease, but these approaches are not cures and cannot differentiate between healthy cells and disease-causing cells. New immunotherapies that induce potent and selective antigen-specific tolerance is a transformative goal of emerging treatments for autoimmunity and serious allergies. These approaches offer the potential of halting-or even reversing-disease, without immunosuppressive side effects. However, translating successful induction of tolerance to patients is unsuccessful. Biomaterials offer strategies to direct and maximize immunological mechanisms of tolerance through unique capabilities such as codelivery of small molecules or signaling molecules, controlling signal density in key immune tissues, and targeting. While a growing body of work in this area demonstrates success in preclinical animal models, these therapies are only recently being evaluated in human trials. This review will highlight the most recent advances in the use of materials to achieve antigen-specific tolerance and provide commentary on the current state of the clinical development of these technologies.
Collapse
Affiliation(s)
- Sean T. Carey
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher Bridgeman
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
29
|
Yu X, Mai Y, Wei Y, Yu N, Gao T, Yang J. Therapeutic potential of tolerance-based peptide vaccines in autoimmune diseases. Int Immunopharmacol 2023; 116:109740. [PMID: 36696858 DOI: 10.1016/j.intimp.2023.109740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Autoimmune diseases are caused by the dysfunction of the body's immune regulatory system, which leads to the recognition of self-antigens and the destruction of self-tissues and is mediated by immune cells such as T and B cells, and affects 5-10% of the population worldwide. Current treatments such as non-steroidal anti-inflammatory drugs and glucocorticoids can only relieve symptoms of the disease and are accompanied by serious side effects that affect patient quality of life. The recent rise in antigen-specific therapies, especially vaccines carrying autoantigenic peptides, promises to change this disadvantage, where research has increased dramatically in the last decade. This therapy established specific immune tolerance by delivering peptide fragments containing disease-specific self-antigen epitopes to suppress excessive immune responses, thereby exerting a therapeutic effect, with high safety and specificity. This article presents the latest progress on the treatment of autoimmune diseases with autoantigen peptide vaccines. It includes the construction of peptide vaccine delivery system, the mechanism of inducing immune tolerance and its application.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
30
|
Gammon JM, Carey ST, Saxena V, Eppler HB, Tsai SJ, Paluskievicz C, Xiong Y, Li L, Ackun-Farmmer M, Tostanoski LH, Gosselin EA, Yanes AA, Zeng X, Oakes RS, Bromberg JS, Jewell CM. Engineering the lymph node environment promotes antigen-specific efficacy in type 1 diabetes and islet transplantation. Nat Commun 2023; 14:681. [PMID: 36755035 PMCID: PMC9908900 DOI: 10.1038/s41467-023-36225-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.
Collapse
Affiliation(s)
- Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Vikas Saxena
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Haleigh B Eppler
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shannon J Tsai
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA
| | - Marian Ackun-Farmmer
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Alexis A Yanes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Xiangbin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD, 21201, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West 30 Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA.
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Department of Surgery, University of Maryland Medical School, 22 S. Greene Street, S8B06, Baltimore, MD, 21201, USA.
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West 30 Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA.
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, 32 MD 21201, USA.
| |
Collapse
|
31
|
Ackun-Farmmer M, Jewell CM. Enhancing the functionality of self-assembled immune signals using chemical crosslinks. Front Immunol 2023; 14:1079910. [PMID: 36814918 PMCID: PMC9940312 DOI: 10.3389/fimmu.2023.1079910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease that develops when dysfunctional autoreactive lymphocytes attack the myelin sheath in the central nervous system. There are no cures for MS, and existing treatments are associated with unwanted side effects. One approach for treating MS is presenting distinct immune signals (i.e., self-antigen and immunomodulatory cues) to innate and adaptive immune cells to engage multiple signaling pathways involved in MS. We previously developed immune polyelectrolyte multilayer (iPEM) complexes built through layer-by-layer deposition of self-antigen - myelin oligodendrocyte glycoprotein (MOG) - and toll-like receptor antagonist, GpG to treat MS. Here, glutaraldehyde-mediated stable cross-links were integrated into iPEMs to load multiple classes of therapeutics. These cross-linked iPEMs maintain their immunological features, including the ability of GpG to blunt toll-like-receptor 9 signaling and MOG to expand T cells expressing myelin-specific T cell receptors. Lastly, we show that these functional assemblies can be loaded with a critical class of drug - mTOR inhibitors - associated with inducing regulatory T cells. These studies demonstrate the ability to incorporate small molecule drugs in reinforced self-assembled immune signals juxtaposed at high densities. This precision technology contributes new technologies that could drive antigen-specific immune response by simultaneously modulating innate and adaptive immunity.
Collapse
Affiliation(s)
- Marian Ackun-Farmmer
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
- US Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United States
| |
Collapse
|
32
|
Casey LM, Decker JT, Podojil JR, Rad L, Hughes KR, Rose JA, Pearson RM, Miller SD, Shea LD. Nanoparticle dose and antigen loading attenuate antigen-specific T-cell responses. Biotechnol Bioeng 2023; 120:284-296. [PMID: 36221192 PMCID: PMC9999438 DOI: 10.1002/bit.28252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
Immune-mediated hypersensitivities such as autoimmunity, allergy, and allogeneic graft rejection are treated with therapeutics that suppress the immune system, and the lack of specificity is associated with significant side effects. The delivery of disease-relevant antigens (Ags) by carrier systems such as poly(lactide-co-glycolide) nanoparticles (PLG-Ag) and carbodiimide (ECDI)-fixed splenocytes (SP-Ag) has demonstrated Ag-specific tolerance induction in model systems of these diseases. Despite therapeutic outcomes by both platforms, tolerance is conferred with different efficacy. This investigation evaluated Ag loading and total particle dose of PLG-Ag on Ag presentation in a coculture system of dendritic cells (DCs) and Ag-restricted T cells, with SP-Ag employed as a control. CD25 expression was observed in nearly all T cells even at low concentrations of PLG-Ag, indicating efficient presentation of Ag by dendritic cells. However, the secretion of IL-2, Th1, and Th2 cytokines (IFNγ and IL-4, respectively) varied depending on PLG-Ag concentration and Ag loading. Concentration escalation of soluble Ag resulted in an increase in IL-2 and IFNγ and a decrease in IL-4. Treatment with PLG-Ag followed a similar trend but with lower levels of IL-2 and IFNγ secreted. Transcriptional Activity CEll ARrays (TRACER) were employed to measure the real-time transcription factor (TF) activity in Ag-presenting DCs. The kinetics and magnitude of TF activity was dependent on the Ag delivery method, concentration, and Ag loading. Ag positively regulated IRF1 activity and, as carriers, NPs and ECDI-treated SP negatively regulated this signaling. The effect of Ag loading and dose on tolerance induction were corroborated in vivo using the delayed-type hypersensitivity (DTH) and experimental autoimmune encephalomyelitis (EAE) mouse models where a threshold of 8 μg/mg Ag loading and 0.5 mg PLG-Ag dose were required for tolerance. Together, the effect of Ag loading and dosing on in vitro and in vivo immune regulation provide useful insights for translating Ag-carrier systems for the clinical treatment of immune disorders.
Collapse
Affiliation(s)
- Liam M. Casey
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Joseph T. Decker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Joseph R. Podojil
- Department of Microbiology‐Immunology, Feinberg School of MedicineNorthwestern UniversityChicagollinoisUSA
| | - Laila Rad
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin R. Hughes
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Justin A. Rose
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Ryan M. Pearson
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Stephen D. Miller
- Department of Microbiology‐Immunology, Feinberg School of MedicineNorthwestern UniversityChicagollinoisUSA
- Department of Microbiology‐Immunology and the Interdepartmental Immunobiology Center, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Lonnie D. Shea
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
33
|
Rui Y, Eppler HB, Yanes AA, Jewell CM. Tissue-Targeted Drug Delivery Strategies to Promote Antigen-Specific Immune Tolerance. Adv Healthc Mater 2023; 12:e2202238. [PMID: 36417578 PMCID: PMC9992113 DOI: 10.1002/adhm.202202238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
During autoimmunity or organ transplant rejection, the immune system attacks host or transplanted tissue, causing debilitating inflammation for millions of patients. There is no cure for most of these diseases. Further, available therapies modulate inflammation through nonspecific pathways, reducing symptoms but also compromising patients' ability to mount healthy immune responses. Recent preclinical advances to regulate immune dysfunction with vaccine-like antigen specificity reveal exciting opportunities to address the root cause of autoimmune diseases and transplant rejection. Several of these therapies are currently undergoing clinical trials, underscoring the promise of antigen-specific tolerance. Achieving antigen-specific tolerance requires precision and often combinatorial delivery of antigen, cytokines, small molecule drugs, and other immunomodulators. This can be facilitated by biomaterial technologies, which can be engineered to orient and display immunological cues, protect against degradation, and selectively deliver signals to specific tissues or cell populations. In this review, some key immune cell populations involved in autoimmunity and healthy immune tolerance are described. Opportunities for drug delivery to immunological organs are discussed, where specialized tissue-resident immune cells can be programmed to respond in unique ways toward antigens. Finally, cell- and biomaterial-based therapies to induce antigen-specific immune tolerance that are currently undergoing clinical trials are highlighted.
Collapse
Affiliation(s)
- Yuan Rui
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Haleigh B. Eppler
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
| | - Alexis A. Yanes
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Biological Sciences Training ProgramUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
34
|
Nguyen TL, Choi Y, Im J, Shin H, Phan NM, Kim MK, Choi SW, Kim J. Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance. Nat Commun 2022; 13:7449. [PMID: 36460677 PMCID: PMC9718828 DOI: 10.1038/s41467-022-35263-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Current therapies for autoimmune diseases, such as multiple sclerosis (MS), induce broad suppression of the immune system, potentially promoting opportunistic infections. Here, we report an immunosuppressive biomaterial-based therapeutic vaccine carrying self-antigen and tolerance-inducing inorganic nanoparticles to treat experimental autoimmune encephalomyelitis (EAE), a mouse model mimicking human MS. Immunization with self-antigen-loaded mesoporous nanoparticles generates Foxp3+ regulatory T-cells in spleen and systemic immune tolerance in EAE mice, reducing central nervous system-infiltrating antigen-presenting cells (APCs) and autoreactive CD4+ T-cells. Introducing reactive oxygen species (ROS)-scavenging cerium oxide nanoparticles (CeNP) to self-antigen-loaded nanovaccine additionally suppresses activation of APCs and enhances antigen-specific immune tolerance, inducing recovery in mice from complete paralysis at the late, chronic stage of EAE, which shows similarity to chronic human MS. This study clearly shows that the ROS-scavenging capability of catalytic inorganic nanoparticles could be utilized to enhance tolerogenic features in APCs, leading to antigen-specific immune tolerance, which could be exploited in treating MS.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Youngjin Choi
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.35541.360000000121053345Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Jihye Im
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Hyunsu Shin
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Ngoc Man Phan
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Min Kyung Kim
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea
| | - Seung Woo Choi
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.412480.b0000 0004 0647 3378Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| | - Jaeyun Kim
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XInstitute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| |
Collapse
|
35
|
Treatment with an antigen-specific dual microparticle system reverses advanced multiple sclerosis in mice. Proc Natl Acad Sci U S A 2022; 119:e2205417119. [PMID: 36256820 PMCID: PMC9618088 DOI: 10.1073/pnas.2205417119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antigen-specific therapies hold promise for treating autoimmune diseases such as multiple sclerosis while avoiding the deleterious side effects of systemic immune suppression due to delivering the disease-specific antigen as part of the treatment. In this study, an antigen-specific dual-sized microparticle (dMP) treatment reversed hind limb paralysis when administered in mice with advanced experimental autoimmune encephalomyelitis (EAE). Treatment reduced central nervous system (CNS) immune cell infiltration, demyelination, and inflammatory cytokine levels. Mechanistic insights using single-cell RNA sequencing showed that treatment impacted the MHC II antigen presentation pathway in dendritic cells, macrophages, B cells, and microglia, not only in the draining lymph nodes but also strikingly in the spinal cord. CD74 and cathepsin S were among the common genes down-regulated in most antigen presenting cell (APC) clusters, with B cells also having numerous MHC II genes reduced. Efficacy of the treatment diminished when B cells were absent, suggesting their impact in this therapy, in concert with other immune populations. Activation and inflammation were reduced in both APCs and T cells. This promising antigen-specific therapeutic approach advantageously engaged essential components of both innate and adaptive autoimmune responses and capably reversed paralysis in advanced EAE without the use of a broad immunosuppressant.
Collapse
|
36
|
Puricelli C, Boggio E, Gigliotti CL, Stoppa I, Sutti S, Rolla R, Dianzani U. Cutting-Edge Delivery Systems and Adjuvants in Tolerogenic Vaccines: A Review. Pharmaceutics 2022; 14:1782. [PMID: 36145531 PMCID: PMC9501480 DOI: 10.3390/pharmaceutics14091782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional therapies for immune-mediated diseases, including autoimmune disorders, transplant reactions, and allergies, have undergone a radical evolution in the last few decades; however, they are still not specific enough to avoid widespread immunosuppression. The idea that vaccine usage could be extended beyond its traditional immunogenic function by encompassing the ability of vaccines to induce antigen-specific tolerance may revolutionize preventive and therapeutic strategies in several clinical fields that deal with immune-mediated disorders. This approach has been supported by improved data relating to the several mechanisms involved in controlling unwanted immune responses and allowing peripheral tolerance. Given these premises, several approaches have been developed to induce peripheral tolerance against the antigens that are involved in the pathological immune response, including allergens, autoantigens, and alloantigens. Technological innovations, such as nucleic acid manipulation and the advent of micro- and nanoparticles, have further supported these novel preventive and therapeutic approaches. This review focuses on the main strategies used in the development of tolerogenic vaccines, including the technological issues used in their design and the role of "inverse adjuvants". Even though most studies are still limited to the preclinical field, the enthusiasm generated by their results has prompted some initial clinical trials, and they show great promise for the future management of immune-mediated pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy
| | | |
Collapse
|
37
|
From vaccines to nanovaccines: A promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release 2022; 350:107-121. [PMID: 35977582 DOI: 10.1016/j.jconrel.2022.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is a joint-related autoimmune disease that is difficult to cure. Most therapeutics act to alleviate the symptoms but not correct the causes of RA. Novel strategies that specifically target the causes are highly needed for RA management. Currently, early interruption of RA is increasingly suggested but the corresponding therapeutics are not available. Vaccines that have shown great success to combat infection, cancer, degenerative diseases, autoimmune diseases, etc. are ideal candidates for a new generation of anti-RA therapeutics to correct the causes and prevent RA or interrupt RA in early phases. Anti-RA vaccines can be divided into two major categories. One is to induce neutralizing antibodies and the other is to induce antigen-specific immune tolerance. The vaccines are inherently linked to nanotechnology because they usually need a biomacromolecule or carrier to provoke sufficient immune responses. In the past decade, designed nanocarriers such as nanoparticles, liposomes, nanoemulsion, etc., have been applied to optimize the vaccines for autoimmune disease treatment. Nanotechnology endows vaccines with a higher biostability, tunable in vivo behavior, better targeting, co-delivery with stimulatory agents, regulatory effects on immune responses, etc. In this review, unmet medical needs for RA treatment and anti-RA vaccinology are first introduced. The development of anti-RA therapies from vaccines to nanovaccines are then reviewed and perspectives on how nanotechnology promotes vaccine development and advancement are finally provided. In addition, challenges for anti-RA vaccine development are summarized and advantages of nanovaccines are analyzed. In conclusion, nanovaccines will be a promising strategy to revolutionize the treatment of RA by correcting the causes in an early phase of RA.
Collapse
|
38
|
Andorko JI, Tsai SJ, Gammon JM, Carey ST, Zeng X, Gosselin EA, Edwards C, Shah SA, Hess KL, Jewell CM. Spatial delivery of immune cues to lymph nodes to define therapeutic outcomes in cancer vaccination. Biomater Sci 2022; 10:4612-4626. [PMID: 35796247 PMCID: PMC9392868 DOI: 10.1039/d2bm00403h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently approved cancer immunotherapies - including CAR-T cells and cancer vaccination, - show great promise. However, these technologies are hindered by the complexity and cost of isolating and engineering patient cells ex vivo. Lymph nodes (LNs) are key tissues that integrate immune signals to coordinate adaptive immunity. Directly controlling the signals and local environment in LNs could enable potent and safe immunotherapies without cell isolation, engineering, and reinfusion. Here we employ intra-LN (i.LN.) injection of immune signal-loaded biomaterial depots to directly control cancer vaccine deposition, revealing how the combination and geographic distribution of signals in and between LNs impact anti-tumor response. We show in healthy and diseased mice that relative proximity of antigen and adjuvant in LNs - and to tumors - defines unique local and systemic characteristics of innate and adaptive response. These factors ultimately control survival in mouse models of lymphoma and melanoma. Of note, with appropriate geographic signal distributions, a single i.LN. vaccine treatment confers near-complete survival to tumor challenge and re-challenge 100 days later, without additional treatments. These data inform design criteria for immunotherapies that leverage biomaterials for loco-regional LN therapy to generate responses that are systemic and specific, without systemically exposing patients to potent or immunotoxic drugs.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shannon J Tsai
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Xiangbin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Krystina L Hess
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD 21201, USA
| |
Collapse
|
39
|
Li H, Yang YG, Sun T. Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Front Bioeng Biotechnol 2022; 10:889291. [PMID: 35464732 PMCID: PMC9019755 DOI: 10.3389/fbioe.2022.889291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune disease is a chronic inflammatory disease caused by disorders of immune regulation. Antigen-specific immunotherapy has the potential to inhibit the autoreactivity of inflammatory T cells and induce antigen-specific immune suppression without impairing normal immune function, offering an ideal strategy for autoimmune disease treatment. Tolerogenic dendritic cells (Tol DCs) with immunoregulatory functions play important roles in inducing immune tolerance. However, the effective generation of tolerogenic DCs in vivo remains a great challenge. The application of nanoparticle-based drug delivery systems in autoimmune disease treatment can increase the efficiency of inducing antigen-specific tolerance in vivo. In this review, we discuss multiple nanoparticles, with a focus on their potential in treatment of autoimmune diseases. We also discuss how the physical properties of nanoparticles influence their therapeutic efficacy.
Collapse
Affiliation(s)
- He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- Department of Rehabilitation Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
40
|
Casey LM, Hughes KR, Saunders MN, Miller SD, Pearson RM, Shea LD. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials 2022; 283:121457. [PMID: 35286851 PMCID: PMC11225973 DOI: 10.1016/j.biomaterials.2022.121457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
The intravenous delivery of disease-relevant antigens (Ag) by polymeric nanoparticles (NP-Ags) has demonstrated Ag-specific immune tolerance in autoimmune and allergic disorders as well as allogeneic transplant rejection. NP-Ags are observed to distribute to the spleen, which has an established role in the induction of immune tolerance. However, studies have shown that the spleen is dispensable for NP-Ag-induced tolerance, suggesting significant contributions from other immunological sites. Here, we investigated the tolerogenic contributions of Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs) to NP-Ag-induced tolerance in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Intravenously delivered Ag-conjugated poly(lactide-co-glycolide) NPs (PLG-Ag) distributed largely to the liver, where they associated with both KCs and LSECs. This distribution was accompanied by CD4 T cell accumulation, clonal deletion, and PD-L1 expression by KCs and LSECs. Ex vivo co-cultures of PLG-Ag-treated KCs or LSECs with Ag-specific CD4 T cells resulted in PGE2 and IL-10 or PGE2 secretion, respectively. KC depletion and adoptive transfer experiments demonstrated that KCs were sufficient, but not necessary, to mediate PLG-Ag-induced tolerance in EAE. The durability of PLG-Ag-induced tolerance in the absence of KCs may be attributed to the distribution of PLG-Ags to LSECs, which demonstrated similar levels of PD-L1, PGE2, and T cell stimulatory ability. Collectively, these studies provide mechanistic support for the role of liver KCs and LSECs in Ag-specific tolerance for a biomaterial platform that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA; Medical Scientist Training Program, University of Michigan, 1135 Catherine St., 2965 Taubman Health Sciences Library, Ann Arbor, MI, 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA; Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Rahiman N, Mohammadi M, Alavizadeh SH, Arabi L, Badiee A, Jaafari MR. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J Control Release 2022; 343:620-644. [PMID: 35176392 DOI: 10.1016/j.jconrel.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease with complicated immunopathology which necessitates considering multifactorial aspects for its management. Nano-sized pharmaceutical carriers named nanoparticles (NPs) can support impressive management of disease not only in early detection and prognosis level but also in a therapeutic manner. The most prominent initiator of MS is the domination of cellular immunity to humoral immunity and increment of inflammatory cytokines. The administration of several platforms of NPs for MS management holds great promise so far. The efforts for MS management through in vitro and in vivo (experimental animal models) evaluations, pave a new way to a highly efficient therapeutic means and aiding its translation to the clinic in the near future.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Jiang L, Yilmaz M, Uehara M, Cavazzoni CB, Kasinath V, Zhao J, Naini SM, Li X, Banouni N, Fiorina P, Shin SR, Tullius SG, Bromberg JS, Sage PT, Abdi R. Characterization of Leptin Receptor + Stromal Cells in Lymph Node. Front Immunol 2022; 12:730438. [PMID: 35111151 PMCID: PMC8801441 DOI: 10.3389/fimmu.2021.730438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Lymph node (LN)-resident stromal cells play an essential role in the proper functioning of LNs. The stromal compartment of the LN undergoes significant compensatory changes to produce a milieu amenable for regulation of the immune response. We have identified a distinct population of leptin receptor-expressing (LepR+) stromal cells, located in the vicinity of the high endothelial venules (HEVs) and lymphatics. These LepR+ stromal cells expressed markers for fibroblastic reticular cells (FRCs), but they lacked markers for follicular dendritic cells (FDCs) and marginal reticular cells (MRCs). Leptin signaling deficiency led to heightened inflammatory responses within the LNs of db/db mice, leakiness of HEVs, and lymphatic fragmentation. Leptin signaling through the JAK/STAT pathway supported LN stromal cell survival and promoted the anti-inflammatory properties of these cells. Conditional knockout of the LepR+ stromal cells in LNs resulted in HEV and extracellular matrix (ECM) abnormalities. Treatment of ob/ob mice with an agonist leptin fusion protein restored the microarchitecture of LNs, reduced intra-LN inflammatory responses, and corrected metabolic abnormalities. Future studies are needed to study the importance of LN stomal cell dysfunction to the pathogenesis of inflammatory responses in type 2 diabetes (T2D) in humans.
Collapse
Affiliation(s)
- Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Mine Yilmaz
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Said Movahedi Naini
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Fiorina
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan S. Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|
44
|
Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-Adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. NATURE REVIEWS. MATERIALS 2022; 7:796-813. [PMID: 35874960 PMCID: PMC9295115 DOI: 10.1038/s41578-022-00458-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 05/02/2023]
Abstract
Acute inflammation is essential for initiating and coordinating the body's response to injuries and infections. However, in acute inflammatory diseases, inflammation is not resolved but propagates further, which can ultimately lead to tissue damage such as in sepsis, acute respiratory distress syndrome and deep vein thrombosis. Currently, clinical protocols are limited to systemic steroidal treatments, fluids and antibiotics that focus on eradicating inflammation rather than modulating it. Strategies based on stem cell therapeutics and selective blocking of inflammatory molecules, despite showing great promise, still lack the scalability and specificity required to treat acute inflammation. By contrast, polymeric particle systems benefit from uniform manufacturing at large scales while preserving biocompatibility and versatility, thus providing an ideal platform for immune modulation. Here, we outline design aspects of polymeric particles including material, size, shape, deformability and surface modifications, providing a strategy for optimizing the targeting of acute inflammation.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | | | - Noah J. Pacifici
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | - Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | | |
Collapse
|
45
|
Carey ST, Gammon JM, Jewell CM. Biomaterial-enabled induction of pancreatic-specific regulatory T cells through distinct signal transduction pathways. Drug Deliv Transl Res 2021; 11:2468-2481. [PMID: 34611846 PMCID: PMC8581478 DOI: 10.1007/s13346-021-01075-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases-where the immune system mistakenly targets self-tissue-remain hindered by non-specific therapies. For example, even molecularly specific monoclonal antibodies fail to distinguish between healthy cells and self-reactive cells. An experimental therapeutic approach involves delivery of self-molecules targeted by autoimmunity, along with immune modulatory signals to produce regulatory T cells (TREG) that selectively stop attack of host tissue. Much has been done to increase the efficiency of signal delivery using biomaterials, including encapsulation in polymer microparticles (MPs) to allow for co-delivery and cargo protection. However, less research has compared particles encapsulating drugs that target different TREG inducing pathways. In this paper, we use poly (lactic-co-glycolide) (PLGA) to co-encapsulate type 1 diabetes (T1D)-relevant antigen and 3 distinct TREG-inducing molecules - rapamycin (Rapa), all-trans retinoic acid (atRA), and butyrate (Buty) - that target the mechanistic target of Rapa (mTOR), the retinoid pathway, and histone deacetylase (HDAC) inhibition, respectively. We show all formulations are effectively taken up by antigen presenting cells (APCs) and that antigen-containing formulations are able to induce proliferation in antigen-specific T cells. Further, atRA and Rapa MP formulations co-loaded with antigen decrease APC activation levels, induce TREG differentiation, and reduce inflammatory cytokines in pancreatic-reactive T cells.
Collapse
Affiliation(s)
- Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA.
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
46
|
Nguyen JH, Jiang L(J, Kang L, Malik S, Orlando C, Zubair A, Rehman FK. Intranodal Sirolimus Induces Regulatory T Cells in Human Hepatic Lymph Nodes via Interleukin 10 Signaling. Liver Transpl 2021; 27:1669-1672. [PMID: 34133835 PMCID: PMC8965470 DOI: 10.1002/lt.26214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Justin H. Nguyen
- Division of Transplant SurgeryDepartment of TransplantationMayo ClinicJacksonvilleFL
| | | | - Lu Kang
- Basic Research UnitMayo ClinicJacksonvilleFL
| | - Sunita Malik
- Department of Laboratory Medicine and PathologyMayo ClinicJacksonvilleFL
| | | | - Abba Zubair
- Department of Laboratory Medicine and PathologyMayo ClinicJacksonvilleFL
| | | |
Collapse
|
47
|
Bentley ER, Little SR. Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev 2021; 178:113971. [PMID: 34530013 PMCID: PMC8556365 DOI: 10.1016/j.addr.2021.113971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Immune homeostasis is maintained by a precise balance between effector immune cells and regulatory immune cells. Chronic deviations from immune homeostasis, driven by a greater ratio of effector to regulatory cues, can promote the development and propagation of inflammatory diseases/conditions (i.e., autoimmune diseases, transplant rejection, etc.). Current methods to treat chronic inflammation rely upon systemic administration of non-specific small molecules, resulting in broad immunosuppression with unwanted side effects. Consequently, recent studies have developed more localized and specific immunomodulatory approaches to treat inflammation through the use of local biomaterial-based delivery systems. In particular, this review focuses on (1) local biomaterial-based delivery systems, (2) common materials used for polymeric-delivery systems and (3) emerging immunomodulatory trends used to treat inflammation with increased specificity.
Collapse
Affiliation(s)
- Elizabeth R Bentley
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States.
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States; Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, United States; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, United States; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, United States.
| |
Collapse
|
48
|
Howard GP, Bender NG, Khare P, López-Gutiérrez B, Nyasembe V, Weiss WJ, Simecka JW, Hamerly T, Mao HQ, Dinglasan RR. Immunopotentiation by Lymph-Node Targeting of a Malaria Transmission-Blocking Nanovaccine. Front Immunol 2021; 12:729086. [PMID: 34512663 PMCID: PMC8432939 DOI: 10.3389/fimmu.2021.729086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
A successful malaria transmission blocking vaccine (TBV) requires the induction of a high antibody titer that leads to abrogation of parasite traversal of the mosquito midgut following ingestion of an infectious bloodmeal, thereby blocking the cascade of secondary human infections. Previously, we developed an optimized construct UF6b that elicits an antigen-specific antibody response to a neutralizing epitope of Anopheline alanyl aminopeptidase N (AnAPN1), an evolutionarily conserved pan-malaria mosquito midgut-based TBV target, as well as established a size-controlled lymph node targeting biodegradable nanoparticle delivery system that leads to efficient and durable antigen-specific antibody responses using the model antigen ovalbumin. Herein, we demonstrate that co-delivery of UF6b with the adjuvant CpG oligodeoxynucleotide immunostimulatory sequence (ODN ISS) 1018 using this biodegradable nanoparticle vaccine delivery system generates an AnAPN1-specific immune response that blocks parasite transmission in a standard membrane feeding assay. Importantly, this platform allows for antigen dose-sparing, wherein lower antigen payloads elicit higher-quality antibodies, therefore less antigen-specific IgG is needed for potent transmission-reducing activity. By targeting lymph nodes directly, the resulting immunopotentiation of AnAPN1 suggests that the de facto assumption that high antibody titers are needed for a TBV to be successful needs to be re-examined. This nanovaccine formulation is stable at -20°C storage for at least 3 months, an important consideration for vaccine transport and distribution in regions with poor healthcare infrastructure. Together, these data support further development of this nanovaccine platform for malaria TBVs.
Collapse
Affiliation(s)
- Gregory P Howard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Nicole G Bender
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Prachi Khare
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Borja López-Gutiérrez
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Vincent Nyasembe
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - William J Weiss
- Department of Pharmaceutical Sciences and UNTHSC Preclinical Services, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jerry W Simecka
- Department of Pharmaceutical Sciences and UNTHSC Preclinical Services, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Timothy Hamerly
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore MD, United States
| | - Rhoel R Dinglasan
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
49
|
Presence of Donor Lymph Nodes Within Vascularized Composite Allotransplantation Ameliorates VEGF-C-mediated Lymphangiogenesis and Delays the Onset of Acute Rejection. Transplantation 2021; 105:1747-1759. [PMID: 34291766 DOI: 10.1097/tp.0000000000003601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The lymphatic system plays an active role in modulating inflammation in autoimmune diseases and organ rejection. In this work, we hypothesized that the transfer of donor lymph node (LN) might be used to promote lymphangiogenesis and influence rejection in vascularized composite allotransplantation (VCA). METHODS Hindlimb transplantations were performed in which (1) recipient rats received VCA containing donor LN (D:LN+), (2) recipient rats received VCA depleted of all donor LN (D:LN-), and (3) D:LN+ transplantations were followed by lymphangiogenesis inhibition using a vascular endothelial growth factor receptor-3 (VEGFR3) blocker. RESULTS Our data show that graft rejection started significantly later in D:LN+ transplanted rats as compared to the D:LN- group. Moreover, we observed a higher level of VEGF-C and a quicker and more efficient lymphangiogenesis in the D:LN+ group as compared to the D:LN- group. The presence of donor LN within the graft was associated with reduced immunoactivation in the draining LN and increased frequency of circulating and skin-resident donor T regulatory cells. Blocking of the VEGF-C pathway using a VEGFR3 blocker disrupts the lymphangiogenesis process, accelerates rejection onset, and interferes with donor T-cell migration. CONCLUSIONS This study demonstrates that VCA LNs play a pivotal role in the regulation of graft rejection and underlines the potential of specifically targeting the LN component of a VCA to control graft rejection.
Collapse
|
50
|
Kwon SP, Hwang BH, Park EH, Kim HY, Lee JR, Kang M, Song SY, Jung M, Sohn HS, Kim E, Kim CW, Lee KY, Oh GC, Choo E, Lim S, Chung Y, Chang K, Kim BS. Nanoparticle-Mediated Blocking of Excessive Inflammation for Prevention of Heart Failure Following Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101207. [PMID: 34216428 DOI: 10.1002/smll.202101207] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Severe cardiac damage following myocardial infarction (MI) causes excessive inflammation, which sustains tissue damage and often induces adverse cardiac remodeling toward cardiac function impairment and heart failure. Timely resolution of post-MI inflammation may prevent cardiac remodeling and development of heart failure. Cell therapy approaches for MI are time-consuming and costly, and have shown marginal efficacy in clinical trials. Here, nanoparticles targeting the immune system to attenuate excessive inflammation in infarcted myocardium are presented. Liposomal nanoparticles loaded with MI antigens and rapamycin (L-Ag/R) enable effective induction of tolerogenic dendritic cells presenting the antigens and subsequent induction of antigen-specific regulatory T cells (Tregs). Impressively, intradermal injection of L-Ag/R into acute MI mice attenuates inflammation in the myocardium by inducing Tregs and an inflammatory-to-reparative macrophage polarization, inhibits adverse cardiac remodeling, and improves cardiac function. Nanoparticle-mediated blocking of excessive inflammation in infarcted myocardium may be an effective intervention to prevent the development of post-MI heart failure.
Collapse
Affiliation(s)
- Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Hee Hwang
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eun-Hye Park
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eunmin Kim
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Chan Woo Kim
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kwan Yong Lee
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gyu Chul Oh
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eunho Choo
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiyuk Chang
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|