1
|
Schuster D, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-Related Mutagenic and Clastogenic Effects of Benzo[ b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21450-21463. [PMID: 39602390 PMCID: PMC11636207 DOI: 10.1021/acs.est.4c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[b]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28 day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G > A:T mutations, followed by C:G > T:A and C:G > G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[a]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants.
Collapse
Affiliation(s)
| | | | - Gu Zhou
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Matthew J. Meier
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Annette E. Dodge
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Paul A. White
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Alexandra S. Long
- Existing
Substances Risk Assessment Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
| | - Cheryl Hobbs
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Alex Diesing
- Integrated
Laboratory Systems, LLC, an Inotiv Company, Research Triangle Park 27560, North Carolina, United States
| | - Stephanie L. Smith-Roe
- Division
of Translational Toxicology, National Institute
of Environmental Health Sciences, Research Triangle Park 27709, North Carolina, United States
| | - Jesse J. Salk
- Department
of Medicine, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle 98195, Washington, United
States
| | - Francesco Marchetti
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa K1A 0K9, Canada
- Department
of Biology, Carleton University, Ottawa K1N6N5, Canada
| | - Carole L. Yauk
- Department
of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
2
|
Hu S, Wu C, Li D, Jiang X, Wang P, Bi G, Ouyang H, Liang F, Zhou W, Yang X, Fang JH, Bi H. Pregnane X receptor activation promotes hematopoiesis during liver regeneration by inducing proliferation of hematopoietic stem and progenitor cells in mice. Pharmacol Res 2024; 210:107504. [PMID: 39522624 DOI: 10.1016/j.phrs.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Liver regeneration is a complex process that involves the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs). Pregnane X receptor (PXR), also known as NR1I2, is an important regulator for liver enlargement and regeneration. However, the role of PXR activation in hematopoiesis during liver regeneration remains unclear. This study investigates the effects of PXR activation on HSPCs and hematopoiesis during liver regeneration, as well as the underlying mechanisms involved. Using a 70 % partial hepatectomy (PHx) on C57BL/6 wild-type (WT) and Pxr-null mice, we observed a significant correlation between the changes in HSPCs numbers in BM and the process of liver regeneration. PXR activation significantly increased the population of Lineage- Sca-1+ c-Kit+ (LSK) cells in the BM, which are key HSPCs involved in hematopoiesis. Additionally, PXR activation increased serum levels of thrombopoietin (TPO) and erythropoietin (EPO), factors known to support HSPCs proliferation and hematopoiesis in the process of liver regeneration. PXR activation does not affect the hematopoietic function of normal mice. Furthermore, mice subjected to irradiation or busulfan-induced hematopoietic dysfunction exhibited impaired liver regeneration, which was alleviated by PXR activation. Importantly, in Pxr-null mice, the promotive effects of PXR activation on liver regeneration and increase of HSPCs were markedly diminished. Moreover, liver-specific Pxr silencing using AAV-Pxr shRNA attenuated the PXR activation-mediated liver regeneration and increase in BM LSK cells, confirming the critical role of hepatic PXR in hematopoiesis during liver regeneration. Collectively, these findings reveal that PXR activation promotes HSPCs proliferation and hematopoiesis during liver regeneration, providing new insights into the molecular mechanisms underlying the role of PXR in liver regeneration and hematopoiesis.
Collapse
Affiliation(s)
- Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China.
| |
Collapse
|
3
|
Schuster DM, LeBlanc DPM, Zhou G, Meier MJ, Dodge AE, White PA, Long AS, Williams A, Hobbs C, Diesing A, Smith-Roe SL, Salk JJ, Marchetti F, Yauk CL. Dose-related Mutagenic and Clastogenic Effects of Benzo[b]fluoranthene in Mouse Somatic Tissues Detected by Duplex Sequencing and the Micronucleus Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605228. [PMID: 39211269 PMCID: PMC11360995 DOI: 10.1101/2024.07.26.605228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants that originate from the incomplete combustion of organic materials. We investigated the clastogenicity and mutagenicity of benzo[ b ]fluoranthene (BbF), one of 16 priority PAHs, in MutaMouse males after a 28-day oral exposure. BbF causes robust dose-dependent increases in micronucleus frequency in peripheral blood, indicative of chromosome damage. Duplex Sequencing (DS), an error-corrected sequencing technology, reveals that BbF induces dose-dependent increases in mutation frequencies in bone marrow (BM) and liver. Mutagenicity is increased in intergenic relative to genic regions, suggesting a role for transcription-coupled repair of BbF-induced DNA damage. At higher doses, the maximum mutagenic response to BbF is higher in liver, which has a lower mitotic index but higher metabolic capacity than BM; however, mutagenic potency is comparable between the two tissues. BbF induces primarily C:G>A:T mutations, followed by C:G>T:A and C:G>G:C, indicating that BbF metabolites mainly target guanines and cytosines. The mutation spectrum of BbF correlates with cancer mutational signatures associated with tobacco exposure, supporting its contribution to the carcinogenicity of combustion-derived PAHs in humans. Overall, BbF's mutagenic effects are similar to benzo[ a ]pyrene, a well-studied mutagenic PAH. Our work showcases the utility of DS for effective mutagenicity assessment of environmental pollutants. Synopsis We used Duplex Sequencing to study the mutagenicity of benzo[ b ]fluoranthene across the mouse genome. Dose-dependent changes in mutation frequency and spectrum quantify its role in PAH-induced carcinogenicity.
Collapse
|
4
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
5
|
Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road? Cells 2022; 11:cells11152312. [PMID: 35954155 PMCID: PMC9367594 DOI: 10.3390/cells11152312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed.
Collapse
|
6
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
7
|
Bram Y, Nguyen DHT, Gupta V, Park J, Richardson C, Chandar V, Schwartz RE. Cell and Tissue Therapy for the Treatment of Chronic Liver Disease. Annu Rev Biomed Eng 2021; 23:517-546. [PMID: 33974812 PMCID: PMC8864721 DOI: 10.1146/annurev-bioeng-112619-044026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Liver disease is an important clinical problem, impacting 600 million people worldwide. It is the 11th-leading cause of death in the world. Despite constant improvement in treatment and diagnostics, the aging population and accumulated risk factors led to increased morbidity due to nonalcoholic fatty liver disease and steatohepatitis. Liver transplantation, first established in the 1960s, is the second-most-common solid organ transplantation and is the gold standard for the treatment of liver failure. However, less than 10% of the global need for liver transplantation is met at the current rates of transplantation due to the paucity of available organs. Cell- and tissue-based therapies present an alternative to organ transplantation. This review surveys the approaches and tools that have been developed, discusses the distinctive challenges that exist for cell- and tissue-based therapies, and examines the future directions of regenerative therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Duc-Huy T Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Vikas Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chanel Richardson
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; .,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
8
|
Arumugam K, Shin W, Schiavone V, Vlahos L, Tu X, Carnevali D, Kesner J, Paull EO, Romo N, Subramaniam P, Worley J, Tan X, Califano A, Cosma MP. The Master Regulator Protein BAZ2B Can Reprogram Human Hematopoietic Lineage-Committed Progenitors into a Multipotent State. Cell Rep 2020; 33:108474. [PMID: 33296649 DOI: 10.1016/j.celrep.2020.108474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023] Open
Abstract
Bi-species, fusion-mediated, somatic cell reprogramming allows precise, organism-specific tracking of unknown lineage drivers. The fusion of Tcf7l1-/- murine embryonic stem cells with EBV-transformed human B cell lymphocytes, leads to the generation of bi-species heterokaryons. Human mRNA transcript profiling at multiple time points permits the tracking of the reprogramming of B cell nuclei to a multipotent state. Interrogation of a human B cell regulatory network with gene expression signatures identifies 8 candidate master regulator proteins. Of these 8 candidates, ectopic expression of BAZ2B, from the bromodomain family, efficiently reprograms hematopoietic committed progenitors into a multipotent state and significantly enhances their long-term clonogenicity, stemness, and engraftment in immunocompromised mice. Unbiased systems biology approaches let us identify the early driving events of human B cell reprogramming.
Collapse
Affiliation(s)
- Karthik Arumugam
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - William Shin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Valentina Schiavone
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xiaochuan Tu
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Carnevali
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Jordan Kesner
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Evan O Paull
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Neus Romo
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Prem Subramaniam
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xiangtian Tan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, J.P. Sulzberger Columbia Genome Center, Department of Biomedical Informatics, Department of Biochemistry and Molecular Biophysics, Department of Medicine, Columbia University, New York, NY, USA.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
9
|
Wang LJ, Li XX, Hou J, Song XH, Xie WH, Shen L. Integrated Analyses of Mouse Stem Cell Transcriptomes Provide Clues for Stem Cell Maintenance and Transdifferentiation. Front Genet 2020; 11:563798. [PMID: 33101382 PMCID: PMC7500244 DOI: 10.3389/fgene.2020.563798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023] Open
Abstract
In vivo cell fate reprogramming has emerged as a new method for understanding cell plasticity and as potential treatment for tissue regeneration. Highly efficient and precise reprogramming requires fully understanding of the transcriptomes which function within different cell types. Here, we adopt weighted gene co-expression network analysis (WGCNA) to explore the molecular mechanisms of self-renewal in several well-known stem cell types, including embryonic stem cells (ESC), primordial germ cells (PGC), spermatogonia stem cells (SSC), neural stem cells (NSC), mesenchymal stem cells (MSC), and hematopoietic stem cells (HSC). We identified 37 core genes that were up-regulated in all of the stem cell types examined, as well as stem cell correlated gene co-expression networks. The validation of the co-expression genes revealed a continued protein-protein interaction network that included 823 nodes and 3113 edges. Based on the topology, we identified six densely connected regions within the continued protein-protein interaction network. The SSC specific genes Itgam, Cxcr6, and Agtr2 bridged four densely connected regions that consisted primarily of HSC-, NSC-, and MSC-correlated genes. The expression levels of identified stem cell related transcription factors were confirmed consistent with bioinformatics prediction in ESCs and NSCs by qPCR. Exploring the mechanisms underlying adult stem cell self-renewal will aid in the understanding of stem cell pool maintenance and will promote more accurate and efficient strategies for tissue regeneration and repair.
Collapse
Affiliation(s)
- Li-Juan Wang
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xiao-Xiao Li
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Jie Hou
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Xin-Hua Song
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Wen-Hai Xie
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Liang Shen
- Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, Shandong Provincial Research Center for Bioinformatics Engineering and Technique, Institute of Biomedical Research, Shandong University of Technology, Zibo, China.,School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|
10
|
Ritschka B, Knauer-Meyer T, Gonçalves DS, Mas A, Plassat JL, Durik M, Jacobs H, Pedone E, Di Vicino U, Cosma MP, Keyes WM. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev 2020; 34:489-494. [PMID: 32139422 PMCID: PMC7111259 DOI: 10.1101/gad.332643.119] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, Ritschka et al. investigated whether cellular senescence might play a role in loss of regenerative capacity during liver regeneration. They show that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response, and that treatment with a senescence-inhibiting drug improves regeneration through targeting aberrantly prolonged p21 expression. Young mammals possess a limited regenerative capacity in some tissues, which is lost upon maturation. We investigated whether cellular senescence might play a role in such loss during liver regeneration. We found that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response. However, we show that treatment with a senescence-inhibiting drug improves regeneration, by disrupting aberrantly prolonged p21 expression. This work suggests that senescence may initially develop from heterogeneous cellular responses, and that senotherapeutic drugs might be useful in promoting organ regeneration.
Collapse
Affiliation(s)
- Birgit Ritschka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Tania Knauer-Meyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Daniel Sampaio Gonçalves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Alba Mas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Jean-Luc Plassat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Matej Durik
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Hugues Jacobs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France
| | - Elisa Pedone
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Umberto Di Vicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.,Institución Catalana de Investigación y Estudios Avanzados (ICREA), Barcelona 08010, Spain
| | - William M Keyes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67404, France.,UMR7104, Centre National de la Recherche Scientifique (CNRS), Illkirch 67404, France.,U1258, Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch 67404, France.,Université de Strasbourg, Illkirch 67404, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
11
|
Ward D, Montes Olivas S, Fletcher A, Homer M, Marucci L. Cross-talk between Hippo and Wnt signalling pathways in intestinal crypts: Insights from an agent-based model. Comput Struct Biotechnol J 2020; 18:230-240. [PMID: 33489001 PMCID: PMC7790739 DOI: 10.1016/j.csbj.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 12/01/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal crypts are responsible for the total cell renewal of the lining of the intestines; this turnover is governed by the interplay between signalling pathways and the cell cycle. The role of Wnt signalling in cell proliferation and differentiation in the intestinal crypt has been extensively studied, with increased signalling found towards the lower regions of the crypt. Recent studies have shown that the Wnt signalling gradient found within the crypt may arise as a result of division-based spreading from a Wnt ‘reservoir’ at the crypt base. The discovery of the Hippo pathway’s involvement in maintaining crypt homeostasis is more recent; a mechanistic understanding of Hippo pathway dynamics, and its possible cross-talk with the Wnt pathway, remains lacking. To explore how the interplay between these pathways may control crypt homeostasis, we extended an ordinary differential equation model of the Wnt signalling pathway to include a phenomenological description of Hippo signalling in single cells, and then coupled it to a cell-based description of cell movement, proliferation and contact inhibition in agent-based simulations. Furthermore, we compared an imposed Wnt gradient with a division-based Wnt gradient model. Our results suggest that Hippo signalling affects the Wnt pathway by reducing the presence of free cytoplasmic β-catenin, causing cell cycle arrest. We also show that a division-based spreading of Wnt can form a Wnt gradient, resulting in proliferative dynamics comparable to imposed-gradient models. Finally, a simulated APC double mutant, with misregulated Wnt and Hippo signalling activity, is predicted to cause monoclonal conversion of the crypt.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Alexander Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK.,Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Ofenbauer A, Tursun B. Strategies for in vivo reprogramming. Curr Opin Cell Biol 2019; 61:9-15. [DOI: 10.1016/j.ceb.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
|
13
|
Pedone E, Postiglione L, Aulicino F, Rocca DL, Montes-Olivas S, Khazim M, di Bernardo D, Pia Cosma M, Marucci L. A tunable dual-input system for on-demand dynamic gene expression regulation. Nat Commun 2019; 10:4481. [PMID: 31578371 PMCID: PMC6775159 DOI: 10.1038/s41467-019-12329-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular systems have evolved numerous mechanisms to adapt to environmental stimuli, underpinned by dynamic patterns of gene expression. In addition to gene transcription regulation, modulation of protein levels, dynamics and localization are essential checkpoints governing cell functions. The introduction of inducible promoters has allowed gene expression control using orthogonal molecules, facilitating its rapid and reversible manipulation to study gene function. However, differing protein stabilities hinder the generation of protein temporal profiles seen in vivo. Here, we improve the Tet-On system integrating conditional destabilising elements at the post-translational level and permitting simultaneous control of gene expression and protein stability. We show, in mammalian cells, that adding protein stability control allows faster response times, fully tunable and enhanced dynamic range, and improved in silico feedback control of gene expression. Finally, we highlight the effectiveness of our dual-input system to modulate levels of signalling pathway components in mouse Embryonic Stem Cells.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lorena Postiglione
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Francesco Aulicino
- BrisSynBio, Bristol, BS8 1TQ, UK
- Department of Biochemistry, Bristol, BS8 1TD, UK
| | - Dan L Rocca
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| | - Sandra Montes-Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Mahmoud Khazim
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08002, Barcelona, Spain
- Universitati Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Luis Companys, 08010, Barcelona, Spain
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), 510005, Guangzhou, China
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 510530, Guangzhou, China
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
14
|
Frade J, Nakagawa S, Cortes P, di Vicino U, Romo N, Lluis F, Cosma MP. Controlled ploidy reduction of pluripotent 4n cells generates 2n cells during mouse embryo development. SCIENCE ADVANCES 2019; 5:eaax4199. [PMID: 31663024 PMCID: PMC6795515 DOI: 10.1126/sciadv.aax4199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Cells with high ploidy content are common in mammalian extraembryonic and adult tissues. Cell-to-cell fusion generates polyploid cells during mammalian development and tissue regeneration. However, whether increased ploidy can be occasionally tolerated in embryonic lineages still remains largely unknown. Here, we show that pluripotent, fusion-derived tetraploid cells, when injected in a recipient mouse blastocyst, can generate diploid cells upon ploidy reduction. The generated diploid cells form part of the adult tissues in mouse chimeras. Parental chromosomes in pluripotent tetraploid cells are segregated through tripolar mitosis both randomly and nonrandomly and without aneuploidy. Tetraploid-derived diploid cells show a differentiated phenotype. Overall, we discovered an unexpected process of controlled genome reduction in pluripotent tetraploid cells. This mechanism can ultimately generate diploid cells during mouse embryo development and should also be considered for cell fusion-mediated tissue regeneration approaches.
Collapse
Affiliation(s)
- João Frade
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Stem Cell Institute Leuven (SCIL), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Paola Cortes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Umberto di Vicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Neus Romo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Frederic Lluis
- Stem Cell Institute Leuven (SCIL), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| |
Collapse
|
15
|
Mesenchymal Stem Cells in the Adult Human Liver: Hype or Hope? Cells 2019; 8:cells8101127. [PMID: 31546729 PMCID: PMC6830330 DOI: 10.3390/cells8101127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases constitute a significant economic, social, and biomedical burden. Among commonly adopted approaches, only organ transplantation can radically help patients with end-stage liver pathologies. Cell therapy with hepatocytes as a treatment for chronic liver disease has demonstrated promising results. However, quality human hepatocytes are in short supply. Stem/progenitor cells capable of differentiating into functionally active hepatocytes provide an attractive alternative approach to cell therapy for liver diseases, as well as to liver-tissue engineering, drug screening, and basic research. The application of methods generally used to isolate mesenchymal stem cells (MSCs) and maintain them in culture to human liver tissue provides cells, designated here as liver MSCs. They have much in common with MSCs from other tissues, but differ in two aspects-expression of a range of hepatocyte-specific genes and, possibly, inherent commitment to hepatogenic differentiation. The aim of this review is to analyze data regarding liver MSCs, probably another type of liver stem/progenitor cells different from hepatic stellate cells or so-called hepatic progenitor cells. The review presents an analysis of the phenotypic characteristics of liver MSCs, their differentiation and therapeutic potential, methods for isolating these cells from human liver, and discusses issues of their origin and heterogeneity. Human liver MSCs are a fascinating object of fundamental research with a potential for important practical applications.
Collapse
|
16
|
Zafarnia S, Mrugalla A, Rix A, Doleschel D, Gremse F, Wolf SD, Buyel JF, Albrecht U, Bode JG, Kiessling F, Lederle W. Non-invasive Imaging and Modeling of Liver Regeneration After Partial Hepatectomy. Front Physiol 2019; 10:904. [PMID: 31379606 PMCID: PMC6652107 DOI: 10.3389/fphys.2019.00904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
The liver has a unique regenerative capability upon injury or partial resection. The regeneration process comprises a complex interplay between parenchymal and non-parenchymal cells and is tightly regulated at different scales. Thus, we investigated liver regeneration using multi-scale methods by combining non-invasive imaging with immunohistochemical analyses. In this context, non-invasive imaging can provide quantitative data of processes involved in liver regeneration at organ and body scale. We quantitatively measured liver volume recovery after 70% partial hepatectomy (PHx) by micro computed tomography (μCT) and investigated changes in the density of CD68+ macrophages by fluorescence-mediated tomography (FMT) combined with μCT using a newly developed near-infrared fluorescent probe. In addition, angiogenesis and tissue-resident macrophages were analyzed by immunohistochemistry. Based on the results, a model describing liver regeneration and the interactions between different cell types was established. In vivo analysis of liver volume regeneration over 21 days after PHx by μCT imaging demonstrated that the liver volume rapidly increased after PHx reaching a maximum at day 14 and normalizing until day 21. An increase in CD68+ macrophage density in the liver was detected from day 4 to day 8 by combined FMT-μCT imaging, followed by a decline towards control levels between day 14 and day 21. Immunohistochemistry revealed the highest angiogenic activity at day 4 after PHx that continuously declined thereafter, whereas the density of tissue-resident CD169+ macrophages was not altered. The simulated time courses for volume recovery, angiogenesis and macrophage density reflect the experimental data describing liver regeneration after PHx at organ and tissue scale. In this context, our study highlights the importance of non-invasive imaging for acquiring quantitative organ scale data that enable modeling of liver regeneration.
Collapse
Affiliation(s)
- Sara Zafarnia
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna Mrugalla
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Dennis Doleschel
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stephanie D Wolf
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ute Albrecht
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Johannes G Bode
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wiltrud Lederle
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
17
|
Cellular Reprogramming as a Therapeutic Target in Cancer. Trends Cell Biol 2019; 29:623-634. [PMID: 31153655 DOI: 10.1016/j.tcb.2019.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022]
Abstract
Cancer heterogeneity has long been recognized as an important clinical determinant of patient outcomes and, thus, many new cancer treatments have been designed to target these different cells. Despite the short-term achievements of current therapies, including chemotherapy, antiangiogenesis therapy, radiotherapy, and immunotherapy, the long-term success of cancer regression remains poor. Therefore, researchers have investigated a new property, cellular reprogramming, in cancer that not only contributes to the classic hallmarks of cancer, but also suggests that cancer is a dynamic event rather than a static cellular entity. Here, we discuss the mechanisms by which the cellular reprogramming of cancer cells can explain some of the phenotypic and functional heterogeneity observed among cancer cells.
Collapse
|
18
|
Verma BK, Subramaniam P, Vadigepalli R. Model-based virtual patient analysis of human liver regeneration predicts critical perioperative factors controlling the dynamic mode of response to resection. BMC SYSTEMS BIOLOGY 2019; 13:9. [PMID: 30651095 PMCID: PMC6335689 DOI: 10.1186/s12918-019-0678-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Liver has the unique ability to regenerate following injury, with a wide range of variability of the regenerative response across individuals. Existing computational models of the liver regeneration are largely tuned based on rodent data and hence it is not clear how well these models capture the dynamics of human liver regeneration. Recent availability of human liver volumetry time series data has enabled new opportunities to tune the computational models for human-relevant time scales, and to predict factors that can significantly alter the dynamics of liver regeneration following a resection. METHODS We utilized a mathematical model that integrates signaling mechanisms and cellular functional state transitions. We tuned the model parameters to match the time scale of human liver regeneration using an elastic net based regularization approach for identifying optimal parameter values. We initially examined the effect of each parameter individually on the response mode (normal, suppressed, failure) and extent of recovery to identify critical parameters. We employed phase plane analysis to compute the threshold of resection. We mapped the distribution of the response modes and threshold of resection in a virtual patient cohort generated in silico via simultaneous variations in two most critical parameters. RESULTS Analysis of the responses to resection with individual parameter variations showed that the response mode and extent of recovery following resection were most sensitive to variations in two perioperative factors, metabolic load and cell death post partial hepatectomy. Phase plane analysis identified two steady states corresponding to recovery and failure, with a threshold of resection separating the two basins of attraction. The size of the basin of attraction for the recovery mode varied as a function of metabolic load and cell death sensitivity, leading to a change in the multiplicity of the system in response to changes in these two parameters. CONCLUSIONS Our results suggest that the response mode and threshold of failure are critically dependent on the metabolic load and cell death sensitivity parameters that are likely to be patient-specific. Interventions that modulate these critical perioperative factors may be helpful to drive the liver regenerative response process towards a complete recovery mode.
Collapse
Affiliation(s)
- Babita K Verma
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Chemical Engineering, Indian Institute of Technology-Madras, Chennai, India
| | | | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Pesaresi M, Sebastian-Perez R, Cosma MP. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine. FEBS J 2018; 286:1074-1093. [PMID: 30103260 DOI: 10.1111/febs.14633] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/01/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
Abstract
Regenerative capacities vary enormously across the animal kingdom. In contrast to most cold-blooded vertebrates, mammals, including humans, have very limited regenerative capacity when it comes to repairing damaged or degenerating tissues. Here, we review the main mechanisms of tissue regeneration, underlying the importance of cell dedifferentiation and reprogramming. We discuss the significance of cell fate and identity changes in the context of regenerative medicine, with a particular focus on strategies aiming at the promotion of the body's self-repairing mechanisms. We also introduce some of the most recent advances that have resulted in complete reprogramming of cell identity in vivo. Lastly, we discuss the main challenges that need to be addressed in the near future to develop in vivo reprogramming approaches with therapeutic potential.
Collapse
Affiliation(s)
- Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
20
|
Pesaresi M, Bonilla-Pons SA, Cosma MP. In vivo somatic cell reprogramming for tissue regeneration: the emerging role of the local microenvironment. Curr Opin Cell Biol 2018; 55:119-128. [PMID: 30071468 DOI: 10.1016/j.ceb.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
The past few years have witnessed an exponential increase of interest in the reprogramming process. This has been motivated by the enthusiasm of unravelling key aspects not only of cell identity and dedifferentiation, but also of the endogenous regenerative capacities of mammalian organs. Here, we present the most recent advances in the field of reprogramming, stressing how they are re-defining the rules of cell fate and plasticity in vivo. Specifically, we focus on the emerging role of the tissue microenvironment, with particular emphasis on tissue damage, inflammation and senescence that can facilitate in vivo reprogramming and regeneration through cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
21
|
Pesaresi M, Bonilla-Pons SA, Simonte G, Sanges D, Di Vicino U, Cosma MP. Endogenous Mobilization of Bone-Marrow Cells Into the Murine Retina Induces Fusion-Mediated Reprogramming of Müller Glia Cells. EBioMedicine 2018. [PMID: 29525572 PMCID: PMC5952225 DOI: 10.1016/j.ebiom.2018.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities. Endogenous bone marrow cells migrate into NMDA-damaged murine retinae and fuse with retinal Müller glial cells (MGCs). MGCs can be reprogrammed to retinal progenitors to then differentiate into ganglion and amacrine neurons. Modulation of the SDF1/CXCR4 pathway regulates BMC migration, BMC-MGC fusion, and MGC reprogramming.
Retinal degeneration is present in a large and heterogeneous group of debilitating diseases, often not curable. Cell therapy represents an interesting approach to regenerate injured retinal tissue. However, it comes with some hurdles in terms of engraftment and differentiation of the transplanted cells. Here, we reported that murine Müller glia cells can be converted into retinal neurons after fusion with endogenous bone marrow cells. The efficiency of this mechanism can be enhanced by perturbation of the SDF1/CXCR4 signaling pathway. Our study provides an important proof-of-principle that the limited endogenous regeneration capability of mammals can be enhanced by modulation of specific signaling pathways.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; Universitat de Barcelona (UB), Barcelona, Spain
| | - Giacoma Simonte
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Sanges
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; ICREA, Barcelona, Spain..
| |
Collapse
|
22
|
Christ B, Dahmen U, Herrmann KH, König M, Reichenbach JR, Ricken T, Schleicher J, Ole Schwen L, Vlaic S, Waschinsky N. Computational Modeling in Liver Surgery. Front Physiol 2017; 8:906. [PMID: 29249974 PMCID: PMC5715340 DOI: 10.3389/fphys.2017.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Molecular Hepatology Lab, Clinics of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias König
- Department of Biology, Institute for Theoretical Biology, Humboldt University of Berlin, Berlin, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Tim Ricken
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| | - Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany.,Department of Bioinformatics, Friedrich Schiller University Jena, Jena, Germany
| | | | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Navina Waschinsky
- Mechanics, Structural Analysis, and Dynamics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|