1
|
Thiel J, Schmidt FM, Lorenzetti R, Troilo A, Janowska I, Nießen L, Pfeiffer S, Staniek J, Benassini B, Bott MT, Korzhenevich J, Konstantinidis L, Burgbacher F, Dufner AK, Frede N, Voll RE, Stuchly J, Bakardjieva M, Kalina T, Smulski CR, Venhoff N, Rizzi M. Defects in B-lymphopoiesis and B-cell maturation underlie prolonged B-cell depletion in ANCA-associated vasculitis. Ann Rheum Dis 2024; 83:1536-1548. [PMID: 38851295 PMCID: PMC11503191 DOI: 10.1136/ard-2024-225587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES B-cell depletion time after rituximab (RTX) treatment is prolonged in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) compared with other autoimmune diseases. We investigated central and peripheral B-cell development to identify the causes for the defect in B-cell reconstitution after RTX therapy. METHODS We recruited 91 patients with AAV and performed deep phenotyping of the peripheral and bone marrow B-cell compartment by spectral flow and mass cytometry. B-cell development was studied by in vitro modelling and the role of BAFF receptor by quantitative PCR, western blot analysis and in vitro assays. RESULTS Treatment-naïve patients with AAV showed low transitional B-cell numbers, suggesting impaired B-lymphopoiesis. We analysed bone marrow of treatment-naïve and RTX-treated patients with AAV and found reduced B-lymphoid precursors. In vitro modelling of B-lymphopoiesis from AAV haematopoietic stem cells showed intact, but slower and reduced immature B-cell development. In a subgroup of patients, after RTX treatment, the presence of transitional B cells did not translate in replenishment of naïve B cells, suggesting an impairment in peripheral B-cell maturation. We found low BAFF-receptor expression on B cells of RTX-treated patients with AAV, resulting in reduced survival in response to BAFF in vitro. CONCLUSIONS Prolonged depletion of B cells in patients with AAV after RTX therapy indicates a B-cell defect that is unmasked by RTX treatment. Our data indicate that impaired bone marrow B-lymphopoiesis results in a delayed recovery of peripheral B cells that may be further aggravated by a survival defect of B cells. Our findings contribute to the understanding of AAV pathogenesis and may have clinical implications regarding RTX retreatment schedules and immunomonitoring after RTX therapy.
Collapse
Affiliation(s)
- Jens Thiel
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Franziska M Schmidt
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raquel Lorenzetti
- Division of Rheumatology and Clinical Immunology, Medical University of Graz, Graz, Austria
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Arianna Troilo
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lena Nießen
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sophie Pfeiffer
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bruno Benassini
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marei-Theresa Bott
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lukas Konstantinidis
- Department of Orthopedics and Trauma Surgery, University of Freiburg, Freiburg im Breisgau, Germany
| | - Frank Burgbacher
- Department of Orthopedics and Trauma Surgery, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ann-Katrin Dufner
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Natalie Frede
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Centre of Chronic Immunodeficiency, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Stuchly
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - Cristian Roberto Smulski
- Medical Physics Department, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bariloche, Argentina
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Centre of Chronic Immunodeficiency, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Martin J, Cheng Q, Laurent SA, Thaler FS, Beenken AE, Meinl E, Krönke G, Hiepe F, Alexander T. B-Cell Maturation Antigen (BCMA) as a Biomarker and Potential Treatment Target in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:10845. [PMID: 39409173 PMCID: PMC11476889 DOI: 10.3390/ijms251910845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The BAFF-APRIL system is crucial for the pathogenesis of systemic lupus erythematosus (SLE) by promoting B cell survival, differentiation and the maintenance of humoral autoimmunity. Here, we investigated the relationship of BCMA expression on B cell subsets with its ligands BAFF and APRIL, together with soluble BCMA, and with clinical and serologic variables in a cohort of 100 SLE patients (86 under conventional and 14 under belimumab therapy) and 30 healthy controls (HCs) using multicolor flow cytometry and ELISA. We found that BCMA expression in SLE patients was significantly increased on all B cell subsets compared to HCs, with all examined components of the BAFF-APRIL system being upregulated. BCMA expression was significantly increased on switched and unswitched memory B cells compared to naïve B cells, both in HCs and SLE. BCMA expression on B cells correlated with plasmablast frequencies, serum anti-dsDNA antibodies and complement consumption, while soluble BCMA correlated with plasmablast frequency, highlighting its potential as a clinical biomarker. Belimumab treatment significantly reduced BCMA expression on most B cell subsets and soluble TACI and contributed to the inhibition of almost the entire BAFF-APRIL system and restoration of B cell homeostasis. These results provide insights into the complex dysregulation of the BAFF-APRIL system in SLE and highlight the therapeutic potential of targeting its components, particularly BCMA, in addition to its use as a biomarker for disease activity.
Collapse
MESH Headings
- Humans
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/blood
- B-Cell Maturation Antigen/metabolism
- B-Cell Maturation Antigen/immunology
- Biomarkers/blood
- Female
- Adult
- Male
- B-Cell Activating Factor/blood
- B-Cell Activating Factor/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/blood
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/immunology
- Case-Control Studies
Collapse
Affiliation(s)
- Jonas Martin
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Qingyu Cheng
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah A. Laurent
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
| | - Franziska S. Thaler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Anne Elisabeth Beenken
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| |
Collapse
|
3
|
Zeng L, Yang K, Wu Y, Yu G, Yan Y, Hao M, Song T, Li Y, Chen J, Sun L. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases. J Autoimmun 2024; 148:103291. [PMID: 39146891 DOI: 10.1016/j.jaut.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BLyS and APRIL have the capability to bind to B cells within the body, allowing these cells to evade elimination when they should naturally be removed. While BLyS primarily plays a role in B cell development and maturation, APRIL is linked to B cell activation and the secretion of antibodies. Thus, in theory, inhibiting BLyS or APRIL could diminish the population of aberrant B cells that contribute to SLE and reduce disease activity in patients. Telitacicept functions by binding to and neutralizing the activities of both BLyS and APRIL, thus hindering the maturation and survival of plasma cells and fully developed B cells. The design of telitacicept is distinctive; it is not a monoclonal antibody but a TACI-Fc fusion protein generated through recombinant DNA technology. This fusion involves merging gene segments of the TACI protein, which can target BLyS/APRIL simultaneously, with the Fc gene segment of the human IgG protein. The TACI-Fc fusion protein exhibits the combined characteristics of both proteins. Currently utilized for autoimmune disease treatment, telitacicept is undergoing clinical investigations globally to assess its efficacy in managing various autoimmune conditions. This review consolidates information on the mechanistic actions, dosing regimens, pharmacokinetics, efficacy, and safety profile of telitacicept-a dual-targeted biological agent. It integrates findings from prior experiments and pharmacokinetic analyses in the treatment of RA and SLE, striving to offer a comprehensive overview of telitacicept's research advancements.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Tian Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Li
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Hunan, China
| | - Junpeng Chen
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Romberg N, Le Coz C. Common variable immunodeficiency, cross currents, and prevailing winds. Immunol Rev 2024; 322:233-243. [PMID: 38014621 DOI: 10.1111/imr.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Common variable immunodeficiency (CVID) is a heterogenous disease category created to distinguish late-onset antibody deficiencies from early-onset diseases like agammaglobulinemia or more expansively dysfunctional combined immunodeficiencies. Opinions vary on which affected patients should receive a CVID diagnosis which confuses clinicians and erects reproducibility barriers for researchers. Most experts agree that CVID's most indeliable feature is defective germinal center (GC) production of isotype-switched, affinity-maturated antibodies. Here, we review the biological factors contributing to CVID-associated GC dysfunction including genetic, epigenetic, tolerogenic, microbiome, and regulatory abnormalities. We also discuss the consequences of these biological phenomena to the development of non-infectious disease complications. Finally, we opine on topics and lines of investigation we think hold promise for expanding our mechanistic understanding of this protean condition and for improving the lives of affected patients.
Collapse
Affiliation(s)
- Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carole Le Coz
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| |
Collapse
|
5
|
Álvarez Gómez JA, Salazar-Camarena DC, Román-Fernández IV, Ortiz-Lazareno PC, Cruz A, Muñoz-Valle JF, Marín-Rosales M, Espinoza-García N, Sagrero-Fabela N, Palafox-Sánchez CA. BAFF system expression in double negative 2, activated naïve and activated memory B cells in systemic lupus erythematosus. Front Immunol 2023; 14:1235937. [PMID: 37675114 PMCID: PMC10478082 DOI: 10.3389/fimmu.2023.1235937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction B cell activating factor (BAFF) has an important role in normal B cell development. The aberrant expression of BAFF is related with the autoimmune diseases development like Systemic Lupus Erythematosus (SLE) for promoting self-reactive B cells survival. BAFF functions are exerted through its receptors BAFF-R (BR3), transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA) that are reported to have differential expression on B cells in SLE. Recently, atypical B cells that express CD11c have been associated with SLE because they are prone to develop into antibody-secreting cells, however the relationship with BAFF remains unclear. This study aims to analyze the BAFF system expression on CXCR5- CD11c+ atypical B cell subsets double negative 2 (DN2), activated naïve (aNAV), switched memory (SWM) and unswitched memory (USM) B cells. Methods Forty-five SLE patients and 15 healthy subjects (HS) were included. Flow cytometry was used to evaluate the expression of the receptors in the B cell subpopulations. Enzyme-linked immunosorbent assay (ELISA) was performed to quantify the soluble levels of BAFF (sBAFF) and IL-21. Results We found increased frequency of CXCR5- CD11c+ atypical B cell subpopulations DN2, aNAV, SWM and USM B cells in SLE patients compared to HS. SLE patients had increased expression of membrane BAFF (mBAFF) and BCMA receptor in classic B cell subsets (DN, NAV, SWM and USM). Also, the CXCR5+ CD11c- DN1, resting naïve (rNAV), SWM and USM B cell subsets showed higher mBAFF expression in SLE. CXCR5- CD11c+ atypical B cell subpopulations DN2, SWM and USM B cells showed strong correlations with the expression of BAFF receptors. The atypical B cells DN2 in SLE showed significant decreased expression of TACI, which correlated with higher IL-21 levels. Also, lower expression of TACI in atypical B cell DN2 was associated with high disease activity. Discussion These results suggest a participation of the BAFF system in CXCR5- CD11c+ atypical B cell subsets in SLE patients. Decreased TACI expression on atypical B cells DN2 correlated with high disease activity in SLE patients supporting the immunoregulatory role of TACI in autoimmunity.
Collapse
Affiliation(s)
- Jhonatan Antonio Álvarez Gómez
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ilce Valeria Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Pablo César Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Miguel Marín-Rosales
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, Jalisco, Mexico
| | - Noemí Espinoza-García
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Xiao X, Ma Z, Li Z, Deng Y, Zhang Y, Xiang R, Zhu L, He Y, Li H, Jiang Y, Zhu Y, Xie Y, Peng H, Liu X, Wang H, Ye M, Zhao Y, Liu J. Anti-BCMA surface engineered biomimetic photothermal nanomissile enhances multiple myeloma cell apoptosis and overcomes the disturbance of NF-κB signaling in vivo. Biomaterials 2023; 297:122096. [PMID: 37075614 DOI: 10.1016/j.biomaterials.2023.122096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/19/2023]
Abstract
Conventional chemotherapy for multiple myeloma (MM) faces the challenges of a low complete remission rate and transformation to recurrence/refractory. The current MM first-line clinical drug Bortezomib (BTZ) faces the problem of enhanced tolerance and nonnegligible side effects. B cell maturation antigen (BCMA), for its important engagement in tumor signaling pathways and novel therapy technologies such as Chimeric antigen receptor T-Cell immunotherapy (CAR-T) and Antibody Drug Conjugate (ADC), has been identified as an ideal target and attracted attention in anti-MM therapy. Emerging nanotechnology provided feasible methods for drug delivery and new therapeutic strategies such as photothermal therapy (PTT). Herein, we developed a BCMA-Targeting biomimetic photothermal nanomissile BTZ@BPQDs@EM @anti-BCMA (BBE@anti-BCMA) by integration of BTZ, black phosphorus quantum dots (BPQDs), Erythrocyte membrane (EM) and BCMA antibody (anti-BCMA). We hypothesized that this engineered nanomissile could attack tumor cells in triple ways and achieve effective treatment of MM. Consequently, the intrinsic biomimetic nature of EM and the active targeting property of anti-BCMA enhanced the accumulation of therapeutic agents in the tumor site. Besides, owing to the decrease in BCMA abundance, the potential apoptosis-inducing ability was revealed. With the support of BPQDs' photothermal effect, Cleaved-Caspase-3 and Bax signal increased significantly, and the expression of Bcl-2 was inhibited. Furthermore, the synergistic photothermal/chemo therapy can effectively inhibit tumor growth and reverse the disorder of NF-κB in vivo. Importantly, this biomimetic nanodrug delivery system and antibody induced synergistic therapeutic strategy efficiently killed MM cells with ignorable systemic toxicity, which is a promising method for the future anticancer treatment of hematological malignancies in clinics.
Collapse
|
7
|
Block V, Sevdali E, Recher M, Abolhassani H, Hammarstrom L, Smulski CR, Baronio M, Plebani A, Proietti M, Speletas M, Warnatz K, Voll RE, Lougaris V, Schneider P, Eibel H. CVID-Associated B Cell Activating Factor Receptor Variants Change Receptor Oligomerization, Ligand Binding, and Signaling Responses. J Clin Immunol 2023; 43:391-405. [PMID: 36308663 PMCID: PMC9616699 DOI: 10.1007/s10875-022-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding. METHODS In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function. RESULTS Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R. CONCLUSION Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID.
Collapse
Affiliation(s)
- Violeta Block
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eirini Sevdali
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mike Recher
- Immunodeficiency Clinic and Laboratory, Medical Outpatient Unit and Department Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cristian R Smulski
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | - Manuela Baronio
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vassilios Lougaris
- Department of Clinical and Exp. Sciences, University of Brescia, Brescia, Italy
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency, Medial Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
IRF4 International Consortium. A multimorphic mutation in IRF4 causes human autosomal dominant combined immunodeficiency. Sci Immunol 2023; 8:eade7953. [PMID: 36662884 PMCID: PMC10825898 DOI: 10.1126/sciimmunol.ade7953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023]
Abstract
Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.
Collapse
|
9
|
Leffler J, Trend S, Hart PH, French MA. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Clin Transl Immunology 2022; 11:e1418. [PMID: 36325491 PMCID: PMC9621333 DOI: 10.1002/cti2.1418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Multiple sclerosis is associated with Epstein-Barr virus (EBV) infection, B-cell dysfunction, gut dysbiosis, and environmental and genetic risk factors, including female sex. A disease model incorporating all these factors remains elusive. Here, we hypothesise that EBV-infected memory B cells (MBCs) migrate to gut-associated lymphoid tissue (GALT) through EBV-induced expression of LPAM-1, where they are subsequently activated by gut microbes and/or their products resulting in EBV reactivation and compartmentalised anti-EBV immune responses. These responses involve marginal zone (MZ) B cells that activate CD4+ T-cell responses, via HLA-DRB1, which promote downstream B-cell differentiation towards CD11c+/T-bet+ MBCs, as well as conventional MBCs. Intrinsic expression of low-affinity B-cell receptors (BCRs) by MZ B cells and CD11c+/T-bet+ MBCs promotes polyreactive BCR/antibody responses against EBV proteins (e.g. EBNA-1) that cross-react with central nervous system (CNS) autoantigens (e.g. GlialCAM). EBV protein/autoantigen-specific CD11c+/T-bet+ MBCs migrate to the meningeal immune system and CNS, facilitated by their expression of CXCR3, and induce cytotoxic CD8+ T-cell responses against CNS autoantigens amplified by BAFF, released from EBV-infected MBCs. An increased abundance of circulating IgA+ MBCs, observed in MS patients, might also reflect GALT-derived immune responses, including disease-enhancing IgA antibody responses against EBV and gut microbiota-specific regulatory IgA+ plasma cells. Female sex increases MZ B-cell and CD11c+/T-bet+ MBC activity while environmental risk factors affect gut dysbiosis. Thus, EBV infection, B-cell dysfunction and other risk factors converge in GALT to generate aberrant B-cell responses that drive pathogenic T-cell responses in the CNS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia,Perron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Martyn A French
- School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia,Immunology DivisionPathWest Laboratory MedicinePerthWAAustralia
| |
Collapse
|
10
|
Monitoring of Soluble Forms of BAFF System (BAFF, APRIL, sR-BAFF, sTACI and sBCMA) in Kidney Transplantation. Arch Immunol Ther Exp (Warsz) 2022; 70:21. [PMID: 36136146 DOI: 10.1007/s00005-022-00659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
BAFF system plays an essential role in B cells homeostasis and tolerance, although it has widely not been tested in transplantation with doubtful results. The main purpose was to study the BAFF soluble forms and their correlation with acute rejection (AR) and donor-specific antibodies production. Serum levels of BAFF, APRIL, and soluble forms of their receptors were analyzed in renal recipients with and without acute rejection (AR/NAR) appearance. All molecules were evaluated at pre- and post-transplantation. sTACI showed a significant correlation with BAFF and sR-BAFF levels, and sBCMA also showed a positive correlation with sAPRIL levels. A significant increase in sAPRIL levels in patients suffering AR was also found, and ROC curves analysis showed an AUC = 0.724, a concentration of 6.05 ng/ml (sensitivity: 66.7%; specificity: 73.3%), the best cutoff point for predicting AR. In the post-transplant dynamics of sAPRIL levels in the longitudinal cohort, we observed a significant decrease at 3 and 6 month post-transplantation compared to pretransplantation status. We also observed that recipients with high pre-transplant levels of sAPRIL generated antibodies earlier than those with lower sAPRIL levels, although their long-term post-transplantation was not different. Our results show that elevated serum levels of APRIL may be helpful as a biomarker for the diagnosis of AR, although the longitudinal study shows that it is not helpful as a prognostic biomarker.
Collapse
|
11
|
Sevdali E, Block V, Lataretu M, Li H, Smulski CR, Briem JS, Heitz Y, Fischer B, Ramirez NJ, Grimbacher B, Jäck HM, Voll RE, Hölzer M, Schneider P, Eibel H. BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors. Cell Rep 2022; 39:111019. [PMID: 35767961 DOI: 10.1016/j.celrep.2022.111019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival.
Collapse
Affiliation(s)
- Eirini Sevdali
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Violeta Block
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, University of Jena, Leutragraben 1, 07743 Jena, Germany
| | - Huiying Li
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Cristian R Smulski
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E-Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina
| | - Jana-Susann Briem
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Yannic Heitz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Beate Fischer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Neftali-Jose Ramirez
- Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany; Institute for Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Bodo Grimbacher
- Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany; Institute for Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Hans-Martin Jäck
- Department of Medicine, Division of Immunology, University of Erlangen, Glückstraße 6, 91054 Erlangen, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Martin Hölzer
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacherstr. 153, 79110 Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany.
| |
Collapse
|
12
|
Neys SFH, Verstappen GM, Bootsma H, Kroese FGM, Hendriks RW, Corneth OBJ. Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren's Syndrome Patients at Diagnosis. Int J Mol Sci 2022; 23:ijms23095101. [PMID: 35563492 PMCID: PMC9103204 DOI: 10.3390/ijms23095101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal models of autoimmunity and human genetic association studies indicate that the dysregulation of B-cell receptor (BCR) signaling is an important driver of autoimmunity. We previously showed that in circulating B cells from primary Sjögren’s syndrome (pSS) patients with high systemic disease activity, protein expression of the BCR signaling molecule Bruton’s tyrosine kinase (BTK) was increased and correlated with T-cell infiltration in the target organ. We hypothesized that these alterations could be driven by increased B-cell activating factor (BAFF) levels in pSS. Here, we investigated whether altered BCR signaling was already present at diagnosis and distinguished pSS from non-SS sicca patients. Using (phospho-)flow cytometry, we quantified the phosphorylation of BCR signaling molecules, and investigated BTK and BAFF receptor (BAFFR) expression in circulating B cell subsets in an inception cohort of non-SS sicca and pSS patients, as well as healthy controls (HCs). We found that both BTK protein levels and BCR signaling activity were comparable among groups. Interestingly, BAFFR expression was significantly downregulated in pSS, but not in non-SS sicca patients, compared with HCs, and correlated with pSS-associated alterations in B cell subsets. These data indicate reduced BAFFR expression as a possible sign of early B cell involvement and a diagnostic marker for pSS.
Collapse
Affiliation(s)
- Stefan F. H. Neys
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Gwenny M. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Frans G. M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| | - Odilia B. J. Corneth
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| |
Collapse
|
13
|
Leffler J, Trend S, Ward NC, Grau GE, Hawke S, Byrne SN, Kermode AG, French MA, Hart PH. Circulating Memory B Cells in Early Multiple Sclerosis Exhibit Increased IgA + Cells, Globally Decreased BAFF-R Expression and an EBV-Related IgM + Cell Signature. Front Immunol 2022; 13:812317. [PMID: 35250986 PMCID: PMC8888440 DOI: 10.3389/fimmu.2022.812317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the central nervous system that results in demyelination of axons, inefficient signal transmission and reduced muscular mobility. Recent findings suggest that B cells play a significant role in disease development and pathology. To further explore this, B cell profiles in peripheral blood from 28 treatment-naive patients with early MS were assessed using flow cytometry and compared to 17 healthy controls. Conventional and algorithm-based analysis revealed a significant increase in MS patients of IgA+ memory B cells (MBC) including CD27+, CD27- and Tbet+ subsets. Screening circulating B cells for markers associated with B cell function revealed a significantly decreased expression of the B cell activation factor receptor (BAFF-R) in MS patients compared to controls. In healthy controls, BAFF-R expression was inversely associated with abundance of differentiated MBC but this was not observed in MS. Instead in MS patients, decreased BAFF-R expression correlated with increased production of proinflammatory TNF following B cell stimulation. Finally, we demonstrated that reactivation of Epstein Barr Virus (EBV) in MS patients was associated with several phenotypic changes amongst MBCs, particularly increased expression of HLA-DR molecules and markers of a T-bet+ differentiation pathway in IgM+ MBCs. Together, these data suggest that the B cell compartment is dysregulated in MS regarding aberrant MBC homeostasis, driven by reduced BAFF-R expression and EBV reactivation. This study adds further insights into the contribution of B cells to the pathological mechanisms of MS, as well as the complex role of BAFF/BAFF-R signalling in MS.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, University of Western Australia, Perth, WA, Australia
| | - Georges E Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Simon Hawke
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Immunology Division, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
14
|
Smulski CR, Zhang L, Burek M, Teixidó Rubio A, Briem JS, Sica MP, Sevdali E, Vigolo M, Willen L, Odermatt P, Istanbullu D, Herr S, Cavallari M, Hess H, Rizzi M, Eibel H, Schneider P. Ligand-independent oligomerization of TACI is controlled by the transmembrane domain and regulates proliferation of activated B cells. Cell Rep 2022; 38:110583. [PMID: 35354034 DOI: 10.1016/j.celrep.2022.110583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
In mature B cells, TACI controls class-switch recombination and differentiation into plasma cells during T cell-independent antibody responses. TACI binds the ligands BAFF and APRIL. Approximately 10% of patients with common variable immunodeficiency (CVID) carry TACI mutations, of which A181E and C172Y are in the transmembrane domain. Residues A181 and C172 are located on distinct sides of the transmembrane helix, which is predicted by molecular modeling to spontaneously assemble into trimers and dimers. In human B cells, these mutations impair ligand-dependent (C172Y) and -independent (A181E) TACI multimerization and signaling, as well as TACI-enhanced proliferation and/or IgA production. Genetic inactivation of TACI in primary human B cells impaired survival of CpG-activated cells in the absence of ligand. These results identify the transmembrane region of TACI as an active interface for TACI multimerization in signal transduction, in particular for ligand-independent signals. These functions are perturbed by CVID-associated mutations.
Collapse
Affiliation(s)
- Cristian R Smulski
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland; Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany; Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina.
| | - Luyao Zhang
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Malte Burek
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Ariadna Teixidó Rubio
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Jana-Susann Briem
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Mauricio P Sica
- Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina; Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida E- Bustillo 9500, R8402AGP Río Negro, San Carlos de Bariloche, Argentina
| | - Eirini Sevdali
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Michele Vigolo
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Patricia Odermatt
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Duygu Istanbullu
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Stephanie Herr
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Marco Cavallari
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | | | - Marta Rizzi
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine and Medical Center, University of Freiburg, Department of Rheumatology and Center for Chronic Immunodeficiency, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland.
| |
Collapse
|
15
|
Merino-Vico A, van Hamburg JP, Tas SW. B Lineage Cells in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 23:387. [PMID: 35008813 PMCID: PMC8745114 DOI: 10.3390/ijms23010387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that affects small sized blood vessels and can lead to serious complications in the lungs and kidneys. The prominent presence of ANCA autoantibodies in this disease implicates B cells in its pathogenesis, as these are the precursors of the ANCA-producing plasma cells (PCs). Further evidence supporting the potential role of B lineage cells in vasculitis are the increased B cell cytokine levels and the dysregulated B cell populations in patients. Confirmation of the contribution of B cells to pathology arose from the beneficial effect of anti-CD20 therapy (i.e., rituximab) in AAV patients. These anti-CD20 antibodies deplete circulating B cells, which results in amelioration of disease. However, not all patients respond completely, and this treatment does not target PCs, which can maintain ANCA production. Hence, it is important to develop more specific therapies for AAV patients. Intracellular signalling pathways may be potential therapeutic targets as they can show (disease-specific) alterations in certain B lineage cells, including pathogenic B cells, and contribute to differentiation and survival of PCs. Preliminary data on the inhibition of certain signalling molecules downstream of receptors specific for B lineage cells show promising therapeutic effects. In this narrative review, B cell specific receptors and their downstream signalling molecules that may contribute to pathology in AAV are discussed, including the potential to therapeutically target these pathways.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sander W. Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Alturaiki W, Mubarak A, Mir SA, Afridi A, Premanathan M, Mickymaray S, Vijayakumar R, Alsagaby SA, Almalki SG, Alghofaili F, Alnemare AK, Flanagan BF. Plasma levels of BAFF and APRIL are elevated in patients with asthma in Saudi Arabia. Saudi J Biol Sci 2021; 28:7455-7459. [PMID: 34867050 PMCID: PMC8626297 DOI: 10.1016/j.sjbs.2021.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/02/2022] Open
Abstract
B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor superfamily of cytokines and can induce B cell activation, differentiation, and antibody production via interaction with their receptors, including transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and B-cell activating factor receptor (BAFF-R). Herein, we assessed the plasma protein levels of BAFF and APRIL in patients with asthma to determine whether their expression is correlated with total IgE production and examined the surface expression of BAFF/APRIL receptors on B cells. Blood samples were collected from 47 patients with controlled asthma symptoms and 20 healthy normal controls, and plasma levels of APRIL, BAFF, and total IgE protein were quantified by corresponding ELISA assays. Furthermore, lymphocytes were isolated and B cells were analyzed for the presence of BAFF-R, BCMA, and TACI receptors using flow cytometry. Our results showed that IgE, BAFF, and APRIL plasma levels were markedly increased in patients with asthma compared with healthy controls. Moreover, expression of BAFF-R and BCMA, but not that of TACI, was significantly increased in patients with asthma compared with healthy controls. Overall, the findings suggest BAFF and APRIL as key mediators of asthma, and determination of their plasma levels may be useful in monitoring asthma symptoms and treatment response.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sajad Ahmad Mir
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi 11932, Saudi Arabia
| | - Adnan Afridi
- Department of Internal Medicine, Alzulfi General Hospital, Alzulfi 11932, Saudi Arabia
| | - Mariappan Premanathan
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Suresh Mickymaray
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Fayez Alghofaili
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmad K Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Brian F Flanagan
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Eaton Road, Liverpool L12 2AP, UK
| |
Collapse
|
17
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H, Lu L. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev 2021; 64:57-70. [DOI: 10.1016/j.cytogfr.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
18
|
Spinosa MD, Montgomery WG, Lempicki M, Srikakulapu P, Johnsrude MJ, McNamara CA, Upchurch GR, Ailawadi G, Leitinger N, Meher AK. B Cell-Activating Factor Antagonism Attenuates the Growth of Experimental Abdominal Aortic Aneurysm. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2231-2244. [PMID: 34509440 PMCID: PMC8647430 DOI: 10.1016/j.ajpath.2021.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
B cell-activating factor (BAFF), part of a tumor necrosis factor family of cytokines, was recently identified as a regulator of atherosclerosis; however, its role in aortic aneurysm has not been determined. Here, the study examined the effect of selective BAFF antagonism using an anti-BAFF antibody (blocks binding of BAFF to receptors BAFF receptor 3, transmembrane activator and CAML interactor, and B-cell maturation antigen) and mBaffR-mFc (blocks binding of BAFF to BAFF receptor 3) on a murine model of abdominal aortic aneurysm (AAA). In a prevention strategy, the antagonists were injected before the induction of AAA, and in an intervention strategy, the antagonists were injected after the induction of AAA. Both strategies attenuated the formation of AAA. In the intervention group, BAFF antagonism depleted most of the mature B-cell subsets in spleen and circulation, leading to enhanced resolution of inflammation in AAA as indicated by decreased infiltration of B cells and proinflammatory macrophages and a reduced number of apoptotic cells. In AAA tissues, B cells and macrophages were found in close contact. In vitro, B cells, irrespective of treatment with BAFF, impaired the efferocytosis activity of macrophages, suggesting a direct innate role of B cells on macrophage function. Altogether, BAFF antagonism affects survival of the mature B cells, promotes resolution of inflammation in the aorta, and attenuates the growth of AAA in mice.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/therapy
- B-Cell Activating Factor/antagonists & inhibitors
- B-Cell Activating Factor/genetics
- B-Cell Activating Factor/immunology
- B-Cell Activating Factor/physiology
- B-Lymphocyte Subsets/pathology
- Cell Count
- Cells, Cultured
- Chemotaxis, Leukocyte/physiology
- Disease Models, Animal
- Disease Progression
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- Immunoglobulin Fc Fragments/therapeutic use
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
Affiliation(s)
- Michael D Spinosa
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Melissa Lempicki
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina
| | - Prasad Srikakulapu
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Matthew J Johnsrude
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Gilbert R Upchurch
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Akshaya K Meher
- Department of Microbiology and Immunology, East Carolina University, Greenville, North Carolina; Department of Pharmacology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
19
|
Ren A, Sun J, Yin W, Westerberg LS, Miller H, Lee P, Candotti F, Guan F, Lei J, Gong Q, Chen Y, Liu C. Signaling networks in B cell development and related therapeutic strategies. J Leukoc Biol 2021; 111:877-891. [PMID: 34528729 DOI: 10.1002/jlb.2ru0221-088rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Agarwal D, Luning Prak ET, Bharani T, Everly M, Migone TS, Cancro M, Allman D, Choe I, Kearns JD, Trofe-Clark J, Naji A, Kamoun M. BLyS neutralization results in selective anti-HLA alloantibody depletion without successful desensitization. Transpl Immunol 2021; 69:101465. [PMID: 34506905 DOI: 10.1016/j.trim.2021.101465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 11/15/2022]
Abstract
Pre-existing anti-HLA allo-antibodies (allo-Abs) are a major barrier to successful kidney transplantation, resulting in an elevated risk for antibody-mediated rejection (AMR) and eventual graft loss. The cytokine B lymphocyte stimulator (BLyS) promotes B cell maturation and plasma cell survival; consequently, anti-BLyS therapy represents a potential therapeutic opportunity in diminishing pre-existing allo-Abs. Here we report that in our 1-year pilot trial, BLyS neutralization failed to reduce total anti-HLA allo-Ab levels in highly sensitized candidates awaiting kidney transplant in a clinically meaningful way. Additionally, we performed a post hoc analysis using sera from trial candidates which revealed selective depletion of anti-HLA class I and class II Abs in response to belimumab treatment, restricted to certain allele specificities and IgG subclasses. Altogether, we observed that BLyS blockade only results in selective depletion of anti-HLA Abs recognizing a few discrete HLA allele specificities.
Collapse
Affiliation(s)
- Divyansh Agarwal
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Division of Transplantation, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tina Bharani
- Department of General Surgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | | | - Thi-Sau Migone
- Iconic Therapeutics, Shoreline Court, South San Francisco, CA 94080, USA
| | - Michael Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Insuk Choe
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jane D Kearns
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Trofe-Clark
- Department of Pharmacy Services, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.; Department of Medicine, Division of Renal, Electrolyte and Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Naji
- Department of Surgery, Division of Transplantation, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malek Kamoun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Müller-Winkler J, Mitter R, Rappe JCF, Vanes L, Schweighoffer E, Mohammadi H, Wack A, Tybulewicz VLJ. Critical requirement for BCR, BAFF, and BAFFR in memory B cell survival. J Exp Med 2021; 218:211510. [PMID: 33119032 PMCID: PMC7604764 DOI: 10.1084/jem.20191393] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/22/2020] [Accepted: 09/14/2020] [Indexed: 01/23/2023] Open
Abstract
Memory B cells (MBCs) are long-lived cells that form a critical part of immunological memory, providing rapid antibody responses to recurring infections. However, very little is known about signals controlling MBC survival. Previous work has shown that antigen is not required for MBC survival, but a requirement for the B cell antigen receptor (BCR) has not been tested. Other studies have shown that, unlike naive B cells, MBCs do not express BAFFR and their survival is independent of BAFF, the ligand for BAFFR. Here, using inducible genetic ablation, we show that survival of MBCs is critically dependent on the BCR and on signaling through the associated CD79A protein. Unexpectedly, we found that MBCs express BAFFR and that their survival requires BAFF and BAFFR; hence, loss of BAFF or BAFFR impairs recall responses. Finally, we show that MBC survival requires IKK2, a kinase that transduces BAFFR signals. Thus, MBC survival is critically dependent on signaling from BCR and BAFFR.
Collapse
|
22
|
Meinl E, Krumbholz M. Endogenous soluble receptors sBCMA and sTACI: biomarker, immunoregulator and hurdle for therapy in multiple myeloma. Curr Opin Immunol 2021; 71:117-123. [PMID: 34330018 DOI: 10.1016/j.coi.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
BAFF and APRIL regulate B cell homeostasis by binding to their three receptors BAFFR, BCMA and TACI. The complexity of this system is further increased by shedding of these three receptors; this reduces signaling due to the display of less surface receptors. Further, soluble forms, sBCMA and sTACI, were detected in body fluids and serve as biomarker in malignancies, autoimmune diseases and immunodeficiencies. sBCMA and sTACI function as decoys blocking BAFF and APRIL. BCMA is a promising therapeutic target in multiple myeloma, but sBCMA may reduce therapeutic activity of CAR T cells, bispecific antibodies, and antibody-drug conjugates. Insights into the biochemical mechanism of shedding of BCMA can be harnessed to improve BCMA-directed therapy by blocking its shedding with a γ-secretase inhibitor.
Collapse
Affiliation(s)
- Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
| | - Markus Krumbholz
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
23
|
Sevdali E, Block Saldana V, Speletas M, Eibel H. BAFF receptor polymorphisms and deficiency in humans. Curr Opin Immunol 2021; 71:103-110. [PMID: 34311146 DOI: 10.1016/j.coi.2021.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 01/26/2023]
Abstract
The BAFF-receptor (BAFFR) is a member of the TNF-receptor family. It is expressed only by B cells and binds BAFF as single ligand, which activates key signaling pathways regulating essential cellular functions, including survival, protein synthesis, and metabolic fitness. In humans, BAFFR deficiency interrupts B cell development at the transition from immature to mature B cells and causes B lymphopenia, hypogammaglobulinemia, and impaired humoral immune responses. Polymorphisms in TNFRSF13C gene affecting BAFFR oligomerization and signaling have been described in patients with immunodeficiency, autoimmunity and B cell lymphomas. Despite a uniform expression pattern of BAFFR in peripheral mature B cells, depletion of BAFF with neutralizing antibodies in patients with systemic lupus erythematosus does not affect the survival of switched memory B cells. These findings imply a distinct dependency of mature B cell subsets on BAFF/BAFFR interaction and highlight the contribution of BAFFR-derived signals in peripheral B cell development and homeostasis.
Collapse
Affiliation(s)
- Eirini Sevdali
- Dept. of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Violeta Block Saldana
- Dept. of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Hermann Eibel
- Dept. of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
24
|
Salzer U, Grimbacher B. TACI deficiency - a complex system out of balance. Curr Opin Immunol 2021; 71:81-88. [PMID: 34247095 DOI: 10.1016/j.coi.2021.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
TACI promotes T-cell independent antibody responses and plasma cell differentiation and counteracts BAFF driven B-cell activation. Mutations in TNFRSF13B (encoding TACI) are associated with common variable immunodeficiency (CVID) but are also found in 1-2% of the general population. Although not diseases causing, certain TNFRSF13B mutations predispose CVID patients to autoimmunity and lymphoproliferation. Recently, studies of TACI-deficient humans and murine models revealed novel aspects of TACI, especially its crosstalk with the TLR pathways, differential expression of TACI isoforms, and its role in the generation of autoreactive B-cells. Vice versa, these studies are instrumental for a better understanding of TACI deficiency in humans and suggest that gene dosage, mutation type, and additional clinical or laboratory abnormalities influence the relevance of TNFRSF13B variants in individual CVID patients. TACI is embedded in a complex and well-balanced system, which is vulnerable to genetic and possibly also environmental hits.
Collapse
Affiliation(s)
- Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiencies, Medical Center - University Hospital Freiburg, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| |
Collapse
|
25
|
Smets I, Prezzemolo T, Imbrechts M, Mallants K, Mitera T, Humblet-Baron S, Dubois B, Matthys P, Liston A, Goris A. Treatment-Induced BAFF Expression and B Cell Biology in Multiple Sclerosis. Front Immunol 2021; 12:676619. [PMID: 34122439 PMCID: PMC8187869 DOI: 10.3389/fimmu.2021.676619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 01/12/2023] Open
Abstract
Although fingolimod and interferon-β are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-β, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an in vitro B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-β treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-β and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10-4) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10-6), decrease in switched B cells (P = 3.29 x 10-4), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10-10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and in vitro experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.
Collapse
Affiliation(s)
- Ide Smets
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Maya Imbrechts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Klara Mallants
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tania Mitera
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Stéphanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium
| | - Bénédicte Dubois
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Hébert V, Maho-Vaillant M, Golinski ML, Petit M, Riou G, Boyer O, Musette P, Calbo S, Joly P. Modifications of the BAFF/BAFF-Receptor Axis in Patients With Pemphigus Treated With Rituximab Versus Standard Corticosteroid Regimen. Front Immunol 2021; 12:666022. [PMID: 34054835 PMCID: PMC8160507 DOI: 10.3389/fimmu.2021.666022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The efficacy of the B-cell-depleting agent rituximab has been reported in immune diseases but relapses are frequent, suggesting the need for repeated infusions. The B-cell activating factor (BAFF) is an important factor for B cell survival, class switch recombination and selection of autoreactive B cells, as well as maintaining long-lived plasma cells. It has been hypothesized that relapses after rituximab might be due to the increase of serum BAFF levels. From the Ritux3 trial, we showed that baseline serum BAFF levels were higher in pemphigus patients than in healthy donors (308 ± 13 pg/mL versus 252 ± 28 pg/mL, p=0.037) and in patients with early relapse compared who didn't (368 ± 92 vs 297 ± 118 pg/mL, p=0.036). Rituximab and high doses of CS alone have different effects on the BAFF/BAFF-R axis. Rituximab led to an increase of BAFF levels associated to a decreased mRNA (Day 0: 12.3 ± 7.6 AU vs Month 36: 3.3 ± 4.3 AU, p=0.01) and mean fluorescence intensity of BAFF-R in non-autoreactive (Day 0: 3232 vs Month 36: 1527, mean difference: 1705, 95%CI: 624 to 2786; p=0.002) as well as on reappearing autoreactive DSG-specific B cells (Day 0: 3873 vs Month 36: 2688, mean difference: 1185, 95%CI: -380 to 2750; p=0.20). Starting high doses of corticosteroids allowed a transitory decrease of serum BAFF levels that re-increased after doses tapering whereas it did not modify BAFF-R expression in autoreactive and non-autoreactive B cells. Our results suggest that the activation of autoreactive B cells at the onset of pemphigus is likely to be related to the presence of high BAFF serum levels and that the decreased BAFF-R expression after rituximab might be responsible for the delayed generation of memory B cells, resulting in a rather long period of mild pemphigus activity after rituximab therapy. Conversely, the incomplete B cell depletion and persistent BAFF-R expression associated with high BAFF serum levels might explain the high number of relapses in patients treated with CS alone.
Collapse
Affiliation(s)
- Vivien Hébert
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France.,Department of Dermatology, French Reference Center for Auto Immune Blistering Diseases, Rouen University Hospital, Normandie University, Rouen, France
| | - Maud Maho-Vaillant
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France.,Department of Dermatology, French Reference Center for Auto Immune Blistering Diseases, Rouen University Hospital, Normandie University, Rouen, France
| | - Marie-Laure Golinski
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France.,Department of Dermatology, French Reference Center for Auto Immune Blistering Diseases, Rouen University Hospital, Normandie University, Rouen, France
| | - Marie Petit
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Gaëtan Riou
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Olivier Boyer
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Philippe Musette
- Paris Sorbonne North University INSERM UMR 1125 and Dermatology Department Avicenne University Hospital, Bobigny, France
| | - Sébastien Calbo
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France
| | - Pascal Joly
- Normandie University, UNIROUEN, Inserm, U1234, FOCIS Center of Excellence PAn'THER, Rouen University Hospital, Department of Immunology and Biotherapy, Rouen, France.,Department of Dermatology, French Reference Center for Auto Immune Blistering Diseases, Rouen University Hospital, Normandie University, Rouen, France
| |
Collapse
|
27
|
Micheau O, Rizzi M, Smulski CR. Editorial: TNFR Superfamily Oligomerization and Signaling. Front Cell Dev Biol 2021; 9:682472. [PMID: 33959618 PMCID: PMC8093801 DOI: 10.3389/fcell.2021.682472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Olivier Micheau
- INSERM, LNC, UMR 1231, Dijon, France.,Université de Bourgogne Franche-Comté, Dijon, France
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Cristian R Smulski
- Medical Physics Department, Bariloche Atomic Centre Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
28
|
Matson EM, Abyazi ML, Bell KA, Hayes KM, Maglione PJ. B Cell Dysregulation in Common Variable Immunodeficiency Interstitial Lung Disease. Front Immunol 2021; 11:622114. [PMID: 33613556 PMCID: PMC7892472 DOI: 10.3389/fimmu.2020.622114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequently diagnosed primary antibody deficiency. About half of CVID patients develop chronic non-infectious complications thought to be due to intrinsic immune dysregulation, including autoimmunity, gastrointestinal disease, and interstitial lung disease (ILD). Multiple studies have found ILD to be a significant cause of morbidity and mortality in CVID. Yet, the precise mechanisms underlying this complication in CVID are poorly understood. CVID ILD is marked by profound pulmonary infiltration of both T and B cells as well as granulomatous inflammation in many cases. B cell depletive therapy, whether done as a monotherapy or in combination with another immunosuppressive agent, has become a standard of therapy for CVID ILD. However, CVID is a heterogeneous disorder, as is its lung pathology, and the precise patients that would benefit from B cell depletive therapy, when it should administered, and how long it should be repeated all remain gaps in our knowledge. Moreover, some have ILD recurrence after B cell depletive therapy and the relative importance of B cell biology remains incompletely defined. Developmental and functional abnormalities of B cell compartments observed in CVID ILD and related conditions suggest that imbalance of B cell signaling networks may promote lung disease. Included within these potential mechanisms of disease is B cell activating factor (BAFF), a cytokine that is upregulated by the interferon gamma (IFN-γ):STAT1 signaling axis to potently influence B cell activation and survival. B cell responses to BAFF are shaped by the divergent effects and expression patterns of its three receptors: BAFF receptor (BAFF-R), transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA). Moreover, soluble forms of BAFF-R, TACI, and BCMA exist and may further influence the pathogenesis of ILD. Continued efforts to understand how dysregulated B cell biology promotes ILD development and progression will help close the gap in our understanding of how to best diagnose, define, and manage ILD in CVID.
Collapse
Affiliation(s)
- Erik M Matson
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Miranda L Abyazi
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Kayla A Bell
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Kevin M Hayes
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Paul J Maglione
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
29
|
Aberrant Expression of a Proliferation-Inducing Ligand Underlies Autoimmune Mechanisms in Immune Thrombocytopenia. J Immunol Res 2021; 2021:3676942. [PMID: 33564689 PMCID: PMC7867467 DOI: 10.1155/2021/3676942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 01/05/2023] Open
Abstract
Purpose To study the relationship between surface membrane-bound APRIL and ITP. Methods The peripheral blood of all subjects, 50 patients diagnosed with ITP and 25 healthy controls, was collected. Flow cytometry was used to detect the expression of membrane-bound APRIL on immune cells and platelets. ELISA was used to detect the content of soluble APRIL in plasma. Results Membrane-bound APRIL was only expressed on the surface of platelets in both ITP patients and controls. APRIL expression on the platelet surface was significantly lower in newly diagnosed (P < 0.001) and chronic (P < 0.001) ITP patients than in controls. Platelet surface APRIL level was significantly enhanced in patients with complete remission after treatment (P = 0.02) but not in those with no response after treatment. Platelet surface APRIL level in ITP patients was negatively correlated with serum APRIL level (r = −0.09765, P = 0.0424). Conclusions Platelet surface APRIL may play a key immunoregulative role. Platelet surface APRIL is likely to be one source of the excessive serum APRIL in ITP patients. The effectiveness of treatment may be measured by determining the platelet surface APRIL levels in ITP patients.
Collapse
|
30
|
Increased let-7b-5p is associated with enhanced BAFF-R expression and B cell survival in immune thrombocytopenia. Int Immunopharmacol 2021; 93:107393. [PMID: 33529914 DOI: 10.1016/j.intimp.2021.107393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND B cells play a key role in the pathogenesis of immune thrombocytopenia (ITP) by producing platelet autoantibodies. Accumulating evidence suggest that microRNA (miRNA) is a critical regulator in B cells. The contribution of miRNA to B cell dysfunction in ITP has not been described. The aim of this study was to examine the expression of miRNA let-7b-5p in B cells of ITP patients and investigate its possible association with B cell function in ITP. METHODS The CD19+ cells were isolated from peripheral mononuclear cells of ITP patients and healthy controls using immunomagnetic microbeads. B cell survival in vitro was evaluated by cell counting. The level of let-7b-5p was quantified by quantitative PCR. The surface expression of B cell activating factor receptor (BAFF-R) was detected by flow cytometry. The role of let-7b-5p was examined in isolated B cells by transfecting miRNA mimics or inhibitors. RESULTS The results showed that let-7b-5p in B cells was elevated, and B cell survival was enhanced in ITP patients compared with healthy controls. BAFF and B cell receptor stimulation can induce the expression of let-7b-5p in vitro. Overexpression of let-7b-5p in B cells enhanced the expression of surface BAFF-R and promoted B cell survival. Moreover, let-7b-5p enhanced the phosphorylation of NF-κB2 p100 and upregulated the expression of survival factor Bcl-xL after BAFF induction. CONCLUSION Let-7b-5p is a pro-survival miRNA in B cells and increased let-7b-5p is associated with enhanced surface BAFF-R in ITP.
Collapse
|
31
|
Eslami M, Meinl E, Eibel H, Willen L, Donzé O, Distl O, Schneider H, Speiser DE, Tsiantoulas D, Yalkinoglu Ö, Samy E, Schneider P. BAFF 60-mer, and Differential BAFF 60-mer Dissociating Activities in Human Serum, Cord Blood and Cerebrospinal Fluid. Front Cell Dev Biol 2020; 8:577662. [PMID: 33240880 PMCID: PMC7677505 DOI: 10.3389/fcell.2020.577662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
B cell activation factor of the TNF family (BAFF/BLyS), an essential B cell survival factor of which circulating levels are elevated in several autoimmune disorders, is targeted in the clinic for the treatment of systemic lupus erythematosus (SLE). The soluble form of BAFF can exist as 3-mer, or as 60-mer that results from the ordered assembly of twenty 3-mers and that can be obtained from naturally cleaved membrane-bound BAFF or made as a recombinant protein. However, which forms of soluble BAFF exist and act in humans is unclear. In this study, BAFF 3-mer and 60-mer in biological fluids were characterized for size, activity and response to specific stimulators or inhibitors of BAFF. Human cerebrospinal fluids (CSF) from patients with multiple sclerosis and adult human sera contained exclusively BAFF 3-mer in these assays, also when BAFF concentrations were moderately SLE or highly (BAFFR-deficient individual) increased. Human sera, but not CSF, contained a high molecular weight, saturable activity that dissociated preformed recombinant BAFF 60-mer into 3-mer. This activity was lower in cord blood. Cord blood displayed BAFF levels 10-fold higher than in adults and consistently contained a fair proportion of active high molecular weight BAFF able to dissociate into 3-mer but not endowed with all properties of recombinant BAFF 60-mer. If BAFF 60-mer is produced in humans, it is dissociated, or at least attenuated in the circulation.
Collapse
Affiliation(s)
- Mahya Eslami
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holm Schneider
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Özkan Yalkinoglu
- Clinical Pharmacology, Quantitative Pharmacology, Translational Medicine, Merck KGaA, Darmstadt, Germany
| | - Eileen Samy
- Business of Merck KGaA, EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
32
|
Nascimento M, Huot-Marchand S, Gombault A, Panek C, Bourinet M, Fanny M, Savigny F, Schneider P, Le Bert M, Ryffel B, Riteau N, Quesniaux VFJ, Couillin I. B-Cell Activating Factor Secreted by Neutrophils Is a Critical Player in Lung Inflammation to Cigarette Smoke Exposure. Front Immunol 2020; 11:1622. [PMID: 32849550 PMCID: PMC7405926 DOI: 10.3389/fimmu.2020.01622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity.
Collapse
Affiliation(s)
| | | | | | - Corinne Panek
- University of Orleans and CNRS, INEM-UMR7355, Orléans, France
| | - Manon Bourinet
- University of Orleans and CNRS, INEM-UMR7355, Orléans, France
| | - Manoussa Fanny
- University of Orleans and CNRS, INEM-UMR7355, Orléans, France
| | | | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Marc Le Bert
- University of Orleans and CNRS, INEM-UMR7355, Orléans, France
| | - Bernhard Ryffel
- University of Orleans and CNRS, INEM-UMR7355, Orléans, France
| | - Nicolas Riteau
- University of Orleans and CNRS, INEM-UMR7355, Orléans, France
| | | | | |
Collapse
|
33
|
Alturaiki W. The roles of B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) in allergic asthma. Immunol Lett 2020; 225:25-30. [PMID: 32522667 DOI: 10.1016/j.imlet.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Allergic asthma, which is the most common type of asthma, is mediated by the IgE response, and B cells are key drivers of allergic inflammation in the lungs. B cell activation factor (BAFF) and proliferation inducing ligand (APRIL) are members of the TNF superfamily. BAFF and APRIL interact with three receptors, namely the B cell activation factor receptor (BAFF-r), B cell maturation antigen (BCMA), and transmembrane activator; calcium modulator; and cyclophilin ligand interactor (TACI). The interaction of BAFF and APRIL with their receptors induces B cell activation, differentiation, and antibody production. BAFF and APRIL are produced by airway epithelial cells during the response to allergens or infectious agents, and have shown to induce local IgE production, thus establishing allergic inflammation in the airways. BAFF can maintain in inflamed airways during infection and can inhibit regulatory T cells (Tregs), thereby promoting allergic inflammation in the airways. This review aims to outline current knowledge about BAFF/APRIL systems in humans as well as in murine models of allergic asthma. The precise role of BAFF and APRIL and their receptors in allergic asthma remains unclear. Therefore, further studies are required to identify and elucidate their roles in enhancing IgE production and activating immune cells that drive the Th2 effector response and initiate allergic inflammation in asthma. Targeting BAFF/APRIL or their cognate receptors may offer a novel therapeutic approach in asthma treatment.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| |
Collapse
|
34
|
Salazar-Camarena DC, Palafox-Sánchez CA, Cruz A, Marín-Rosales M, Muñoz-Valle JF. Analysis of the receptor BCMA as a biomarker in systemic lupus erythematosus patients. Sci Rep 2020; 10:6236. [PMID: 32277232 PMCID: PMC7148319 DOI: 10.1038/s41598-020-63390-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/30/2020] [Indexed: 11/08/2022] Open
Abstract
B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) play central roles in B cell development and maturation. Soluble forms of their receptors can be generated by proteolytic cleavage; however, their physiological and clinical roles are unknown. This study aimed to assess the relationships between the receptor soluble B cell maturation antigen (sBCMA) and clinical variables in systemic lupus erythematosus (SLE) patients. Serum cytokine concentrations were measured by ELISA for 129 SLE patients and 34 healthy controls (HCs), and the expression of the receptor BCMA was evaluated on B and plasma cells from 40 subjects. SLE patients showed aberrant expression of the receptor BCMA on B and plasma cells. Soluble levels of the receptor sBCMA and its ligands sAPRIL and sBAFF were increased in SLE patients compared with HCs. Additionally, sBCMA (rs = 0.6177) and sAPRIL (rs = 0.4952) correlated strongly with disease activity. Active SLE patients who achieved low disease activity showed decreased sBCMA (53.30 vs 35.30 ng/mL; p < 0.05) and sBAFF (4.48 vs 2.27 ng/mL; p < 0.05) serum levels after treatment, while sAPRIL expression remained unchanged. At a cutoff value of 22.40 ng/mL, sAPRIL showed high sensitivity (96.12%) and specificity (94.12%) for discrimination between HCs and SLE patients, while sBAFF showed lower sensitivity (82.2%) but higher specificity (94.1%) at a cutoff of 1.195 ng/mL. Relatively high levels of sAPRIL and sBCMA clustered active SLE patients. The receptor sBCMA could be a potential biomarker of disease activity in SLE.
Collapse
Affiliation(s)
- Diana Celeste Salazar-Camarena
- Research Institute in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Research Institute in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.
| | - Alvaro Cruz
- Research Institute in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Miguel Marín-Rosales
- Department of Rheumatology, West Medical Hospital, Ministry of Health, Zapopan, Mexico
| | - José Francisco Muñoz-Valle
- Research Institute in Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
35
|
Borhis G, Trovato M, Ibrahim HM, Isnard S, Le Grand R, Bosquet N, Richard Y. Impact of BAFF Blockade on Inflammation, Germinal Center Reaction and Effector B-Cells During Acute SIV Infection. Front Immunol 2020; 11:252. [PMID: 32194549 PMCID: PMC7061218 DOI: 10.3389/fimmu.2020.00252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Memory B-cell dysfunctions and inefficient antibody response suggest germinal center (GC) impairments during HIV/SIV infection with possible contribution of overproduced B-cell activating factor (BAFF). To address this question, we compared proportions and functions of various B-cell subsets and follicular helper T-cells (TFH) in untreated (Placebo) and BR3-Fc treated (Treated) SIV-infected macaques. From day 2 post-infection (dpi), Treated macaques received one weekly injection of BR3-Fc molecule, a soluble BAFF antagonist, for 4 weeks. Whereas, the kinetics of CD4+ T-cell loss and plasma viral loads were comparable in both groups, BAFF blockade delayed the peak of inflammatory cytokines (CXCL10, IFNα), impaired the renewal of plasmacytoid dendritic cells and fostered the decline of plasma CXCL13 titers after 14 dpi. In Treated macaques, proportions of total and naïve B-cells were reduced in blood and spleen whereas SIV-induced loss of marginal zone (MZ) B-cells was only accentuated in blood and terminal ileum. Proportions of spleen GC B-cells and TFH were similar in both groups, with CD8+ T-cells and rare Foxp3+ being present in spleen GC. Regardless of treatment, sorted TFH produced similar levels of IL21, CXCL13, and IFNγ but no IL2, IL4, or BAFF and exhibited similar capacities to support IgG production by autologous or heterologous B-cells. Consistently, most TFH were negative for BAFF-R and TACI. Higher proportions of resting and atypical (CD21lo) memory B-cells were present in Treated macaques compared to Placebo. In both groups, we found higher levels of BAFF-R expression on MZ and resting memory B-cells but low levels on atypical memory B-cells. TACI was present on 20-30% of MZ, resting and atypical memory B-cells in Placebo macaques. BAFF blockade decreased TACI expression on these B-cell subsets as well as titers of SIV-specific and vaccine-specific antibodies arguing for BAFF being mandatory for plasma cell survival. Irrespective of treatment, GC B-cells expressed BAFF-R at low level and were negative for TACI. In addition to key information on spleen BAFF-R and TACI expression, our data argue for BAFF contributing to the GC reaction in terminal ileum but being dispensable for the generation of atypical memory B-cells and GC reaction in spleen during T-dependent response against SIV.
Collapse
Affiliation(s)
- Gwenoline Borhis
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Maria Trovato
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Hany M. Ibrahim
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stephane Isnard
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department/IBFJ, Fontenay-aux-Roses, France
| | - Nathalie Bosquet
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department/IBFJ, Fontenay-aux-Roses, France
| | - Yolande Richard
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
36
|
Lownik JC, Wimberly JL, Takahashi-Ruiz L, Martin RK. B cell ADAM17 controls T cell independent humoral immune responses through regulation of TACI and CD138. Biochem Biophys Res Commun 2019; 522:442-447. [PMID: 31771880 DOI: 10.1016/j.bbrc.2019.11.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
ADAM17 is known to contribute to the immune system through its shedding of tumor necrosis factor alpha (TNFα). However, the role of ADAM17 in B cell biology is not well characterized. To determine whether B cell ADAM17 contributes to T cell-independent humoral immune responses, we crossed CD19 Cre transgenic mice with mice bearing a floxed allele of ADAM17 (ADAM17CD19). In this study, we show a B cell intrinsic role for ADAM17 in regulating marginal zone B cell (MZB) numbers in mice. Interestingly, we demonstrate that the loss of B cell ADAM17 results in reduced MZB numbers in the naïve state and after immunization with T-independent antigen, yet enhanced humoral immunity to T cell independent antigens. We additionally find elevated TACI and CD138 levels on plasma cells following immunization in ADAM17CD19 mice. Overall, these findings suggest that B cell ADAM17 may orchestrate T independent immune responses through both MZB numbers and plasma cell antibody production.
Collapse
Affiliation(s)
- Joseph C Lownik
- Center for Clinical and Translational Research, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jessica L Wimberly
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Leila Takahashi-Ruiz
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
37
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
38
|
Romberg N, Lawrence MG. Birds of a feather: Common variable immune deficiencies. Ann Allergy Asthma Immunol 2019; 123:461-467. [PMID: 31382019 DOI: 10.1016/j.anai.2019.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To update the reader on recently proposed common variable immune deficiency (CVID) diagnostic criteria, newly uncovered CVID pathobiology, freshly identified CVID-related genes, and novel CVID therapies. DATA SOURCES PubMed Central. STUDY SELECTIONS We selected 60 clinical and translational research articles that have shaped CVID diagnostic criteria, introduced personalized therapies, and advanced our understanding of CVID biology and genetics. We have incorporated recent articles and older published work that are foundational to the modern understanding of this protean disease. RESULTS CVID has proven to be a heterogenous group of antibody deficiency diseases driven by defects in diverse biologic processes, including B-cell development, activation, tolerance, class-switch recombination, somatic hypermutation, and lymphoproliferation. Recent genetic advances have enabled identification of several CVID-related gene defects that may contribute to patients' infectious and noninfectious symptoms. CONCLUSION Improved understanding of the aberrant biologic processes that drive CVID and the disease's genetic basis may be useful in directing therapeutic decisions, especially in cases complicated by autoimmune, lymphoproliferative, and inflammatory features.
Collapse
Affiliation(s)
- Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Monica G Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
39
|
Sevdali E, Katsantoni E, Smulski CR, Moschovi M, Palassopoulou M, Kolokotsa EN, Argentou N, Giannakoulas N, Adamaki M, Vassilopoulos G, Polychronopoulou S, Germenis AE, Eibel H, Speletas M. BAFF/APRIL System Is Functional in B-Cell Acute Lymphoblastic Leukemia in a Disease Subtype Manner. Front Oncol 2019; 9:594. [PMID: 31380267 PMCID: PMC6657364 DOI: 10.3389/fonc.2019.00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/17/2019] [Indexed: 11/13/2022] Open
Abstract
BAFF, APRIL and their receptors regulate the survival, maturation and homeostasis of mature B-cells. Despite the lack of a functional role of BAFF/APRIL system during normal early B-cell development, previous studies indicated a contribution of these molecules in the pathogenesis of B-lineage acute lymphoblastic leukemia (B-ALL). Here, we evaluated the expression of this system in B-ALL and its involvement in spontaneous and drug-induced apoptosis of B-lymphoblasts, taking into consideration the distinct disease subtypes. We found that BAFFR is the most predominant aberrantly expressed receptor in B-ALL and that its expression, along with BCMA and APRIL, positively correlates with the maturation stage of B-lymphoblasts. Moreover, the binding of the E2A-PBX1 chimeric protein to the BAFFR promoter suggests that the transcriptional activator promotes the increase in BAFFR expression observed in about 50% of pre-B-ALL patients carrying the t (1, 19) translocation. BAFF binding to BAFFR led to the processing of NF-κB2 p100 in pre-B ALL cells suggesting that BAFFR can activate the NF-κB2 pathway in pre-B ALL cells. Surprisingly, we found that BAFF treatment promotes the cell death of primary BCR-ABL+ BAFFR+ pre-B-lymphoblasts in adult B-ALL. It also enhances glucocorticoid-induced apoptosis in the E2A-PBX1+ pre-B-ALL cell line 697. These data suggest that BAFF/BAFFR signaling in B-ALL cells differs from normal B cells and that it may affect the pathogenesis of the disease.
Collapse
Affiliation(s)
- Eirini Sevdali
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Cristian R. Smulski
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Maria Moschovi
- Hematology/Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, “Aghia Sophia” Children's Hospital, Athens, Greece
| | - Maria Palassopoulou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni-Nefeli Kolokotsa
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikoletta Argentou
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikolaos Giannakoulas
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria Adamaki
- Hematology/Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, “Aghia Sophia” Children's Hospital, Athens, Greece
| | - Georgios Vassilopoulos
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology/Oncology, “Aghia Sophia” Children's Hospital, Athens, Greece
| | - Anastasios E. Germenis
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Matthaios Speletas
- Department of Immunology and Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
40
|
Shabgah AG, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. The role of BAFF and APRIL in rheumatoid arthritis. J Cell Physiol 2019; 234:17050-17063. [PMID: 30941763 DOI: 10.1002/jcp.28445] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell-maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell-effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Arezoo G Shabgah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zhaleh Shariati-Sarabi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Carrillo-Ballesteros FJ, Oregon-Romero E, Franco-Topete RA, Govea-Camacho LH, Cruz A, Muñoz-Valle JF, Bustos-Rodríguez FJ, Pereira-Suárez AL, Palafox-Sánchez CA. B-cell activating factor receptor expression is associated with germinal center B-cell maintenance. Exp Ther Med 2019; 17:2053-2060. [PMID: 30783477 PMCID: PMC6364250 DOI: 10.3892/etm.2019.7172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/23/2018] [Indexed: 12/30/2022] Open
Abstract
B-cell activating factor (BAFF) is a major cytokine that regulates B-cell survival, maturation and differentiation through its binding with its receptors: BAFF receptor (BAFF-R), transmembrane activator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA). These receptors have been demonstrated to be involved in tertiary lymphoid structure formation; however, their role in germinal centers (GCs) has remained elusive. The aim of the present study was to determine the expression profiles of BAFF and its receptors in secondary lymphoid tissues. Tonsils resected due to chronic tonsillitis were used as lymphoid tissues. To confirm the presence of GCs identified based on their typical structure, CD21 antibody staining was employed. The expression of BAFF, BAFF-R, TACI and BCMA was assessed by immunohistochemistry. BAFF was highly expressed in all regions of the follicle, but the highest BAFF expression was detected in the mantle zone (MZ). A high expression of BAFF-R was observed on lymphocytes in the MZ in comparison with the other regions (~80%; P<0.05), which was co-localizated with BAFF (r=0.646; P<0.001), in the MZ. TACI and BCMA exhibited similar expression among the different zones of the GCs, and co-localization with BAFF was observed inside the follicle, mainly in the dark zone. The present results indicate that BAFF is implicated in the maintenance of GCs. BAFF-R overexpression in the MZ, co-localizated with BAFF, suggests that these proteins constitute the principal pathway for the maintenance of the naïve B-cell population. Furthermore, TACI and BCMA have a role in the GC, where processes of B-cell selection, proliferation and differentiation into immunoglobulin-secreting plasma cells occur.
Collapse
Affiliation(s)
- Francisco Josué Carrillo-Ballesteros
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Edith Oregon-Romero
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Ramon Antonio Franco-Topete
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Luis Humberto Govea-Camacho
- Department of Otorhinolaryngology, West National Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco 44340, México
| | - Alvaro Cruz
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - José Francisco Muñoz-Valle
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Felipe Jesús Bustos-Rodríguez
- Department of Microbiology and Pathology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Ana Laura Pereira-Suárez
- Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Claudia Azucena Palafox-Sánchez
- Research Institute of Biomedical Sciences, Department of Medical Clinics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, México
| |
Collapse
|
42
|
Liechti T, Roederer M. OMIP-051 - 28-color flow cytometry panel to characterize B cells and myeloid cells. Cytometry A 2018; 95:150-155. [PMID: 30549419 DOI: 10.1002/cyto.a.23689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/25/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| |
Collapse
|
43
|
BAFF-R and TACI expression on CD3+ T cells: Interplay among BAFF, APRIL and T helper cytokines profile in systemic lupus erythematosus. Cytokine 2018; 114:115-127. [PMID: 30467093 DOI: 10.1016/j.cyto.2018.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is the prototype of systemic autoimmune disease, characterized by loss of immune tolerance against self-antigens where autoantibody production is the hallmark of disease. B-cell-activating factor (BAFF) and A proliferation-inducing ligand (APRIL) are cytokines that promote autoreactive cell survival, immunoglobulin-class switching and autoantibody responses in human and mouse SLE models. BAFF and APRIL exert their functions through interactions with their receptors BAFF-R and TACI that are differentially expressed in B lymphocyte subsets, monocytes, dendritic cells and T lymphocytes. BAFF stimulation favors T lymphocyte activation and cytokine production through BAFF-R, which could contribute to the Th1, Th17 and/or Th2 response dysregulation observed in SLE patients. OBJECTIVE To evaluate the expression of the cytokines BAFF and APRIL and their association with the receptors BAFF-R and TACI on CD3+ T cells and to evaluate Th1/Th2/Th17 cytokine profile in patients with SLE. METHODS Fifteen healthy controls (HC) and 36 SLE patients were included, and their demographic and clinical data were assessed. The disease activity index (Mex-SLEDAI) and damage index (SLICC) were applied to the SLE patients. BAFF-R and TACI expression on CD3+ T cells were evaluated by flow cytometry. Serum BAFF and APRIL concentrations were measured by enzyme-linked immunosorbent assays (ELISA). Cytokine levels of Th1 (IL-12, IL-2, IFN-γ, TNF-α), Th2 (IL-4, IL-6, IL-10, IL-13) and Th17 (IL-1β e IL-17) were quantified with a multiplex assay (MAGPIX). Statistical analysis was performed using PASW Statistics v.20 and GraphPad Prism v.6 software. RESULTS No differences in BAFF-R or TACI expression on the CD3+ T cells of SLE and HC were observed. BAFF-R expression correlates inversely with disease activity (r = -0.538, p < 0.01), while TACI correlates with disease activity (r = 0.530, p < 0.05). Serum BAFF and APRIL levels were high in SLE patients and correlated with the disease activity index Mex-SLEDAI (r = 0.621, p < 0.01 and r = 0.416, p < 0.05). SLE patients were found to have significantly higher levels of IL-12, IFN-γ, TNF-α, IL-6, IL-10, IL-13, IL-1β and IL-17 compared to HC (p < 0.05). Cytokines IL-17 (r = 0.526) and TNF-α (r = 0.410) correlate with disease activity (p < 0.05), while APRIL (r = 0.477), IL-10 (r = 0.426) and IFN-γ (r = 0.440) levels were associated with organ damage (p < 0.01). Serum BAFF expression levels correlate with IL-4 (r = 0.424; p < 0.05), IL-6 (r = 0.420; p < 0.05) and IL-10 (r = 0.459; p < 0.01), whereas APRIL levels correlate with IL-2 (r = 0.666; p < 0.01), IL-12 (r = 0.611; p < 0.01) and TNF-α (r = 0.471; p < 0.05) cytokines. A subgroup of SLE patients with high serum BAFF levels (>2 ng/mL) also showed increased APRIL, IL-2, IL-6 and IL-10 levels (p < 0.05). Finally, BAFF, IL-4 and TNF-α serum levels were associated with high titers of antinuclear antibodies. CONCLUSIONS The study demonstrates an imbalance in the Th1/Th2 cytokine profile, with increased proinflammatory cytokines, as well as BAFF and APRIL serum levels. Associations of BAFF with Th2 profile cytokines and disease activity, as well as APRIL with Th1 profile cytokines and organ damage, suggest that BAFF and APRIL generated in the autoimmunity context could through still unknown mechanisms, modulate the microenvironment, and perpetuate the inflammatory response, autoantibody production and organ damage observed in SLE patients.
Collapse
|
44
|
Rozmus J, Kariminia A, Abdossamadi S, Storer BE, Martin PJ, Lee SJ, Wolff D, Arora M, Cutler C, Schultz KR. Comprehensive B Cell Phenotyping Profile for Chronic Graft-versus-Host Disease Diagnosis. Biol Blood Marrow Transplant 2018; 25:451-458. [PMID: 30447393 DOI: 10.1016/j.bbmt.2018.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022]
Abstract
Previous studies have reported single B cell-related chronic graft-versus-host disease diagnostic (cGVHD) biomarkers, such as B cell-activating factor (BAFF), CD21low, and immature B cells, but research on the performance of biomarker combinations and the covariate effect of steroids is lacking. The primary objective of this study was to determine the most accurate combination of B cell populations using cell surface staining flow cytometry in an independent cohort of patients with cGVHD. Secondary objectives included assessing the effect of corticosteroid use at sample collection on the makeup and accuracy of the diagnostic panel and identifying the mechanism underlying low surface expression of BAFF receptor (BAFF-R) on B cells in cGVHD. Flow cytometry analysis was performed in an adult cohort of post-HCT patients with cGVHD onset (n = 44) and time-matched recipients without cGVHD (n = 63). We confirmed that the onset of cGVHD was associated with higher soluble BAFF (sBAFF) levels, elevated CD27-CD10-CD21low CD19+ B cell and classical switched memory B cell counts, and reduced transitional and naïve B cell counts. The highest single B cell population area under the receiver operating characteristic (ROC) curve (AUC) was .72 for transitional type 1 CD21low B cells. We also showed a significant inverse relationship between sBAFF and surface BAFF-R expression caused by sBAFF modulation of BAFF-R. Steroid use at sample collection influenced the significance of the sBAFF:B cell ratio, naïve and marginal zone-like B cells. The optimal combination of B cell subsets most significantly associated with cGVHD onset with or without concurrent corticosteroid use resulted in ROC AUCs of .87 and .84, respectively. Transitional and CD21low B cells were the only populations present in both panels; however, analyzing only these populations resulted in ROC AUCs of .79 and .78, respectively. This suggests that the inclusion of other populations and use of different panels depending on steroid use is necessary to achieve better accuracy. sBAFF was not a component of either panel. These novel B cell profiles could be tested prospectively in patients post-HSCT and could lead to focused mechanistic studies.
Collapse
Affiliation(s)
- Jacob Rozmus
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Amina Kariminia
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sayeh Abdossamadi
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada
| | - Barry E Storer
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie J Lee
- Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington School of Medicine, Seattle, Washington
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Mukta Arora
- University of Minnesota, Blood and Marrow Transplant Program, Minneapolis, Minnesota
| | - Corey Cutler
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Kirk R Schultz
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, Canada.
| |
Collapse
|
45
|
Smulski CR, Eibel H. BAFF and BAFF-Receptor in B Cell Selection and Survival. Front Immunol 2018; 9:2285. [PMID: 30349534 PMCID: PMC6186824 DOI: 10.3389/fimmu.2018.02285] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
The BAFF-receptor (BAFFR) is encoded by the TNFRSF13C gene and is one of the main pro-survival receptors in B cells. Its function is impressively documented in humans by a homozygous deletion within exon 2, which leads to an almost complete block of B cell development at the stage of immature/transitional B cells. The resulting immunodeficiency is characterized by B-lymphopenia, agammaglobulinemia, and impaired humoral immune responses. However, different from mutations affecting pathway components coupled to B cell antigen receptor (BCR) signaling, BAFFR-deficient B cells can still develop into IgA-secreting plasma cells. Therefore, BAFFR deficiency in humans is characterized by very few circulating B cells, very low IgM and IgG serum concentrations but normal or high IgA levels.
Collapse
Affiliation(s)
- Cristian R Smulski
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
|
47
|
Meinl E, Thaler FS, Lichtenthaler SF. Shedding of BAFF/APRIL Receptors Controls B Cells. Trends Immunol 2018; 39:673-676. [DOI: 10.1016/j.it.2018.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/10/2023]
|
48
|
B cell therapy in ANCA-associated vasculitis: current and emerging treatment options. Nat Rev Rheumatol 2018; 14:580-591. [DOI: 10.1038/s41584-018-0065-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
|
49
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
50
|
Matthews AL, Koo CZ, Szyroka J, Harrison N, Kanhere A, Tomlinson MG. Regulation of Leukocytes by TspanC8 Tetraspanins and the "Molecular Scissor" ADAM10. Front Immunol 2018; 9:1451. [PMID: 30013551 PMCID: PMC6036176 DOI: 10.3389/fimmu.2018.01451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023] Open
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane protein that functions as a "molecular scissor" to cleave the extracellular regions from its transmembrane target proteins. ADAM10 is well characterized as the ligand-dependent activator of Notch proteins, which control cell fate decisions. Indeed, conditional knockouts of ADAM10 in mice reveal impaired B-, T-, and myeloid cell development and/or function. ADAM10 cleaves many other leukocyte-expressed substrates. On B-cells, ADAM10 cleavage of the low-affinity IgE receptor CD23 promotes allergy and asthma, cleavage of ICOS ligand impairs antibody responses, and cleavage of the BAFF-APRIL receptor transmembrane activator and CAML interactor, and BAFF receptor, reduce B-cell survival. On microglia, increased ADAM10 cleavage of a rare variant of the scavenger receptor triggering receptor expressed on myeloid cells 2 may increase susceptibility to Alzheimer's disease. We and others recently showed that ADAM10 interacts with one of six different regulatory tetraspanin membrane proteins, which we termed the TspanC8 subgroup, comprising Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. The TspanC8s are required for ADAM10 exit from the endoplasmic reticulum, and emerging evidence suggests that they dictate ADAM10 subcellular localization and substrate specificity. Therefore, we propose that ADAM10 should not be regarded as a single scissor, but as six different scissors with distinct substrate specificities, depending on the associated TspanC8. In this review, we collate recent transcriptomic data to present the TspanC8 repertoires of leukocytes, and we discuss the potential role of the six TspanC8/ADAM10 scissors in leukocyte development and function.
Collapse
Affiliation(s)
- Alexandra L Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chek Ziu Koo
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Justyna Szyroka
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neale Harrison
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aditi Kanhere
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|