1
|
Chen X, Zhou Z, Tang P, Du F, Wang S, Yao J, Zhang S, Huang J, Lu X, Chen W, Yu X, Liu Y, Liu H. TBOPP, a DOCK1 Inhibitor, Potentiates Cisplatin Efficacy in Breast Cancer by Regulating Twist-mediated EMT. Curr Cancer Drug Targets 2025; 25:72-82. [PMID: 38415469 PMCID: PMC11826914 DOI: 10.2174/0115680096281231240202073558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND DOCK1 has been reported to be involved in tumor progression and re-sistance.1-(2-(30-(trifluoromethyl)-[1,10-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl2(1H)- pyridone (TBOPP) is a selective DOCK1 inhibitor; however, the role and molecular mechanisms of DOCK1 and its inhibition in breast cancer (BC) resistance remain poorly understood. OBJECTIVE This study aims toinvestigate the underlying mechanisms of DOCK1 in BC resistance. OBJECTIVE This study aims toinvestigate the underlying mechanisms of DOCK1 in BC resistance. METHODS DOCK1 or Twist siRNA and Twist plasmid were used to explore the function of DOCK1 in vitro experiments. A mouse xenograft model was used for in vivo experiments. RESULTS In the present study, we demonstrated that DOCK1 siRNA promoted cisplatin sensitivity in BC cells. Moreover, TBOPP also enhances the therapeutic effect of cisplatin both in vitro and in vivo. Mechanistically, DOCK1 siRNA inhibited EMT. Twist 1 is one of the EMT-inducing transcription factors and is known to induce EMT. To further reveal the effect of DOCK in BC cells, we co-transfected with DOCK1 and Twist1 siRNA to BC cells and found that co-transfection with DOCK1 and Twist siRNA could not further enhance the cisplatin sensitivity of BC cells. Moreover, DOCK1 siRNA failed to reverse the effect of Twist 1 up-regulation. CONCLUSION Taken together, these results demonstrate that DOCK1 may function as a potential therapeutic target in BC and that combining cisplatin with TBOPP may provide a promising therapeutic strategy for cisplatin-resistant BC patients.
Collapse
Affiliation(s)
- Xin Chen
- Department of Surgery, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Zhenbang Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Pengting Tang
- Department of Surgery, Ninghai Maternity and Child Health Hospital, Ninghai, Zhejiang, 315600, P.R. China
| | - Feiya Du
- Department of Orthopaedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuqian Wang
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jia Yao
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shufen Zhang
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Jiajing Huang
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xuemei Lu
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Wei Chen
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Xiaofang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Liu
- Department of General Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hao Liu
- Cancer Institute of Integrated traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| |
Collapse
|
2
|
Lim RM, Lu A, Chuang BM, Anaraki C, Chu B, Halbrook CJ, Edinger AL. CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy. Mol Biol Cell 2025; 36:ar4. [PMID: 39602282 PMCID: PMC11742120 DOI: 10.1091/mbc.e24-09-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na+/H+ exchangers (NHE) that regulate cytoplasmic and organellar pH. Consistent with this, we report that EIPA slows proliferation to a greater extent than can be accounted for by macropinocytosis inhibition and triggers conjugation of ATG8 to single membranes (CASM). Knocking down only NHE1 would not avoid macropinocytosis-independent effects on pH. Moreover, contrary to published reports, NHE1 loss did not block macropinocytosis in multiple cell lines. Knocking down CARMIL1 with CRISPR-Cas9 editing limited macropinocytosis, but only by 50%. In contrast, expressing the CARMIL1-AA mutant inhibits macropinocytosis induced by a wide range of macropinocytic stimuli to a similar extent as EIPA. CARMIL1-AA expression did not inhibit proliferation, highlighting the shortcomings of EIPA as a macropinocytosis inhibitor. Importantly, autophagy, another actin dependent, nutrient-producing process, was not affected by CARMIL1-AA expression. In sum, constitutive or inducible CARMIL1-AA expression reduced macropinocytosis without affecting proliferation, RAC activation, or autophagy, other processes that drive tumor initiation and progression.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Alexa Lu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
| | - Brennan M. Chuang
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Cecily Anaraki
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
| | - Brandon Chu
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Christopher J. Halbrook
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| |
Collapse
|
3
|
Yoshitomi M, Tsujimoto SI, Ikeda J, Kawai T, Ohki K, Hara Y, Yamato G, Tanoshima R, Tomizawa D, Shimada A, Horibe K, Adachi S, Taga T, Tawa A, Hayashi Y, Ito S, Shiba N. High DOCK1 expression identifies a distinct prognostic subgroup of pediatric acute myeloid leukemia: Results of the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial. Pediatr Blood Cancer 2024; 71:e31151. [PMID: 38953149 DOI: 10.1002/pbc.31151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND The molecular pathogenesis of acute myeloid leukemia (AML) was dramatically clarified over the latest two decades. Several important molecular markers were discovered in patients with AML that have helped to improve the risk stratification. However, developing new treatment strategies for relapsed/refractory acute myeloid leukemia (AML) is crucial due to its poor prognosis. PROCEDURE To overcome this difficulty, we performed an assay for transposase-accessible chromatin with sequencing (ATAC-seq) in 10 AML patients with various gene alterations. ATAC-seq is based on direct in vitro sequencing adaptor transposition into native chromatin, and is a rapid and sensitive method for integrative epigenomic analysis. ATAC-seq analysis revealed increased accessibility of the DOCK1 gene in patients with AML harboring poor prognostic factors. Following the ATAC-seq results, quantitative reverse transcription polymerase chain reaction was used to measure DOCK1 gene expression levels in 369 pediatric patients with de novo AML. RESULTS High DOCK1 expression was detected in 132 (37%) patients. The overall survival (OS) and event-free survival (EFS) among patients with high DOCK1 expression were significantly worse than those patients with low DOCK1 expression (3-year EFS: 34% vs. 60%, p < .001 and 3-year OS: 60% vs. 80%, p < .001). To investigate the significance of high DOCK1 gene expression, we transduced DOCK1 into MOLM14 cells, and revealed that cytarabine in combination with DOCK1 inhibitor reduced the viability of these leukemic cells. CONCLUSIONS Our results indicate that a DOCK1 inhibitor might reinforce the effects of cytarabine and other anti-cancer agents in patients with AML with high DOCK1 expression.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Child
- Male
- Female
- Prognosis
- Child, Preschool
- Adolescent
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Infant
- Survival Rate
- Follow-Up Studies
- East Asian People
- rac GTP-Binding Proteins
Collapse
Affiliation(s)
- Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Junji Ikeda
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Tomoko Kawai
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yusuke Hara
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Genki Yamato
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Kanagawa, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akira Shimada
- Depatment of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Akio Tawa
- Higashioosakashi Aramoto Heiwa Clinic, Oosaka, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Gunma, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
4
|
Wu Y, Hu X, Wei Z, Lin Q. Cellular Regulation of Macropinocytosis. Int J Mol Sci 2024; 25:6963. [PMID: 39000072 PMCID: PMC11241348 DOI: 10.3390/ijms25136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Interest in macropinocytosis has risen in recent years owing to its function in tumorigenesis, immune reaction, and viral infection. Cancer cells utilize macropinocytosis to acquire nutrients to support their uncontrolled proliferation and energy consumption. Macropinocytosis, a highly dynamic endocytic and vesicular process, is regulated by a series of cellular signaling pathways. The activation of small GTPases in conjunction with phosphoinositide signaling pivotally regulates the process of macropinocytosis. In this review, we summarize important findings about the regulation of macropinocytosis and provide information to increase our understanding of the regulatory mechanism underlying it.
Collapse
Affiliation(s)
| | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (X.H.); (Z.W.)
| |
Collapse
|
5
|
Li YY, Murai K, Lyu J, Honda M. Roles Played by DOCK11, a Guanine Nucleotide Exchange Factor, in HBV Entry and Persistence in Hepatocytes. Viruses 2024; 16:745. [PMID: 38793626 PMCID: PMC11125634 DOI: 10.3390/v16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB.
Collapse
Affiliation(s)
- Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Junyan Lyu
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, 13-1, Takaramachi, Kanazawa 920-8640, Japan
| |
Collapse
|
6
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
7
|
Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, Shinozaki Y, Kimura A, Harada C, Harada T. Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation. Cell Death Discov 2023; 9:166. [PMID: 37188749 PMCID: PMC10184973 DOI: 10.1038/s41420-023-01460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Dedicator of cytokinesis 3 (DOCK3) is an atypical member of the guanine nucleotide exchange factors (GEFs) and plays important roles in neurite outgrowth. DOCK3 forms a complex with Engulfment and cell motility protein 1 (Elmo1) and effectively activates Rac1 and actin dynamics. In this study, we screened 462,169 low-molecular-weight compounds and identified the hit compounds that stimulate the interaction between DOCK3 and Elmo1, and neurite outgrowth in vitro. Some of the derivatives from the hit compound stimulated neuroprotection and axon regeneration in a mouse model of optic nerve injury. Our findings suggest that the low-molecular-weight DOCK3 activators could be a potential therapeutic candidate for treating axonal injury and neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Tsuji
- R&D Division, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuta Kitamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Jun Takeyama
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Hirokazu Ishikawa
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
8
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
9
|
Boland A, Côté J, Barford D. Structural biology of DOCK-family guanine nucleotide exchange factors. FEBS Lett 2023; 597:794-810. [PMID: 36271211 PMCID: PMC10152721 DOI: 10.1002/1873-3468.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
DOCK proteins are a family of multi-domain guanine nucleotide exchange factors (GEFs) that activate the RHO GTPases CDC42 and RAC1, thereby regulating several RHO GTPase-dependent cellular processes. DOCK proteins are characterized by the catalytic DHR2 domain (DOCKDHR2 ), and a phosphatidylinositol(3,4,5)P3 -binding DHR1 domain (DOCKDHR1 ) that targets DOCK proteins to plasma membranes. DOCK-family GEFs are divided into four subfamilies (A to D) differing in their specificities for CDC42 and RAC1, and the composition of accessory signalling domains. Additionally, the DOCK-A and DOCK-B subfamilies are constitutively associated with ELMO proteins that auto-inhibit DOCK GEF activity. We review structural studies that have provided mechanistic insights into DOCK-protein functions. These studies revealed how a conserved nucleotide sensor in DOCKDHR2 catalyses nucleotide exchange, the basis for how different DOCK proteins activate specifically CDC42 and RAC1, and sometimes both, and how up-stream regulators relieve the ELMO-mediated auto-inhibition. We conclude by presenting a model for full-length DOCK9 of the DOCK-D subfamily. The involvement of DOCK GEFs in a range of diseases highlights the importance of gaining structural insights into these proteins to better understand and specifically target them.
Collapse
Affiliation(s)
- Andreas Boland
- Department of Molecular and Cellular BiologyUniversity of GenevaSwitzerland
| | - Jean‐Francois Côté
- Montreal Clinical Research Institute (IRCM)Canada
- Department of Medicine and Department of Biochemistry and Molecular MedicineUniversité de MontréalCanada
| | | |
Collapse
|
10
|
Cao Y, Chen E, Wang X, Song J, Zhang H, Chen X. An emerging master inducer and regulator for epithelial-mesenchymal transition and tumor metastasis: extracellular and intracellular ATP and its molecular functions and therapeutic potential. Cancer Cell Int 2023; 23:20. [PMID: 36750864 PMCID: PMC9903449 DOI: 10.1186/s12935-023-02859-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Despite the rapid development of therapeutic strategies in cancer treatment, metastasis remains the major cause of cancer-related death and scientific challenge. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in cancer invasion and progression, a process by which tumor cells lose cell-cell adhesion and acquire increased invasiveness and metastatic activity. Recent work has uncovered some crucial roles of extracellular adenosine 5'- triphosphate (eATP), a major component of the tumor microenvironment (TME), in promoting tumor growth and metastasis. Intratumoral extracellular ATP (eATP), at levels of 100-700 µM, is 103-104 times higher than in normal tissues. In the current literature, eATP's function in promoting metastasis has been relatively poorly understood as compared with intracellular ATP (iATP). Recent evidence has shown that cancer cells internalize eATP via macropinocytosis in vitro and in vivo, promoting cell growth and survival, drug resistance, and metastasis. Furthermore, ATP acts as a messenger molecule that activates P2 purinergic receptors expressed on both tumor and host cells, stimulating downstream signaling pathways to enhance the invasive and metastatic properties of tumor cells. Here, we review recent progress in understanding eATP's role in each step of the metastatic cascade, including initiating invasion, inducing EMT, overcoming anoikis, facilitating intravasation, circulation, and extravasation, and eventually establishing metastatic colonization. Collectively, these studies reveal eATP's important functions in many steps of metastasis and identify new opportunities for developing more effective therapeutic strategies to target ATP-associated processes in cancer.
Collapse
Affiliation(s)
- Yanyang Cao
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Eileen Chen
- grid.20627.310000 0001 0668 7841Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - Xuan Wang
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Jingwen Song
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Haiyun Zhang
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH, USA. .,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, USA. .,The Edison Biotechnology Institute, Ohio University, Athens, OH, USA. .,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA. .,Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
11
|
Inhibition of Macropinocytosis Enhances the Sensitivity of Osteosarcoma Cells to Benzethonium Chloride. Cancers (Basel) 2023; 15:cancers15030961. [PMID: 36765917 PMCID: PMC9913482 DOI: 10.3390/cancers15030961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone. Chemotherapy is one of the crucial approaches to prevent its metastasis and improve prognosis. Despite continuous improvements in the clinical treatment of OS, tumor resistance and metastasis remain dominant clinical challenges. Macropinocytosis, a form of non-selective nutrient endocytosis, has received increasing attention as a novel target for cancer therapy, yet its role in OS cells remains obscure. Benzethonium chloride (BZN) is an FDA-approved antiseptic and bactericide with broad-spectrum anticancer effects. Here, we described that BZN suppressed the proliferation, migration, and invasion of OS cells in vitro and in vivo, but simultaneously promoted the massive accumulation of cytoplasmic vacuoles as well. Mechanistically, BZN repressed the ERK1/2 signaling pathway, and the ERK1/2 activator partially neutralized the inhibitory effect of BZN on OS cells. Subsequently, we demonstrated that vacuoles originated from macropinocytosis and indicated that OS cells might employ macropinocytosis as a compensatory survival mechanism in response to BZN. Remarkably, macropinocytosis inhibitors enhanced the anti-OS effect of BZN in vitro and in vivo. In conclusion, our results suggest that BZN may inhibit OS cells by repressing the ERK1/2 signaling pathway and propose a potential strategy to enhance the BZN-induced inhibitory effect by suppressing macropinocytosis.
Collapse
|
12
|
Song JH, Mascarenhas JB, Sammani S, Kempf CL, Cai H, Camp SM, Bermudez T, Zhang DD, Natarajan V, Garcia JGN. TLR4 activation induces inflammatory vascular permeability via Dock1 targeting and NOX4 upregulation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166562. [PMID: 36179995 DOI: 10.1016/j.bbadis.2022.166562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.
Collapse
Affiliation(s)
- Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Joseph B Mascarenhas
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Hua Cai
- Department of Anesthesiology. University of California Los Angeles, Los Angeles, CA, United States of America
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America.
| |
Collapse
|
13
|
Feng J, Lu H, Ma W, Tian W, Lu Z, Yang H, Cai Y, Cai P, Sun Y, Zhou Z, Feng J, Deng J, Shu Y, Qu K, Jia W, Gao P, Zhang H. Genome-wide CRISPR screen identifies synthetic lethality between DOCK1 inhibition and metformin in liver cancer. Protein Cell 2022; 13:825-841. [PMID: 35217990 PMCID: PMC9237198 DOI: 10.1007/s13238-022-00906-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Metformin is currently a strong candidate anti-tumor agent in multiple cancers. However, its anti-tumor effectiveness varies among different cancers or subpopulations, potentially due to tumor heterogeneity. It thus remains unclear which hepatocellular carcinoma (HCC) patient subpopulation(s) can benefit from metformin treatment. Here, through a genome-wide CRISPR-Cas9-based knockout screen, we find that DOCK1 levels determine the anti-tumor effects of metformin and that DOCK1 is a synthetic lethal target of metformin in HCC. Mechanistically, metformin promotes DOCK1 phosphorylation, which activates RAC1 to facilitate cell survival, leading to metformin resistance. The DOCK1-selective inhibitor, TBOPP, potentiates anti-tumor activity by metformin in vitro in liver cancer cell lines and patient-derived HCC organoids, and in vivo in xenografted liver cancer cells and immunocompetent mouse liver cancer models. Notably, metformin improves overall survival of HCC patients with low DOCK1 levels but not among patients with high DOCK1 expression. This study shows that metformin effectiveness depends on DOCK1 levels and that combining metformin with DOCK1 inhibition may provide a promising personalized therapeutic strategy for metformin-resistant HCC patients.
Collapse
Affiliation(s)
- Junru Feng
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Lu
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wenhao Ma
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wenjing Tian
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhuan Lu
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongying Yang
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, 230032, China
| | - Pengfei Cai
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yuchen Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zilong Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiaqian Feng
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jiazhong Deng
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ying Shu
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Kun Qu
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China. .,School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China. .,Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
14
|
Meyer AE, Stelloh C, Pulakanti K, Burns R, Fisher JB, Heimbruch KE, Tarima S, Furumo Q, Brennan J, Zheng Y, Viny AD, Vassiliou GS, Rao S. Combinatorial genetics reveals the Dock1-Rac2 axis as a potential target for the treatment of NPM1;Cohesin mutated AML. Leukemia 2022; 36:2032-2041. [PMID: 35778533 PMCID: PMC9357218 DOI: 10.1038/s41375-022-01632-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia (AML) is driven by mutations that occur in numerous combinations. A better understanding of how mutations interact with one another to cause disease is critical to developing targeted therapies. Approximately 50% of patients that harbor a common mutation in NPM1 (NPM1cA) also have a mutation in the cohesin complex. As cohesin and Npm1 are known to regulate gene expression, we sought to determine how cohesin mutation alters the transcriptome in the context of NPM1cA. We utilized inducible Npm1cAflox/+ and core cohesin subunit Smc3flox/+ mice to examine AML development. While Npm1cA/+;Smc3Δ/+ mice developed AML with a similar latency and penetrance as Npm1cA/+ mice, RNA-seq suggests that the Npm1cA/+; Smc3Δ/+ mutational combination uniquely alters the transcriptome. We found that the Rac1/2 nucleotide exchange factor Dock1 was specifically upregulated in Npm1cA/+;Smc3Δ/+ HSPCs. Knockdown of Dock1 resulted in decreased growth and adhesion and increased apoptosis only in Npm1cA/+;Smc3Δ/+ AML. Higher Rac activity was also observed in Npm1cA/+;Smc3Δ/+ vs. Npm1cA/+ AMLs. Importantly, the Dock1/Rac pathway is targetable in Npm1cA/+;Smc3Δ/+ AMLs. Our results suggest that Dock1/Rac represents a potential target for the treatment of patients harboring NPM1cA and cohesin mutations and supports the use of combinatorial genetics to identify novel precision oncology targets.
Collapse
Affiliation(s)
| | - Cary Stelloh
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | | | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Joseph B Fisher
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Katelyn E Heimbruch
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinlan Furumo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - John Brennan
- Department of Pathology and Lab Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Yongwei Zheng
- Guangzhou Bio-gene Technology Co., Ltd., Guangzhou, China
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Citrus limonL.-Derived Nanovesicles Show an Inhibitory Effect on Cell Growth in p53-Inactivated Colorectal Cancer Cells via the Macropinocytosis Pathway. Biomedicines 2022; 10:biomedicines10061352. [PMID: 35740377 PMCID: PMC9219868 DOI: 10.3390/biomedicines10061352] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 01/12/2023] Open
Abstract
Edible plant-derived nanovesicles have been explored as effective materials for preventing colorectal cancer (CRC) incidence, dependent on gene status, as a K-Ras-activating mutation via the macropinocytosis pathway. Approximately 70% of CRC harbors the p53 mutation, which is strongly associated with a poor prognosis for CRC. However, it has not been revealed whether p53 inactivation activates the macropinocytosis pathway or not. In this study, we investigated parental cells, wild-type or null for p53 treated with Citrus limon L.-derived nanovesicles, as potential materials for CRC prevention. Using ultracentrifugation, we obtained C. limon L.-derived nanovesicles, the diameters of which were approximately 100 nm, similar to that of the exosomes derived from mammalian cells. C. limon L.-derived nanovesicles showed inhibitory effects on cell growth in not p53-wild, but also in p53-inactivated CRC cells. Furthermore, we revealed that the macropinocytosis pathway is activated by p53 inactivation and C. limon L.-derived nanovesicles were up taken via the macropinocytosis pathway. Notably, although C. limon L.-derived nanovesicles contained citrate, the inhibitory effects of citrate were not dependent on the p53 status. We thus provide a novel mechanism for the growth inhibition of C. limon L.-derived nanovesicles via macropinocytosis and expect to develop a functional food product containing them for preventing p53-inactivation CRC incidence.
Collapse
|
16
|
Weiss A, Lorthiois E, Barys L, Beyer KS, Bomio-Confaglia C, Burks H, Chen X, Cui X, de Kanter R, Dharmarajan L, Fedele C, Gerspacher M, Guthy DA, Head V, Jaeger A, Núñez EJ, Kearns JD, Leblanc C, Maira SM, Murphy J, Oakman H, Ostermann N, Ottl J, Rigollier P, Roman D, Schnell C, Sedrani R, Shimizu T, Stringer R, Vaupel A, Voshol H, Wessels P, Widmer T, Wilcken R, Xu K, Zecri F, Farago AF, Cotesta S, Brachmann SM. Discovery, Preclinical Characterization, and Early Clinical Activity of JDQ443, a Structurally Novel, Potent, and Selective Covalent Oral Inhibitor of KRASG12C. Cancer Discov 2022; 12:1500-1517. [PMID: 35404998 PMCID: PMC9394399 DOI: 10.1158/2159-8290.cd-22-0158] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023]
Abstract
Covalent inhibitors of KRASG12C have shown antitumor activity against advanced/metastatic KRASG12C-mutated cancers, though resistance emerges and additional strategies are needed to improve outcomes. JDQ443 is a structurally unique covalent inhibitor of GDP-bound KRASG12C that forms novel interactions with the switch II pocket. JDQ443 potently inhibits KRASG12C-driven cellular signaling and demonstrates selective antiproliferative activity in KRASG12C-mutated cell lines, including those with G12C/H95 double mutations. In vivo, JDQ443 induces AUC exposure-driven antitumor efficacy in KRASG12C-mutated cell-derived (CDX) and patient-derived (PDX) tumor xenografts. In PDX models, single-agent JDQ443 activity is enhanced by combination with inhibitors of SHP2, MEK, or CDK4/6. Notably, the benefit of JDQ443 plus the SHP2 inhibitor TNO155 is maintained at reduced doses of either agent in CDX models, consistent with mechanistic synergy. JDQ443 is in clinical development as monotherapy and in combination with TNO155, with both strategies showing antitumor activity in patients with KRASG12C-mutated tumors. SIGNIFICANCE JDQ443 is a structurally novel covalent KRASG12C inhibitor with a unique binding mode that demonstrates potent and selective antitumor activity in cell lines and in vivo models. In preclinical models and patients with KRASG12C-mutated malignancies, JDQ443 shows potent antitumor activity as monotherapy and in combination with the SHP2 inhibitor TNO155. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Andreas Weiss
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Louise Barys
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kim S. Beyer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Heather Burks
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Xueying Chen
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xiaoming Cui
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Ruben de Kanter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Carmine Fedele
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc Gerspacher
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Victoria Head
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ashley Jaeger
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Jeffrey D. Kearns
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Jason Murphy
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Helen Oakman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Nils Ostermann
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Ottl
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Danielle Roman
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard Sedrani
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Rowan Stringer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Andrea Vaupel
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Rainer Wilcken
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kun Xu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Frederic Zecri
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Anna F. Farago
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| | - Saskia M. Brachmann
- Novartis Institutes for BioMedical Research, Basel, Switzerland.,Corresponding Authors: Saskia M. Brachman, Novartis Institutes for BioMedical Research (NIBR), WSJ-386/3/13.01, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-616-9640-63; E-mail: ; Anna F. Farago, NIBR, 250 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-871-8000; E-mail: ; and Simona Cotesta, NIBR, WSJ-386/13/10, Kohlenstrasse 84, 4056 Basel, Switzerland. Phone: 41-797-9792-70; E-mail:
| |
Collapse
|
17
|
Tejeda-Muñoz N, Mei KC, Sheladiya P, Monka J. Targeting Membrane Trafficking as a Strategy for Cancer Treatment. Vaccines (Basel) 2022; 10:vaccines10050790. [PMID: 35632546 PMCID: PMC9144176 DOI: 10.3390/vaccines10050790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 12/17/2022] Open
Abstract
Membrane trafficking is emerging as an attractive therapeutic strategy for cancer. Recent reports have found a connection between Wnt signaling, receptor-mediated endocytosis, V-ATPase, lysosomal activity, and macropinocytosis through the canonical Wnt pathway. In macropinocytic cells, a massive internalization of the plasma membrane can lead to the loss of cell-surface cadherins, integrins, and other antigens that mediate cell–cell adhesion, favoring an invasive phenotype. V-ATPase is a key regulator in maintaining proper membrane trafficking, homeostasis, and the earliest developmental decisions in the Xenopus vertebrate development model system. Here, we review how the interference of membrane trafficking with membrane trafficking inhibitors might be clinically relevant in humans.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662, USA; (P.S.); (J.M.)
- Correspondence:
| | - Kuo-Ching Mei
- Division of Pharmacoengineering and Molecular School Pharmaceutics, Eshelman of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Pooja Sheladiya
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662, USA; (P.S.); (J.M.)
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1662, USA; (P.S.); (J.M.)
| |
Collapse
|
18
|
Lai B, Lai Y, Zhang Y, Zhou M, OuYang G. Survival prediction in acute myeloid leukemia using gene expression profiling. BMC Med Inform Decis Mak 2022; 22:57. [PMID: 35241089 PMCID: PMC8892720 DOI: 10.1186/s12911-022-01791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a genetically heterogeneous blood disorder. AML patients are associated with a relatively poor overall survival. The objective of this study was to establish a machine learning model to accurately perform the prognosis prediction in AML patients. METHODS We first screened for prognosis-related genes using Kaplan-Meier survival analysis in The Cancer Genome Atlas dataset and validated the results in the Oregon Health & Science University dataset. With a random forest model, we built a prognostic risk score using patient's age, TP53 mutation, ELN classification and normalized 197 gene expression as predictor variable. Gene set enrichment analysis was implemented to determine the dysregulated gene sets between the high-risk and low-risk groups. Similarity Network Fusion (SNF)-based integrative clustering was performed to identify subgroups of AML patients with different clinical features. RESULTS The random forest model was deemed the best model (area under curve value, 0.75). The random forest-derived risk score exhibited significant association with shorter overall survival in AML patients. The gene sets of pantothenate and coa biosynthesis, glycerolipid metabolism, biosynthesis of unsaturated fatty acids were significantly enriched in phenotype high risk score. SNF-based integrative clustering indicated three distinct subsets of AML patients in the TCGA cohort. The cluster3 AML patients were characterized by older age, higher risk score, more frequent TP53 mutations, higher cytogenetics risk, shorter overall survival. CONCLUSIONS The random forest-based risk score offers an effective method to perform prognosis prediction for AML patients.
Collapse
Affiliation(s)
- Binbin Lai
- Department of Hematology, Ningbo First Hospital, 59 Liuting Road, Ningbo, 315000, Zhejiang Province, China
| | - Yanli Lai
- Department of Hematology, Ningbo First Hospital, 59 Liuting Road, Ningbo, 315000, Zhejiang Province, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital, 59 Liuting Road, Ningbo, 315000, Zhejiang Province, China
| | - Miao Zhou
- Department of Hematology, Ningbo First Hospital, 59 Liuting Road, Ningbo, 315000, Zhejiang Province, China
| | - Guifang OuYang
- Department of Hematology, Ningbo First Hospital, 59 Liuting Road, Ningbo, 315000, Zhejiang Province, China.
| |
Collapse
|
19
|
Staehle HF, Pahl HL, Jutzi JS. The Cross Marks the Spot: The Emerging Role of JmjC Domain-Containing Proteins in Myeloid Malignancies. Biomolecules 2021; 11:biom11121911. [PMID: 34944554 PMCID: PMC8699298 DOI: 10.3390/biom11121911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases (KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering them attractive targets for drug interventions. In this review, we summarize the known functions of Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in understanding the context-dependent mechanisms of these proteins and explore potential future pharmacological targeting.
Collapse
Affiliation(s)
- Hans Felix Staehle
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Heike Luise Pahl
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Jonas Samuel Jutzi
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Correspondence:
| |
Collapse
|
20
|
Yamamoto T, Sato K, Yamaguchi M, Mitamura K, Taga A. Development of simultaneous quantitative analysis of tricarboxylic acid cycle metabolites to identify specific metabolites in cancer cells by targeted metabolomic approach. Biochem Biophys Res Commun 2021; 584:53-59. [PMID: 34768082 DOI: 10.1016/j.bbrc.2021.10.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
The tricarboxylic acid (TCA) cycle is one of the most important pathways of energy metabolism, and the profiles of its components are influenced by factors such as diseases and diets. Therefore, the differences in metabolic profile of TCA cycle between healthy and cancer cells have been the focus of studies to understand pathological conditions. In this study, we developed a quantitative method to measure TCA cycle metabolites using LC-MS/MS to obtain useful metabolic profiles for development of diagnostic and therapeutic methods for cancer. We successfully analyzed 11 TCA cycle metabolites by LC MS/MS with high reproducibility by using a PFP column with 0.5% formic acid as a mobile phase. Next, we analyzed the concentration of TCA cycle metabolites in human cell lines (HaCaT: normal skin keratinocytes; A431: skin squamous carcinoma cells; SW480: colorectal cancer cells). We observed reduced concentration of succinate and increased concentration of citrate, 2-hydroxyglutarate, and glutamine in A431 cells as compared with HaCaT cells. On the other hand, decreased concentration of isocitrate, fumarate, and α-ketoglutarate and increased concentration of malate, glutamine, and glutamate in A431 cells were observed in comparison with SW480 cells. These findings suggested the possibility of identifying disease-specific metabolites and/or organ-specific metabolites by using this targeted metabolomic analysis.
Collapse
Affiliation(s)
- Tetsushi Yamamoto
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kanta Sato
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Masafumi Yamaguchi
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kuniko Mitamura
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Atsushi Taga
- Pathological and Biomolecule Analyses Laboratory, Faculty of Pharmacy, Kindai University, Osaka, Japan; Antiaging Center, Kindai University, Osaka, Japan.
| |
Collapse
|
21
|
Hanada K, Kawada K, Nishikawa G, Toda K, Maekawa H, Nishikawa Y, Masui H, Hirata W, Okamoto M, Kiyasu Y, Honma S, Ogawa R, Mizuno R, Itatani Y, Miyoshi H, Sasazuki T, Shirasawa S, Taketo MM, Obama K, Sakai Y. Dual blockade of macropinocytosis and asparagine bioavailability shows synergistic anti-tumor effects on KRAS-mutant colorectal cancer. Cancer Lett 2021; 522:129-141. [PMID: 34543685 DOI: 10.1016/j.canlet.2021.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Mutations of KRAS gene are found in various types of cancer, including colorectal cancer (CRC). Despite intense efforts, no pharmacological approaches are expected to be effective against KRAS-mutant cancers. Macropinocytosis is an evolutionarily conserved actin-dependent endocytic process that internalizes extracellular fluids into large vesicles called macropinosomes. Recent studies have revealed macropinocytosis's important role in metabolic adaptation to nutrient stress in cancer cells harboring KRAS mutations. Here we showed that KRAS-mutant CRC cells enhanced macropinocytosis for tumor growth under nutrient-depleted conditions. We also demonstrated that activation of Rac1 and phosphoinositide 3-kinase were involved in macropinocytosis of KRAS-mutant CRC cells. Furthermore, we found that macropinocytosis was closely correlated with asparagine metabolism. In KRAS-mutant CRC cells engineered with knockdown of asparagine synthetase, macropinocytosis was accelerated under glutamine-depleted condition, and albumin addition could restore the glutamine depletion-induced growth suppression by recovering the intracellular asparagine level. Finally, we discovered that the combination of macropinocytosis inhibition and asparagine depletion dramatically suppressed the tumor growth of KRAS-mutant CRC cells in vivo. These results indicate that dual blockade of macropinocytosis and asparagine bioavailability could be a novel therapeutic strategy for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Keita Hanada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Gen Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Toda
- Department of Surgery, Otsu City Hospital, Otsu, Japan
| | - Hisatsugu Maekawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyo Nishikawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideyuki Masui
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michio Okamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiyuki Kiyasu
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusaku Honma
- Department of Surgery, Kobe City Medical Center West Hospital, Kobe, Japan
| | - Ryotaro Ogawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rei Mizuno
- Department of Surgery, Uji Tokushukai Medical Center, Kyoto, Japan
| | - Yoshiro Itatani
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Miyoshi
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | | | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - M Mark Taketo
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Osaka Red Cross Hospital, Osaka, Japan
| |
Collapse
|
22
|
Chen CC, Hsu CC, Chen SL, Lin PH, Chen JP, Pan YR, Huang CE, Chen YJ, Chen YY, Wu YY, Yang MH. RAS Mediates BET Inhibitor-Endued Repression of Lymphoma Migration and Prognosticates a Novel Proteomics-Based Subgroup of DLBCL through Its Negative Regulator IQGAP3. Cancers (Basel) 2021; 13:cancers13195024. [PMID: 34638508 PMCID: PMC8508075 DOI: 10.3390/cancers13195024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The inhibitors of BET proteins represent a promising class of therapeutic agents that target the oncogenic activity of MYC and repress DLBCL cell migration, but the mechanism of such repression remains elusive. Herein, we found that BET inhibitor JQ1 abrogated the amoeboid movement of DLBCL cells through a small GTPase-driven mechanism, including both restrained RAS signaling and MYC-mediated suppression of GTP-RhoA activity. BET inhibition drastically increased the expression of a GTPase regulatory protein, the IQ motif containing GTPase activating protein 3 (IQGAP3), in DLBCL. Proteomics-based re-stratification identified a specific subgroup of DLBCL patients whose tumors harbored an enhanced PI3K activity and had an inferior survival, whereas a lower IQGAP3 expression level further portended a very dismal outcome for those patients. The inhibitors of both BET and RAS (through attenuated PI3K signaling) activities effectively ameliorated the outspread of in vivo DLBCL tumors, indicating the potential of their synergism in the treatment of specific DLBCL subtypes. Abstract Phenotypic heterogeneity and molecular diversity make diffuse large B-cell lymphoma (DLBCL) a challenging disease. We recently illustrated that amoeboid movement plays an indispensable role in DLBCL dissemination and inadvertently identified that the inhibitor of bromodomain and extra-terminal (BET) proteins JQ1 could repress DLBCL migration. To explore further, we dissected the impacts of BET inhibition in DLBCL. We found that JQ1 abrogated amoeboid movement of DLBCL cells through both restraining RAS signaling and suppressing MYC-mediated RhoA activity. We also demonstrated that BET inhibition resulted in the upregulation of a GTPase regulatory protein, the IQ motif containing GTPase activating protein 3 (IQGAP3). IQGAP3 similarly exhibited an inhibitory effect on RAS activity in DLBCL cells. Through barcoded mRNA/protein profiling in clinical samples, we identified a specific subgroup of DLBCL tumors with enhanced phosphatidylinositol-3-kinase (PI3K) activity, which led to an inferior survival in these patients. Strikingly, a lower IQGAP3 expression level further portended those with PI3K-activated DLBCL a very dismal outcome. The inhibition of BET and PI3K signaling activity led to effective suppression of DLBCL dissemination in vivo. Our study provides an important insight into the ongoing efforts of targeting BET proteins as a therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Sung-Lin Chen
- Institute of Biotechnology in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Po-Han Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Ju-Pei Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yi-Ru Pan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan;
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (C.-C.C.); (C.-C.H.); (C.-E.H.); (Y.-J.C.); (Y.-Y.C.); (Y.-Y.W.)
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence:
| |
Collapse
|
23
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
24
|
Qin X, Zhang Y, He Y, Chen K, Zhang Y, Li P, Jiang Y, Li S, Li T, Yang H, Wu C, Zheng C, Zhu J, You F, Liu Y. Shear stress triggered circular dorsal ruffles formation to facilitate cancer cell migration. Arch Biochem Biophys 2021; 709:108967. [PMID: 34157295 DOI: 10.1016/j.abb.2021.108967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Circular dorsal ruffles (CDRs) are a kind of special ring-shaped membrane structure rich in F-actin, it is highly involved in the invasion-metastasis of tumor. Shear stress is one of the biophysical elements that affects the fate of tumor cells. However, how shear stress contributes to the CDRs formation is still unclear. In this study, we found that shear stress stimulated the formation of CDRs and promoted the migration of human breast MDA-MB-231 carcinoma cells. Integrin-linked kinase (ILK) mediated the recruiting of ADP-ribosylation factors (ARAP1/Arf1) to CDRs. Meanwhile, the transfection of ARAP1 or Arf1 mutant decreased the number of cells with CDRs, the CDRs areas and perimeters, thus blocked the cancer cell migration. This indicated that the ARAP1/Arf1 were necessary for the CDRs formation and cancer cell migration. Further study revealed that shear stress could stimulate the formation of intracellular macropinocytosis (MPS) thus promoted the ARAP1/Arf1 transportation to early endosome to regulate cancer cell migration after the depolymerization of CDRs. Our study elucidates that the CDRs formation is essential in shear stress-induced breast cancer cell migration, which provides a new research target for exploring the cytoskeletal mechanisms of breast cancer malignance.
Collapse
Affiliation(s)
- Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuehui Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuchen He
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Kang Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
25
|
The ubiquinone synthesis pathway is a promising drug target for Chagas disease. PLoS One 2021; 16:e0243855. [PMID: 33539347 PMCID: PMC7861437 DOI: 10.1371/journal.pone.0243855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi). It was originally a Latin American endemic health problem, but now is expanding worldwide as a result of increasing migration. The currently available drugs for Chagas disease, benznidazole and nifurtimox, provoke severe adverse effects, and thus the development of new drugs is urgently required. Ubiquinone (UQ) is essential for respiratory chain and redox balance in trypanosomatid protozoans, therefore we aimed to provide evidence that inhibitors of the UQ biosynthesis have trypanocidal activities. In this study, inhibitors of the human COQ7, a key enzyme of the UQ synthesis, were tested for their trypanocidal activities because they were expected to cross-react and inhibit trypanosomal COQ7 due to their genetic homology. We show the trypanocidal activity of a newly found human COQ7 inhibitor, an oxazinoquinoline derivative. The structurally similar compounds were selected from the commercially available compounds by 2D and 3D ligand-based similarity searches. Among 38 compounds selected, 12 compounds with the oxazinoquinoline structure inhibited significantly the growth of epimastigotes of T. cruzi. The most effective 3 compounds also showed the significant antitrypanosomal activity against the mammalian stage of T. cruzi at lower concentrations than benznidazole, a commonly used drug today. We found that epimastigotes treated with the inhibitor contained reduced levels of UQ9. Further, the growth of epimastigotes treated with the inhibitors was partially rescued by UQ10 supplementation to the culture medium. These results suggest that the antitrypanosomal mechanism of the oxazinoquinoline derivatives results from inhibition of the trypanosomal UQ synthesis leading to a shortage of the UQ pool. Our data indicate that the UQ synthesis pathway of T. cruzi is a promising drug target for Chagas disease.
Collapse
|
26
|
Tucker SJ, Zorn AJ. The role of Popeye domain-containing protein 1 (POPDC1) in the progression of the malignant phenotype. Br J Pharmacol 2021; 179:2829-2843. [PMID: 33533478 DOI: 10.1111/bph.15403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
The Popeye domain-containing protein 1 (POPDC1), a tight junction-associated transmembrane protein with a unique binding site for cAMP, has been shown to act as a tumour suppressor in cancer cells. Through interaction with many downstream effectors and signalling pathways, POPDC1 promotes cell adhesion and inhibits uncontrolled cell proliferation, epithelial-to-mesenchymal transition and metastasis. However, POPDC1 expression is down-regulated in many types of cancer, thereby reducing its tumour-suppressive actions. This review discusses the role of POPDC1 in the progression of the malignant phenotype and highlights the broad range of benefits POPDC1 stabilisation may achieve therapeutically. Cancer stem cells (CSCs) are a key hallmark of malignancies and commonly promote treatment resistance. This article provides a comprehensive overview of CSC signalling mechanisms, many of which have been shown to be regulated by POPDC1 in other cell types, thus suggesting an additional therapeutic benefit for POPDC1-stabilising anti-cancer drugs.
Collapse
Affiliation(s)
- Steven J Tucker
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Alina J Zorn
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
27
|
Tabero A, Planas O, Gallavardin T, Nieves I, Nonell S, Villanueva A. Smart Dual-Functionalized Gold Nanoclusters for Spatio-Temporally Controlled Delivery of Combined Chemo- and Photodynamic Therapy. NANOMATERIALS 2020; 10:nano10122474. [PMID: 33321776 PMCID: PMC7763296 DOI: 10.3390/nano10122474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023]
Abstract
We report the preparation of gold nanoclusters (AuNCs) as a delivery vehicle for the clinically approved photodynamic and chemotherapeutic agents Protoporphyrin IX (PpIX) and doxorubicin (DOX), respectively, and their effect on tumor cells. DOX was attached to the gold nanoclusters through a singlet oxygen-cleavable linker and was therefore released after PpIX irradiation with red light, contributing, synergistically with singlet oxygen, to induce cell death. The doubly functionalized AuNCs proved more effective than a combination of individually functionalized AuNCs. Unlike free DOX, the photoactive nanosystem was non-toxic in the absence of light, which paves the way to introduce a spatiotemporal control of the anticancer therapy and could contribute to reducing the undesirable side effects of DOX.
Collapse
Affiliation(s)
- Andrea Tabero
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | | | - Ingrid Nieves
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Instituto Madrileño Estudios Avanzados IMDEA Nanociencia, C Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
28
|
Bhosle VK, Mukherjee T, Huang YW, Patel S, Pang BWF, Liu GY, Glogauer M, Wu JY, Philpott DJ, Grinstein S, Robinson LA. SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling. Nat Commun 2020; 11:4112. [PMID: 32807784 PMCID: PMC7431850 DOI: 10.1038/s41467-020-17651-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Bo Wen Frank Pang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- BenchSci, Suite 201, 559 College Street, Toronto, ON, M6G 1A9, Canada
| | - Guang-Ying Liu
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON, M5G 2L3, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
29
|
Sha K, Lu Y, Zhang P, Pei R, Shi X, Fan Z, Chen L. Identifying a novel 5-gene signature predicting clinical outcomes in acute myeloid leukemia. Clin Transl Oncol 2020; 23:648-656. [PMID: 32776271 DOI: 10.1007/s12094-020-02460-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common type of acute leukemia and biologically heterogeneous diseases with poor prognosis. Thus, we aimed to identify prognostic markers to effectively predict the prognosis of AML patients and eventually guide treatment. METHODS Prognosis-associated genes were determined by Kaplan-Meier and multivariate analyses using the expression and clinical data of 173 AML patients from The Cancer Genome Atlas database and validated in an independent Oregon Health and Science University dataset. A prognostic risk score was computed based on a linear combination of 5-gene expression levels using the regression coefficients derived from the multivariate logistic regression model. The classification of AML was established by unsupervised hierarchical clustering of CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 expression levels. RESULTS High FCHO2 and LRCH4 expression was related to decreased mortality. While high CALCRL, DOCK1, PLA2G4A expression was associated with increased mortality. The risk score was predictive of increased mortality rate in AML patients. Hierarchical clustering analysis of the five genes discovered three clusters of AML patients. The cluster1 AML patients were associated with lower cytogenetics risk than cluster2 or 3 patients, and better prognosis than cluster3 patients (P values < 0.05 for all cases, fisher exact test or log-rank test). CONCLUSION The gene panel comprising CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 as well as the risk score may offer novel prognostic biomarkers and classification of AML patients to significantly improve outcome prediction.
Collapse
Affiliation(s)
- K Sha
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China.
| | - Y Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - P Zhang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - R Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - X Shi
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - Z Fan
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China
| | - L Chen
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, No. 251, East Baizhang Road, Ningbo, 315000, Zhejiang, China
| |
Collapse
|
30
|
Zhang W, Zheng X, Xie S, Zhang S, Mao J, Cai Y, Lu X, Chen W, Ni H, Xie L. TBOPP enhances the anticancer effect of cisplatin by inhibiting DOCK1 in renal cell carcinoma. Mol Med Rep 2020; 22:1187-1194. [PMID: 32626999 PMCID: PMC7339706 DOI: 10.3892/mmr.2020.11243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
The treatment of renal cell carcinoma (RCC) with chemotherapy remains a challenge; therefore, improving the knowledge of the molecular mechanisms underlying RCC chemoresistance and developing novel therapeutic strategies is important. Dedicator of cytokinesis 1 (DOCK1), the first member of the DOCK family to be discovered, displays various roles during tumorigenesis; however, its role during RCC progression is not completely understood. Therefore, the present study aimed to clarify the function of DOCK1 and 1‑[2‑(3'‑(trifluoromethyl)‑(1,1'‑biphenyl)‑4‑yl)‑2‑oxoethyl]‑5‑pyrrolidinylsulfonyl‑2 (1H)‑pyridone (TBOPP), a DOCK1‑sensitive inhibitor, during RCC development and chemoresistance. The results of CCK‑8 and EdU assay indicated that TBOPP decreased RCC cell viability and proliferation compared with the control group, and sensitized RCC cells to cisplatin. Moreover, RCC cells with high DOCK1 expression levels displayed increased resistance to cisplatin, whereas DOCK1 knockdown enhanced the lethal effects of cisplatin on RCC cells. Furthermore, the results determined by western blotting, CCK‑8 and cell apoptosis assay indicated that TBOPP effectively reduced DOCK1 expression levels compared with the control group, and the TBOPP‑mediated cisplatin sensitizing effect was mediated by DOCK1 inhibition. The present study suggests that DOCK1 plays a vital role in RCC cell chemoresistance to cisplatin; therefore, TBOPP may serve as a novel therapeutic agent for RCC chemoresistance.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoxiao Zheng
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Shangzhi Xie
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Shufen Zhang
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Jiayan Mao
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Ying Cai
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xuemei Lu
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wei Chen
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Haibin Ni
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
31
|
Cui W, Xue J. Circular RNA DOCK1 downregulates microRNA-124 to induce the growth of human thyroid cancer cell lines. Biofactors 2020; 46:591-599. [PMID: 32584497 DOI: 10.1002/biof.1662] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Both circular RNA DOCK1 (circDOCK1) and microRNA-124 (miR-124) are implicated in carcinogenesis, but functional association between these two molecules remains uncharacterized. Here, we aimed to ascertain the role of circDOCK1-miR-124 node in thyroid cancer cells. METHODS circDOCK1 in thyroid cancer specimens from 25 patients was quantified by qRT-PCR. FTC-133 and TPC-1 cells were enforced to overproduce circDOCK1 and miR-124 which were confirmed by qRT-PCR. The alteration in viability, migration and invasion was monitored. Cellular lysis was subjected to Western blot for detecting cyclin D1, p53, matrix metallopeptidase 9 (MMP-9), and vimentin. The phosphorylation of JAK1, STAT3, and AMPK was determined by Western blot. RESULTS Results from qRT-PCR showed circDOCK1 was enriched in thyroid carcinoma tissues. circDOCK1 fortified the viability of FTC-133 and TPC-1 cells, as well as their activities to migrate and invade. circDOCK1 increased cyclin D1 and decreased p53, and meanwhile induced the accumulation of MMP-9 and vimentin. miR-124 conferred a reverse effect on the abovementioned alteration. Besides, miR-124 blockaded the phosphorylation of JAK1, STAT3, and AMPK which was induced by circDOCK1. CONCLUSION circDOCK1 contributed to thyroid carcinogenesis through inhibition of miR-124 in thyroid cancer cells with dampening signaling transduction of JAK/STAT/AMPK in virtue of miR-124 downregulation.
Collapse
Affiliation(s)
- Wei Cui
- Department of Ultrasound, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Jun Xue
- Department of Nuclear Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
32
|
Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21114076. [PMID: 32517326 PMCID: PMC7312364 DOI: 10.3390/ijms21114076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion.
Collapse
|
33
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
34
|
Macropinocytosis confers resistance to therapies targeting cancer anabolism. Nat Commun 2020; 11:1121. [PMID: 32111826 PMCID: PMC7048872 DOI: 10.1038/s41467-020-14928-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
Macropinocytic cancer cells scavenge amino acids from extracellular proteins. Here, we show that consuming necrotic cell debris via macropinocytosis (necrocytosis) offers additional anabolic benefits. A click chemistry-based flux assay reveals that necrocytosis provides not only amino acids, but sugars, fatty acids and nucleotides for biosynthesis, conferring resistance to therapies targeting anabolic pathways. Indeed, necrotic cell debris allow macropinocytic breast and prostate cancer cells to proliferate, despite fatty acid synthase inhibition. Standard therapies such as gemcitabine, 5-fluorouracil (5-FU), doxorubicin and gamma-irradiation directly or indirectly target nucleotide biosynthesis, creating stress that is relieved by scavenged nucleotides. Strikingly, necrotic debris also render macropinocytic, but not non-macropinocytic, pancreas and breast cancer cells resistant to these treatments. Selective, genetic inhibition of macropinocytosis confirms that necrocytosis both supports tumor growth and limits the effectiveness of 5-FU in vivo. Therefore, this study establishes necrocytosis as a mechanism for drug resistance. Macropinocytosis allows cancer cells to cope with nutrient stress. Here, the authors use a selective, genetic approach to inhibit macropinocytosis and show that consuming necrotic cell debris via macropinocytosis—necrocytosis—affords resistance to many therapies that target biosynthesis.
Collapse
|
35
|
Cooke M, Baker MJ, Kazanietz MG. Rac-GEF/Rac Signaling and Metastatic Dissemination in Lung Cancer. Front Cell Dev Biol 2020; 8:118. [PMID: 32158759 PMCID: PMC7051914 DOI: 10.3389/fcell.2020.00118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) representing ∼85% of new diagnoses. The disease is often detected in an advanced metastatic stage, with poor prognosis and clinical outcome. In order to escape from the primary tumor, cancer cells acquire highly motile and invasive phenotypes that involve the dynamic reorganization of the actin cytoskeleton. These processes are tightly regulated by Rac1, a small G-protein that participates in the formation of actin-rich membrane protrusions required for cancer cell motility and for the secretion of extracellular matrix (ECM)-degrading proteases. In this perspective article we focus on the mechanisms leading to aberrant Rac1 signaling in NSCLC progression and metastasis, highlighting the role of Rac Guanine nucleotide Exchange Factors (GEFs). A plausible scenario is that specific Rac-GEFs activate discrete intracellular pools of Rac1, leading to unique functional responses in the context of specific oncogenic drivers, such as mutant EGFR or mutant KRAS. The identification of dysregulated Rac signaling regulators may serve to predict critical biomarkers for metastatic disease in lung cancer patients, ultimately aiding in refining patient prognosis and decision-making in the clinical setting.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Lai Y, Zhao A, Tan M, Yang M, Lin Y, Li S, Song J, Zheng H, Zhu Z, Liu D, Liu C, Li L, Yang G. DOCK5 regulates energy balance and hepatic insulin sensitivity by targeting mTORC1 signaling. EMBO Rep 2020; 21:e49473. [PMID: 31885214 PMCID: PMC7001503 DOI: 10.15252/embr.201949473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
The dedicator of cytokinesis 5 (DOCK5) is associated with obesity. However, the mechanism by which DOCK5 contributes to obesity remains completely unknown. Here, we show that hepatic DOCK5 expression significantly decreases at a state of insulin resistance (IR). Deletion of DOCK5 in mice reduces energy expenditure, promotes obesity, augments IR, dysregulates glucose metabolism, and activates the mTOR (Raptor)/S6K1 pathway under a high-fat diet (HFD). The overexpression of DOCK5 in hepatocytes inhibits gluconeogenic gene expression and increases the level of insulin receptor (InsR) and Akt phosphorylation. DOCK5 overexpression also inhibits mTOR/S6K1 phosphorylation and decreases the level of raptor protein expression. The opposite effects were observed in DOCK5-deficient hepatocytes. Importantly, in liver-specific Raptor knockout mice and associated hepatocytes, the effects of an adeno-associated virus (AAV8)- or adenovirus-mediated DOCK5 knockdown on glucose metabolism and insulin signaling are largely eliminated. Additionally, DOCK5-Raptor interaction is indispensable for the DOCK5-mediated regulation of hepatic glucose production (HGP). Therefore, DOCK5 acts as a regulator of Raptor to control hepatic insulin activity and glucose homeostasis.
Collapse
Affiliation(s)
- Yerui Lai
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Anjiang Zhao
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Minghong Tan
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Mengliu Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- School of Biomedical SciencesThe University of QueenslandBrisbaneQldAustralia
| | - Yao Lin
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical BiochemistryCollege of Laboratory MedicineChongqing Medical UniversityChongqingChina
| | - Shengbing Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- Chongqing Key Laboratory for oral Diseases and Biomedical ScienceCollege of StomatologyChongqing Medical UniversityChongqingChina
| | - Hongting Zheng
- Department of EndocrinologyXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Zhiming Zhu
- Department of Hypertension and EndocrinologyDaping HospitalChongqing Institute of HypertensionThird Military Medical UniversityChongqingChina
| | - Dongfang Liu
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Chaohong Liu
- Department of Pathogen BiologySchool of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
| | - Ling Li
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Gangyi Yang
- Department of EndocrinologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
37
|
Malinee M, Kumar A, Hidaka T, Horie M, Hasegawa K, Pandian GN, Sugiyama H. Targeted suppression of metastasis regulatory transcription factor SOX2 in various cancer cell lines using a sequence-specific designer pyrrole-imidazole polyamide. Bioorg Med Chem 2019; 28:115248. [PMID: 31879179 DOI: 10.1016/j.bmc.2019.115248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
Metastasis, a deadly feature of cancer, compromises the prognosis and accounts for mortality in the majority of cancer patients. SOX2, a well-known pluripotency transcription factor, plays a central role in cell fate determination and has an overlapping role as a regulatory factor in tumorigenesis and metastasis. The demand is increasing for clinically useful strategies for artificial control of SOX2 expression and its complex transcription machinery in cancer cells. N-Methylpyrrole (Py) and N-methylimidazole (Im) polyamides are small programmable designer ligands that can be pre-programmed to selectively recognize DNA sequence and control endogenous gene expression. Herein, we evaluated the anticancer activity of a designer ligand (SOX2i). SOX2i remarkably altered the expression of SOX2 at the mRNA and protein level in human cancer cell lines such as SW620 (colorectal adenocarcinoma), MKN45 (gastric adenocarcinoma), MCF7 (breast carcinoma), U2OS (osteosarcoma) and other cancer cell lines of different origin and type. Genome-wide transcriptome analysis and cell-based assays showed SOX2 to be a downregulated upstream regulator that alters cell proliferation, cell cycle progression, metabolism and apoptotic pathway. Studies in the mouse model confirmed the anti-metastatic property of SOX2i. SOX2i inhibited the expression of genes associated with EMT and stemness. Moreover, Wnt-canonical signaling was found to be downregulated in the SOX2i-treated group. Our proof-of-concept study supports the potential of DNA-based programmable small molecules for controlling the key regulatory factors associated with tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Madhu Malinee
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alok Kumar
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masanobu Horie
- Division of Biochemical System Engineering, Radioisotope Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouichi Hasegawa
- Institute of Integrated Cell Material Sciences (iCeMS), Kyoto University of Advanced Study, Kyoto, Japan
| | - Ganesh N Pandian
- Institute of Integrated Cell Material Sciences (iCeMS), Kyoto University of Advanced Study, Kyoto, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
38
|
Sato T, Arakawa M, Tashima Y, Tsuboi E, Burdon G, Trojan J, Koyano T, Youn YN, Penov K, Pedroza AJ, Shabazzi M, Palmon I, Nguyen MN, Connolly AJ, Yamaguchi A, Fischbein MP. Statins Reduce Thoracic Aortic Aneurysm Growth in Marfan Syndrome Mice via Inhibition of the Ras-Induced ERK (Extracellular Signal-Regulated Kinase) Signaling Pathway. J Am Heart Assoc 2019; 7:e008543. [PMID: 30571378 PMCID: PMC6404178 DOI: 10.1161/jaha.118.008543] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Statins reduce aneurysm growth in mouse models of Marfan syndrome, although the mechanism is unknown. In addition to reducing cholesterol, statins block farnesylation and geranylgeranylation, which participate in membrane‐bound G‐protein signaling, including Ras. We dissected the prenylation pathway to define the effect of statins on aneurysm reduction. Methods and Results Fbn1C1039G/+ mice were treated with (1) pravastatin (HMG‐CoA [3‐hydroxy‐3‐methylglutaryl coenzyme A] reductase inhibitor), (2) manumycin A (MA; FPT inhibitor), (3) perillyl alcohol (GGPT1 and ‐2 inhibitor), or (4) vehicle control from age 4 to 8 weeks and euthanized at 12 weeks. Histological characterization was performed. Protein analysis was completed on aortic specimens to measure ERK (extracellular signal‐regulated kinase) signaling. In vitro Fbn1C1039G/+ aortic smooth muscle cells were utilized to measure Ras‐dependent ERK signaling and MMP (matrix metalloproteinase) activity. Pravastatin and MA significantly reduced aneurysm growth compared with vehicle control (n=8 per group). In contrast, PA did not significantly decrease aneurysm size. Histology illustrated reduced elastin breakdown in MA‐treated mice compared with vehicle control (n=5 per group). Although elevated in control Marfan mice, both phosphorylated c‐Raf and phosphorylated ERK1/2 were significantly reduced in MA‐treated mice (4–5 per group). In vitro smooth muscle cell studies confirmed phosphorylated cRaf and phosphorylated ERK1/2 signaling was elevated in Fbn1C1039G/+ smooth muscle cells (n=5 per group). Fbn1C1039G/+ smooth muscle cell Ras‐dependent ERK signaling and MMP activity were reduced following MA treatment (n=5 per group). Corroborating in vitro findings, MMP activity was also decreased in pravastatin‐treated mice. Conclusions Aneurysm reduction in Fbn1C1039G/+ mice following pravastatin and MA treatment was associated with a decrease in Ras‐dependent ERK signaling. MMP activity can be reduced by diminishing Ras signaling.
Collapse
Affiliation(s)
- Tetsuya Sato
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA.,2 Department of Cardiovascular Surgery Jichi Medical University Saitama Medical Center Saitama Japan
| | - Mamoru Arakawa
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA.,2 Department of Cardiovascular Surgery Jichi Medical University Saitama Medical Center Saitama Japan
| | - Yasushi Tashima
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA.,2 Department of Cardiovascular Surgery Jichi Medical University Saitama Medical Center Saitama Japan
| | - Eitoshi Tsuboi
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA.,4 Department of Cardiovascular Surgery Iwaki Kyoritsu General Hospital Fukushima Japan
| | - Grayson Burdon
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA
| | - Jeffrey Trojan
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA
| | - Tiffany Koyano
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA
| | - Young-Nam Youn
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA.,3 Division of Cardiovascular Surgery Severance Cardiovascular Hospital Yonsei University College of Medicine Seoul Korea
| | - Kiril Penov
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA.,5 Department of Cardiac Surgery Heart Center Leipzig University of Leipzig Germany
| | - Albert J Pedroza
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA
| | - Mohammad Shabazzi
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA
| | - Itai Palmon
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA
| | - Marie Noel Nguyen
- 1 Department of Cardiothoracic Surgery Stanford University Stanford CA
| | | | - Atsushi Yamaguchi
- 2 Department of Cardiovascular Surgery Jichi Medical University Saitama Medical Center Saitama Japan
| | | |
Collapse
|
39
|
Disanza A, Bisi S, Frittoli E, Malinverno C, Marchesi S, Palamidessi A, Rizvi A, Scita G. Is cell migration a selectable trait in the natural evolution of cancer development? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180224. [PMID: 31431177 DOI: 10.1098/rstb.2018.0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selective evolutionary pressure shapes the processes and genes that enable cancer survival and expansion in a tumour-suppressive environment. A distinguishing lethal feature of malignant cancer is its dissemination and seeding of metastatic foci. A key requirement for this process is the acquisition of a migratory/invasive ability. However, how the migratory phenotype is selected for during the natural evolution of cancer and what advantage, if any, it might provide to the growing malignant cells remain open issues. In this opinion piece, we discuss three possible answers to these issues. We will examine lines of evidence from mathematical modelling of cancer evolution that indicate that migration is an intrinsic selectable property of malignant cells that directly impacts on growth dynamics and cancer geometry. Second, we will argue that migratory phenotypes can emerge as an adaptive response to unfavourable growth conditions and endow cells not only with the ability to move/invade, but also with specific metastatic traits, including drug resistance, self-renewal and survival. Finally, we will discuss the possibility that migratory phenotypes are coincidental events that emerge by happenstance in the natural evolution of cancer. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Sara Bisi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Emanuela Frittoli
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Chiara Malinverno
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Stefano Marchesi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Palamidessi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Abrar Rizvi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| |
Collapse
|
40
|
Zhang G, Zhang J, Yang X, Zhang X, Yang S, Wang J, Hu K, Shi J, Ke X, Fu L. High expression of dedicator of cytokinesis 1 adversely influences the prognosis of acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Cancer Manag Res 2019; 11:3053-3060. [PMID: 31114350 PMCID: PMC6489661 DOI: 10.2147/cmar.s192845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Overexpression of dedicator of cytokinesis 1 (DOCK1) has been confirmed as an unfavorable prognostic marker in acute myeloid leukemia (AML). Purpose: This study is to explore the clinical implications of DOCK1 on AML patients underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). Patients and methods: We analyzed 71 de novo AML patients treated with allo-HSCT and divided them into two groups (DOCK1 high vs DOCK1 low) by the median expression level of DOCK1. Results: High DOCK1 expression was associated with older age (P=0.019), wild-type CEBPA (P=0.002), IDH1/2 mutations (P=0.010) and RUNX1 mutation (P=0.005). Univariate analyses showed that DOCK1 high and RUNX1 mutation were associated with shorter OS (P<0.001, P=0.024). Multivariate analysis confirmed the negative effect of high DOCK1 level on overall survival (P=0.010). Conclusion: Our results demonstrate that in AML patients who received allo-HSCT, high DOCK1 expression might have a persistent negative prognostic impact post-transplant.
Collapse
Affiliation(s)
- Gaoqi Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Jilei Zhang
- Department of Otolaryngology, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Xinrui Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Xinpei Zhang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Siyuan Yang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Jing Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing 100853, People's Republic of China.,Department of Medical Big Data, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
41
|
Biswas M, Chatterjee SS, Boila LD, Chakraborty S, Banerjee D, Sengupta A. MBD3/NuRD loss participates with KDM6A program to promote DOCK5/8 expression and Rac GTPase activation in human acute myeloid leukemia. FASEB J 2019; 33:5268-5286. [PMID: 30668141 DOI: 10.1096/fj.201801035r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer genome sequencing studies have focused on identifying oncogenic mutations. However, mutational profiling alone may not always help dissect underlying epigenetic dependencies in tumorigenesis. Nucleosome remodeling and deacetylase (NuRD) is an ATP-dependent chromatin remodeling complex that regulates transcriptional architecture and is involved in cell fate commitment. We demonstrate that loss of MBD3, an important NuRD scaffold, in human primary acute myeloid leukemia (AML) cells associates with leukemic NuRD. Interestingly, CHD4, an intact ATPase subunit of leukemic NuRD, coimmunoprecipitates and participates with H3K27Me3/2-demethylase KDM6A to induce expression of atypical guanine nucleotide exchange factors, dedicator of cytokinesis (DOCK) 5 and 8 (DOCK5/8), promoting Rac GTPase signaling. Mechanistically, MBD3 deficiency caused loss of histone deacytelase 1 occupancy with a corresponding increase in KDM6A, CBP, and H3K27Ac on DOCK5/8 loci, leading to derepression of gene expression. Importantly, the Cancer Genome Atlas AML cohort reveals that DOCK5/ 8 levels are correlated with MBD3 and KDM6A, and DOCK5/ 8 expression is significantly increased in patients who are MBD3 low and KDM6A high with a poor survival. In addition, pharmacological inhibition of DOCK signaling selectively attenuates AML cell survival. Because MBD3 and KDM6A have been implicated in metastasis, our results may suggest a general phenomenon in tumorigenesis. Collectively, these findings provide evidence for MBD3-deficient NuRD in leukemia pathobiology and inform a novel epistasis between NuRD and KDM6A toward maintenance of oncogenic gene expression in AML.-Biswas, M., Chatterjee, S. S., Boila, L. D., Chakraborty, S., Banerjee, D., Sengupta, A. MBD3/NuRD loss participates with KDM6A program to promote DOCK5/8 expression and Rac GTPase activation in human acute myeloid leukemia.
Collapse
Affiliation(s)
- Mayukh Biswas
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | - Shankha Subhra Chatterjee
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | - Liberalis Debraj Boila
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | - Sayan Chakraborty
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| | | | - Amitava Sengupta
- Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Translational Research Unit of Excellence (TRUE), Salt Lake, Kolkata, West Bengal, India.,Cancer Biology and Inflammatory Disorder Division, CSIR-IICB, Jadavpur, Kolkata, West Bengal, India; and
| |
Collapse
|
42
|
Yimit A, Adebali O, Sancar A, Jiang Y. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat Commun 2019; 10:309. [PMID: 30659176 PMCID: PMC6338751 DOI: 10.1038/s41467-019-08290-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
The platinum-based drug cisplatin is a widely used first-line therapy for several cancers. Cisplatin interacts with DNA mainly in the form of Pt-d(GpG) di-adduct, which stalls cell proliferation and activates DNA damage response. Although cisplatin shows a broad spectrum of anticancer activity, its utility is limited due to acquired drug resistance and toxicity to non-targeted tissues. Here, by integrating genome-wide high-throughput Damage-seq, XR-seq, and RNA-seq approaches, along with publicly available epigenomic data, we systematically study the genome-wide profiles of cisplatin damage formation and excision repair in mouse kidney, liver, lung and spleen. We find different DNA damage and repair spectra across mouse organs, which are associated with tissue-specific transcriptomic and epigenomic profiles. The framework and the multi-omics data we present here constitute an unbiased foundation for understanding the mechanisms of cellular response to cisplatin. Our approach should be applicable for studying drug resistance and for tailoring cancer chemotherapy regimens.
Collapse
Affiliation(s)
- Askar Yimit
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ogun Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey, 34956
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Yuchao Jiang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
43
|
Araújo T, Khayat A, Quintana L, Calcagno D, Mourão R, Modesto A, Paiva J, Lima A, Moreira F, Oliveira E, Souza M, Othman M, Liehr T, Abdelhay E, Gomes R, Santos S, Assumpção P. Piwi like RNA-mediated gene silencing 1 gene as a possible major player in gastric cancer. World J Gastroenterol 2018; 24:5338-5350. [PMID: 30598579 PMCID: PMC6305533 DOI: 10.3748/wjg.v24.i47.5338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a permanent piwi like RNA-mediated gene silencing 1 (PIWIL1) gene knockout in AGP01 gastric cancer cell line using CRISPR-Cas9 system and analyze phenotypic modifications as well as gene expression alterations.
METHODS CRISPR-Cas9 system used was purchased from Dharmacon GE Life Sciences (Lafayette, CO, United States) and permanent knockout was performed according to manufacturer’s recommendations. Wound-healing assay was performed to investigate the effect of PIWIL1 knockout on migration capability of cells and Boyden chamber invasion assay was performed to investigate the effect on invasion capability. For the gene expression analysis, a one-color microarray-based gene expression analysis kit (Agilent Technologies, Santa Clara, CA, United States) was used according to the protocol provided by the manufacturer.
RESULTS PIWIL1 gene knockout caused a significant decrease in AGP01 migration capacity as well as a significant decrease in cell invasiveness. Moreover, functional analysis based on grouping of all differentially expressed mRNAs identified a total of 35 genes (5 up-regulated and 30 down-regulated) encoding proteins involved in cellular invasion and migration. According to current literature, 9 of these 35 genes (DOCK2, ZNF503, PDE4D, ABL1, ABL2, LPAR1, SMAD2, WASF3 and DACH1) are possibly related to the mechanisms used by PIWIL1 to promote carcinogenic effects related to migration and invasion, since their functions are consistent with the changes observed (being up- or down-regulated after knockout).
CONCLUSION Taken together, these data reinforce the idea that PIWIL1 plays a crucial role in the signaling pathway of gastric cancer, regulating several genes involved in migration and invasion processes; therefore, its use as a therapeutic target may generate promising results in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Taíssa Araújo
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - André Khayat
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Luciana Quintana
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Danielle Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Ronald Mourão
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Antônio Modesto
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Juliana Paiva
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Adhara Lima
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Fabiano Moreira
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Edivaldo Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, Instituto Evandro Chagas, Belém 66087-082, Brazil
| | - Michel Souza
- Laboratório de Cultura de Tecidos e Citogenética, Instituto Evandro Chagas, Belém 66087-082, Brazil
| | - Moneeb Othman
- Institute of Human Genetics, Universitätsklinikum Jena, Jena 07747, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Universitätsklinikum Jena, Jena 07747, Germany
| | - Eliana Abdelhay
- Laboratório de Célula Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Renata Gomes
- Laboratório de Célula Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Sidney Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Paulo Assumpção
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| |
Collapse
|
44
|
Abstract
While cancer cell proliferation depends on access to extracellular nutrients, inadequate tumour perfusion means that glucose, amino acids and lipids are often in short supply. To overcome this obstacle to growth, cancer cells utilize multiple scavenging strategies, obtaining macromolecules from the microenvironment and breaking them down in the lysosome to produce substrates for ATP generation and anabolism. Recent studies have revealed four scavenging pathways that support cancer cell proliferation in low-nutrient environments: scavenging of extracellular matrix proteins via integrins, receptor-mediated albumin uptake and catabolism, macropinocytic consumption of multiple components of the tumour microenvironment and the engulfment and degradation of entire live cells via entosis. New evidence suggests that blocking these pathways alone or in combination could provide substantial benefits to patients with incurable solid tumours. Both US Food and Drug Administration (FDA)-approved drugs and several agents in preclinical or clinical development shut down individual or multiple scavenging pathways. These therapies may increase the extent and durability of tumour growth inhibition and/or prevent the development of resistance when used in combination with existing treatments. This Review summarizes the evidence suggesting that scavenging pathways drive tumour growth, highlights recent advances that define the oncogenic signal transduction pathways that regulate scavenging and considers the benefits and detriments of therapeutic strategies targeting scavenging that are currently under development.
Collapse
Affiliation(s)
- Brendan T Finicle
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Vaishali Jayashankar
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
45
|
Sakurai T, Uruno T, Sugiura Y, Tatsuguchi T, Yamamura K, Ushijima M, Hattori Y, Kukimoto-Niino M, Mishima-Tsumagari C, Watanabe M, Suematsu M, Fukui Y. Cholesterol sulfate is a DOCK2 inhibitor that mediates tissue-specific immune evasion in the eye. Sci Signal 2018; 11:11/541/eaao4874. [DOI: 10.1126/scisignal.aao4874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Liang Y, Wang S, Zhang Y. Downregulation of Dock1 and Elmo1 suppresses the migration and invasion of triple-negative breast cancer epithelial cells through the RhoA/Rac1 pathway. Oncol Lett 2018; 16:3481-3488. [PMID: 30127952 PMCID: PMC6096110 DOI: 10.3892/ol.2018.9077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dedicator of cytokinesis 1 (Dock1), a guanine nucleotide exchange factor, has been proven to facilitate cell survival, motility and proliferation via the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1). Engulfment and cell motility 1 (Elmo1) serves as a mammalian homolog of Ced-12, which has been evolutionarily conserved from worm to human. The present study aimed to investigate the roles and mechanisms of Dock1 and Elmo1 in the migration and invasion of triple-negative breast cancer (TNBC) epithelial cells. Cell Counting kit-8, cell migration and cell invasion assays were performed to assess cell viability, migration and invasion, respectively. A plate clone formation assay was performed to determine cell proliferation. Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to evaluate mRNA and protein expression. The results revealed that the downregulation of Dock1 and Elmo1 inhibited cell viability, suppressed migration and invasion, and reduced Rac1 activity in MDA-MB-231 cells. Furthermore, downregulation of Dock1 and Elmo1 also attenuated the expression of migration-associated proteins and affected the Ras homolog gene family, member A (RhoA)/Rac1 pathway in MDA-MB-231 cells. In conclusion, the results of the present study suggested that the downregulation of Dock1 and Elmo1 suppresses the migration and invasion of TNBC epithelial cells through the RhoA/Rac1 pathway.
Collapse
Affiliation(s)
- Yueyang Liang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Shushu Wang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
47
|
Liu C, Guo T, Xu G, Sakai A, Ren S, Fukusumi T, Ando M, Sadat S, Saito Y, Khan Z, Fisch KM, Califano J. Characterization of Alternative Splicing Events in HPV-Negative Head and Neck Squamous Cell Carcinoma Identifies an Oncogenic DOCK5 Variant. Clin Cancer Res 2018; 24:5123-5132. [PMID: 29945995 DOI: 10.1158/1078-0432.ccr-18-0752] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/29/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023]
Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide, and alternative splicing is considered to play important roles in tumor progression. Our study is designed to identify alternative splicing events (ASEs) in human papillomavirus (HPV)-negative HNSCC.Experimental Design: RNA sequencing data of 407 HPV-negative HNSCC and 38 normal samples were obtained from The Cancer Genome Atlas (TCGA), and splice junctions were discovered using MapSplice. Outlier analysis was used to identify significant splicing junctions between HPV-negative HNSCC and normal samples. To explore the functional role of the identified DOCK5 variant, we checked its expression with qRT-PCR in a separate primary tumor validation set and performed proliferation, migration, and invasion assays.Results: A total of 580 significant splicing events were identified in HPV-negative HNSCC, and the most common type of splicing events was an alternative start site (33.3%). The prevalence of a given individual ASE among the tumor cohort ranged from 9.8% and 64.4%. Within the 407 HPV-negative HNSCC samples in TCGA, the number of significant ASEs differentially expressed in each tumor ranged from 17 to 290. We identified a novel candidate oncogenic DOCK5 variant confirmed using qRT-PCR in a separate primary tumor validation set. Loss- and gain-of-function experiments indicated that DOCK5 variant promoted proliferation, migration, and invasion of HPV-negative HNSCC cells, and patients with higher expression of DOCK5 variant showed decreased overall survival.Conclusions: Analysis of ASEs in HPV-negative HNSCC identifies multiple alterations likely related to carcinogenesis, including an oncogenic DOCK5 variant. Clin Cancer Res; 24(20); 5123-32. ©2018 AACR.
Collapse
Affiliation(s)
- Chao Liu
- Moores Cancer Center, University of California San Diego, San Diego, California.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Theresa Guo
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Guorong Xu
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, California
| | - Akihiro Sakai
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Shuling Ren
- Moores Cancer Center, University of California San Diego, San Diego, California.,Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Takahito Fukusumi
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Mizuo Ando
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Sayed Sadat
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Yuki Saito
- Moores Cancer Center, University of California San Diego, San Diego, California
| | - Zubair Khan
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, California
| | - Joseph Califano
- Moores Cancer Center, University of California San Diego, San Diego, California. .,Division of Otolaryngology - Head and Neck Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
48
|
Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer Res 2018; 78:3101-3111. [PMID: 29858187 PMCID: PMC6004249 DOI: 10.1158/0008-5472.can-18-0619] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 02/07/2023]
Abstract
Rac and Cdc42 are small GTPases that have been linked to multiple human cancers and are implicated in epithelial to mesenchymal transition, cell-cycle progression, migration/invasion, tumor growth, angiogenesis, and oncogenic transformation. With the exception of the P29S driver mutation in melanoma, Rac and Cdc42 are not generally mutated in cancer, but are overexpressed (gene amplification and mRNA upregulation) or hyperactivated. Rac and Cdc42 are hyperactivated via signaling through oncogenic cell surface receptors, such as growth factor receptors, which converge on the guanine nucleotide exchange factors that regulate their GDP/GTP exchange. Hence, targeting Rac and Cdc42 represents a promising strategy for precise cancer therapy, as well as for inhibition of bypass signaling that promotes resistance to cell surface receptor-targeted therapies. Therefore, an understanding of the regulatory mechanisms of these pivotal signaling intermediates is key for the development of effective inhibitors. In this review, we focus on the role of Rac and Cdc42 in cancer and summarize the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of Rac- and Cdc42-targeting agents. Cancer Res; 78(12); 3101-11. ©2018 AACR.
Collapse
Affiliation(s)
- María Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.
| |
Collapse
|
49
|
A RAB35-p85/PI3K axis controls oscillatory apical protrusions required for efficient chemotactic migration. Nat Commun 2018; 9:1475. [PMID: 29662076 PMCID: PMC5902610 DOI: 10.1038/s41467-018-03571-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/15/2018] [Indexed: 11/17/2022] Open
Abstract
How cells move chemotactically remains a major unmet challenge in cell biology. Emerging evidence indicates that for interpreting noisy, shallow gradients of soluble cues a system must behave as an excitable process. Here, through an RNAi-based, high-content screening approach, we identify RAB35 as necessary for the formation of growth factors (GFs)-induced waves of circular dorsal ruffles (CDRs), apically restricted actin-rich migratory protrusions. RAB35 is sufficient to induce recurrent and polarized CDRs that travel as propagating waves, thus behaving as an excitable system that can be biased to control cell steering. Consistently, RAB35 is essential for promoting directed chemotactic migration and chemoinvasion of various cells in response to gradients of motogenic GFs. Molecularly, RAB35 does so by directly regulating the activity of p85/PI3K polarity axis. We propose that RAB35 is a molecular determinant for the control of an excitable, oscillatory system that acts as a steering wheel for GF-mediated chemotaxis and chemoinvasion. Circular dorsal ruffles (CDRs) are apical actin enriched structures involved in the interpretation of growth factor gradients during cell migration. Here, the authors find that a RAB35/PI3K axis is necessary and sufficient for the formation and stabilization of polarized CDRs and persistent directional migration.
Collapse
|
50
|
Yoshida S, Pacitto R, Inoki K, Swanson J. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol Life Sci 2018; 75:1227-1239. [PMID: 29119228 PMCID: PMC5843684 DOI: 10.1007/s00018-017-2710-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
The growth and proliferation of metazoan cells are driven by cellular nutrient status and by extracellular growth factors. Growth factor receptors on cell surfaces initiate biochemical signals that increase anabolic metabolism and macropinocytosis, an actin-dependent endocytic process in which relatively large volumes of extracellular solutes and nutrients are internalized and delivered efficiently into lysosomes. Macropinocytosis is prominent in many kinds of cancer cells, and supports the growth of cells transformed by oncogenic K-Ras. Growth factor receptor signaling and the overall metabolic status of the cell are coordinated in the cytoplasm by the mechanistic target-of-rapamycin complex-1 (mTORC1), which positively regulates protein synthesis and negatively regulates molecular salvage pathways such as autophagy. mTORC1 is activated by two distinct Ras-related small GTPases, Rag and Rheb, which associate with lysosomal membranes inside the cell. Rag recruits mTORC1 to the lysosomal surface where Rheb directly binds to and activates mTORC1. Rag is activated by both lysosomal luminal and cytosolic amino acids; Rheb activation requires phosphoinositide 3-kinase, Akt, and the tuberous sclerosis complex-1/2. Signals for activation of Rag and Rheb converge at the lysosomal membrane, and several lines of evidence support the idea that growth factor-dependent endocytosis facilitates amino acid transfer into the lysosome leading to the activation of Rag. This review summarizes evidence that growth factor-stimulated macropinocytosis is essential for amino acid-dependent activation of mTORC1, and that increased solute accumulation by macropinocytosis in transformed cells supports unchecked cell growth.
Collapse
Affiliation(s)
- Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-5620, USA
| | - Regina Pacitto
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-5620, USA
| | - Ken Inoki
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joel Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|