1
|
Adamecz DI, Veres É, Papp C, Árva H, Rónavári A, Marton A, Vizler C, Gácser A, Kónya Z, Igaz N, Kiricsi M. Gold and Silver Nanoparticles Efficiently Modulate the Crosstalk Between Macrophages and Cancer Cells. Int J Nanomedicine 2025; 20:4777-4802. [PMID: 40255669 PMCID: PMC12009049 DOI: 10.2147/ijn.s508171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Background Macrophages, polarized into pro-inflammatory M1 or anti-inflammatory M2 states, are essential cellular elements of innate immunity. In the tumor microenvironment, owing to a paracrine manipulative program by cancerous cells, tumor-associated macrophages (TAMs) evolve, which can shift between M1-like and M2-like phenotypes. Since it is fairly unknown how the promising anticancer agents, silver (AgNPs) and gold nanoparticles (AuNPs) affect the bidirectional communication and reprogramming in the tumor stroma, we examined the behavior, the tumor-supporting functions, and the expression of polarization and functional marker genes of TAMs to reveal how these are modulated upon interaction with nanoparticle-exposed cancer cells. Methods We established co-cultures of murine immortalized J774 or primary bone marrow-derived macrophages with 4T1 breast cancer cells treated with AuNPs or AgNPs or with none of the nanoparticles. We assessed the expression of macrophage polarization and functional markers using RT-qPCR and Proteome Profiler Array and evaluated macrophage migration and matrix metalloproteinase activity by specific assays. Results Protein and mRNA levels of most examined factors - except tumor necrosis factor-alpha - such as C-C-motif chemokine ligands 2 and 22, interleukin-23, inducible nitric oxide synthase, cyclooxygenase-2, the macrophage mannose receptor CD206, transforming growth factor-beta, and chitinase-like-3 protein decreased, and the expression of polarization markers revealed a shift towards M1-like phenotype in macrophages co-cultured with AgNP- or AuNP-treated 4T1 cells. Both nanoparticle treatments reduced the levels and activity of cell migration-related factors, such as C-C motif chemokine ligand 3, matrix metalloproteinases, and suppressed macrophage migration. Conclusion Both AuNPs and AgNPs showed a remarkable ability to influence macrophage-cancer cell communication, suppressed indirectly M2-like TAM polarization, and perturbed the migration behavior of TAMs that is critical for tumor invasion, indicating modulated immunological functions and debilitated cancer-promoting capabilities of TAMs in this microenvironment.
Collapse
Affiliation(s)
- Dóra Izabella Adamecz
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Éva Veres
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Pathogen Fungi Research Group, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Pathogen Fungi Research Group, University of Szeged, Szeged, Hungary
| | - Hédi Árva
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Annamária Marton
- Laboratory of Tumor Immunology and Pharmacology, Centre of Excellence of the European Union, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Laboratory of Tumor Immunology and Pharmacology, Centre of Excellence of the European Union, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Attila Gácser
- Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Pathogen Fungi Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Hu Y, Qi E, Yun C, Li X, Liu F, Cheng Z, Guan N, Wang Q, Zhao H, Xiao W, Peng L, Yang J, Yu X. Photothermal therapy combined with a STING agonist induces pyroptosis, and gasdermin D could be a new biomarker for guiding the treatment of pancreatic cancer. J Transl Med 2025; 23:271. [PMID: 40038726 PMCID: PMC11877846 DOI: 10.1186/s12967-025-06247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
PURPOSE Although photothermal therapy (PTT) can induce antitumour immunity, the mechanisms underlying its effects in pancreatic cancer (PC) require further exploration. In this study, the mechanism of action of PTT and its connection to pyroptosis as well as the therapeutic potential of PTT alone and in combination with STING agonists, were investigated. In addition, a biomarker of PC was found to stratify patients who are suitable for PTT. EXPERIMENTAL DESIGN We explored whether PTT can induce pyroptosis in vitro and evaluated the therapeutic efficacy and antitumour immunity-inducing ability of PTT combined with STING agonist (c-di-GMP) as immune adjuvant in vivo in PC. We also evaluated gasdermin D (GSDMD) expression in tumour tissues and investigated drug sensitivity in patient-derived organoids (PDOs) with differential GSDMD expression. RESULTS Our study demonstrated that local PTT induces pyroptosis via the caspase-1/GSDMD pathway and elicits antitumour immunity. PTT combined with a STING agonist exhibits better therapeutic efficacy than PTT alone while limiting distant tumour metastasis, and enhances the immune response by promoting dendritic cell maturation, increasing the frequency of tumour infiltrating T cells, and converting macrophages from the M2 to the M1 phenotype. In addition, we found that GSDMD is highly expressed in tumour tissues and that overexpression of GSDMD in PC might suggest increased resistance to chemotherapy and the potential benefits of local therapy. We further confirmed that PDOs with higher GSDMD expression are less sensitive to a chemotherapeutic agent (5-Fluorouracil) than PDOs with lower GSDMD expression, making GSDMD a new biomarker for identifying patients who may benefit from PTT. CONCLUSIONS In this work, c-di-GMP was used as an immune adjuvant for PTT to treat PC for the first time, and the results provide clues for the development of novel combination immunotherapies that simultaneously suppress primary tumours and distant metastases. GSDMD has great potential as a new biomarker for the selection of individualized treatment modalities.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - ErPeng Qi
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Chao Yun
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Specialty in Oncology, Jinzhou Medical University, Jinzhou, China
| | - Xi Li
- Department of Urology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - Fangyi Liu
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Na Guan
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- Specialty in Oncology, Jinzhou Medical University, Jinzhou, China
| | - Qiong Wang
- Department of Ultrasound, the Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Huixia Zhao
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenhua Xiao
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Liang Peng
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jingwen Yang
- Department of Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaoling Yu
- Department of Interventional Ultrasound, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
3
|
Handschin C, Shalhoub H, Mazet A, Guyon C, Dusserre N, Boutet-Robinet E, Oliveira H, Guillermet-Guibert J. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Biofabrication 2025; 17:022008. [PMID: 40018875 DOI: 10.1088/1758-5090/adb51c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
In recent years, biofabrication technologies have garnered significant attention within the scientific community for their potential to create advancedin vitrocancer models. While these technologies have been predominantly applied to model advanced stages of cancer, there exists a pressing need to develop pertinent, reproducible, and sensitive 3D models that mimic cancer initiation lesions within their native tissue microenvironment. Such models hold profound relevance for comprehending the intricacies of cancer initiation, to devise novel strategies for early intervention, and/or to conduct sophisticated toxicology assessments of putative carcinogens. Here, we will explain the pivotal factors that must be faithfully recapitulated when constructing these models, with a specific focus on early pancreatic cancer lesions. By synthesizing the current state of research in this field, we will provide insights into recent advances and breakthroughs. Additionally, we will delineate the key technological and biological challenges that necessitate resolution in future endeavors, thereby paving the way for more accurate and insightfulin vitrocancer initiation models.
Collapse
Affiliation(s)
- C Handschin
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - H Shalhoub
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
| | - A Mazet
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - C Guyon
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - N Dusserre
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - H Oliveira
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - J Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| |
Collapse
|
4
|
He YR, Ding N, Han MC, He HY, Xuan LZ, Gu ZY, Zhong M, Ju MJ. Identification of common core genes and pathways in childhood sepsis and cancer by bioinformatics analysis. Discov Oncol 2024; 15:749. [PMID: 39636505 PMCID: PMC11621270 DOI: 10.1007/s12672-024-01651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Sepsis and cancer are both leading causes of death worldwide, and they share several pathophysiological characteristics. Some studies have suggested a possible association between sepsis and cancer; however, few have investigated the core genes involved in both diseases. METHODS Core genes common to both sepsis and cancer were identified using pediatric sepsis datasets (GEO: GSE26378, GSE4607, GSE8121 and GSE13904) and cancer databases (TCGA: BRCA, COADREAD, ESCA, KIRC, LIHC, LUAD, STAD). Gene Ontology (GO) and Reactome enrichment analyses, along with a protein-protein interaction (PPI) network analysis, were performed. Pharmacophore screening was applied to predict the targets of oxymatrine and ulinastatin, and potential target genes shared by both cancer and sepsis were identified. Survival analysis was performed. The association between the target genes and tumor size and number of positive lymph nodes was investigated by Pearson correlation analysis. The association between the target genes and tumor stage was investigated by Fisher's exact test. Molecular docking analysis was performed to evaluate the affinity of the candidate drugs for their targets. RESULTS A total of 641 common genes were identified. GO enrichment analysis showed that common genes were enriched in neutrophil degranulation, inflammatory response and innate immune response. Reactome enrichment analysis showed that common genes were enriched in neutrophil degranulation, interleukin-4 and interleukin-13 signaling, transcriptional regulation of granulopoiesis and interleukin-10 signaling. The PPI network showed that the top 10 core genes were TLR4, IL1B, IL10, ITGAM, TLR2, PTPRC, CDK1, FOS, MMP9 and ITGB2. The survival analysis showed that the high expression of BCAT1, CSAD, G6PD, GM2A, MMP9, PYGL and TOP2A was associated with poorer prognosis in several cancers. Molecular docking showed that oxymatrine and ulinastatin can bind to protein targets with highly stable binding. CONCLUSIONS We identified genes with common effects on both childhood sepsis and cancer, which provides new insights into the association between sepsis and cancer. In addition, two drugs with potential clinical application value were identified. Further studies are required to validate the role of these common core genes in sepsis and cancer and to evaluate the potential utility of these drugs.
Collapse
Affiliation(s)
- Yi-Ran He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ni Ding
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ming-Chen Han
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hong-Yu He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li-Zhen Xuan
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhun-Yong Gu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Bastea LI, Liu X, Fleming AK, Pandey V, Döppler H, Edenfield BH, Krishna M, Zhang L, Thompson EA, Grandgenett PM, Hollingsworth MA, Fairweather D, Clemens D, Storz P. Coxsackievirus and adenovirus receptor expression facilitates enteroviral infections to drive the development of pancreatic cancer. Nat Commun 2024; 15:10547. [PMID: 39627248 PMCID: PMC11615305 DOI: 10.1038/s41467-024-55043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The development of pancreatic cancer requires both, acquisition of an oncogenic mutation in KRAS as well as an inflammatory insult. However, the physiological causes for pancreatic inflammation are less defined. We show here that oncogenic KRas-expressing pre-neoplastic lesion cells upregulate coxsackievirus (CVB) and adenovirus receptor (CAR). This facilitates infections from enteroviruses such as CVB3, which can be detected in approximately 50% of pancreatic cancer patients. Moreover, using an animal model we show that a one-time pancreatic infection with CVB3 in control mice is transient, but in the presence of oncogenic KRas drives chronic inflammation and rapid development of pancreatic cancer. We further demonstrate that a knockout of CAR in pancreatic lesion cells blocks these CVB3-induced effects. Our data demonstrate that KRas-caused lesions promote the development of pancreatic cancer by enabling certain viral infections.
Collapse
Affiliation(s)
- Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Xiang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Veethika Pandey
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Murli Krishna
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lizhi Zhang
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dahn Clemens
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
6
|
Lacina L, Kolář M, Pfeiferová L, Gál P, Smetana K. Wound healing: insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front Immunol 2024; 15:1403570. [PMID: 39676864 PMCID: PMC11638159 DOI: 10.3389/fimmu.2024.1403570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
Collapse
Affiliation(s)
- Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc., Košice, Slovakia
- Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles, University, Prague, Czechia
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
| |
Collapse
|
7
|
Baretti M, Danilova L, Durham JN, Betts CB, Cope L, Sidiropoulos DN, Tandurella JA, Charmsaz S, Gross N, Hernandez A, Ho WJ, Thoburn C, Walker R, Leatherman J, Mitchell S, Christmas B, Saeed A, Gaykalova DA, Yegnasubramanian S, Fertig EJ, Coussens LM, Yarchoan M, Jaffee E, Azad NS. Entinostat in combination with nivolumab in metastatic pancreatic ductal adenocarcinoma: a phase 2 clinical trial. Nat Commun 2024; 15:9801. [PMID: 39532835 PMCID: PMC11557583 DOI: 10.1038/s41467-024-52528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by low cytotoxic lymphocytes, abundant immune-suppressive cells, and resistance to immune checkpoint inhibitors (ICI). Preclinical PDA models showed the HDAC inhibitor entinostat reduced myeloid cell immunosuppression, sensitizing tumors to ICI therapy. This phase II study combined entinostat with nivolumab (PD1 inhibitor) in patients with advanced PDA (NCT03250273). Patients received entinostat 5 mg orally once weekly for 14-day lead-in, followed by entinostat and nivolumab. The primary endpoint was the objective response rate (ORR) by RECIST v1.1. Secondary endpoints included safety, duration of response, progression free-survival and overall survival. Between November 2017 and November 2020, 27 evaluable patients were enrolled. Three showed partial responses (11% ORR, 95% CI, 2.4%-29.2%) with a median response duration of 10.2 months. Median progression-free survival (PFS) and overall survival (OS) were, respectively, 1.89 (95% CI, 1.381-2.301) and 2.729 (95% CI, 1.841-5.622) months. Grade ≥3 treatment-related adverse events occurred in 19 patients (63%), including decreased lymphocyte count, anemia, hypoalbuminemia, and hyponatremia. As exploratory analysis, peripheral and tumor immune profiles changes were assessed using CyTOF, mIHC, and RNA-seq. Entinostat increased dendritic cell activation and maturation. Gene expression analysis revealed an enrichment in inflammatory response pathways with combination treatment. Although the primary endpoint was not met, entinostat and nivolumab showed durable responses in a small subset of PDA patients. Myeloid cell immunomodulation supported the preclinical hypothesis, providing a basis for future combinatorial therapies to enhance clinical benefits in PDA.
Collapse
Affiliation(s)
- Marina Baretti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Jennifer N Durham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Courtney B Betts
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Akoya Biosciences, Marlborough, USA
| | - Leslie Cope
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
| | - Joseph A Tandurella
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Nicole Gross
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Alexei Hernandez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Chris Thoburn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Rosalind Walker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - James Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Sarah Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Brian Christmas
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Ali Saeed
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
| | - Daria A Gaykalova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
- Johns Hopkins in Health Precision Medicine, Johns Hopkins Medicine, Baltimore, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
| | - Elizabeth Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA
- The Convergence Institute, Johns Hopkins University, Baltimore, USA
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA
| | - Nilofer S Azad
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, USA.
- The Convergence Institute, Johns Hopkins University, Baltimore, USA.
- Bloomberg-Kimmel Institute at Johns Hopkins, Baltimore, USA.
| |
Collapse
|
8
|
Valenti G, Laise P, Takahashi R, Wu F, Ruan T, Vasciaveo A, Jiang Z, Sunagawa M, Middelhoff M, Nienhüser H, Fu N, Malagola E, Hayakawa Y, Iuga AC, Califano A, Wang TC. Regulatory network analysis of Dclk1 gene expression reveals a tuft cell-ILC2 axis that inhibits pancreatic tumor progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610508. [PMID: 39257805 PMCID: PMC11383664 DOI: 10.1101/2024.08.30.610508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dclk1 expression defines a rare population of cells in the normal pancreas whose frequency is increased at early stages of pancreatic tumorigenesis. The identity and the precise roles of Dclk1 expressing cells in pancreas have been matter of debate, although evidence suggests their involvement in a number of key functions, including regeneration and neoplasia. We employed a recently developed Dclk1 reporter mouse model and single cell RNAseq analysis to define Dclk1 expressing cells in normal pancreas and pancreatic neoplasia. In normal pancreas, Dclk1 epithelial expression identifies subsets of ductal, islet and acinar cells. In pancreatic neoplasia, Dclk1 expression identifies five epithelial cell populations, among which acinar-to-ductal metaplasia (ADM)-like cells and tuft-like cells are predominant. These two cell populations play opposing roles in pancreatic neoplasia, with Dclk1+ ADM-like cells sustaining tumor growth while Dclk1+ tuft-like cells restraining tumor progression. The differentiation of Kras mutant acinar cells into Dclk1+ tuft-like cells requires the activation of the transcription factor SPIB and is further supported by a cellular paracrine loop involving cancer group 2 innate lymphoid cells (ILC2) and cancer activated fibroblasts (CAFs) that provide IL13 and IL33, respectively. In turn, Dclk1+ tuft-like cells release angiotensinogen that plays protective roles against pancreatic neoplasia. Overall, our study provides novel insights on the biology of Dclk1+ cells in normal pancreas and unveils a protective axis against pancreatic neoplasia, involving CAFs, ILC2 and Dclk1+ tuft-like cells, which ultimately results in angiotensinogen release.
Collapse
Affiliation(s)
- Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- These authors contributed equally
| | - Pasquale Laise
- Department of Systems Biology, Columbia University, New York, New York, USA
- DarwinHealth Inc., New York, New York, USA
- These authors contributed equally
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Tuo Ruan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | | | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, TU Munich, Germany
| | - Henrik Nienhüser
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Na Fu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Alina C. Iuga
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, New York, USA
- Lead Contact
| |
Collapse
|
9
|
Strickland LN, Liu W, Hussein U, Mardik N, Chen X, Mills T, Vornik LA, Savage MI, Sei S, Clifford J, Eltzschig HK, Brown PH, Zhao Z, McAllister F, Bailey-Lundberg JM. Preventive Treatment with a CD73 Small Molecule Inhibitor Enhances Immune Surveillance in K-Ras Mutant Pancreatic Intraepithelial Neoplasia. Cancer Prev Res (Phila) 2024; 17:457-470. [PMID: 39099209 PMCID: PMC11443214 DOI: 10.1158/1940-6207.capr-24-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Immunoprevention is an emerging consideration for solid tumors, including pancreatic ductal adenocarcinoma (PDAC). We and others have shown that Kras mutations in genetic models of spontaneous pancreatic intraepithelial neoplasia (PanIN), which is a precursor to PDAC, results in CD73 expression in the neoplastic epithelium and some populations of infiltrating immune cells, including macrophages and CD8 T cells. CD73 is an ecto-enzyme that converts extracellular adenosine monophosphate to adenosine, a critical immune inhibitory molecule in PDAC. We hypothesized inhibition of CD73 would reduce the incidence of PanIN formation and alter the immune microenvironment. To test our hypothesis, we used the KrasG12D; PdxCre1 (KC) genetically engineered mouse model and tested the utility of AB-680, a small molecule inhibitor targeting CD73, to inhibit PanIN progression. AB-680, or vehicle control, was administered using oral gavage delivery 3 days/week at 10 mg/kg, beginning when the mice were 2 months old and lasting 3 months. We euthanized the mice at 5 months old. In the KC model, we quantified significantly less pancreatitis, early and advanced PanIN, and quantified a significant increase in M1 macrophages in AB-680-treated mice. Single-cell RNA sequencing (scRNA-seq) of pancreata of AB-680-treated mice revealed increased infiltration of CD4+ T cells, CD8+ T cells, and mature B cells. The scRNA-seq analysis showed that CD73 inhibition reduced M2 macrophages, acinar, and PanIN cell populations. CD73 inhibition enhanced immune surveillance and expanded unique clonotypes of TCR and BCR, indicating that inhibition of CD73 augments adaptive immunity early in the neoplastic microenvironment. Prevention Relevance: Previous studies found PanIN lesions in healthy pancreata. Not all progress to PDAC, suggesting a window for enhanced antitumor immunity through immunoprevention therapy. CD73 inhibition in our study prevents PanIN progression, reduces immune-suppressive macrophages and expands TCR and BCR unique clonotypes, highlighting an encouraging therapeutic avenue for high-risk individuals.
Collapse
Affiliation(s)
- Lincoln N. Strickland
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Wendao Liu
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Usama Hussein
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas.
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Nicolette Mardik
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Xian Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Lana A. Vornik
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Michelle I. Savage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland.
| | - John Clifford
- Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland.
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas.
- Department of Pathology, Microbiology and Immunology, The University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
10
|
Hendley AM, Ashe S, Urano A, Ng M, Phu TA, Peng XL, Luan C, Finger AM, Jang GH, Kerper NR, Berrios DI, Jin D, Lee J, Riahi IR, Gbenedio OM, Chung C, Roose JP, Yeh JJ, Gallinger S, Biankin AV, O'Kane GM, Ntranos V, Chang DK, Dawson DW, Kim GE, Weaver VM, Raffai RL, Hebrok M. nSMase2-mediated exosome secretion shapes the tumor microenvironment to immunologically support pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614610. [PMID: 39399775 PMCID: PMC11468832 DOI: 10.1101/2024.09.23.614610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical. nSMase2 elimination prolongs survival of KPC mice, hinders vasculature development, and fosters a robust immune response. nSMase2 loss leads to recruitment of cytotoxic T cells, N1-like neutrophils, and abundant infiltration of anti-tumorigenic macrophages in the pancreatic preneoplastic microenvironment. Mechanistically, we demonstrate that nSMase2-expressing PDA cell small extracellular vesicles (sEVs) reduce survival of KPC mice; PDA cell sEVs generated independently of nSMase2 prolong survival of KPC mice and reprogram macrophages to a proinflammatory phenotype. Collectively, our study highlights previously unappreciated opposing roles for exosomes, based on biogenesis pathway, during PDA progression. Graphical abstract
Collapse
|
11
|
Li H, Liu D, Li K, Wang Y, Zhang G, Qi L, Xie K. Pancreatic stellate cells and the interleukin family: Linking fibrosis and immunity to pancreatic ductal adenocarcinoma (Review). Mol Med Rep 2024; 30:159. [PMID: 38994764 PMCID: PMC11258612 DOI: 10.3892/mmr.2024.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer‑associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.
Collapse
Affiliation(s)
- Haichao Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Donglian Liu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Kaishu Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yichen Wang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Gengqiang Zhang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Ling Qi
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Keping Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
12
|
Liu YN, Liu MK, Wen YC, Li CH, Yeh HL, Dung PVT, Jiang KC, Chen WH, Li HR, Huang J, Chen WY. Binding of interleukin-1 receptor antagonist to cholinergic receptor muscarinic 4 promotes immunosuppression and neuroendocrine differentiation in prostate cancer. Cancer Lett 2024; 598:217090. [PMID: 38945201 DOI: 10.1016/j.canlet.2024.217090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The tumor microenvironment (TME) of prostate cancer (PCa) is characterized by high levels of immunosuppressive molecules, including cytokines and chemokines. This creates a hostile immune landscape that impedes effective immune responses. The interleukin-1 (IL-1) receptor antagonist (IL1RN), a key anti-inflammatory molecule, plays a significant role in suppressing IL-1-related immune and inflammatory responses. Our research investigates the oncogenic role of IL1RN in PCa, particularly its interactions with muscarinic acetylcholine receptor 4 (CHRM4), and its involvement in driving immunosuppressive pathways and M2-like macrophage polarization within the PCa TME. We demonstrate that following androgen deprivation therapy (ADT), the IL1RN-CHRM4 interaction in PCa activates the MAPK/AKT signaling pathway. This activation upregulates the transcription factors E2F1 and MYCN, stimulating IL1RN production and creating a positive feedback loop that increases CHRM4 abundance in both PCa cells and M2-like macrophages. This ADT-driven IL1RN/CHRM4 axis significantly enhances immune checkpoint markers associated with neuroendocrine differentiation and treatment-resistant outcomes. Higher serum IL1RN levels are associated with increased disease aggressiveness and M2-like macrophage markers in advanced PCa patients. Additionally, elevated IL1RN levels correlate with better clinical outcomes following immunotherapy. Clinical correlations between IL1RN and CHRM4 expression in advanced PCa patients and neuroendocrine PCa organoid models highlight their potential as therapeutic targets. Our data suggest that targeting the IL1RN/CHRM4 signaling could be a promising strategy for managing PCa progression and enhancing treatment responses.
Collapse
Affiliation(s)
- Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kun Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hsiu Li
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
14
|
Pratticò F, Garajová I. Focus on Pancreatic Cancer Microenvironment. Curr Oncol 2024; 31:4241-4260. [PMID: 39195299 PMCID: PMC11352508 DOI: 10.3390/curroncol31080316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Pancreatic ductal adenocarcinoma remains one of the most lethal solid tumors due to its local aggressiveness and metastatic potential, with a 5-year survival rate of only 13%. A robust connection between pancreatic cancer microenvironment and tumor progression exists, as well as resistance to current anticancer treatments. Pancreatic cancer has a complex tumor microenvironment, characterized by an intricate crosstalk between cancer cells, cancer-associated fibroblasts and immune cells. The complex composition of the tumor microenvironment is also reflected in the diversity of its acellular components, such as the extracellular matrix, cytokines, growth factors and secreted ligands involved in signaling pathways. Desmoplasia, the hallmark of the pancreatic cancer microenvironment, contributes by creating a dense and hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance and suppresses anti-tumor immune invasion. We discuss the complex crosstalk among tumor microenvironment components and explore therapeutic strategies and opportunities in pancreatic cancer research. Better understanding of the tumor microenvironment and its influence on pancreatic cancer progression could lead to potential novel therapeutic options, such as integration of immunotherapy and cytokine-targeted treatments.
Collapse
Affiliation(s)
| | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| |
Collapse
|
15
|
Mottini C, Auciello FR, Manni I, Pilarsky C, Caputo D, Caracciolo G, Rossetta A, Di Gennaro E, Budillon A, Blandino G, Roca MS, Piaggio G. The cross-talk between the macro and micro-environment in precursor lesions of pancreatic cancer leads to new and promising circulating biomarkers. J Exp Clin Cancer Res 2024; 43:198. [PMID: 39020414 PMCID: PMC11256648 DOI: 10.1186/s13046-024-03117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.
Collapse
Affiliation(s)
- Carla Mottini
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Romana Auciello
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | | | - Giulio Caracciolo
- Dipartimento Di Medicina Molecolare Sapienza, Università Di Roma, Rome, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giovanni Blandino
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maria Serena Roca
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
16
|
Liou GY, Byrd CJ, Storz P, Messex JK. Cytokine CCL9 Mediates Oncogenic KRAS-Induced Pancreatic Acinar-to-Ductal Metaplasia by Promoting Reactive Oxygen Species and Metalloproteinases. Int J Mol Sci 2024; 25:4726. [PMID: 38731942 PMCID: PMC11083758 DOI: 10.3390/ijms25094726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
17
|
Döppler HR, Storz P. Macrophage-induced reactive oxygen species in the initiation of pancreatic cancer: a mini-review. Front Immunol 2024; 15:1278807. [PMID: 38576613 PMCID: PMC10991718 DOI: 10.3389/fimmu.2024.1278807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Pancreatic inflammation is a risk factor for the development of pancreatic cancer. Increased presence of inflammatory macrophages can be found in response to a KRAS mutation in acinar cells or in response to experimentally-induced pancreatitis. Inflammatory macrophages induce pancreatic acinar cells to undergo dedifferentiation to a duct-like progenitor stage, a process called acinar-to-ductal metaplasia (ADM). Occurrence of ADM lesions are believed to be the initiating event in tumorigenesis. Here we will discuss how macrophage-induced oxidative stress contributes to ADM and how ADM cells shape the fibrotic stroma needed for further progression.
Collapse
Affiliation(s)
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
18
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay MZ, Coleman-Barnett J, West JT, Moaven O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front Immunol 2024; 15:1287459. [PMID: 38361931 PMCID: PMC10867137 DOI: 10.3389/fimmu.2024.1287459] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.
Collapse
Affiliation(s)
- Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Siteman Cancer Center, Washington University, St. Louis, MO, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Joycelynn Coleman-Barnett
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Louisiana State University - Louisiana Children's Medical Center (LSU - LCMC) Cancer Center, New Orleans, LA, United States
| |
Collapse
|
19
|
Pateras IS, Igea A, Nikas IP, Leventakou D, Koufopoulos NI, Ieronimaki AI, Bergonzini A, Ryu HS, Chatzigeorgiou A, Frisan T, Kittas C, Panayiotides IG. Diagnostic Challenges during Inflammation and Cancer: Current Biomarkers and Future Perspectives in Navigating through the Minefield of Reactive versus Dysplastic and Cancerous Lesions in the Digestive System. Int J Mol Sci 2024; 25:1251. [PMID: 38279253 PMCID: PMC10816510 DOI: 10.3390/ijms25021251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.
Collapse
Affiliation(s)
- Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Ana Igea
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Mobile Genomes, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Danai Leventakou
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Nektarios I. Koufopoulos
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Argyro Ioanna Ieronimaki
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| | - Anna Bergonzini
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Alfred Nobels Allé 8, 141 52 Stockholm, Sweden;
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden;
| | - Christos Kittas
- Department of Histopathology, Biomedicine Group of Health Company, 156 26 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (D.L.); (N.I.K.); (A.I.I.); (I.G.P.)
| |
Collapse
|
20
|
Wang Y, Ge WL, Wang SJ, Liu YY, Zhang ZH, Hua Y, Zhang XF, Zhang JJ. MiR-548t-5p regulates pancreatic ductal adenocarcinoma metastasis through an IL-33-dependent crosstalk between cancer cells and M2 macrophages. Cell Cycle 2024; 23:169-187. [PMID: 38267823 PMCID: PMC11037285 DOI: 10.1080/15384101.2024.2309026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
IL-33 has been associated with pro- and anticancer functions in cancer. However, its role in pancreatic cancer metastasis remains unknown. This study aimed to explore the role of miR-548t-5p/IL-33 axis in the metastasis of pancreatic cancer. Luciferase activity assay, qRT-PCR, Western blot and ELISA were performed to prove whether IL-33 is the target of miR-548t-5p. In vivo metastasis assay and cellular transwell assay were performed to explore the role of miR-548t-5p/IL-33 axis in the invasion and metastasis of pancreatic cancer. Co-culture experiments and immunohistochemistry were performed to observe whether IL-33 affects cell invasion and metastasis dependent on the involvement of M2 macrophages. THP-1 cell induction experiment and flow cytometry were performed to explore the effect of IL-33 on macrophage polarization. CCK-8, colony formation, cell apoptosis, cell cycle, cell wound healing and transwell assay were performed to investigate the effect of IL-33 induced M2 macrophages on cell malignant biological behavior by coculturing pancreatic cancer cells with the conditioned medium (CM) from macrophages. We found that miR-548t-5p regulated the expression and secretion of IL-33 in pancreatic cancer cells by directly targeting IL-33 mRNA. IL-33 secreted by cancer cells promoted the recruitment and activation of macrophages to a M2-like phenotype. In turn, IL-33 induced M2 macrophages promoted the migration and invasion of cancer cells. Moreover, IL-33 affected pancreatic cancer cell invasion dependent on the involvement of M2 macrophages in the co-culture system. Thus, our study suggested that manipulation of this IL-33-dependent crosstalk has a therapeutic potential for the treatment of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Yining, China
| | - Wan-Li Ge
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-Jun Wang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Yong Liu
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Han Zhang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Hua
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiong-Fei Zhang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Tay AHM, Cinotti R, Sze NSK, Lundqvist A. Inhibition of ERO1a and IDO1 improves dendritic cell infiltration into pancreatic ductal adenocarcinoma. Front Immunol 2023; 14:1264012. [PMID: 38187398 PMCID: PMC10766682 DOI: 10.3389/fimmu.2023.1264012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal and treatment resistant cancers. Due to its desmoplastic and hypoxic nature along with an abundance of myeloid cell infiltration and scarce T cell infiltration, PDAC is considered a cold tumor. Methods Here we sought to investigate myeloid cell infiltration and composition in PDAC spheroids by targeting the hypoxia-associated pathways endoplasmic reticulum oxidoreductase 1 alpha (ERO1a) and indoleamine 2,3-dioxygenase 1 (IDO1). Using MiaPaCa2 spheroids with hypoxic core, we assessed the roles of ERO1a and IDO1 inhibition in modulating monocyte infiltration and differentiation, followed by characterizing immunomodulatory factors secreted using LC-MS/MS. Results Inhibition of ERO1a and IDO1 significantly improved monocyte infiltration and differentiation into dendritic cells. LC-MS/MS analysis of the PDAC spheroid secretome identified downregulation of hypoxia and PDAC pathways, and upregulation of antigen presentation pathways upon inhibition of ERO1a and IDO1. Furthermore, immunomodulatory factors involved in immune infiltration and migration including interleukin-8, lymphocyte cytosolic protein 1, and transgelin-2, were upregulated upon inhibition of ERO1a and IDO1. Discussion Collectively, our results show that inhibition of ERO1a and IDO1 modulates the tumor microenvironment associated with improved monocyte infiltration and differentiation into dendritic cells to potentially influence therapeutic responses in patients with PDAC.
Collapse
Affiliation(s)
- Apple Hui Min Tay
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Cinotti
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Newman Sui Kwan Sze
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Kumar V, Mahato RI. Natural killer cells for pancreatic cancer immunotherapy: Role of nanoparticles. Cancer Lett 2023; 579:216462. [PMID: 37924937 PMCID: PMC10842153 DOI: 10.1016/j.canlet.2023.216462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Advanced pancreatic cancer patients have a dismal prognosis despite advances in integrative therapy. The field of tumor immunology has witnessed significant advancements for cancer treatment. However, immunotherapy for pancreatic cancer is not very effective due to its highly complex tumor microenvironment (TME). Natural killer (NK) cells are lymphocytes that play an important role in the innate immune system. NK cells do not require antigen pre-sensitization, nor are they confined by the major histocompatibility complex (MHC). NK cells have the potential to eliminate cancer cells through CAR-dependent and CAR-independent pathways, demonstrating reduced levels of systemic toxicity in the process. The availability of several potential sources of NK cells is an additional benefit that contributes to meeting the therapeutic criteria. Adding nanotechnology to enhance the functions of effector NK cells is also an appealing strategy. This article primarily discusses various approaches recently been utilized to enhance the NK functions for the treatment of pancreatic cancer. In addition, new advances in boosting NK cell therapeutic efficacy by nanoparticle mediation are presented, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
23
|
Ding L, Weygant N, Ding C, Lai Y, Li H. DCLK1 and tuft cells: Immune-related functions and implications for cancer immunotherapy. Crit Rev Oncol Hematol 2023; 191:104118. [PMID: 37660932 DOI: 10.1016/j.critrevonc.2023.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
DCLK1, a tuft cell marker, is widely expressed in various tumors. Its high expression levels are closely linked to malignant tumor progression, making it a potential tumor-related marker. Recent studies have shed light on the critical roles of DCLK1 and tuft cells in the immune response and the maintenance of epithelial homeostasis, as well as targeted immune escape mechanisms in the tumor microenvironment. This review aims to comprehensively examine the current understanding of immune-related functions mediated by DCLK1 and tuft cells in epithelial tissues, including the roles of relevant cells and important factors involved. Additionally, this review will discuss recent advances in anti-tumor immunity mediated by DCLK1/tuft cells and their potential as immunotherapeutic targets. Furthermore, we will consider the potential impact of DCLK1 targeted therapy in cancer immunotherapy, particularly DCLK1 kinase inhibitors as potential therapeutic drugs in anti-tumor immunity, providing a new perspective and reference for future research.
Collapse
Affiliation(s)
- Ling Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
24
|
Li O, Li L, Sheng Y, Ke K, Wu J, Mou Y, Liu M, Jin W. Biological characteristics of pancreatic ductal adenocarcinoma: Initiation to malignancy, intracellular to extracellular. Cancer Lett 2023; 574:216391. [PMID: 37714257 DOI: 10.1016/j.canlet.2023.216391] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly life-threatening tumour with a low early-detection rate, rapid progression and a tendency to develop resistance to chemotherapy. Therefore, understanding the regulatory mechanisms underlying the initiation, development and metastasis of pancreatic cancer is necessary for enhancing therapeutic effectiveness. In this review, we summarised single-gene mutations (including KRAS, CDKN2A, TP53, SMAD4 and some other less prevalent mutations), epigenetic changes (including DNA methylation, histone modifications and RNA interference) and large chromosome alterations (such as copy number variations, chromosome rearrangements and chromothripsis) associated with PDAC. In addition, we discussed variations in signalling pathways that act as intermediate oncogenic factors in PDAC, including PI3K/AKT, MAPK/ERK, Hippo and TGF-β signalling pathways. The focus of this review was to investigate alterations in the microenvironment of PDAC, particularly the role of immunosuppressive cells, cancer-associated fibroblasts, lymphocytes, other para-cancerous cells and tumour extracellular matrix in tumour progression. Peripheral axons innervating the pancreas have been reported to play a crucial role in the development of cancer. In addition, tumour cells can influence the behaviour of neighbouring non-tumour cells by secreting certain factors, both locally and at a distance. In this review, we elucidated the alterations in intracellular molecules and the extracellular environment that occur during the progression of PDAC. Altogether, this review may enhance the understanding of the biological characteristics of PDAC and guide the development of more precise treatment strategies.
Collapse
Affiliation(s)
- Ou Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunru Sheng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Storz P. Roles of differently polarized macrophages in the initiation and progressionof pancreatic cancer. Front Immunol 2023; 14:1237711. [PMID: 37638028 PMCID: PMC10450961 DOI: 10.3389/fimmu.2023.1237711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
During development of pancreatic cancer macrophage-mediated inflammatory processes and the formation of cancerous lesions are tightly connected. Based on insight from mouse models we provide an overview on the functions of classically-activated pro-inflammatory and alternatively-activated anti-inflammatory macrophages in the initiation and progression of pancreatic cancer. We highlight their roles in earliest events of tumor initiation such as acinar-to-ductal metaplasia (ADM), organization of the fibrotic lesion microenvironment, and growth of low-grade (LG) lesions. We then discuss their roles as tumor-associated macrophages (TAM) in progression to high-grade (HG) lesions with a cancerous invasive phenotype and an immunosuppressive microenvironment. Another focus is on how targeting these macrophage populations can affect immunosuppression, fibrosis and responses to chemotherapy, and eventually how this knowledge could be used for novel therapy approaches for patients with pancreatic ductal adenocarcinoma (PDA).
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
26
|
Pan L, Mulaw MA, Gout J, Guo M, Zarrin H, Schwarz P, Baumann B, Seufferlein T, Wagner M, Oswald F. RBPJ Deficiency Sensitizes Pancreatic Acinar Cells to KRAS-Mediated Pancreatic Intraepithelial Neoplasia Initiation. Cell Mol Gastroenterol Hepatol 2023; 16:783-807. [PMID: 37543088 PMCID: PMC10520364 DOI: 10.1016/j.jcmgh.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND AND AIMS Development of pancreatic ductal adenocarcinoma (PDAC) is a multistep process intensively studied; however, precocious diagnosis and effective therapy still remain unsatisfactory. The role for Notch signaling in PDAC has been discussed controversially, as both cancer-promoting and cancer-antagonizing functions have been described. Thus, an improved understanding of the underlying molecular mechanisms is necessary. Here, we focused on RBPJ, the receiving transcription factor in the Notch pathway, examined its expression pattern in PDAC, and characterized its function in mouse models of pancreatic cancer development and in the regeneration process after acute pancreatitis. METHODS Conditional transgenic mouse models were used for functional analysis of RBPJ in the adult pancreas, initiation of PDAC precursor lesions, and pancreatic regeneration. Pancreata and primary acinar cells were tested for acinar-to-ductal metaplasia together with immunohistology and comprehensive transcriptional profiling by RNA sequencing. RESULTS We identified reduced RBPJ expression in a subset of human PDAC specimens. Ptf1α-CreERT-driven depletion of RBPJ in transgenic mice revealed that its function is dispensable for the homeostasis and maintenance of adult acinar cells. However, primary RBPJ-deficient acinar cells underwent acinar-to-ductal differentiation in ex vivo. Importantly, oncogenic KRAS expression in the context of RBPJ deficiency facilitated the development of pancreatic intraepithelial neoplasia lesions with massive fibrotic stroma formation. Interestingly, RNA-sequencing data revealed a transcriptional profile associated with the cytokine/chemokine and extracellular matrix changes. In addition, lack of RBPJ delays the course of acute pancreatitis and critically impairs it in the context of KRASG12D expression. CONCLUSIONS Our findings imply that downregulation of RBPJ in PDAC patients derepresses Notch targets and promotes KRAS-mediated pancreatic acinar cells transformation and desmoplasia development.
Collapse
Affiliation(s)
- Leiling Pan
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Medhanie A Mulaw
- Unit for Single-cell Genomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Johann Gout
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Min Guo
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hina Zarrin
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peggy Schwarz
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
27
|
Liou GY, Fleming Martinez AK, Döppler HR, Bastea LI, Storz P. Inflammatory and alternatively activated macrophages independently induce metaplasia but cooperatively drive pancreatic precancerous lesion growth. iScience 2023; 26:106820. [PMID: 37250781 PMCID: PMC10212997 DOI: 10.1016/j.isci.2023.106820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The innate immune system has a key role in pancreatic cancer initiation, but the specific contribution of different macrophage populations is still ill-defined. While inflammatory (M1) macrophages have been shown to drive acinar-to-ductal metaplasia (ADM), a cancer initiating event, alternatively activated (M2) macrophages have been attributed to lesion growth and fibrosis. Here, we determined cytokines and chemokines secreted by both macrophage subtypes. Then, we analyzed their role in ADM initiation and lesion growth, finding that while M1 secrete TNF, CCL5, and IL-6 to drive ADM, M2 induce this dedifferentiation process via CCL2, but the effects are not additive. This is because CCL2 induces ADM by generating ROS and upregulating EGFR signaling, thus using the same mechanism as cytokines from inflammatory macrophages. Therefore, while effects on ADM are not additive between macrophage polarization types, both act synergistically on the growth of low-grade lesions by activating different MAPK pathways.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Biological Sciences, Center for Cancer Research & Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | | | - Heike R. Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia I. Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
28
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
29
|
Bas J, Jay P, Gerbe F. Intestinal tuft cells: Sentinels, what else? Semin Cell Dev Biol 2023:S1084-9521(23)00040-X. [PMID: 36889997 DOI: 10.1016/j.semcdb.2023.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
The intestinal epithelium plays crucial roles in maintaining gut homeostasis. A key function consists in constituting a physical and chemical barrier between self and non-self-compartments, and, based on its crosstalk with the luminal environment, in controlling activation of the host immune system. Tuft cells are a unique epithelial cell lineage, the function of which remained a mystery even 50 years after their initial discovery. The first function of intestinal tuft cells was recently described, with a central role in initiating type 2 immune responses following infection with helminth parasites. Since then, tuft cells have emerged as sentinel cells recognizing a variety of luminal cues, mediating the host-microorganisms crosstalk with additional pathogens, including viruses and bacteria. Although it can be anticipated that more functions will be discovered for tuft cells in the future, recent discoveries already propelled them at the forefront of gut mucosal homeostasis regulation, with important potential impact in gut physiopathology. This review focuses on intestinal tuft cells, from their initial description to the current understanding of their functions, and their potential impact in diseases.
Collapse
Affiliation(s)
- Julie Bas
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France.
| | - François Gerbe
- Institute of Functional Genomics, Montpellier University, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
30
|
Jiang Z, Zhang W, Sha G, Wang D, Tang D. Galectins Are Central Mediators of Immune Escape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:5475. [PMID: 36428567 PMCID: PMC9688059 DOI: 10.3390/cancers14225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is highly immune tolerant. Although there is immune cell infiltration in PDAC tissues, most of the immune cells do not function properly and, therefore, the prognosis of PDAC is very poor. Galectins are carbohydrate-binding proteins that are intimately involved in the proliferation and metastasis of tumor cells and, in particular, play a crucial role in the immune evasion of tumor cells. Galectins induce abnormal functions and reduce numbers of tumor-associated macrophages (TAM), natural killer cells (NK), T cells and B cells. It further promotes fibrosis of tissues surrounding PDAC, enhances local cellular metabolism, and ultimately constructs tumor immune privileged areas to induce immune evasion behavior of tumor cells. Here, we summarize the respective mechanisms of action played by different Galectins in the process of immune escape from PDAC, focusing on the mechanism of action of Galectin-1. Galectins cause imbalance between tumor immunity and anti-tumor immunity by coordinating the function and number of immune cells, which leads to the development and progression of PDAC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
| |
Collapse
|
31
|
Xiang H, Yu H, Zhou Q, Wu Y, Ren J, Zhao Z, Tao X, Dong D. Macrophages: A rising star in immunotherapy for chronic pancreatitis. Pharmacol Res 2022; 185:106508. [DOI: 10.1016/j.phrs.2022.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
|
32
|
Bhatia R, Bhyravbhatla N, Kisling A, Li X, Batra SK, Kumar S. Cytokines chattering in pancreatic ductal adenocarcinoma tumor microenvironment. Semin Cancer Biol 2022; 86:499-510. [PMID: 35346801 PMCID: PMC9510605 DOI: 10.1016/j.semcancer.2022.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME) consists of multiple cell types interspersed by dense fibrous stroma. These cells communicate through low molecular weight signaling molecules called cytokines. The cytokines, through their receptors, facilitate PDAC initiation, progression, metastasis, and distant colonization of malignant cells. These signaling mediators secreted from tumor-associated macrophages, and cancer-associated fibroblasts in conjunction with oncogenic Kras mutation initiate acinar to ductal metaplasia (ADM), resulting in the appearance of early preneoplastic lesions. Further, M1- and M2-polarized macrophages provide proinflammatory conditions and promote deposition of extracellular matrix, whereas myofibroblasts and T-lymphocytes, such as Th17 and T-regulatory cells, create a fibroinflammatory and immunosuppressive environment with a significantly reduced cytotoxic T-cell population. During PDAC progression, cytokines regulate the expression of various oncogenic regulators such as NFκB, c-myc, growth factor receptors, and mucins resulting in the formation of high-grade PanIN lesions, epithelial to mesenchymal transition, invasion, and extravasation of malignant cells, and metastasis. During metastasis, PDAC cells colonize at the premetastatic niche created in the liver, and lung, an organotropic function primarily executed by cytokines in circulation or loaded in the exosomes from the primary tumor cells. The indispensable contribution of these cytokines at every stage of PDAC tumorigenesis makes them exciting candidates in combination with immune-, chemo- and targeted radiation therapy.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Namita Bhyravbhatla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
| |
Collapse
|
33
|
da Silva L, Jiang J, Perkins C, Atanasova KR, Bray JK, Bulut G, Azevedo-Pouly A, Campbell-Thompson M, Yang X, Hakimjavadi H, Chamala S, Ratnayake R, Gharaibeh RZ, Li C, Luesch H, Schmittgen TD. Pharmacological inhibition and reversal of pancreatic acinar ductal metaplasia. Cell Death Discov 2022; 8:378. [PMID: 36055991 PMCID: PMC9440259 DOI: 10.1038/s41420-022-01165-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatic acinar cells display a remarkable degree of plasticity and can dedifferentiate into ductal-like progenitor cells by a process known as acinar ductal metaplasia (ADM). ADM is believed to be one of the earliest precursor lesions toward the development of pancreatic ductal adenocarcinoma and maintaining the pancreatic acinar cell phenotype suppresses tumor formation. The effects of a novel pStat3 inhibitor (LLL12B) and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) were investigated using 3-D cultures from p48Cre/+ and p48Cre/+LSL-KrasG12D/+ (KC) mice. LLL12B and TSA inhibited ADM in both KC and p48Cre/+ mouse pancreatic organoids. Furthermore, treatment with LLL12B or TSA on dedifferentiated acini from p48Cre/+ and KC mice that had undergone ADM produced morphologic and gene expression changes that suggest a reversal of ADM. Validation experiments using qRT-PCR (p48Cre/+ and KC) and RNA sequencing (KC) of the LLL12B and TSA treated cultures showed that the ADM reversal was more robust for the TSA treatments. Pathway analysis showed that TSA inhibited Spink1 and PI3K/AKT signaling during ADM reversal. The ability of TSA to reverse ADM was also observed in primary human acinar cultures. We report that pStat3 and HDAC inhibition can attenuate ADM in vitro and reverse ADM in the context of wild-type Kras. Our findings suggest that pharmacological inhibition or reversal of pancreatic ADM represents a potential therapeutic strategy for blocking aberrant ductal reprogramming of acinar cells.
Collapse
Affiliation(s)
- Lais da Silva
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Corey Perkins
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Kalina Rosenova Atanasova
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Julie K Bray
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gamze Bulut
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ana Azevedo-Pouly
- Department of Surgery, University of Arkansas for Medical Sciences, University of Florida, Gainesville, FL, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Srikar Chamala
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
35
|
Hildebrandt W, Keck J, Schmich S, Bonaterra GA, Wilhelm B, Schwarzbach H, Eva A, Bertoune M, Slater EP, Fendrich V, Kinscherf R. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer-When Does Cachexia Start? Cells 2022; 11:1607. [PMID: 35626644 PMCID: PMC9139525 DOI: 10.3390/cells11101607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle wasting critically impairs the survival and quality of life in patients with pancreatic ductal adenocarcinoma (PDAC). To identify the local factors initiating muscle wasting, we studied inflammation, fiber cross-sectional area (CSA), composition, amino acid metabolism and capillarization, as well as the integrity of neuromuscular junctions (NMJ, pre-/postsynaptic co-staining) and mitochondria (electron microscopy) in the hindlimb muscle of LSL-KrasG12D/+; LSL-TrP53R172H/+; Pdx1-Cre mice with intraepithelial-neoplasia (PanIN) 1-3 and PDAC, compared to wild-type mice (WT). Significant decreases in fiber CSA occurred with PDAC but not with PanIN 1-3, compared to WT: These were found in the gastrocnemius (type 2x: −20.0%) and soleus (type 2a: −21.0%, type 1: −14.2%) muscle with accentuation in the male soleus (type 2a: −24.8%, type 1: −17.4%) and female gastrocnemius muscle (−29.6%). Significantly higher densities of endomysial CD68+ and cyclooxygenase-2+ (COX2+) cells were detected in mice with PDAC, compared to WT mice. Surprisingly, CD68+ and COX2+ cell densities were also higher in mice with PanIN 1-3 in both muscles. Significant positive correlations existed between muscular and hepatic CD68+ or COX2+ cell densities. Moreover, in the gastrocnemius muscle, suppressor-of-cytokine-3 (SOCS3) expressions was upregulated >2.7-fold with PanIN 1A-3 and PDAC. The intracellular pools of proteinogenic amino acids and glutathione significantly increased with PanIN 1A-3 compared to WT. Capillarization, NMJ, and mitochondrial ultrastructure remained unchanged with PanIN or PDAC. In conclusion, the onset of fiber atrophy coincides with the manifestation of PDAC and high-grade local (and hepatic) inflammatory infiltration without compromised microcirculation, innervation or mitochondria. Surprisingly, muscular and hepatic inflammation, SOCS3 upregulation and (proteolytic) increases in free amino acids and glutathione were already detectable in mice with precancerous PanINs. Studies of initial local triggers and defense mechanisms regarding cachexia are warranted for targeted anti-inflammatory prevention.
Collapse
Affiliation(s)
- Wulf Hildebrandt
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Jan Keck
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
- Department of General, Visceral and Pedriatic Surgery, University Clinics, Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Simon Schmich
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Gabriel A. Bonaterra
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Beate Wilhelm
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Hans Schwarzbach
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Anna Eva
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Mirjam Bertoune
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| | - Emily P. Slater
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
| | - Volker Fendrich
- Department of Visceral, Thoracic and Vascular Surgery, University Clinics of Giessen and Marburg, Baldinger Str., 35043 Marburg, Germany; (E.P.S.); (V.F.)
- Center for Endocrine Surgery, Schön Klinik Hamburg-Eilbek, Dehnhaide 120, 22081 Hamburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032 Marburg, Germany; (J.K.); (S.S.); (G.A.B.); (B.W.); (H.S.); (A.E.); (M.B.); (R.K.)
| |
Collapse
|
36
|
Fleming Martinez AK, Döppler HR, Bastea LI, Edenfield BH, Liou GY, Storz P. Ym1 + macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience 2022; 25:104327. [PMID: 35602933 PMCID: PMC9118688 DOI: 10.1016/j.isci.2022.104327] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 01/05/2023] Open
Abstract
Desmoplasia around pancreatic lesions is a barrier for immune cells and a hallmark of developing and established pancreatic cancer. However, the contribution of the innate immune system to this process is ill-defined. Using the KC mouse model and primary cells in vitro, we show that alternatively activated macrophages (AAM) crosstalk with pancreatic lesion cells and pancreatic stellate cells (PSCs) to mediate fibrosis and progression of lesions. TGFβ1 secreted by AAM not only drives activation of quiescent PSCs but also in activated PSCs upregulates expression of TIMP1, a factor previously shown as crucial in fibrosis. Once activated, PSCs auto-stimulate proliferation via CXCL12. Furthermore, we found that TIMP1/CD63 signaling mediates PanIN lesion growth and TGFβ1 contributes to a cadherin switch and drives structural collapse of lesions, indicating a potential progression step. Taken together, our data indicate TGFβ1 produced by Ym1+ AAM as a major driver of processes that initiate the development of pancreatic cancer.
Collapse
Affiliation(s)
| | - Heike R. Döppler
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Ligia I. Bastea
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Brandy H. Edenfield
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA,Department of Biological Sciences, Center for Cancer Research & Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA,Corresponding author
| |
Collapse
|
37
|
Ako S, Teper Y, Ye L, Sinnett-Smith J, Hines OJ, Rozengurt E, Eibl G. Statins Inhibit Inflammatory Cytokine Production by Macrophages and Acinar-to-Ductal Metaplasia of Pancreatic Cells. GASTRO HEP ADVANCES 2022; 1:640-651. [PMID: 36313271 PMCID: PMC9615480 DOI: 10.1016/j.gastha.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Animal data show that the presence of an oncogenic Kras mutation in pancreatic acinar cells leads to acinar-to-ductal metaplasia (ADM), pancreatic intraepithelial neoplasia (PanIN), and pancreatic ductal adenocarcinoma (PDAC). Inflammatory macrophages play an important role in the formation of ADMs and transition to PanINs. Epidemiologically, statins are associated with a reduced risk of PDAC. We investigated whether statins inhibit inflammatory cytokine production in macrophages and whether this leads to reduced ADM formation. METHODS The efficacy of statins on inflammatory cytokine production in 2 macrophage cell lines was measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of macrophage-conditioned medium on ADM in primary pancreatic acinar cells was investigated. Mouse pancreatic tissue samples were analyzed for macrophage numbers, cytokine levels, and neoplastic/dysplastic area. RESULTS Lipophilic statins prevented inflammatory cytokine production in Raw264.7 and J774A.1 cells stimulated by lipopolysaccharide. The inhibitory effect of statins was mediated by inhibition of mevalonate and geranylgeranyl pyrophosphate synthesis and disruption of the actin cytoskeleton but not by a reduction in intracellular cholesterol. Treatment of macrophages with lipophilic statins also blocked ADM formation of primary pancreatic acinar cells. Furthermore, oral administration of simvastatin was associated with a reduction in the number of intrapancreatic macrophages, decreased inflammatory cytokine levels in the pancreas, and attenuated ADM/PanIN formation in mice. CONCLUSION Our data support the hypothesis that statins oppose early PDAC development by their effects on macrophages and ADM formation. The inhibitory actions of statins on macrophages may collaborate with direct inhibitory effects on transformed pancreatic epithelial cells, which cumulatively may reduce early PDAC development and progression.
Collapse
Affiliation(s)
- Soichiro Ako
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Yaroslav Teper
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Linda Ye
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Oscar J. Hines
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
38
|
Zhao Y, Deng Z, Ma Z, Zhang M, Wang H, Tuo B, Li T, Liu X. Expression alteration and dysfunction of ion channels/transporters in the parietal cells induces gastric diffused mucosal injury. Biomed Pharmacother 2022; 148:112660. [PMID: 35276516 DOI: 10.1016/j.biopha.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Gastric mucosal injuries include focal and diffused injuries, which do and do not change the cell differentiation pattern. Parietal cells loss is related to the occurrence of gastric mucosal diffused injury, with two phenotypes of spasmolytic polypeptide-expressing metaplasia and neuroendocrine cell hyperplasia, which is the basis of gastric cancer and gastric neuroendocrine tumor respectively. Multiple ion channels and transporters are located and expressed in the parietal cells, which is not only regulate the gastric acid-base homeostasis, but also regulate the growth and development of parietal cells. Therefore, alteration and dysregulation of ion channels and transporters in the parietal cells impairs the morphology and physiological functions of stomach, resulted in gastric diffused mucosal damage. In this review, multiple ion channels and transporters in parietal cells, including K+ channels, aquaporins, Cl- channels, Na+/H+ transporters, and Cl-/HCO3- transporters are described, and their roles in gastric diffused mucosal injury are discussed. We hope to drive researcher's attention to focus on the role of ion channels/transporters loss in the parietal cells induced gastric diffused mucosal injury.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
39
|
Zhou Y, Nan P, Li C, Mo H, Zhang Y, Wang H, Xu D, Ma F, Qian H. Upregulation of MTA1 in Colon Cancer Drives A CD8 + T Cell-Rich But Classical Macrophage-Lacking Immunosuppressive Tumor Microenvironment. Front Oncol 2022; 12:825783. [PMID: 35350571 PMCID: PMC8957956 DOI: 10.3389/fonc.2022.825783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background The MTA1 protein encoded by metastasis-associated protein 1 (MTA1) is a key component of the ATP-dependent nucleosome remodeling and deacetylase (NuRD) complex, which is widely upregulated in cancers. MTA1 extensively affects downstream gene expression by participating in chromatin remodeling. Although it was defined as a metastasis-associated gene in first reports and metastasis is a process prominently affected by the tumor microenvironment, whether it affects the microenvironment has not been investigated. In our study, we elucidated the regulatory effect of MTA1 on tumor-associated macrophages (TAMs) and how this regulation affects the antitumor effect of cytotoxic T lymphocytes (CTLs) in the tumor microenvironment of colorectal cancer. Methods We detected the cytokines affected by MTA1 expression via a cytokine antibody array in control HCT116 cells and HCT116 cells overexpressing MTA1. Multiplex IHC staining was conducted on a colorectal cancer tissue array from our cancer cohort. Flow cytometry (FCM) was performed to explore the polarization of macrophages in the coculture system and the antitumor killing effect of CTLs in the coculture system. Bioinformatics analysis was conducted to analyze the Cancer Genome Atlas (TCGA) colorectal cancer cohort and single-cell RNA-seq data to assess the immune infiltration status of the TCGA colorectal cancer cohort and the functions of myeloid cells. Results MTA1 upregulation in colorectal cancer was found to drive an immunosuppressive tumor microenvironment. In the tumor microenvironment of MTA1-upregulated colorectal cancer, although CD8+ T cells were significantly enriched, macrophages were significantly decreased, which impaired the CTL effect of the CD8+ T cells on tumor cells. Moreover, upregulated MTA1 in tumor cells significantly induced infiltrated macrophages into tumor-associated macrophage phenotypes and further weakened the cytotoxic effect of CD8+ T cells. Conclusion Upregulation of MTA1 in colorectal cancer drives an immunosuppressive tumor microenvironment by decreasing the microphages from the tumor and inducing the residual macrophages into tumor-associated microphage phenotypes to block the activation of the killing CTL, which contributes to cancer progression.
Collapse
Affiliation(s)
- Yantong Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Gynecological Minimal Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Haijuan Wang
- The Editorial Office of Infectious Diseases & Immunity, Chinese Medical Journals Publishing House Co., Ltd, Beijing, China
| | - Dongkui Xu
- Department of VIP, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Ge Y, Liu H, Zhang Y, Liu J, Yan R, Xiao Z, Fan X, Huang X, An G. Inhibition of DCLK1 kinase reverses epithelial-mesenchymal transition and restores T-cell activity in pancreatic ductal adenocarcinoma. Transl Oncol 2022; 17:101317. [PMID: 34998236 PMCID: PMC8739467 DOI: 10.1016/j.tranon.2021.101317] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy has recently become a promising cancer therapy with extensive applications of immune checkpoint inhibitors (ICIs). However, pancreatic ductal adenocarcinoma (PDAC) appears to be unresponsive to immunotherapy due to the immunosuppressive microenvironment. Recent studies showed that cancer stem cell marker DCLK1 promoted the initiation and development of PDAC. Nevertheless, the mechanism driving this process remains unclear. Here, by performing gain-of-function investigations in PDAC cell lines, we demonstrate that both DCLK1 long (DCLK1-iso1, DCLK1-AS) and short (DCLK1-iso4, DCLK1-BL) isoforms can efficiently activate EMT leading to tumor migration and invasion. Consistent with experiments in vitro, bioinformatic analysis demonstrates that DCLK1 may act as a driver of EMT activation in PDAC. Further analysis showed that EMT was associated with an immunosuppressive microenvironment, which includes more immunosuppressive cells and chemokines, and patients with a higher EMT score were less sensitive to immune checkpoint inhibitors according to the TIDE (Tumor Immune Dysfunction and Exclusion) algorithm. Multiplexed immunofluorescence results demonstrated the close correlation between DCLK1, EMT and immunosuppression in PDAC patients. The findings were further confirmed in vivo reflected by decreased CD4+, CD8+ T cells and increased M2 macrophages as well as E-cad loss in DCLK1-overexpressing subcutaneous tumors. Importantly, the highly-specific DCLK1 inhibitor (DCLK1-IN-1) was able to effectively block EMT process and restore T-cell activity. Altogether, our data demonstrate that DCLK1 is strongly associated with tumor immune escape in PDAC and inhibiting DCLK1 kinase activity may be a promising therapeutic modality.
Collapse
Affiliation(s)
- Yang Ge
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Heshu Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuanyuan Zhang
- Department of Oncology, Beijing Huai-Rou Hospital, Beijing 101400, China
| | - Jian Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Rui Yan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeru Xiao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaona Fan
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xuying Huang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
41
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
42
|
Zhang J, Yin H, Chen Q, Zhao G, Lou W, Wu W, Pu N. Basophils as a potential therapeutic target in cancer. J Zhejiang Univ Sci B 2021; 22:971-984. [PMID: 34904411 DOI: 10.1631/jzus.b2100110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Basophils, which are considered as redundant relatives of mast cells and the rarest granulocytes in peripheral circulation, have been neglected by researchers in the past decades. Previous studies have revealed their vital roles in allergic diseases and parasitic infections. Intriguingly, recent studies even reported that basophils might be associated with cancer development, as activated basophils synthesize and release a variety of cytokines and chemokines in response to cancers. However, it is still subject to debate whether basophils function as tumor-protecting or tumor-promoting components; the answer may depend on the tumor biology and the microenvironment. Herein, we reviewed the role of basophils in cancers, and highlighted some potential and promising therapeutic strategies.
Collapse
Affiliation(s)
- Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guochao Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. , .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China. ,
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
43
|
Opitz FV, Haeberle L, Daum A, Esposito I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers (Basel) 2021; 13:cancers13246188. [PMID: 34944807 PMCID: PMC8699458 DOI: 10.3390/cancers13246188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive neoplasm with a poor survival rate. This is mainly due to late detection, which substantially limits therapy options. A better understanding of the early phases of pancreatic carcinogenesis is fundamental for improving patient prognosis in the future. In this article, we focused on the tumor microenvironment (TME), which provides the biological niche for the development of PDAC from its most common precursor lesions, PanIN (pancreatic intraepithelial neoplasias). Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with a poor prognosis. A characteristic of PDAC is the formation of an immunosuppressive tumor microenvironment (TME) that facilitates bypassing of the immune surveillance. The TME consists of a desmoplastic stroma, largely composed of cancer-associated fibroblasts (CAFs), immunosuppressive immune cells, immunoregulatory soluble factors, neural network cells, and endothelial cells with complex interactions. PDAC develops from various precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMN), mucinous cystic neoplasms (MCN), and possibly, atypical flat lesions (AFL). In this review, we focus on the composition of the TME in PanINs to reveal detailed insights into the complex restructuring of the TME at early time points in PDAC progression and to explore ways of modifying the TME to slow or even halt tumor progression.
Collapse
|
44
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
45
|
Zhao N, Zhu W, Wang J, Liu W, Kang L, Yu R, Liu B. Group 2 innate lymphoid cells promote TNBC lung metastasis via the IL-13-MDSC axis in a murine tumor model. Int Immunopharmacol 2021; 99:107924. [PMID: 34217145 DOI: 10.1016/j.intimp.2021.107924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are reportedly associated with the progression of many tumors. However, the role of ILC2s in triple-negative breast cancer (TNBC) lung metastasis remains unclear. In this study, we found that ILC2s may be a key element in the process of TNBC lung metastasis since the adoptive transfer of pulmonary ILC2s increased the numbers of metastatic lung nodules and reduced the survival of tumor-bearing mice. ILC2-promoted 4 T1 lung metastasis appears to be related to ILC2-derived IL-13. An expansion of IL-13-producing ILC2s and an elevated expression of IL-13 mRNA in pulmonary ILC2s were determined in tumor-bearing mice, in parallel with an increase in the levels of local IL-13 by ILC2 transfer. The neutralization of IL-13 reduced the increased pulmonary metastatic nodules and improved the decreased survival rate caused by ILC2-adoptive transfer. Interestingly, adoptive transfer of ILC2s elevated IL-13Ra1 expression in myeloid-derived suppressor cells (MDSCs). Treatment of ILC2-transferred tumor-bearing mice with anti-IL-13 antibodies significantly diminished the number of pulmonary MDSCs and inhibited MDSC activation. Moreover, when pulmonary MDSCs were cocultured with ILC2s in the presence of an anti-IL-13 mAb, the number and activation of MDSCs were reduced. Depletion of MDSCs may promote the proliferation of CD4+ T cells and CD8+ T cells, but reduce the expansion of regulatory T cells (Tregs) in the lungs of ILC2-transferred tumor-bearing mice. Our results suggest that pulmonary ILC2s may promote TNBC lung metastasis via the ILC2-derived IL-13-activated MDSC pathway.
Collapse
Affiliation(s)
- Na Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China; Department of Medical Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenwen Zhu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Jia Wang
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Weiwei Liu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Longdan Kang
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Rui Yu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China
| | - Beixing Liu
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang 110001, China.
| |
Collapse
|
46
|
Jones JO, Moody WM, Shields JD. Microenvironmental modulation of the developing tumour: an immune-stromal dialogue. Mol Oncol 2021; 15:2600-2633. [PMID: 32741067 PMCID: PMC8486574 DOI: 10.1002/1878-0261.12773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Successful establishment of a tumour relies on a cascade of interactions between cancer cells and stromal cells within an evolving microenvironment. Both immune and nonimmune cellular components are key factors in this process, and the individual players may change their role from tumour elimination to tumour promotion as the microenvironment develops. While the tumour-stroma crosstalk present in an established tumour is well-studied, aspects in the early tumour or premalignant microenvironment have received less attention. This is in part due to the challenges in studying this process in the clinic or in mouse models. Here, we review the key anti- and pro-tumour factors in the early microenvironment and discuss how understanding this process may be exploited in the clinic.
Collapse
Affiliation(s)
- James O. Jones
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - William M. Moody
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
47
|
Kandikattu HK, Venkateshaiah SU, Mishra A. Chronic Pancreatitis and the Development of Pancreatic Cancer. Endocr Metab Immune Disord Drug Targets 2021; 20:1182-1210. [PMID: 32324526 DOI: 10.2174/1871530320666200423095700] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/31/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe. Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in pancreatitis and pancreatic cancer and their role in the activation of SDF1α/CXCR4, SOCS3, inflammasome, and NF-κB signaling. The aberrant immune reactions contribute to pathological damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by inflammation and include a number of regulatory molecules that inhibit that process.
Collapse
Affiliation(s)
- Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha U Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
48
|
Pandey V, Fleming-Martinez A, Bastea L, Doeppler HR, Eisenhauer J, Le T, Edenfield B, Storz P. CXCL10/CXCR3 signaling contributes to an inflammatory microenvironment and its blockade enhances progression of murine pancreatic precancerous lesions. eLife 2021; 10:60646. [PMID: 34328416 PMCID: PMC8360647 DOI: 10.7554/elife.60646] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/29/2021] [Indexed: 01/18/2023] Open
Abstract
The development of pancreatic cancer requires recruitment and activation of different macrophage populations. However, little is known about how macrophages are attracted to the pancreas after injury or an oncogenic event, and how they crosstalk with lesion cells or other cells of the lesion microenvironment. Here, we delineate the importance of CXCL10/CXCR3 signaling during the early phase of murine pancreatic cancer. We show that CXCL10 is produced by pancreatic precancerous lesion cells in response to IFNγ signaling and that inflammatory macrophages are recipients for this chemokine. CXCL10/CXCR3 signaling in macrophages mediates their chemoattraction to the pancreas, enhances their proliferation, and maintains their inflammatory identity. Blocking of CXCL10/CXCR3 signaling in vivo shifts macrophage populations to a tumor-promoting (Ym1+, Fizz+, Arg1+) phenotype, increases fibrosis, and mediates progression of lesions, highlighting the importance of this pathway in PDA development. This is reversed when CXCL10 is overexpressed in PanIN cells.
Collapse
Affiliation(s)
- Veethika Pandey
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Alicia Fleming-Martinez
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Heike R Doeppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Jillian Eisenhauer
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Tam Le
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Brandy Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, United States
| |
Collapse
|
49
|
Liang Y, Li H, Gan Y, Tu H. Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:688953. [PMID: 34395421 PMCID: PMC8363299 DOI: 10.3389/fcell.2021.688953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of less than 8%. The fate of PC is determined not only by the malignant behavior of the cancer cells, but also by the surrounding tumor microenvironment (TME), consisting of various cellular (cancer cells, immune cells, stromal cells, endothelial cells, and neurons) and non-cellular (cytokines, neurotransmitters, and extracellular matrix) components. The pancreatic TME has the unique characteristic of exhibiting increased neural density and altered microenvironmental concentration of neurotransmitters. The neurotransmitters, produced by both neuron and non-neuronal cells, can directly regulate the biological behavior of PC cells via binding to their corresponding receptors on tumor cells and activating the intracellular downstream signals. On the other hand, the neurotransmitters can also communicate with other cellular components such as the immune cells in the TME to promote cancer growth. In this review, we will summarize the pleiotropic effects of neurotransmitters on the initiation and progression of PC, and particularly discuss the emerging mechanisms of how neurotransmitters influence the innate and adaptive immune responses in the TME in an autocrine or paracrine manner. A better understanding of the interplay between neurotransmitters and the immune cells in the TME might facilitate the development of new effective therapies for PC.
Collapse
Affiliation(s)
| | | | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Poh AR, Ernst M. Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Therapeutic Opportunities and Clinical Challenges. Cancers (Basel) 2021; 13:cancers13122860. [PMID: 34201127 PMCID: PMC8226457 DOI: 10.3390/cancers13122860] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Macrophages are a major component of the pancreatic tumor microenvironment, and their increased abundance is associated with poor patient survival. Given the multi-faceted role of macrophages in promoting pancreatic tumor development and progression, these cells represent promising targets for anti-cancer therapy. Abstract Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of less than 10%. Macrophages are one of the earliest infiltrating cells in the pancreatic tumor microenvironment, and are associated with an increased risk of disease progression, recurrence, metastasis, and shorter overall survival. Pre-clinical studies have demonstrated an unequivocal role of macrophages in PDAC by contributing to chronic inflammation, cancer cell stemness, desmoplasia, immune suppression, angiogenesis, invasion, metastasis, and drug resistance. Several macrophage-targeting therapies have also been investigated in pre-clinical models, and include macrophage depletion, inhibiting macrophage recruitment, and macrophage reprogramming. However, the effectiveness of these drugs in pre-clinical models has not always translated into clinical trials. In this review, we discuss the molecular mechanisms that underpin macrophage heterogeneity within the pancreatic tumor microenvironment, and examine the contribution of macrophages at various stages of PDAC progression. We also provide a comprehensive update of macrophage-targeting therapies that are currently undergoing clinical evaluation, and discuss clinical challenges associated with these treatment modalities in human PDAC patients.
Collapse
|