1
|
Quave CB, Vasquez AM, Aquino-Miranda G, Marín M, Bora EP, Chidomere CL, Zhang XO, Engelke DS, Do-Monte FH. Neural correlates of opioid-induced risk-taking behavior in the prelimbic prefrontal cortex. J Neurosci 2025; 45:e2422242025. [PMID: 40097184 PMCID: PMC12060622 DOI: 10.1523/jneurosci.2422-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Opioid use disorder occurs alongside impaired risk-related decision-making, but the underlying neural correlates are unclear. We developed an approach-avoidance conflict task using a modified conditioned place preference procedure to study neural signals of risky opioid seeking in the prefrontal cortex, a region implicated in executive decision-making. Following morphine conditioned place preference, rats underwent a conflict test in which fear-inducing cat odor was introduced in the previously drug-paired side of the apparatus. While the saline-exposed control group avoided cat odor, the morphine group included two subsets of rats that either maintained a preference for the paired side despite the presence of cat odor (Risk-Takers) or exhibited increased avoidance (Risk-Avoiders), as revealed by K-means clustering. Single-unit recordings from the prelimbic cortex (PL) demonstrated decreased neuronal activity upon acute morphine exposure in both Risk-Takers and Risk-Avoiders, but this firing rate suppression was absent after repeated morphine administration. Risk-Avoiders also displayed distinct post-morphine excitation in PL which persisted across conditioning. During the preference test, subpopulations of PL neurons in all groups were either excited or inhibited when rats entered the paired side. Interestingly, the inhibition in PL activity was lost during the subsequent conflict test in both saline and Risk-Avoider groups, but persisted in Risk-Takers. Additionally, Risk-Takers showed an increase in the proportion of PL neurons displaying location-specific firing in the drug-paired side from the preference to the conflict test. Together, our results suggest that persistent PL inhibitory signaling in the drug-associated context during motivational conflict may underlie increased risk-taking behavior following opioid exposure.Significance statement Risky opioid use is well established in opioid use disorder, but the underlying neural correlates are poorly understood. In this study, we present findings from a novel behavioral task in which rats face a motivational conflict between contextual opioid reward memory and a naturalistic predator threat. Performing neuronal recordings in the prelimbic prefrontal cortex (PL), a brain region critical for executive decision-making, we demonstrate enhanced representation of drug-associated context and persistent inhibitory signaling by PL neurons that occur alongside opioid-induced risk-taking behavior. Our findings refine a preclinical model for studying addiction, establish PL as a prime region for investigating drug-environment interactions, and positions the prefrontal cortex as a candidate region for translational studies targeting risky opioid use.
Collapse
Affiliation(s)
- Cana B Quave
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andres M Vasquez
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Neuroscience, Rice University, Houston, TX 77005, USA
| | - Guillermo Aquino-Miranda
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Milagros Marín
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Esha P Bora
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chinenye L Chidomere
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xu O Zhang
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas S Engelke
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Fabricio H Do-Monte
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA;
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
2
|
Zhu F, Kanda H, Neyama H, Wu Y, Kato S, Hu D, Duan S, Noguchi K, Watanabe Y, Kobayashi K, Dai Y, Cui Y. Modulation of Nicotine-Associated Behaviour in Rats By μ-Opioid Signals from the Medial Prefrontal Cortex to the Nucleus Accumbens Shell. Neurosci Bull 2024; 40:1826-1842. [PMID: 38850386 PMCID: PMC11625037 DOI: 10.1007/s12264-024-01230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 06/10/2024] Open
Abstract
Nicotine addiction is a concern worldwide. Most mechanistic investigations are on nicotine substance dependence properties based on its pharmacological effects. However, no effective therapeutic treatment has been established. Nicotine addiction is reinforced by environments or habits. We demonstrate the neurobiological basis of the behavioural aspect of nicotine addiction. We utilized the conditioned place preference to establish nicotine-associated behavioural preferences (NABP) in rats. Brain-wide neuroimaging analysis revealed that the medial prefrontal cortex (mPFC) was activated and contributed to NABP. Chemogenetic manipulation of µ-opioid receptor positive (MOR+) neurons in the mPFC or the excitatory outflow to the nucleus accumbens shell (NAcShell) modulated the NABP. Electrophysiological recording confirmed that the MOR+ neurons directly regulate the mPFC-NAcShell circuit via GABAA receptors. Thus, the MOR+ neurons in the mPFC modulate the formation of behavioural aspects of nicotine addiction via direct excitatory innervation to the NAcShell, which may provide new insight for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hirosato Kanda
- School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| | - Hiroyuki Neyama
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Yuping Wu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, Fukushima, 960-1295, Japan
| | - Di Hu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Shaoqi Duan
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Fukushima Medical University Institute of Biomedical Sciences, Fukushima, 960-1295, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yilong Cui
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
- Laboratory for Brain-Gut Homeostasis, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
3
|
Markovic T, Higginbotham J, Ruyle B, Massaly N, Yoon HJ, Kuo CC, Kim JR, Yi J, Garcia JJ, Sze E, Abt J, Teich RH, Dearman JJ, McCall JG, Morón JA. A locus coeruleus to dorsal hippocampus pathway mediates cue-induced reinstatement of opioid self-administration in male and female rats. Neuropsychopharmacology 2024; 49:915-923. [PMID: 38374364 PMCID: PMC11039689 DOI: 10.1038/s41386-024-01828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.
Collapse
Affiliation(s)
- Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jessica Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian Ruyle
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jiwon Yi
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeniffer J Garcia
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric Sze
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Julian Abt
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel H Teich
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Joanna J Dearman
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.
- Pain Center, Washington University in St Louis, St. Louis, MO, USA.
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
4
|
Celinskis D, Black CJ, Murphy J, Barrios-Anderson A, Friedman NG, Shaner NC, Saab CY, Gomez-Ramirez M, Borton DA, Moore CI. Toward a brighter constellation: multiorgan neuroimaging of neural and vascular dynamics in the spinal cord and brain. NEUROPHOTONICS 2024; 11:024209. [PMID: 38725801 PMCID: PMC11079446 DOI: 10.1117/1.nph.11.2.024209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024]
Abstract
Significance Pain comprises a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim We aimed to develop and validate tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations was targeted to developing novel imaging hardware that addresses the many challenges of multisite imaging. The second key set of innovations was targeted to enabling bioluminescent (BL) imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity, and decreased resolution due to scattering of excitation signals. Approach We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for BL imaging and developed a novel modified miniscope optimized for these signals (BLmini). Results We describe "universal" implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of BL signals in both foci and a new miniscope, the "BLmini," which has reduced weight, cost, and form-factor relative to standard wearable miniscopes. Conclusions The combination of 3D-printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a coalition of methods for understanding spinal cord-brain interactions. Our work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.
Collapse
Affiliation(s)
- Dmitrijs Celinskis
- Carney Institute for Brain Science, Providence, Rhode Island, United States
| | | | - Jeremy Murphy
- Carney Institute for Brain Science, Providence, Rhode Island, United States
| | | | - Nina G. Friedman
- Carney Institute for Brain Science, Providence, Rhode Island, United States
| | - Nathan C. Shaner
- University of California San Diego, School of Medicine, La Jolla, California, United States
| | - Carl Y. Saab
- Cleveland Clinic Lerner Research Institute, Neurological Institute, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Manuel Gomez-Ramirez
- University of Rochester, School of Arts and Sciences, Rochester, New York, United States
| | - David A. Borton
- Carney Institute for Brain Science, Providence, Rhode Island, United States
- Brown University, School of Engineering, Providence, Rhode Island, United States
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island, United States
| | | |
Collapse
|
5
|
Nguyen R, Sivakumaran S, Lambe EK, Kim JC. Ventral hippocampal cholecystokinin interneurons gate contextual reward memory. iScience 2024; 27:108824. [PMID: 38303709 PMCID: PMC10831933 DOI: 10.1016/j.isci.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Associating contexts with rewards depends on hippocampal circuits, with local inhibitory interneurons positioned to play an important role in shaping activity. Here, we demonstrate that the encoding of context-reward memory requires a ventral hippocampus (vHPC) to nucleus accumbens (NAc) circuit that is gated by cholecystokinin (CCK) interneurons. In a sucrose conditioned place preference (CPP) task, optogenetically inhibiting vHPC-NAc terminals impaired the acquisition of place preference. Transsynaptic rabies tracing revealed vHPC-NAc neurons were monosynaptically innervated by CCK interneurons. Using intersectional genetic targeting of CCK interneurons, ex vivo optogenetic activation of CCK interneurons increased GABAergic transmission onto vHPC-NAc neurons, while in vivo optogenetic inhibition of CCK interneurons increased cFos in these projection neurons. Notably, CCK interneuron inhibition during sucrose CPP learning increased time spent in the sucrose-associated location, suggesting enhanced place-reward memory. Our findings reveal a previously unknown hippocampal microcircuit crucial for modulating the strength of contextual reward learning.
Collapse
Affiliation(s)
- Robin Nguyen
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | | | - Evelyn K. Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of OBGYN, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Ibrahim KM, Massaly N, Yoon HJ, Sandoval R, Widman AJ, Heuermann RJ, Williams S, Post W, Pathiranage S, Lintz T, Zec A, Park A, Yu W, Kash TL, Gereau RW, Morón JA. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat Commun 2024; 15:750. [PMID: 38286800 PMCID: PMC10825206 DOI: 10.1038/s41467-024-44836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Hye-Jean Yoon
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Rossana Sandoval
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Allie J Widman
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Heuermann
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University Pain Center, St. Louis, MO, 63110, USA
| | - Sidney Williams
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - William Post
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sulan Pathiranage
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tania Lintz
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley Park
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Waylin Yu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA.
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Celinskis D, Black CJ, Murphy J, Barrios-Anderson A, Friedman N, Shaner NC, Saab C, Gomez-Ramirez M, Lipscombe D, Borton DA, Moore CI. Towards a Brighter Constellation: Multi-Organ Neuroimaging of Neural and Vascular Dynamics in the Spinal Cord and Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.25.573323. [PMID: 38234789 PMCID: PMC10793404 DOI: 10.1101/2023.12.25.573323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Significance Pain is comprised of a complex interaction between motor action and somatosensation that is dependent on dynamic interactions between the brain and spinal cord. This makes understanding pain particularly challenging as it involves rich interactions between many circuits (e.g., neural and vascular) and signaling cascades throughout the body. As such, experimentation on a single region may lead to an incomplete and potentially incorrect understanding of crucial underlying mechanisms. Aim Here, we aimed to develop and validate new tools to enable detailed and extended observation of neural and vascular activity in the brain and spinal cord. The first key set of innovations were targeted to developing novel imaging hardware that addresses the many challenges of multi-site imaging. The second key set of innovations were targeted to enabling bioluminescent imaging, as this approach can address limitations of fluorescent microscopy including photobleaching, phototoxicity and decreased resolution due to scattering of excitation signals. Approach We designed 3D-printed brain and spinal cord implants to enable effective surgical implantations and optical access with wearable miniscopes or an open window (e.g., for one- or two-photon microscopy or optogenetic stimulation). We also tested the viability for bioluminescent imaging, and developed a novel modified miniscope optimized for these signals (BLmini). Results Here, we describe novel 'universal' implants for acute and chronic simultaneous brain-spinal cord imaging and optical stimulation. We further describe successful imaging of bioluminescent signals in both foci, and a new miniscope, the 'BLmini,' which has reduced weight, cost and form-factor relative to standard wearable miniscopes. Conclusions The combination of 3D printed implants, advanced imaging tools, and bioluminescence imaging techniques offers a new coalition of methods for understanding spinal cord-brain interactions. This work has the potential for use in future research into neuropathic pain and other sensory disorders and motor behavior.
Collapse
Affiliation(s)
| | | | - Jeremy Murphy
- Carney Institute for Brain Science, Providence, RI, USA
| | | | - Nina Friedman
- Carney Institute for Brain Science, Providence, RI, USA
| | - Nathan C. Shaner
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Carl Saab
- Cleveland Clinic Lerner Research Institute, Department of Biomedical Engineering and Neurological Institute, Cleveland, OH, USA
| | | | | | - David A. Borton
- Carney Institute for Brain Science, Providence, RI, USA
- School of Engineering, Brown University, RI, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, RI, USA
| | | |
Collapse
|
8
|
Zhou ZC, Gordon-Fennell A, Piantadosi SC, Ji N, Smith SL, Bruchas MR, Stuber GD. Deep-brain optical recording of neural dynamics during behavior. Neuron 2023; 111:3716-3738. [PMID: 37804833 PMCID: PMC10843303 DOI: 10.1016/j.neuron.2023.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
In vivo fluorescence recording techniques have produced landmark discoveries in neuroscience, providing insight into how single cell and circuit-level computations mediate sensory processing and generate complex behaviors. While much attention has been given to recording from cortical brain regions, deep-brain fluorescence recording is more complex because it requires additional measures to gain optical access to harder to reach brain nuclei. Here we discuss detailed considerations and tradeoffs regarding deep-brain fluorescence recording techniques and provide a comprehensive guide for all major steps involved, from project planning to data analysis. The goal is to impart guidance for new and experienced investigators seeking to use in vivo deep fluorescence optical recordings in awake, behaving rodent models.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adam Gordon-Fennell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Spencer LaVere Smith
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Sun Y, Giocomo LM. Neural circuit dynamics of drug-context associative learning in the mouse hippocampus. Nat Commun 2022; 13:6721. [PMID: 36344498 PMCID: PMC9640587 DOI: 10.1038/s41467-022-34114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The environmental context associated with previous drug consumption is a potent trigger for drug relapse. However, the mechanism by which neural representations of context are modified to incorporate information associated with drugs of abuse remains unknown. Using longitudinal calcium imaging in freely behaving mice, we find that unlike the associative learning of natural reward, drug-context associations for psychostimulants and opioids are encoded in a specific subset of hippocampal neurons. After drug conditioning, these neurons weakened their spatial coding for the non-drug paired context, resulting in an orthogonal representation for the drug versus non-drug context that was predictive of drug-seeking behavior. Furthermore, these neurons were selected based on drug-spatial experience and were exclusively tuned to animals' allocentric position. Together, this work reveals how drugs of abuse alter the hippocampal circuit to encode drug-context associations and points to the possibility of targeting drug-associated memory in the hippocampus.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Astrocyte-derived lactate/NADH alters methamphetamine-induced memory consolidation and retrieval by regulating neuronal synaptic plasticity in the dorsal hippocampus. Brain Struct Funct 2022; 227:2681-2699. [DOI: 10.1007/s00429-022-02563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
|
11
|
Repeated ketamine anesthesia during neurodevelopment upregulates hippocampal activity and enhances drug reward in male mice. Commun Biol 2022; 5:709. [PMID: 35840630 PMCID: PMC9287305 DOI: 10.1038/s42003-022-03667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Early exposures to anesthetics can cause long-lasting changes in excitatory/inhibitory synaptic transmission (E/I imbalance), an important mechanism for neurodevelopmental disorders. Since E/I imbalance is also involved with addiction, we further investigated possible changes in addiction-related behaviors after multiple ketamine anesthesia in late postnatal mice. Postnatal day (PND) 16 mice received multiple ketamine anesthesia (35 mg kg-1, 5 days), and behavioral changes were evaluated at PND28 and PND56. Although mice exposed to early anesthesia displayed normal behavioral sensitization, we found significant increases in conditioned place preference to both low-dose ketamine (20 mg kg-1) and nicotine (0.5 mg kg-1). By performing transcriptome analysis and whole-cell recordings in the hippocampus, a brain region involved with CPP, we also discovered enhanced neuronal excitability and E/I imbalance in CA1 pyramidal neurons. Interestingly, these changes were not found in female mice. Our results suggest that repeated ketamine anesthesia during neurodevelopment may influence drug reward behavior later in life.
Collapse
|
12
|
Gowrishankar R, Gomez A, Waliki M, Bruchas MR. Kappa-opioid receptor activation reinstates nicotine self-administration in mice. ADDICTION NEUROSCIENCE 2022; 2:100017. [PMID: 36118179 PMCID: PMC9481185 DOI: 10.1016/j.addicn.2022.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Raajaram Gowrishankar
- Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle WA
- Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle WA
| | - Adrian Gomez
- Department of Anesthesiology, Washington University in St. Louis MO
| | - Marie Waliki
- Department of Anesthesiology, Washington University in St. Louis MO
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle WA
- Department of Anesthesiology, Washington University in St. Louis MO
- Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle WA
| |
Collapse
|
13
|
Bang JY, Sunstrum JK, Garand D, Parfitt GM, Woodin M, Inoue W, Kim J. Hippocampal-hypothalamic circuit controls context-dependent innate defensive responses. eLife 2022; 11:74736. [PMID: 35420543 PMCID: PMC9042231 DOI: 10.7554/elife.74736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preys use their memory - where they sensed a predatory threat and whether a safe shelter is nearby - to dynamically control their survival instinct to avoid harm and reach safety. However, it remains unknown which brain regions are involved, and how such top-down control of innate behaviour is implemented at the circuit level. Here, using adult male mice, we show that the anterior hypothalamic nucleus (AHN) is best positioned to control this task as an exclusive target of the hippocampus (HPC) within the medial hypothalamic defense system. Selective optogenetic stimulation and inhibition of hippocampal inputs to the AHN revealed that the HPC→AHN pathway not only mediates the contextual memory of predator threats but also controls the goal-directed escape by transmitting information about the surrounding environment. These results reveal a new mechanism for experience-dependent, top-down control of innate defensive behaviours.
Collapse
Affiliation(s)
- Jee Yoon Bang
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Danielle Garand
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Melanie Woodin
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Wataru Inoue
- Robarts Research Institute, Western University, London, Canada
| | - Junchul Kim
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis AM, Stuber GD. Developments from Bulk Optogenetics to Single-Cell Strategies to Dissect the Neural Circuits that Underlie Aberrant Motivational States. Cold Spring Harb Perspect Med 2022; 12:a039792. [PMID: 32513671 PMCID: PMC7799172 DOI: 10.1101/cshperspect.a039792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Motivational states are regulated by complex networks across brain regions that are composed of genetically and functionally distinct neuronal populations. Disruption within these neural circuits leads to aberrant motivational states and are thought to be the root cause of psychiatric disorders related to reward processing and addiction. Critical technological advances in the field have revolutionized the study of neural systems by allowing the use of optical strategies to precisely control and visualize neural activity within genetically identified neural populations in the brain. This review will provide a brief introduction into the history of how technological advances in single-cell strategies have been applied to elucidate the neural circuits that underlie aberrant motivational states that often lead to dysfunction in reward processing and addiction.
Collapse
Affiliation(s)
- Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Vijay M K Namboodiri
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine & Department of Pharmacology, University of Washington, Seattle, Washington 98195-6410, USA
| | - Marcus L Basiri
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Alice M Stamatakis
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine & Department of Pharmacology, University of Washington, Seattle, Washington 98195-6410, USA
| |
Collapse
|
15
|
Chapman DP, Sloley SS, Caccavano AP, Vicini S, Burns MP. High-Frequency Head Impact Disrupts Hippocampal Neural Ensemble Dynamics. Front Cell Neurosci 2022; 15:763423. [PMID: 35115908 PMCID: PMC8806157 DOI: 10.3389/fncel.2021.763423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
We have recently shown that the cognitive impairments in a mouse model of high-frequency head impact (HFHI) are caused by chronic changes to synaptic physiology. To better understand these synaptic changes occurring after repeat head impact, we used Thy1-GcCAMP6f mice to study intracellular and intercellular calcium dynamics and neuronal ensembles in HFHI mice. We performed simultaneous calcium imaging and local field potential (LFP) recordings of the CA1 field during an early-LTP paradigm in acute hippocampal slice preparations 24 h post-impact. As previously reported, HFHI causes a decrease in early-LTP in the absence of any shift in the input-output curve. Calcium analytics revealed that HFHI hippocampal slices have similar numbers of active ROIs, however, the number of calcium transients per ROI was significantly increased in HFHI slices. Ensembles consist of coordinated activity between groups of active ROIs. We exposed the CA1 ensemble to Schaffer-collateral stimulation in an abbreviated LTP paradigm and observed novel coordinated patterns of post stimulus calcium ensemble activity. HFHI ensembles displayed qualitatively similar patterns of post-stimulus ensemble activity to shams but showed significant changes in quantitative ensemble inactivation and reactivation. Previous in vivo and in vitro reports have shown that ensemble activity frequently occurs through a similar set of ROIs firing in a repeating fashion. HFHI slices showed a decrease in such coordinated firing patterns during post stimulus ensemble activity. The present study shows that HFHI alters synaptic activity and disrupts neuronal organization of the ensemble, providing further evidence of physiological synaptic adaptation occurring in the brain after a high frequency of non-pathological head impacts.
Collapse
Affiliation(s)
- Daniel P. Chapman
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Stephanie S. Sloley
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Adam P. Caccavano
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Stefano Vicini
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Mark P. Burns
- Georgetown Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
- *Correspondence: Mark P. Burns,
| |
Collapse
|
16
|
Vickstrom CR, Snarrenberg ST, Friedman V, Liu QS. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction. Mol Psychiatry 2022; 27:640-651. [PMID: 34145393 PMCID: PMC9190069 DOI: 10.1038/s41380-021-01181-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
The neurobiology of addiction has been an intense topic of investigation for more than 50 years. Over this time, technological innovation in methods for studying brain function rapidly progressed, leading to increasingly sophisticated experimental approaches. To understand how specific brain regions, cell types, and circuits are affected by drugs of abuse and drive behaviors characteristic of addiction, it is necessary both to observe and manipulate neural activity in addiction-related behavioral paradigms. In pursuit of this goal, there have been several key technological advancements in in vivo imaging and neural circuit modulation in recent years, which have shed light on the cellular and circuit mechanisms of addiction. Here we discuss some of these key technologies, including circuit modulation with optogenetics, in vivo imaging with miniaturized single-photon microscopy (miniscope) and fiber photometry, and how the application of these technologies has garnered novel insights into the neurobiology of addiction.
Collapse
|
17
|
De-Paula VJ, Forlenza OV. Lithium modulates multiple tau kinases with distinct effects in cortical and hippocampal neurons according to concentration ranges. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:105-113. [PMID: 34751792 DOI: 10.1007/s00210-021-02171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
The hyperphosphorylation of tau is a central mechanism in the pathogenesis of Alzheimer's disease (AD). Lithium is a potent inhibitor of glycogen synthase kinase-3beta (GSK3β), the most important tau kinase in neurons, and may also affect tau phosphorylation by modifying the expression and/or activity of other kinases, such as protein kinase A (PKA), Akt (PKB), and calcium calmodulin kinase-II (CaMKII). The aim of the present study is to determine the effect of chronic lithium treatment on the protein expression of tau and its major kinases in cortical and hippocampal neurons, at distinct working concentrations. Primary cultures of cortical and hippocampal neurons were treated with sub-therapeutic (0.02 mM and 0.2 mM) and therapeutic (2 mM) concentrations of lithium for 7 days. Protein expression of tau and tau-kinases was determined by immunoblotting. An indirect estimate of GSK3β activity was determined by the GSK3β ratio (rGSKβ). Statistically significant increments in the protein expression of tau and CaMKII were observed both in cortical and hippocampal neurons treated with subtherapeutic doses of lithium. GSK3β activity was increased in cortical, but decreased in hippocampal neurons. Distinct patterns of changes in the expression of the remaining tau tau-kinases were observed: in cortical neurons, lithium treatment was associated with consistent decrements in Akt and PKA, whereas hippocampal neurons displayed increased protein expression of Akt and decreased PKA. Our results suggest that chronic lithium treatment may yield distinct biological effects depending on the concentration range, with regional specificity. We further suggest that hippocampal neurons may be more sensitive to the effect of lithium, presenting with changes in the expression of tau-related proteins at subtherapeutic doses, which may not be mirrored by the effects observed in cortical neurons.
Collapse
Affiliation(s)
- V J De-Paula
- Laboratório de Neurociências (LIM-27), Departamento E Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
- Laboratório de Psicobiologia (LIM-23), Instituto de Psiquiatria, Hospital das Clinicas da Faculdade de Medicina da USP, Rua Dr. Ovídio Pires de Campos 785, São Paulo, SP, 05403-903, Brazil.
| | - O V Forlenza
- Laboratório de Neurociências (LIM-27), Departamento E Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Cheng Q, Lamb P, Stevanovic K, Bernstein BJ, Fry SA, Cushman JD, Yakel JL. Differential signalling induced by α7 nicotinic acetylcholine receptors in hippocampal dentate gyrus in vitro and in vivo. J Physiol 2021; 599:4687-4704. [PMID: 34487349 DOI: 10.1113/jp280505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
The activation of α7 nicotinic acetylcholine receptors (nAChRs) has been shown to improve hippocampus-dependent learning and memory. α7 nAChRs are densely expressed among several different cell types in the hippocampus, with high Ca2+ permeability, although it is unclear if α7 nAChRs mobilize differential signalling mechanisms among distinct neuronal populations. To address this question, we compared α7 nAChR agonist-induced responses (i.e. calcium and cAMP changes) between granule cells and GABAergic neurons in the hippocampal dentate gyrus both in vitro and in vivo. In cultured organotypic hippocampal slices, we observed robust intracellular calcium and cAMP increases in dentate granule cells upon activation of α7 nAChRs. In contrast, GABAergic interneurons displayed little change in either calcium or cAMP concentration after α7 nAChR activation, even though they displayed much larger α7 nAChR current responses than those of dentate granule cells. We found that this was due to smaller α7 nAChR-induced Ca2+ rises in GABAergic interneurons. Thus, the regulation of the Ca2+ transients in different cell types resulted in differential subsequent intracellular signalling cascades and likely the ultimate outcome of α7 nAChR activation. Furthermore, we monitored neuronal activities of dentate granule cells and GABAergic interneurons in vivo via optic fibre photometry. We observed enhancement of neuronal activities after nicotine administration in dentate granule cells, but not in GABAergic neurons, which was absent in α7 nAChR-deficient granule cells. In summary, we reveal a mechanism for α7 nAChR-mediated increase of neuronal activity via cell type-specific intracellular signalling pathways. KEY POINTS: α7 nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system and regulate a variety of brain functions including learning and memory. Understanding the cellular signalling mechanisms of their activations among different neuronal populations is important for delineating their actions in cognitive function, and developing effective treatment strategies for cognitive deficits. We report that α7 nAChR activation leads to Ca2+ and cAMP increases in granule cells (but not in GABAergic interneurons) in hippocampal dentate gyrus in vitro, a key region for pattern separation during learning. We also found that nicotine enhanced granule cell (but not in GABAergic interneurons) activity in an α7 nAChR-dependent manner via in vivo fibre photometry recording. Based on our findings, we propose that differential responses to α7 nAChR activation between granule cells and GABAergic interneurons is responsible for the increase of excitation by α7 nAChR agonists in hippocampal circuits synergistically.
Collapse
Affiliation(s)
- Qing Cheng
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA.,Biological/Biomedical Research Institute, North Carolina Central University, Durham, NC, USA
| | - Patricia Lamb
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Korey Stevanovic
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Briana J Bernstein
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Sydney A Fry
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jesse D Cushman
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, The National Institute of Environmental Health Sciences/National Institutes of Health, Durham, NC, USA
| |
Collapse
|
19
|
Fisher ML, Pauly JR, Froeliger B, Turner JR. Translational Research in Nicotine Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039776. [PMID: 32513669 DOI: 10.1101/cshperspect.a039776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence. Functional neuroimaging studies have identified key brain structures involved with nicotine-dependence phenotypes such as craving, impulsivity, withdrawal symptoms, and smoking cessation outcomes. Following up with these findings, rodent-modeling techniques have made it possible to dissect the neural circuits involved in these motivated behaviors and ascertain mechanisms underlying nicotine's interactive effects on brain structure and function. Likewise, translational studies investigating single-nucleotide polymorphisms (SNPs) within the cholinergic, dopaminergic, and opioid systems have found high levels of involvement of these neurotransmitter systems in regulating the reinforcing aspects of nicotine in both humans and mouse models. These findings and coordinated efforts between human and rodent studies pave the way for future work determining gene by drug interactions and tailoring treatment options to each individual smoker.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|
20
|
Tan Y, Hang F, Liu ZW, Stoiljkovic M, Wu M, Tu Y, Han W, Lee AM, Kelley C, Hajós M, Lu L, de Lecea L, De Araujo I, Picciotto MR, Horvath TL, Gao XB. Impaired hypocretin/orexin system alters responses to salient stimuli in obese male mice. J Clin Invest 2021; 130:4985-4998. [PMID: 32516139 DOI: 10.1172/jci130889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
The brain has evolved in an environment where food sources are scarce, and foraging for food is one of the major challenges for survival of the individual and species. Basic and clinical studies show that obesity or overnutrition leads to overwhelming changes in the brain in animals and humans. However, the exact mechanisms underlying the consequences of excessive energy intake are not well understood. Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the lateral/perifonical hypothalamus (LH) are critical for homeostatic regulation, reward seeking, stress response, and cognitive functions. In this study, we examined adaptations in Hcrt cells regulating behavioral responses to salient stimuli in diet-induced obese mice. Our results demonstrated changes in primary cilia, synaptic transmission and plasticity, cellular responses to neurotransmitters necessary for reward seeking, and stress responses in Hcrt neurons from obese mice. Activities of neuronal networks in the LH and hippocampus were impaired as a result of decreased hypocretinergic function. The weakened Hcrt system decreased reward seeking while altering responses to acute stress (stress-coping strategy), which were reversed by selectively activating Hcrt cells with chemogenetics. Taken together, our data suggest that a deficiency in Hcrt signaling may be a common cause of behavioral changes (such as lowered arousal, weakened reward seeking, and altered stress response) in obese animals.
Collapse
Affiliation(s)
- Ying Tan
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fu Hang
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Guangxi Reproductive Medical Research Center, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mingxing Wu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Ophthalmology, Second Affiliate Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Tu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Traditional Chinese Medicine Health Preservation, Second Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenfei Han
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela M Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig Kelley
- Joint Biomedical Engineering Program, SUNY Downstate and NYU Tandon, Brooklyn, New York, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ivan De Araujo
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xiao-Bing Gao
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT, Gritton HJ, Romano MF, Gao R, Yu CCJ, Tseng HA, Bensussen S, Narayan S, Yang CT, Freifeld L, Siciliano CA, Gupta I, Wang J, Pak N, Yoon YG, Ullmann JFP, Guner-Ataman B, Noamany H, Sheinkopf ZR, Park WM, Asano S, Keating AE, Trimmer JS, Reimer J, Tolias AS, Bear MF, Tye KM, Han X, Ahrens MB, Boyden ES. Precision Calcium Imaging of Dense Neural Populations via a Cell-Body-Targeted Calcium Indicator. Neuron 2020; 107:470-486.e11. [PMID: 32592656 DOI: 10.1016/j.neuron.2020.05.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 05/09/2019] [Accepted: 05/20/2020] [Indexed: 01/11/2023]
Abstract
Methods for one-photon fluorescent imaging of calcium dynamics can capture the activity of hundreds of neurons across large fields of view at a low equipment complexity and cost. In contrast to two-photon methods, however, one-photon methods suffer from higher levels of crosstalk from neuropil, resulting in a decreased signal-to-noise ratio and artifactual correlations of neural activity. We address this problem by engineering cell-body-targeted variants of the fluorescent calcium indicators GCaMP6f and GCaMP7f. We screened fusions of GCaMP to natural, as well as artificial, peptides and identified fusions that localized GCaMP to within 50 μm of the cell body of neurons in mice and larval zebrafish. One-photon imaging of soma-targeted GCaMP in dense neural circuits reported fewer artifactual spikes from neuropil, an increased signal-to-noise ratio, and decreased artifactual correlation across neurons. Thus, soma-targeting of fluorescent calcium indicators facilitates usage of simple, powerful, one-photon methods for imaging neural calcium dynamics.
Collapse
Affiliation(s)
- Or A Shemesh
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Changyang Linghu
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Kiryl D Piatkevich
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China
| | - Daniel Goodwin
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Orhan Tunc Celiker
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Howard J Gritton
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Michael F Romano
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Ruixuan Gao
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Hua-An Tseng
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Seth Bensussen
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Chao-Tsung Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Limor Freifeld
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Cody A Siciliano
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ishan Gupta
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Joyce Wang
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Nikita Pak
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Young-Gyu Yoon
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA; School of Electrical Engineering, KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Jeremy F P Ullmann
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - Burcu Guner-Ataman
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Habiba Noamany
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Zoe R Sheinkopf
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Shoh Asano
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Amy E Keating
- Department of Biological Engineering, MIT, Cambridge, MA, USA; Department of Biology, MIT, Cambridge, MA, USA; Koch Institute, MIT, Cambridge, MA 02139, USA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and AI, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Neuroscience and AI, Baylor College of Medicine, Houston, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Edward S Boyden
- The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA; MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA; Koch Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Kondo T, Saito R, Otaka M, Yoshino-Saito K, Yamanaka A, Yamamori T, Watakabe A, Mizukami H, Schnitzer MJ, Tanaka KF, Ushiba J, Okano H. Calcium Transient Dynamics of Neural Ensembles in the Primary Motor Cortex of Naturally Behaving Monkeys. Cell Rep 2020; 24:2191-2195.e4. [PMID: 30134178 DOI: 10.1016/j.celrep.2018.07.057] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/05/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022] Open
Abstract
To understand brain circuits of cognitive behaviors under natural conditions, we developed techniques for imaging neuronal activities from large neuronal populations in the deep layer cortex of the naturally behaving common marmoset. Animals retrieved food pellets or climbed ladders as a miniature fluorescence microscope monitored hundreds of calcium indicator-expressing cortical neurons in the right primary motor cortex. This technique, which can be adapted to other brain regions, can deepen our understanding of brain circuits by facilitating longitudinal population analyses of neuronal representation associated with cognitive naturalistic behaviors and their pathophysiological processes.
Collapse
Affiliation(s)
- Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Saito
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Masaki Otaka
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Kimika Yoshino-Saito
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Mark J Schnitzer
- James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA, USA; CNC Program, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kenji F Tanaka
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Keio Institute of Pure and Applied Sciences (KiPAS), Kanagawa, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
23
|
Bretas RV, Matsumoto J, Nishimaru H, Takamura Y, Hori E, Ono T, Nishijo H. Neural Representation of Overlapping Path Segments and Reward Acquisitions in the Monkey Hippocampus. Front Syst Neurosci 2019; 13:48. [PMID: 31572133 PMCID: PMC6751269 DOI: 10.3389/fnsys.2019.00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Disambiguation of overlapping events is thought to be the hallmark of episodic memory. Recent rodent studies have reported that when navigating overlapping path segments in the different routes place cell activity in the same overlapping path segments were remapped according to different goal locations in different routes. However, it is unknown how hippocampal neurons disambiguate reward delivery in overlapping path segments in different routes. In the present study, we recorded monkey hippocampal neurons during performance of three virtual navigation (VN) tasks in which a monkey alternately navigated two different routes that included overlapping path segments (common central hallway) and acquired rewards in the same locations in overlapping path segments by manipulating a joystick. The results indicated that out of 106 hippocampal neurons, 57 displayed place-related activity (place-related neurons), and 18 neurons showed route-dependent activity in the overlapping path segments, consistent with a hippocampal role in the disambiguation of overlapping path segments. Moreover, 75 neurons showed neural correlates to reward delivery (reward-related neurons), whereas 56 of these 75 reward-related neurons showed route-dependent reward-related activity in the overlapping path segments. The ensemble activity of reward-related neurons represented reward delivery, locations, and routes in the overlapping path segments. In addition, ensemble activity patterns of hippocampal neurons more distinctly represented overlapping path segments than non-overlapping path segments. The present results provide neurophysiological evidence of disambiguation in the monkey hippocampus, consistent with a hippocampal role in episodic memory, and support a recent computational model of "neural differentiation," in which overlapping items are better represented by repeated retrieval with competitive learning.
Collapse
Affiliation(s)
- Rafael Vieira Bretas
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
- Symbolic Cognitive Development, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical University, University of Toyama, Toyama, Japan
| |
Collapse
|
24
|
Cameron CM, Murugan M, Choi JY, Engel EA, Witten IB. Increased Cocaine Motivation Is Associated with Degraded Spatial and Temporal Representations in IL-NAc Neurons. Neuron 2019; 103:80-91.e7. [PMID: 31101395 DOI: 10.1016/j.neuron.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 01/03/2023]
Abstract
Craving for cocaine progressively increases in cocaine users during drug-free periods, contributing to relapse. The projection from the infralimbic cortex to the nucleus accumbens shell (IL-NAc) is thought to inhibit cocaine seeking. However, it is not known whether and how IL-NAc neurons contribute to the increased motivation associated with a drug-free period. We first performed cellular resolution imaging of IL-NAc neurons in rats during a drug-seeking test. This revealed neurons with spatial selectivity within the cocaine-associated context, a decrease in activity around the time of cocaine seeking, and an inverse relationship between cocaine-seeking activity and subsequent cocaine motivation. All these properties were reduced by a drug-free period. Next, we transiently activated this projection, which resulted in reduced drug seeking, regardless of the drug-free period. Taken together, this suggests that altered IL-NAc activity after a drug-free period may enhance cocaine motivation without fundamentally altering the projection's ability to inhibit drug seeking.
Collapse
Affiliation(s)
- Courtney M Cameron
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Malavika Murugan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jung Yoon Choi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Zarrindast MR, Khakpai F. The modulatory role of nicotine on cognitive and non-cognitive functions. Brain Res 2019; 1710:92-101. [DOI: 10.1016/j.brainres.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
|
26
|
Siciliano CA, Tye KM. Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol 2019; 74:47-63. [PMID: 30470589 PMCID: PMC7575247 DOI: 10.1016/j.alcohol.2018.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 12/28/2022]
Abstract
Alcohol and drug use can dysregulate neural circuit function to produce a wide range of neuropsychiatric disorders, including addiction. To understand the neural circuit computations that mediate behavior, and how substances of abuse may transform them, we must first be able to observe the activity of circuits. While many techniques have been utilized to measure activity in specific brain regions, these regions are made up of heterogeneous sub-populations, and assessing activity from neuronal populations of interest has been an ongoing challenge. To fully understand how neural circuits mediate addiction-related behavior, we must be able to reveal the cellular granularity within brain regions and circuits by overlaying functional information with the genetic and anatomical identity of the cells involved. The development of genetically encoded calcium indicators, which can be targeted to populations of interest, allows for in vivo visualization of calcium dynamics, a proxy for neuronal activity, thus providing an avenue for real-time assessment of activity in genetically and anatomically defined populations during behavior. Here, we highlight recent advances in calcium imaging technology, compare the current technology with other state-of-the-art approaches for in vivo monitoring of neural activity, and discuss the strengths, limitations, and practical concerns for observing neural circuit activity in preclinical addiction models.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; The Salk Institute for Biological Sciences, 10010 N Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
27
|
Paniccia JE, Lebonville CL, Jones ME, Parekh SV, Fuchs RA, Lysle DT. Dorsal hippocampal neural immune signaling regulates heroin-conditioned immunomodulation but not heroin-conditioned place preference. Brain Behav Immun 2018; 73:698-707. [PMID: 30075289 PMCID: PMC6129413 DOI: 10.1016/j.bbi.2018.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/15/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022] Open
Abstract
Repeated pairings of heroin and a context results in Pavlovian associations which manifest as heroin-conditioned appetitive responses and peripheral immunomodulation upon re-exposure to heroin-paired conditioned stimuli (CS). The dorsal hippocampus (DH) plays a key role in the neurocircuitry governing these context-heroin associations. Within the DH, expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) is required for heroin-conditioned peripheral immunomodulation to occur. However, the role of signaling via IL-1 receptor type 1 (IL-1R1) has not been examined. Furthermore, it has not been evaluated whether the involvement of IL-1 in associative learning extends to classically conditioned appetitive behaviors, such as conditioned place preference (CPP). The first set of experiments investigated whether DH IL-1R1 signaling during CS re-exposure modulates heroin-conditioned immunomodulation and heroin-CPP. The second set of experiments employed chemogenetic techniques to examine whether DH astroglial signaling during CS re-exposure alters the same Pavlovian responses. This line of investigation is based on previous research indicating that astrocytes support hippocampal-dependent learning and memory through the expression of IL-1β protein and IL-1R1. Interestingly, IL-1R1 antagonism disrupted heroin-conditioned suppression of peripheral immune parameters but failed to alter heroin-CPP. Similarly, chemogenetic stimulation of Gi-signaling in DH astrocytes attenuated heroin-conditioned peripheral immunomodulation but failed to alter heroin-CPP. Collectively our data show that both IL-1R1 stimulation and astrocyte signaling in the DH are critically involved in the expression of heroin-conditioned immunomodulation but not heroin-CPP. As such these findings strongly suggest hippocampal neuroimmune signaling differentially regulates Pavlovian immunomodulatory and appetitive behaviors.
Collapse
Affiliation(s)
- Jacqueline E Paniccia
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Christina L Lebonville
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Meghan E Jones
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Shveta V Parekh
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA
| | - Rita A Fuchs
- Washington State University, College of Veterinary Medicine, Department of Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - Donald T Lysle
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Sheintuch L, Rubin A, Brande-Eilat N, Geva N, Sadeh N, Pinchasof O, Ziv Y. Tracking the Same Neurons across Multiple Days in Ca 2+ Imaging Data. Cell Rep 2018; 21:1102-1115. [PMID: 29069591 PMCID: PMC5670033 DOI: 10.1016/j.celrep.2017.10.013] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/14/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Ca2+ imaging techniques permit time-lapse recordings of neuronal activity from large populations over weeks. However, without identifying the same neurons across imaging sessions (cell registration), longitudinal analysis of the neural code is restricted to population-level statistics. Accurate cell registration becomes challenging with increased numbers of cells, sessions, and inter-session intervals. Current cell registration practices, whether manual or automatic, do not quantitatively evaluate registration accuracy, possibly leading to data misinterpretation. We developed a probabilistic method that automatically registers cells across multiple sessions and estimates the registration confidence for each registered cell. Using large-scale Ca2+ imaging data recorded over weeks from the hippocampus and cortex of freely behaving mice, we show that our method performs more accurate registration than previously used routines, yielding estimated error rates <5%, and that the registration is scalable for many sessions. Thus, our method allows reliable longitudinal analysis of the same neurons over long time periods. A method for tracking neurons across days (cell registration) in Ca2+ imaging data The method is probabilistic and quantitatively evaluates registration accuracy The method is applicable to various imaging techniques and cell detection algorithms Registration accuracy remains high with an increased number of registered sessions
Collapse
Affiliation(s)
- Liron Sheintuch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alon Rubin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Brande-Eilat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noa Sadeh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Or Pinchasof
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
29
|
Gomez AM, Bruchas MR. A Molecular Code for Imprinting Drug-Cue Associations. Neuron 2017; 96:3-5. [PMID: 28957674 DOI: 10.1016/j.neuron.2017.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies suggest that nuclear histone deacetylase HDAC5 has a dynamic relationship with drug-induced behavioral neuroadaptations. The new work by Taniguchi et al. (2017) suggests that targets of nuclear HDAC5 mediate the behavioral effects of rewarding drugs via regulation of cocaine-associated stimuli.
Collapse
Affiliation(s)
- Adrian M Gomez
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|