1
|
Jie H, Petrus E, Pothayee N, Koretsky AP. Reactivated thalamocortical plasticity alters neural activity in sensory-motor cortex during post-critical period. Prog Neurobiol 2025; 247:102735. [PMID: 40010627 PMCID: PMC11980438 DOI: 10.1016/j.pneurobio.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Neuroplasticity in sensory brain areas supports adaptation after nerve injury and fundamentally impacts sensation and movement. However, limited neuroplasticity in somatosensory areas due to the early critical period makes determining the role of thalamocortical (TC) inputs in sensorimotor signal processing challenging. Here, we demonstrated that reactivation of TC neuroplasticity was associated with an increase in the number of neurons in layer IV (L4) of the whisker primary somatosensory cortex (wS1) with a stable excitation-inhibition ratio. Highly synchronized neural activity in L4 propagated throughout the wS1 column and to the downstream areas, including whisker secondary somatosensory, primary motor cortices, and contralateral wS1. These results provide crucial evidence that TC inputs can alter the neural activity of sensory-motor pathways even after the critical period. Altogether, these enormous changes in sensorimotor circuit activity are important for adaptation following an injury such as limb loss, stroke, or other forms of neural injury.
Collapse
Affiliation(s)
- Hyesoo Jie
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Wright P, McCall E, Collier S, Johnson F, Iyer L, Koretsky AP, Petrus E. Behavioral adaptations after unilateral whisker denervation. Behav Brain Res 2025; 482:115435. [PMID: 39842643 DOI: 10.1016/j.bbr.2025.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
The rodent whisker system provides an excellent model to study experience dependent plasticity in neural morphology, circuitry, and behavior. Rodents use bilateral whisker sensation to gather information about their environment. Unilateral whisker denervation disrupts whisker circuitry but its impact on task specific behavior is largely unknown. Adult mice with unilateral whisker denervation display a preference to using the intact whisker set to inspect objects, but do not have altered open field navigation. An object localization task requiring only the intact whisker set did not detect any change in performance, but gap crossing was impaired after unilateral whisker denervation. Finally, chronic whisker denervation led to increased anxiety-like behavior which was rescued by training on the gap cross task. These findings indicate that mice use behavioral strategies to adapt to life with only one set of intact whiskers.
Collapse
Affiliation(s)
- Patrick Wright
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Program, Bethesda, MD, USA
| | - Eleanor McCall
- Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Sean Collier
- Neuroscience Program, Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Fred Johnson
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Laxmi Iyer
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alan P Koretsky
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Program, Bethesda, MD, USA
| | - Emily Petrus
- Neuroscience Program, Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
3
|
Murase S, Severin D, Dye L, Mesik L, Moreno C, Kirkwood A, Quinlan EM. Adult visual deprivation engages associative, presynaptic plasticity of thalamic input to cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626829. [PMID: 39677752 PMCID: PMC11643054 DOI: 10.1101/2024.12.04.626829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Associative plasticity at thalamocortical synapses is thought to be constrained by age in the mammalian cortex. However, here we show for the first time that prolonged visual deprivation induces robust and reversible plasticity at synapses between first order visual thalamus and cortical layer 4 pyramidal neurons. The plasticity is associative and expressed by changes in presynaptic function, thereby amplifying and relaying the change in efferent drive to the visual cortex.
Collapse
|
4
|
Iyer L, Johnson K, Collier S, Koretsky AP, Petrus E. Post-Critical Period Transcriptional and Physiological Adaptations of Thalamocortical Connections after Sensory Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624130. [PMID: 39876977 PMCID: PMC11774545 DOI: 10.1101/2024.11.19.624130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections. Elevated expression levels of Gria2 mRNA and functional GluA2 subunit of AMPA receptors at the TC synapse indicate the presence of stabilized and potentiated TC synapses to L4 excitatory neurons along the intact pathway after unilateral whisker denervation. These adaptations likely underlie the increased cortical activity observed in rodents during intact whisker sensation after unilateral whisker denervation. Our findings provide new insights into the mechanisms by which the adult brain supports recovery after unilateral sensory loss.
Collapse
|
5
|
Mesik L, Parkins S, Severin D, Grier BD, Ewall G, Kotha S, Wesselborg C, Moreno C, Jaoui Y, Felder A, Huang B, Johnson MB, Harrigan TP, Knight AE, Lani SW, Lemaire T, Kirkwood A, Hwang GM, Lee HK. Transcranial Low-Intensity Focused Ultrasound Stimulation of the Visual Thalamus Produces Long-Term Depression of Thalamocortical Synapses in the Adult Visual Cortex. J Neurosci 2024; 44:e0784232024. [PMID: 38316559 PMCID: PMC10941064 DOI: 10.1523/jneurosci.0784-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.
Collapse
Affiliation(s)
- Lukas Mesik
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Samuel Parkins
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Cell Molecular Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218
| | - Daniel Severin
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Bryce D Grier
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Gabrielle Ewall
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Sumasri Kotha
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Christian Wesselborg
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Cell Molecular Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218
| | - Cristian Moreno
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Yanis Jaoui
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Adrianna Felder
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Brian Huang
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marina B Johnson
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Timothy P Harrigan
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Anna E Knight
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Shane W Lani
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Théo Lemaire
- Neuroscience Institute, New York University Langone Health, New York, New York 10016
| | - Alfredo Kirkwood
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Grace M Hwang
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Hey-Kyoung Lee
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
6
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
7
|
Ma Y, Wan J, Hao S, Chen QY, Zhuo M. Recruitment of cortical silent responses by forskolin in the anterior cingulate cortex of adult mice. Mol Pain 2024; 20:17448069241258110. [PMID: 38744422 PMCID: PMC11119478 DOI: 10.1177/17448069241258110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.
Collapse
Affiliation(s)
- Yujie Ma
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Jinjin Wan
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Shun Hao
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
| | - Qi-Yu Chen
- Zhuomin Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Min Zhuo
- Oujiang Laboratory (Zhejiang Lab. for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, China
- Zhuomin Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Ji H, Kim KR, Park JJ, Lee JY, Sim Y, Choi H, Kim S. Combination Gene Delivery Reduces Spinal Cord Pathology in Rats With Peripheral Neuropathic Pain. THE JOURNAL OF PAIN 2023; 24:2211-2227. [PMID: 37442406 DOI: 10.1016/j.jpain.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Although peripheral neuropathic pain is caused by peripheral nerve injury, it is not simply a peripheral nervous system disease. It causes abnormalities in both the central and peripheral nervous systems. Pathological phenomena, such as hyperactivation of sensory neurons and inflammation, are observed in both the dorsal root ganglion and spinal cord. Pain signals originating from the periphery are transmitted to the brain via the SC, and the signals are modulated by pathologically changing SC conditions. Therefore, the modulation of SC pathology is important for peripheral NP treatment. We investigated the effects of KLS-2031 (recombinant adeno-associated viruses expressing glutamate decarboxylase 65, glial cell-derived neurotrophic factor, and interleukin-10) delivered to the dorsal root ganglion on aberrant neuronal excitability and neuroinflammation in the SC of rats with peripheral NP. Results showed that KLS-2031 administration restored excessive excitatory transmission and inhibitory signals in substantia gelatinosa neurons. Moreover, KLS-2031 restored the in vivo hypersensitivity of wide dynamic range neurons and mitigated neuroinflammation in the SC by regulating microglia and astrocytes. Collectively, these findings demonstrated that KLS-2031 efficiently suppressed pathological pain signals and inflammation in the SC of peripheral NP model, and is a potential novel therapeutic approach for NP in clinical settings. PERSPECTIVE: Our study demonstrated that KLS-2031, a combination gene therapy delivered by transforaminal epidural injection, not only mitigates neuroinflammation but also improves SC neurophysiological function, including excitatory-inhibitory balance. These findings support the potential of KLS-2031 as a novel modality that targets multiple aspects of the complex pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Hyelin Ji
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Kyung-Ran Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Jang-Joon Park
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Ju Youn Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Yeomoon Sim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Business Development, Handok Inc., Seoul, Republic of Korea
| | - Heonsik Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Healthcare Research Institute, Kolon Advanced Research Center, Kolon Industries, Seoul, Republic of Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| |
Collapse
|
9
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
10
|
McGregor HR, Lee JK, Mulder ER, De Dios YE, Beltran NE, Wood SJ, Bloomberg JJ, Mulavara AP, Seidler RD. Artificial gravity during a spaceflight analog alters brain sensory connectivity. Neuroimage 2023; 278:120261. [PMID: 37422277 DOI: 10.1016/j.neuroimage.2023.120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/06/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Spaceflight has numerous untoward effects on human physiology. Various countermeasures are under investigation including artificial gravity (AG). Here, we investigated whether AG alters resting-state brain functional connectivity changes during head-down tilt bed rest (HDBR), a spaceflight analog. Participants underwent 60 days of HDBR. Two groups received daily AG administered either continuously (cAG) or intermittently (iAG). A control group received no AG. We assessed resting-state functional connectivity before, during, and after HDBR. We also measured balance and mobility changes from pre- to post-HDBR. We examined how functional connectivity changes throughout HDBR and whether AG is associated with differential effects. We found differential connectivity changes by group between posterior parietal cortex and multiple somatosensory regions. The control group exhibited increased functional connectivity between these regions throughout HDBR whereas the cAG group showed decreased functional connectivity. This finding suggests that AG alters somatosensory reweighting during HDBR. We also observed brain-behavioral correlations that differed significantly by group. Control group participants who showed increased connectivity between the putamen and somatosensory cortex exhibited greater mobility declines post-HDBR. For the cAG group, increased connectivity between these regions was associated with little to no mobility declines post-HDBR. This suggests that when somatosensory stimulation is provided via AG, functional connectivity increases between the putamen and somatosensory cortex are compensatory in nature, resulting in reduced mobility declines. Given these findings, AG may be an effective countermeasure for the reduced somatosensory stimulation that occurs in both microgravity and HDBR.
Collapse
Affiliation(s)
- Heather R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jessica K Lee
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States; Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Edwin R Mulder
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | | | | | - Scott J Wood
- NASA Johnson Space Center, Houston, TX, United States
| | | | | | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
11
|
Sabourin CJ, Merrikhi Y, Lomber SG. Do blind people hear better? Trends Cogn Sci 2022; 26:999-1012. [PMID: 36207258 DOI: 10.1016/j.tics.2022.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
For centuries, anecdotal evidence such as the perfect pitch of the blind piano tuner or blind musician has supported the notion that individuals who have lost their sight early in life have superior hearing abilities compared with sighted people. Recently, auditory psychophysical and functional imaging studies have identified that specific auditory enhancements in the early blind can be linked to activation in extrastriate visual cortex, suggesting crossmodal plasticity. Furthermore, the nature of the sensory reorganization in occipital cortex supports the concept of a task-based functional cartography for the cerebral cortex rather than a sensory-based organization. In total, studies of early-blind individuals provide valuable insights into mechanisms of cortical plasticity and principles of cerebral organization.
Collapse
Affiliation(s)
- Carina J Sabourin
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Biological and Biomedical Engineering Graduate Program, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Yaser Merrikhi
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephen G Lomber
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Biological and Biomedical Engineering Graduate Program, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Psychology, McGill University, Montreal, Quebec H3G 1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
12
|
Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022; 14:833782. [PMID: 35387308 PMCID: PMC8979068 DOI: 10.3389/fnsyn.2022.833782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotransmission is critically dependent on the number, position, and composition of receptor proteins on the postsynaptic neuron. Of these, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are responsible for the majority of postsynaptic depolarization at excitatory mammalian synapses following glutamate release. AMPARs are continually trafficked to and from the cell surface, and once at the surface, AMPARs laterally diffuse in and out of synaptic domains. Moreover, the subcellular distribution of AMPARs is shaped by patterns of activity, as classically demonstrated by the synaptic insertion or removal of AMPARs following the induction of long-term potentiation (LTP) and long-term depression (LTD), respectively. Crucially, there are many subtleties in the regulation of AMPARs, and exactly how local and global synaptic activity drives the trafficking and retention of synaptic AMPARs of different subtypes continues to attract attention. Here we will review how activity can have differential effects on AMPAR distribution and trafficking along with its subunit composition and phosphorylation state, and we highlight some of the controversies and remaining questions. As the AMPAR field is extensive, to say the least, this review will focus primarily on cellular and molecular studies in the hippocampus. We apologise to authors whose work could not be cited directly owing to space limitations.
Collapse
|
13
|
Bagnato S. The role of plasticity in the recovery of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:375-395. [PMID: 35034750 DOI: 10.1016/b978-0-12-819410-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disorders of consciousness (DOCs), i.e., coma, vegetative state, and minimally conscious state are the consequences of a severe brain injury that disrupts the brain ability to generate consciousness. Recovery from DOCs requires functional and structural changes in the brain. The sites where these plastic changes take place vary according to the pathophysiology of the DOC. The ascending reticular activating system of the brainstem and its complex connections with the thalamus and cortex are involved in the pathophysiology of coma. Subcortical structures, such as the striatum and globus pallidus, together with thalamocortical and corticothalamic projections, the basal forebrain, and several networks among different cortical areas are probably involved in vegetative and minimally conscious states. Some mechanisms of plasticity that allegedly operate in each of these sites to promote recovery of consciousness will be discussed in this chapter. While some mechanisms of plasticity work at a local level, others produce functional changes in complex neuronal networks, for example by entraining neuronal oscillations. The specific mechanisms of brain plasticity represent potential targets for future treatments aiming to restore consciousness in patients with severe DOCs.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù (PA), Italy.
| |
Collapse
|
14
|
Silent Synapses in Cocaine-Associated Memory and Beyond. J Neurosci 2021; 41:9275-9285. [PMID: 34759051 DOI: 10.1523/jneurosci.1559-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic synapses are key cellular sites where cocaine experience creates memory traces that subsequently promote cocaine craving and seeking. In addition to making across-the-board synaptic adaptations, cocaine experience also generates a discrete population of new synapses that selectively encode cocaine memories. These new synapses are glutamatergic synapses that lack functionally stable AMPARs, often referred to as AMPAR-silent synapses or, simply, silent synapses. They are generated de novo in the NAc by cocaine experience. After drug withdrawal, some of these synapses mature by recruiting AMPARs, contributing to the consolidation of cocaine-associated memory. After cue-induced retrieval of cocaine memories, matured silent synapses alternate between two dynamic states (AMPAR-absent vs AMPAR-containing) that correspond with the behavioral manifestations of destabilization and reconsolidation of these memories. Here, we review the molecular mechanisms underlying silent synapse dynamics during behavior, discuss their contributions to circuit remodeling, and analyze their role in cocaine-memory-driven behaviors. We also propose several mechanisms through which silent synapses can form neuronal ensembles as well as cross-region circuit engrams for cocaine-specific behaviors. These perspectives lead to our hypothesis that cocaine-generated silent synapses stand as a distinct set of synaptic substrates encoding key aspects of cocaine memory that drive cocaine relapse.
Collapse
|
15
|
Learning-induced plasticity in the barrel cortex is disrupted by inhibition of layer 4 somatostatin-containing interneurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119146. [PMID: 34599984 DOI: 10.1016/j.bbamcr.2021.119146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
Gaba-ergic neurons are a diverse cell class with extensive influence over cortical processing, but their role in experience-dependent plasticity is not completely understood. Here we addressed the role of cortical somatostatin- (SOM-INs) and vasoactive intestinal polypeptide- (VIP-INs) containing interneurons in a Pavlovian conditioning where stimulation of the vibrissae is used as a conditioned stimulus and tail shock as unconditioned one. This procedure induces a plastic change observed as an enlargement of the cortical functional representation of vibrissae activated during conditioning. Using layer-targeted, cell-selective DREADD transductions, we examined the involvement of SOM-INs and VIP-INs activity in learning-related plastic changes. Under optical recordings, we injected DREADD-expressing vectors into layer IV (L4) barrels or layer II/III (L2/3) areas corresponding to the activated vibrissae. The activity of the interneurons was modulated during all conditioning sessions, and functional 2-deoxyglucose (2DG) maps were obtained 24 h after the last session. In mice with L4 but not L2/3 SOM-INs suppressed during conditioning, the plastic change of whisker representation was absent. The behavioral effect of conditioning was disturbed. Both L4 SOM-INs excitation and L2/3 VIP-INs inhibition during conditioning did not affect the plasticity or the conditioned response. We found the activity of L4 SOM-INs is indispensable in the formation of learning-induced plastic change. We propose that L4 SOM-INs may provide disinhibition by blocking L4 parvalbumin interneurons, allowing a flow of information into upper cortical layers during learning.
Collapse
|
16
|
Ahn SY, Jie H, Jung WB, Jeong JH, Ko S, Im GH, Park WS, Lee JH, Chang YS, Chung S. Stem cell restores thalamocortical plasticity to rescue cognitive deficit in neonatal intraventricular hemorrhage. Exp Neurol 2021; 342:113736. [PMID: 33945790 DOI: 10.1016/j.expneurol.2021.113736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Severe neonatal intraventricular hemorrhage (IVH) patients incur long-term neurologic deficits such as cognitive disabilities. Recently, the intraventricular transplantation of allogeneic human umbilical cord blood-derived mesenchymal stem cells (MSCs) has drawn attention as a therapeutic potential to treat severe IVH. However, its pathological synaptic mechanism is still elusive. We here demonstrated that the integration of the somatosensory input was significantly distorted by suppressing feed-forward inhibition (FFI) at the thalamocortical (TC) inputs in the barrel cortices of neonatal rats with IVH by using BOLD-fMRI signal and brain slice patch-clamp technique. This is induced by the suppression of Hebbian plasticity via an increase in tumor necrosis factor-α expression during the critical period, which can be effectively reversed by the transplantation of MSCs. Furthermore, we showed that MSC transplantation successfully rescued IVH-induced learning deficits in the sensory-guided decision-making in correlation with TC FFI in the layer 4 barrel cortex.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hyesoo Jie
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won-Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 86364, Republic of Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Hyun Jeong
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sukjin Ko
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 86364, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jung Hee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 86364, Republic of Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
17
|
Ko S, Jang WS, Jeong JH, Ahn JW, Kim YH, Kim S, Chae HK, Chung S. (-)-Gallocatechin gallate from green tea rescues cognitive impairment through restoring hippocampal silent synapses in post-menopausal depression. Sci Rep 2021; 11:910. [PMID: 33441611 PMCID: PMC7806886 DOI: 10.1038/s41598-020-79287-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Post-menopausal depression (PMD) is a common psychological disorder accompanied by a cognitive deficit, which is caused by a series of uncontrolled emotional disruptions by strong environmental stressors during menopause. To overcome PMD-induced cognitive deficit, Green tea has been suggested as a dietary supplement because of its ameliorating effect on cognitive dysfunction induced by normal aging or neurodegenerative syndromes; however, its clinical use to improve PMD-accompanied cognitive deficit is still limited due to the controversy for the active ingredients and ambiguous mechanism of its action. Here, we developed modified high-temperature-processed green tea extract (HTP-GTE), which showed lower neuronal toxicity than the conventional green tea extract (GTE). We also demonstrated that HTP-GTE administration prevented the development of learned helplessness (LH) in a rat post-menopausal model. Additionally, HTP-GTE improved LH-induced cognitive impairments simultaneously with rescued the long-term synaptic plasticity. This occurred via the restoration of silent synapse formation by increasing the hippocampal BDNF-tyrosine receptor kinase B pathway in the helpless ovariectomized (OVX) rats. Likewise, we also identified that (-)-gallocatechin gallate was the main contributor of the HTP-GTE effect. Our findings suggested that HTP-GTE has a potential as a preventive nutritional supplement to ameliorate cognitive dysfunctions associated with PMD.
Collapse
Affiliation(s)
- Sukjin Ko
- grid.15444.300000 0004 0470 5454Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Won Seuk Jang
- grid.15444.300000 0004 0470 5454Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Ji-Hyun Jeong
- grid.15444.300000 0004 0470 5454Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Ji Woong Ahn
- grid.15444.300000 0004 0470 5454Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Young-Hwan Kim
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do 10594 Republic of Korea
| | - Sohyun Kim
- grid.15444.300000 0004 0470 5454Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Hyeon Kyeong Chae
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do 10594 Republic of Korea
| | - Seungsoo Chung
- grid.15444.300000 0004 0470 5454Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| |
Collapse
|
18
|
Gil R, Fernandes FF, Shemesh N. Neuroplasticity-driven timing modulations revealed by ultrafast functional magnetic resonance imaging. Neuroimage 2020; 225:117446. [PMID: 33069861 DOI: 10.1016/j.neuroimage.2020.117446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Detecting neuroplasticity in global brain circuits in vivo is key for understanding myriad processes such as memory, learning, and recovery from injury. Functional Magnetic Resonance Imaging (fMRI) is instrumental for such in vivo mappings, yet it typically relies on mapping changes in spatial extent of activation or via signal amplitude modulations, whose interpretation can be highly ambiguous. Importantly, a central aspect of neuroplasticity involves modulation of neural activity timing properties. We thus hypothesized that this temporal dimension could serve as a new marker for neuroplasticity. To detect fMRI signals more associated with the underlying neural dynamics, we developed an ultrafast fMRI (ufMRI) approach facilitating high spatiotemporal sensitivity and resolution in distributed neural pathways. When neuroplasticity was induced in the mouse visual pathway via dark rearing, ufMRI indeed mapped temporal modulations in the entire visual pathway. Our findings therefore suggest a new dimension for exploring neuroplasticity in vivo.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
19
|
Petrus E, Dembling S, Usdin T, Isaac JTR, Koretsky AP. Circuit-Specific Plasticity of Callosal Inputs Underlies Cortical Takeover. J Neurosci 2020; 40:7714-7723. [PMID: 32913109 PMCID: PMC7531555 DOI: 10.1523/jneurosci.1056-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.
Collapse
Affiliation(s)
- Emily Petrus
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah Dembling
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, Maryland 20892
| | - John T R Isaac
- Janssen Neuroscience, J&J Innovations, London W1G 0BG, United Kingdom
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Rodríguez G, Chakraborty D, Schrode KM, Saha R, Uribe I, Lauer AM, Lee HK. Cross-Modal Reinstatement of Thalamocortical Plasticity Accelerates Ocular Dominance Plasticity in Adult Mice. Cell Rep 2019; 24:3433-3440.e4. [PMID: 30257205 PMCID: PMC6233297 DOI: 10.1016/j.celrep.2018.08.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Plasticity of thalamocortical (TC) synapses is robust during early
development and becomes limited in the adult brain. We previously reported that
a short duration of deafening strengthens TC synapses in the primary visual
cortex (V1) of adult mice. Here, we demonstrate that deafening restores NMDA
receptor (NMDAR)-dependent long-term potentiation (LTP) of TC synapses onto
principal neurons in V1 layer 4 (L4), which is accompanied by an increase in
NMDAR function. In contrast, deafening did not recover long-term depression
(LTD) at TC synapses. Potentiation of TC synapses by deafening is absent in
parvalbumin-positive (PV+) interneurons, resulting in an increase in feedforward
excitation to inhibition (E/I) ratio. Furthermore, we found that a brief
duration of deafening adult mice recovers rapid ocular dominance plasticity
(ODP) mainly by accelerating potentiation of the open-eye responses. Our results
suggest that cross-modal sensory deprivation promotes adult cortical plasticity
by specifically recovering TC-LTP and increasing the E/I ratio. Plasticity of thalamocortical (TC) synapses is limited in adults.
Rodríguez et al. demonstrate that a brief period of deafening adults
recovers LTP at TC synapses in visual cortex and accelerates ocular dominance
plasticity. These results suggest that cross-modal sensory deprivation may be an
effective way to promote adult cortical plasticity.
Collapse
Affiliation(s)
- Gabriela Rodríguez
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA; Cellular Molecular Developmental Biology and Biophysics Program, Johns Hopkins University, Mudd Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Darpan Chakraborty
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, 720 Rutland Ave., Traylor Building, Baltimore, MD 21205, USA
| | - Rinki Saha
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA
| | - Isabel Uribe
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins School of Medicine, 720 Rutland Ave., Traylor Building, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Mind/Brain Institute, Department of Neuroscience, Johns Hopkins University, 3400 N. Charles Street, Dunning Hall, Baltimore, MD 21218, USA; Cellular Molecular Developmental Biology and Biophysics Program, Johns Hopkins University, Mudd Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
21
|
Lee HK, Kirkwood A. Mechanisms of Homeostatic Synaptic Plasticity in vivo. Front Cell Neurosci 2019; 13:520. [PMID: 31849610 PMCID: PMC6901705 DOI: 10.3389/fncel.2019.00520] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
Synapses undergo rapid activity-dependent plasticity to store information, which when left uncompensated can lead to destabilization of neural function. It has been well documented that homeostatic changes, which operate at a slower time scale, are required to maintain stability of neural networks. While there are many mechanisms that can endow homeostatic control, sliding threshold and synaptic scaling are unique in that they operate by providing homeostatic control of synaptic strength. The former mechanism operates by adjusting the threshold for synaptic plasticity, while the latter mechanism directly alters the gain of synapses. Both modes of homeostatic synaptic plasticity have been studied across various preparations from reduced in vitro systems, such as neuronal cultures, to in vivo intact circuitry. While most of the cellular and molecular mechanisms of homeostatic synaptic plasticity have been worked out using reduced preparations, there are unique challenges present in intact circuitry in vivo, which deserve further consideration. For example, in an intact circuit, neurons receive distinct set of inputs across their dendritic tree which carry unique information. Homeostatic synaptic plasticity in vivo needs to operate without compromising processing of these distinct set of inputs to preserve information processing while maintaining network stability. In this mini review, we will summarize unique features of in vivo homeostatic synaptic plasticity, and discuss how sliding threshold and synaptic scaling may act across different activity regimes to provide homeostasis.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Alfredo Kirkwood
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Thomas ME, Guercio GD, Drudik KM, de Villers-Sidani É. Evidence of Hyperacusis in Adult Rats Following Non-traumatic Sound Exposure. Front Syst Neurosci 2019; 13:55. [PMID: 31708754 PMCID: PMC6819503 DOI: 10.3389/fnsys.2019.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Manipulations that enhance neuroplasticity may inadvertently create opportunities for maladaptation. We have previously used passive exposures to non-traumatic white noise to open windows of plasticity in the adult rat auditory cortex and induce frequency-specific functional reorganizations of the tonotopic map. However, similar reorganizations in the central auditory pathway are thought to contribute to the generation of hearing disorders such as tinnitus and hyperacusis. Here, we investigate whether noise-induced reorganizations are accompanied by electrophysiological or behavioral evidence of tinnitus or hyperacusis in adult Long-Evans rats. We used a 2-week passive exposure to moderate-intensity (70 dB SPL) broadband white noise to reopen a critical period for spectral tuning such that a second 1-week exposure to 7 kHz tone pips produced an expansion of the 7 kHz frequency region in the primary auditory cortex (A1). We demonstrate for the first time that this expansion also takes place in the ventral auditory field (VAF). Sound exposure also led to spontaneous and sound-evoked hyperactivity in the anterior auditory field (AAF). Rats were assessed for behavioral evidence of tinnitus or hyperacusis using gap and tone prepulse inhibition of the acoustic startle response. We found that sound exposure did not affect gap-prepulse inhibition. However, sound exposure led to an improvement in prepulse inhibition when the prepulse was a 7 kHz tone, showing that exposed rats had enhanced sensorimotor gating for the exposure frequency. Together, our electrophysiological and behavioral results provide evidence of hyperacusis but not tinnitus in sound-exposed animals. Our findings demonstrate that periods of prolonged noise exposure may open windows of plasticity that can also be understood as windows of vulnerability, potentially increasing the likelihood for maladaptive plasticity to take place.
Collapse
Affiliation(s)
- Maryse E Thomas
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| | - Gerson D Guercio
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, United States.,Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Kristina M Drudik
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Étienne de Villers-Sidani
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, Montreal, QC, Canada
| |
Collapse
|
23
|
Ito W, Morozov A. Prefrontal-amygdala plasticity enabled by observational fear. Neuropsychopharmacology 2019; 44:1778-1787. [PMID: 30759453 PMCID: PMC6785088 DOI: 10.1038/s41386-019-0342-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/07/2019] [Accepted: 02/06/2019] [Indexed: 01/10/2023]
Abstract
Observing fear in others (OF) is a form of social stress. In mice, it enhances inhibitory avoidance learning and causes the formation of silent synapses in the prefrontal-amygdala pathway. Here, we report that OF made that pathway prone to facilitation both ex vivo and in vivo. Ex vivo, OF enabled induction of long-term potentiation (LTP), expressed mostly postsynaptically and occluded by inhibitory avoidance training. In vivo, OF enabled facilitation of the dmPFC-BLA pathway by inhibitory avoidance training. The facilitation persisted during the first 4 h after the training when the prefrontal cortex and amygdala are involved in memory consolidation. Thus, the OF-generated silent synapses likely enable plasticity that may enhance the consolidation of inhibitory avoidance memories.
Collapse
Affiliation(s)
- Wataru Ito
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.
| | - Alexei Morozov
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA. .,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA. .,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.
| |
Collapse
|
24
|
Pizzo R, Lamarca A, Sassoè-Pognetto M, Giustetto M. Structural Bases of Atypical Whisker Responses in a Mouse Model of CDKL5 Deficiency Disorder. Neuroscience 2019; 445:130-143. [PMID: 31472213 DOI: 10.1016/j.neuroscience.2019.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Mutations in the CDKL5 (cyclin-dependent kinase-like 5) gene cause CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental syndrome where patients exhibit early-onset seizures, intellectual disability, stereotypies, limited or absent speech, autism-like symptoms and sensory impairments. Mounting evidences indicate that disrupted sensory perception and processing represent core signs also in mouse models of CDD; however we have very limited knowledge on their underlying causes. In this study, we investigated how CDKL5 deficiency affects synaptic organization and experience-dependent plasticity in the thalamo-cortical (TC) pathway carrying whisker-related tactile information to the barrel cortex (BC). By using synapse-specific antibodies and confocal microscopy, we found that Cdkl5-KO mice display a lower density of TC synapses in the BC that was paralleled by a reduction of cortico-cortical (CC) connections compared to wild-type mice. These synaptic defects were accompanied by reduced BC activation, as shown by a robust decrease of c-fos immunostaining, and atypical behavioral responses to whisker-mediated tactile stimulation. Notably, a 2-day paradigm of enriched whisker stimulation rescued both number and configuration of excitatory synapses in Cdkl5-KO mice, restored cortical activity and normalized behavioral responses to wild-type mice levels. Our findings disclose a novel and unsuspected role of CDKL5 in controlling the organization and experience-induced modifications of excitatory connections in the BC and indicate how mutations of CDKL5 produce failures in higher-order processing of somatosensory stimuli. This article is part of a Special Issue entitled: Animal Models of Neurodevelopmental Disorders.
Collapse
Affiliation(s)
- R Pizzo
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy
| | - A Lamarca
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy
| | - M Sassoè-Pognetto
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy; National Institute of Neuroscience-Italy, Corso Massimo D'Azeglio 52, 10126 Turin, Italy
| | - M Giustetto
- Department of Neuroscience, University of Turin, Corso Massimo D'Azeglio 52, 10126 Turin, Italy; National Institute of Neuroscience-Italy, Corso Massimo D'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
25
|
Strauch C, Manahan-Vaughan D. In the Piriform Cortex, the Primary Impetus for Information Encoding through Synaptic Plasticity Is Provided by Descending Rather than Ascending Olfactory Inputs. Cereb Cortex 2019; 28:764-776. [PMID: 29186359 DOI: 10.1093/cercor/bhx315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 12/27/2022] Open
Abstract
Information encoding by means of persistent changes in synaptic strength supports long-term information storage and memory in structures such as the hippocampus. In the piriform cortex (PC), that engages in the processing of associative memory, only short-term synaptic plasticity has been described to date, both in vitro and in anesthetized rodents in vivo. Whether the PC maintains changes in synaptic strength for longer periods of time is unknown: Such a property would indicate that it can serve as a repository for long-term memories. Here, we report that in freely behaving animals, frequency-dependent synaptic plasticity does not occur in the anterior PC (aPC) following patterned stimulation of the olfactory bulb (OB). Naris closure changed action potential properties of aPC neurons and enabled expression of long-term potentiation (LTP) by OB stimulation, indicating that an intrinsic ability to express synaptic plasticity is present. Odor discrimination and categorization in the aPC is supported by descending inputs from the orbitofrontal cortex (OFC). Here, OFC stimulation resulted in LTP (>4 h), suggesting that this structure plays an important role in promoting information encoding through synaptic plasticity in the aPC. These persistent changes in synaptic strength are likely to comprise a means through which long-term memories are encoded and/or retained in the PC.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
26
|
Vasalauskaite A, Morgan JE, Sengpiel F. Plasticity in Adult Mouse Visual Cortex Following Optic Nerve Injury. Cereb Cortex 2019; 29:1767-1777. [PMID: 30668659 PMCID: PMC6418869 DOI: 10.1093/cercor/bhy347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022] Open
Abstract
Optic nerve (ON) injury is an established model of axonal injury which results in retrograde degeneration and death of retinal ganglion cells as well anterograde loss of transmission and Wallerian degeneration of the injured axons. While the local impact of ON crush has been extensively documented we know comparatively little about the functional changes that occur in higher visual structures such as primary visual cortex (V1). We explored the extent of adult cortical plasticity using ON crush in aged mice. V1 function of the contralateral hemisphere was assessed longitudinally by intrinsic signal imaging and 2-photon calcium imaging before and after ON crush. Functional imaging demonstrated an immediate shift in V1 ocular dominance towards the ipsilateral, intact eye, due to the expected almost complete loss of responses to contralateral eye stimulation. Surprisingly, within 2 weeks we observed a delayed increase in ipsilateral eye responses. Additionally, spontaneous activity in V1 was reduced, similar to the lesion projection zone after retinal lesions. The observed changes in V1 activity indicate that severe ON injury in adulthood evokes cortical plasticity not only cross-modally but also within the visual cortex; this plasticity may be best compared with that seen after retinal lesions.
Collapse
Affiliation(s)
| | - James E Morgan
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
- Neuroscience & Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
27
|
Chae SY, Jang JH, Im GH, Jeong JH, Jung WB, Ko S, Jie H, Kim JH, Chang YS, Chung S, Kim KS, Lee JH. Physical exercise enhances adult cortical plasticity in a neonatal rat model of hypoxic-ischemic injury: Evidence from BOLD-fMRI and electrophysiological recordings. Neuroimage 2018; 188:335-346. [PMID: 30553043 DOI: 10.1016/j.neuroimage.2018.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023] Open
Abstract
Neuroplasticity is considered essential for recovery from brain injury in developing brains. Recent studies indicate that it is especially effective during early postnatal development and during the critical period. The current study used functional magnetic resonance imaging (fMRI) and local field potential (LFP) electrophysiological recordings in rats that experienced neonatal hypoxic-ischemic (HI) injury during the critical period to demonstrate that physical exercise (PE) can improve cortical plasticity even when performed during adulthood, after the critical period. We investigated to what extent the blood oxygen level-dependent (BOLD)-fMRI responses were increased in the contralesional spared cortex, and how these increases were related to the LFP electrophysiological measurements and the functional outcome. The balance of excitation and inhibition was assessed by measuring excitatory and inhibitory postsynaptic currents in stellate cells in the primary somatosensory (S1) cortex, which was compared with the BOLD-fMRI responses in the contralesional S1 cortex. The ratio of inhibitory postsynaptic current (IPSC) to excitatory postsynaptic current (EPSC) at the thalamocortical (TC) input to the spared S1 cortex was significantly increased by PE, which is consistent with the increased BOLD-fMRI responses and improved functional outcome. Our data clearly demonstrate in an experimental rat model of HI injury during the critical period that PE in adulthood enhances neuroplasticity and suggest that enhanced feed-forward inhibition at the TC input to the S1 cortex might underlie the PE-induced amelioration of the somatosensory deficits caused by the HI injury. In summary, the results of the current study indicate that PE, even if performed beyond the critical period or during adulthood, can be an effective therapy to treat neonatal brain injuries, providing a potential mechanism for the development of a potent rehabilitation strategy to alleviate HI-induced neurological impairments.
Collapse
Affiliation(s)
- Sun Young Chae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
| | - Jun Ho Jang
- BnH Research Co., Ltd., Goyang-si, Gyeonggi-do, 10594, South Korea
| | - Geun Ho Im
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Animal Research and Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Ji-Hyun Jeong
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Won-Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sukjin Ko
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyesoo Jie
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ji Hye Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Department of Pediatrics Division of Neonatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Seungsoo Chung
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Ki-Soo Kim
- Department of Pediatrics Division of Neonatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05535, South Korea.
| | - Jung Hee Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Animal Research and Molecular Imaging, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, South Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
28
|
Fernández-Montoya J, Avendaño C, Negredo P. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity. Int J Mol Sci 2017; 19:ijms19010069. [PMID: 29280965 PMCID: PMC5796019 DOI: 10.3390/ijms19010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023] Open
Abstract
Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| |
Collapse
|