1
|
Song S, Kang M, Lee J, Yang YR, Lee H, Kim JI, Kim B, Choi HS, Hong EB, Nam MH, Suh PG, Kim J. Role of phospholipase Cη1 in lateral habenula astrocytes in depressive-like behavior in mice. Exp Mol Med 2025; 57:872-887. [PMID: 40204881 PMCID: PMC12046024 DOI: 10.1038/s12276-025-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025] Open
Abstract
Phospholipase C (PLC) enzymes play crucial roles in intracellular calcium-signaling transduction. Several brain PLC subtypes have been extensively studied, implicating them in psychiatric disorders such as depression, epilepsy and schizophrenia. However, the role of the recently identified PLCη remains largely unknown. We found that PLCη1 is prominently expressed in lateral habenula (LHb) astrocytes. Here, to investigate its physiological role, we generated astrocyte-specific PLCη1 conditional knockout (cKO) mice (Plch1f/f; Aldh1l1-CreERT2). In these cKO mice, we observed a reduction in cellular morphological complexity metrics, such as total process length, as well as a decrease in the passive membrane conductance of LHb astrocytes. Additionally, neuronal function was impacted by the cKO, as the synaptic efficacy and firing rates of LHb neurons increased, while extrasynaptic long-term depression was impaired. Both tonic α-amino-3-hydroxy-5-methyl-4-isoxazolepdlropionic acid receptor/N-methyl-D-aspartate receptor (AMPAR/NMDAR) currents and extracellular glutamate levels were reduced. Interestingly, chemogenetic activation of astrocytes restored the reduced tonic AMPAR/NMDAR currents in cKO mice. Furthermore, LHb astrocyte-specific deletion of PLCη1 via AAV-GFAP-Cre injection induced depressive-like behaviors in mice, which were reversed by chemogenetic activation of LHb astrocytes. Finally, we found that restraint stress exposure decreased Plch1 mRNA expression in the LHb. These findings suggest that PLCη1 could be a potential therapeutic target for depression and highlight the critical role of astrocytes in the etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sukwoon Song
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Miseon Kang
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jiyoung Lee
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ho Lee
- Cancer Experimental Resources Branch, National Cancer Center, Goyang, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Beomsue Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun-Bin Hong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Cai YT, Chen DN, Li KX, Dong JJ, Li C, Liu YK, Liu Y. Quercetin inhibited chronic unpredictable mild stress-induced mouse depressive behaviors through attenuating lateral Habenula neuronal activities. Metab Brain Dis 2025; 40:149. [PMID: 40085279 DOI: 10.1007/s11011-025-01569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
As a flavonoid, quercetin has shown anti-tumor, anti-inflammation, and anti-depressant effects. However, the exact anti-depressant mechanism of quercetin remains unclear. In this study, a combination of behavioral tests and neuropharmacological methods were used to investigate whether the endocannabinoid (eCB) system in the lateral habenula (LHb) mediated the anti-depressant pathogenesis of quercetin. Depressive model was prepared by chronic unpredictable mild stress (CUMS) in C57 mice. The CUMS exposure led to depressive-like behaviors and an increase of the miniature excitatory postsynaptic current (mEPSC) frequency in the LHb neurons, which were blocked by quercetin intragastrically administered for 14 days. As quercetin has been shown to upregulate the mRNA expression of cannabinoid receptor 1 (CB1) in cultured tumor cells, and the inhibitory effect of eCB system activation is related to glutamatergic neurons, depolarization-induced suppression of excitation (sDSE) was detected. The results showed that presynaptic inhibitory effect of eCB system was significantly down-regulated in the LHb of CUMS model, and the down-regulation was abolished by quercetin. Blocking eCB system in the LHb with CB1 antagonist AM251 rescued the neuroprotective effects of quercetin in CUMS mice. Taken together, the results suggested that eCB system in the LHb was involved in the anti-depressant effects of quercetin.
Collapse
MESH Headings
- Animals
- Quercetin/pharmacology
- Quercetin/therapeutic use
- Habenula/drug effects
- Habenula/metabolism
- Mice
- Stress, Psychological/drug therapy
- Stress, Psychological/psychology
- Stress, Psychological/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Male
- Mice, Inbred C57BL
- Depression/drug therapy
- Depression/psychology
- Depression/etiology
- Depression/metabolism
- Excitatory Postsynaptic Potentials/drug effects
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Behavior, Animal/drug effects
- Disease Models, Animal
Collapse
Affiliation(s)
- Yu-Ting Cai
- School of Biological Sciences, Xuzhou Medical University, Xuzhou, 221004, P.R. China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Dong-Ni Chen
- School of Biological Sciences, Xuzhou Medical University, Xuzhou, 221004, P.R. China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Ke-Xin Li
- School of Biological Sciences, Xuzhou Medical University, Xuzhou, 221004, P.R. China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Jia-Jia Dong
- School of Biological Sciences, Xuzhou Medical University, Xuzhou, 221004, P.R. China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Chong Li
- School of Biological Sciences, Xuzhou Medical University, Xuzhou, 221004, P.R. China
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
- Research Center for Psychological Crisis Prevention and Intervention of College Students (CPCPI), Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Ying-Kui Liu
- School of Biological Sciences, Xuzhou Medical University, Xuzhou, 221004, P.R. China.
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, P.R. China.
| | - Yong Liu
- School of Biological Sciences, Xuzhou Medical University, Xuzhou, 221004, P.R. China.
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry & Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, P.R. China.
- Research Center for Psychological Crisis Prevention and Intervention of College Students (CPCPI), Xuzhou Medical University, Xuzhou, 221004, P.R. China.
| |
Collapse
|
3
|
Park H, Ryu H, Zhang S, Kim S, Chung C. Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats. Neuropsychopharmacology 2025; 50:540-547. [PMID: 39528624 PMCID: PMC11735983 DOI: 10.1038/s41386-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Emerging evidence suggests that the enhanced activity of lateral habenula (LHb) is involved in depressive disorders. This abnormal potentiation of LHb neurons was shown to originate from presynaptic alterations; however, the mechanisms underlying this presynaptic enhancement and physiological consequences are yet to be elucidated. Previously, we reported that presynaptic transmission in the LHb is temporally rhythmic, showing greater activity in the afternoon than in the morning. Here, we used a learned helpless rodent model of depression to show that exposure to a stressor or incubation with the stress hormone, corticosterone, abolished the presynaptic temporal variation in the LHb. In addition, selective inhibition of mitogen-activated protein kinase (MAPK) kinase (MAPKK, MEK) activity in the LHb restored the presynaptic alteration even after stress exposure. Moreover, we observed a slight increase in phosphorylated synapsin I after stress exposure. Finally, we found that a blockade of MAPK signaling before stress exposure successfully prevented the depression-like behaviors, including behavioral despair and helplessness, in an acute learned helpless animal model of depression. Our study delineates the cellular and molecular mechanisms responsible for the abnormal presynaptic enhancement of the LHb in depression, which may mediate depressive behaviors.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sungmin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea.
| |
Collapse
|
4
|
Cameron S, Weston-Green K, Newell KA. The disappointment centre of the brain gets exciting: a systematic review of habenula dysfunction in depression. Transl Psychiatry 2024; 14:499. [PMID: 39702626 DOI: 10.1038/s41398-024-03199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The habenula is an epithalamic brain structure that acts as a neuroanatomical hub connecting the limbic forebrain to the major monoamine centres. Abnormal habenula activity is increasingly implicated in depression, with a surge in publications on this topic in the last 5 years. Direct activation of the habenula is sufficient to induce a depressive phenotype in rodents, suggesting a causative role in depression. However, the molecular basis of habenula dysfunction in depression remains elusive and it is unclear how the preclinical advancements translate to the clinical field. METHODS A systematic literature search was conducted following the PRISMA guidelines. The two search terms depress* and habenula* were applied across Scopus, Web of Science and PubMed databases. Studies eligible for inclusion must have examined the habenula in clinical cases of depression or preclinical models of depression and compared their measures to an appropriate control. RESULTS Preclinical studies (n = 63) measured markers of habenula activity (n = 16) and neuronal firing (n = 22), largely implicating habenula hyperactivity in depression. Neurotransmission was briefly explored (n = 15), suggesting imbalances within excitatory and inhibitory habenula signalling. Additional preclinical studies reported neuroconnectivity (n = 1), inflammatory (n = 3), genomic (n = 3) and circadian rhythm (n = 3) abnormalities. Seven preclinical studies (11%) included both males and females. From these, 5 studies (71%) reported a significant difference between the sexes in at least one habenula measure taken. Clinical studies (n = 24) reported abnormalities in habenula connectivity (n = 15), volume (n = 6) and molecular markers (n = 3). Clinical studies generally included male and female subjects (n = 16), however, few of these studies examined sex as a biological variable (n = 6). CONCLUSIONS Both preclinical and clinical evidence suggest the habenula is disrupted in depression. However, there are opportunities for sex-specific analyses across both areas. Preclinical evidence consistently suggests habenula hyperactivity as a primary driver for the development of depressive symptoms. Clinical studies support gross habenula abnormalities such as altered activation, connectivity, and volume, with emerging evidence of blood brain barrier dysfunction, however, progress is limited by a lack of detailed molecular analyses and limited imaging resolution.
Collapse
Affiliation(s)
- Sarah Cameron
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly A Newell
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
5
|
Kim W, Chung C. Effect of dynamic interaction of estrous cycle and stress on synaptic transmission and neuronal excitability in the lateral habenula. FASEB J 2024; 38:e70275. [PMID: 39734271 DOI: 10.1096/fj.202402296rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress. Given the important role of LHb in depressive disorders, we aimed to investigate the synaptic differences between male and female LHb and to examine the possible impact of the estrous cycle on neurotransmission in LHb. We found that the passive and active properties of LHb neurons differed according to the estrous cycle. Spontaneous excitatory postsynaptic currents exhibited higher amplitudes during the diestrus stage and lower frequencies in females than in males, whereas inhibitory postsynaptic currents showed no significant differences. Acute stress-induced hyperpolarization of resting membrane potentials (RMP) was observed in both sexes, with notable changes in female silent and tonic neurons. Stress exposure eliminated estrous cycle-dependent RMP differences and introduced cycle-specific excitability changes, especially in the metestrus and diestrus stages, suggesting that the hormonal cycle may set the synaptic tone of the LHb, thus modulating stress responses in females. Our study provides invaluable groundwork for understanding the detailed interaction between the estrous cycle and stress exposure in female LHb.
Collapse
Affiliation(s)
- Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
6
|
Park H, Ryu H, Zhang S, Rhee J, Chung C. Mu-opioid receptor activation in the habenula modulates synaptic transmission and depression-like behaviors. Neurobiol Dis 2024; 198:106543. [PMID: 38821376 DOI: 10.1016/j.nbd.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Opioid system dysregulation in response to stress is known to lead to psychiatric disorders including major depression. Among three different types of opioid receptors, the mu-type receptors (mORs) are highly expressed in the habenula complex, however, the action of mORs in this area and its interaction with stress exposure is largely unknown. Therefore, we investigated the roles of mORs in the habenula using male rats of an acute learned helplessness (aLH) model. First, we found that mOR activation decreased both excitatory and inhibitory synaptic transmission onto the lateral habenula (LHb). Intriguingly, this mOR-induced synaptic depression was reduced in an animal model of depression compared to that of controls. In naïve animals, we found an unexpected interaction between mORs and the endocannabinoid (eCB) signaling occurring in the LHb, which mediates presynaptic alteration occurring with mOR activation. However, we did not observe presynaptic alteration by mOR activation after stress exposure. Moreover, selective mOR activation in the habenula before, but not after, stress exposure effectively reduced helpless behaviors compared to aLH animals. Our observations are consistent with clinical reports suggesting the involvement of mOR signaling in depression, and additionally reveal a critical time window of mOR action in the habenula for ameliorating helplessness symptoms.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeehae Rhee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Simmons SC, Flerlage WJ, Langlois LD, Shepard RD, Bouslog C, Thomas EH, Gouty KM, Sanderson JL, Gouty S, Cox BM, Dell'Acqua ML, Nugent FS. AKAP150-anchored PKA regulates synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the mouse lateral habenula. Commun Biol 2024; 7:345. [PMID: 38509283 PMCID: PMC10954712 DOI: 10.1038/s42003-024-06041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.
Collapse
Affiliation(s)
- Sarah C Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - William J Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ludovic D Langlois
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Ryan D Shepard
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Christopher Bouslog
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Emily H Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Kaitlyn M Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Brian M Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Fereshteh S Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, MD, 20814, USA.
| |
Collapse
|
8
|
Liu R, Xiang H, Liu C, Jiang Q, Liang Y, Wang G, Wang L, Sun Y, Yang G. Lateral Habenula Neurons Signal Cold Aversion and Participate in Cold Aversion. Neurochem Res 2024; 49:771-784. [PMID: 38102342 DOI: 10.1007/s11064-023-04076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
The aversion to cold is a fundamental motivated behavior that contributes to the body temperature homeostasis. However, the involvement of the lateral habenula (LHb) as a regulatory hub for negative emotions in this physiological process remains uninvestigated. In this study, we demonstrate an elevation in the population activity of LHb neurons following exposure to cold stimuli. Additionally, we establish the necessity of Vglut2-expressing neurons within the LHb for the encoding of cold aversion behaviors. Furthermore, we have elucidated a neural circuit from excitatory neurons of the dorsomedial hypothalamus (DMH) to LHb that plays a crucial role in this progress. Manipulation of the DMH-LHb circuit has a significant impact on cold aversion behavior in mice. It is worth noting that this circuit does not exhibit any noticeable effects on autonomic thermoregulation or depression-like behavior. The identification of these neural mechanisms involved in behavioral thermoregulation provides a promising avenue for future research.
Collapse
Affiliation(s)
- Rui Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
- Institute of Brain Science, Harbin Medical University, Harbin, People's Republic of China
| | - Huan Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
- Institute of Brain Science, Harbin Medical University, Harbin, People's Republic of China
| | - Chunyang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
- Institute of Brain Science, Harbin Medical University, Harbin, People's Republic of China
| | - Qiuyi Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
- Institute of Brain Science, Harbin Medical University, Harbin, People's Republic of China
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
- Institute of Brain Science, Harbin Medical University, Harbin, People's Republic of China
| | - Guangzheng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China
- Institute of Brain Science, Harbin Medical University, Harbin, People's Republic of China
| | - Lu Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, Heilongjiang Province, People's Republic of China.
| | - Yi Sun
- Department of Human Anatomy, Binzhou Medical College, 346 Guanhai Rd, Yantai City, People's Republic of China.
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Youzheng Street 23, Nangang District, Harbin, 150001, Heilongjiang Province, People's Republic of China.
- Institute of Brain Science, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
9
|
Ryu H, Kim M, Park H, Choi HK, Chung C. Stress-induced translation of KCNB1 contributes to the enhanced synaptic transmission of the lateral habenula. Front Cell Neurosci 2023; 17:1278847. [PMID: 38193032 PMCID: PMC10773861 DOI: 10.3389/fncel.2023.1278847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 01/10/2024] Open
Abstract
The lateral habenula (LHb) is a well-established brain region involved in depressive disorders. Synaptic transmission of the LHb neurons is known to be enhanced by stress exposure; however, little is known about genetic modulators within the LHb that respond to stress. Using recently developed molecular profiling methods by phosphorylated ribosome capture, we obtained transcriptome profiles of stress responsive LHb neurons during acute physical stress. Among such genes, we found that KCNB1 (Kv2.1 channel), a delayed rectifier and voltage-gated potassium channel, exhibited increased expression following acute stress exposure. To determine the roles of KCNB1 on LHb neurons during stress, we injected short hairpin RNA (shRNA) against the kcnb1 gene to block its expression prior to stress exposure. We observed that the knockdown of KCNB1 altered the basal firing pattern of LHb neurons. Although KCNB1 blockade did not rescue despair-like behaviors in acute learned helplessness (aLH) animals, we found that KCNB1 knockdown prevented the enhancement of synaptic strength in LHb neuron after stress exposure. This study suggests that KCNB1 may contribute to shape stress responses by regulating basal firing patterns and neurotransmission intensity of LHb neurons.
Collapse
Affiliation(s)
- Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Han Kyoung Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Simmons S, Flerlage W, Langlois L, Shepard R, Bouslog C, Thomas E, Gouty K, Sanderson J, Gouty S, Cox B, Dell’Acqua M, Nugent F. AKAP150-anchored PKA regulation of synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the lateral habenula. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570160. [PMID: 38106086 PMCID: PMC10723374 DOI: 10.1101/2023.12.06.570160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Numerous studies of hippocampal synaptic function in learning and memory have established the functional significance of the scaffolding A-kinase anchoring protein 150 (AKAP150) in kinase and phosphatase regulation of synaptic receptor and ion channel trafficking/function and hence synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a critical role in brain's processing of rewarding/aversive experiences. Here we focused on an unexplored role of AKAP150 in the lateral habenula (LHb), a diencephalic brain region that integrates and relays negative reward signals from forebrain striatal and limbic structures to midbrain monoaminergic centers. LHb aberrant activity (specifically hyperactivity) is also linked to depression. Using whole cell patch clamp recordings in LHb of male wildtype (WT) and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), we found that the genetic disruption of PKA anchoring to AKAP150 significantly reduced AMPA receptor (AMPAR)-mediated glutamatergic transmission and prevented the induction of presynaptic endocannabinoid (eCB)-mediated long-term depression (LTD) in LHb neurons. Moreover, ΔPKA mutation potentiated GABAA receptor (GABAAR)-mediated inhibitory transmission postsynaptically while increasing LHb intrinsic neuronal excitability through suppression of medium afterhyperpolarizations (mAHPs). Given that LHb is a highly stress-responsive brain region, we further tested the effects of corticotropin releasing factor (CRF) stress neuromodulator on synaptic transmission and intrinsic excitability of LHb neurons in WT and ΔPKA mice. As in our earlier study in rat LHb, CRF significantly suppressed GABAergic transmission onto LHb neurons and increased intrinsic excitability by diminishing small-conductance potassium (SK) channel-mediated mAHPs. ΔPKA mutation-induced suppression of mAHPs also blunted the synaptic and neuroexcitatory actions of CRF in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPAR and GABAAR synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPAR and potassium channel trafficking and eCB signaling within the LHb.
Collapse
Affiliation(s)
- S.C. Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - W.J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - L.D. Langlois
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - R.D. Shepard
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - C. Bouslog
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - E.H. Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - K.M. Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - J.L. Sanderson
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - S. Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - B.M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| | - M.L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - F.S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, Maryland 20814, USA
| |
Collapse
|
11
|
Kang M, Chung JM, Noh J, Kim J. The mineralocorticoid receptor and extra-synaptic NMDA receptor in the lateral habenula involve in the vulnerability to early life stress in the maternal separation model. Neurobiol Stress 2023; 27:100570. [PMID: 37771409 PMCID: PMC10522873 DOI: 10.1016/j.ynstr.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
The lateral habenula (LHb) plays a pivotal role in regulating emotional responses during stress reactions, and its hyperactivity has been associated with depression. Recently it has been demonstrated that chronic early-life stress results in individual differences in stress vulnerability among rodents. However, how synaptic function in the LHb varies between susceptibility and resilience to early life stress remains elusive. In this study, we used a maternal separation model to assign animals with different stress vulnerabilities into groups and investigated the synaptic responses in the LHb. Our findings indicate that synaptic long-term depression (LTD) was impaired and extra-synaptic LTD was enhanced in the LHb of the susceptible group. To mimic the synaptic alteration in stress situations, when administered corticosterone, a stress hormone, the intervention appeared to impair synaptic LTD in the LHb of the control group, through the activation of mineralocorticoid receptors (MR). Indeed, there was an up-regulation of MR mRNA observed in the susceptible group. Following there was an up-regulation of both NR2A and NR2B subunits in the LHb. These results indicated that MR and extra-synaptic NMDA receptors in LHb are critically engaged in the susceptibilities to stress. Furthermore, our findings propose potential therapeutic targets for alleviating stress-related symptoms.
Collapse
Affiliation(s)
- Miseon Kang
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Woman's University, Seoul, South Korea
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jun-mo Chung
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Woman's University, Seoul, South Korea
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, Yongin, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
12
|
Haniffa S, Narain P, Hughes MA, Petković A, Šušić M, Mlambo V, Chaudhury D. Chronic social stress blunts core body temperature and molecular rhythms of Rbm3 and Cirbp in mouse lateral habenula. Open Biol 2023; 13:220380. [PMID: 37463657 PMCID: PMC10353891 DOI: 10.1098/rsob.220380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/29/2023] [Indexed: 07/19/2023] Open
Abstract
Chronic social stress in mice causes behavioural and physiological changes that result in perturbed rhythms of body temperature, activity and sleep-wake cycle. To further understand the link between mood disorders and temperature rhythmicity in mice that are resilient or susceptible to stress, we measured core body temperature (Tcore) before and after exposure to chronic social defeat stress (CSDS). We found that Tcore amplitudes of stress-resilient and susceptible mice are dampened during exposure to CSDS. However, following CSDS, resilient mice recovered temperature amplitude faster than susceptible mice. Furthermore, the interdaily stability (IS) of temperature rhythms was fragmented in stress-exposed mice during CSDS, which recovered to control levels following stress. There were minimal changes in locomotor activity after stress exposure which correlates with regular rhythmic expression of Prok2 - an output signal of the suprachiasmatic nucleus. We also determined that expression of thermosensitive genes Rbm3 and Cirbp in the lateral habenula (LHb) were blunted 1 day after CSDS. Rhythmic expression of these genes recovered 10 days later. Overall, we show that CSDS blunts Tcore and thermosensitive gene rhythms. Tcore rhythm recovery is faster in stress-resilient mice, but Rbm3 and Cirbp recovery is uniform across the phenotypes.
Collapse
Affiliation(s)
- Salma Haniffa
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Priyam Narain
- Centre for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Michelle Ann Hughes
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aleksa Petković
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marko Šušić
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vongai Mlambo
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dipesh Chaudhury
- Department of Biology, Science Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Winters ND, Kondev V, Loomba N, Delpire E, Grueter BA, Patel S. Opposing retrograde and astrocyte-dependent endocannabinoid signaling mechanisms regulate lateral habenula synaptic transmission. Cell Rep 2023; 42:112159. [PMID: 36842084 PMCID: PMC10846612 DOI: 10.1016/j.celrep.2023.112159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
The lateral habenula (LHb) encodes aversive states, and its dysregulation is implicated in neuropsychiatric disorders, including depression. The endocannabinoid (eCB) system is a neuromodulatory signaling system that broadly serves to counteract the adverse effects of stress; however, CB1 receptor signaling within the LHb can paradoxically promote anxiogenic- and depressive-like effects. Current reports of synaptic actions of eCBs in the LHb are conflicting and lack systematic investigation of eCB regulation of excitatory and inhibitory transmission. Here, we report that eCBs differentially regulate glutamatergic and GABAergic transmission in the LHb, exhibiting canonical and circuit-specific inhibition of both systems and an opposing potentiation of synaptic glutamate release mediated via activation of CB1 receptors on astrocytes. Moreover, simultaneous depression of GABA and potentiation of glutamate release increases the net excitation-inhibition ratio onto LHb neurons, suggesting a potential cellular mechanism by which cannabinoids may promote LHb activity and subsequent anxious- and depressive-like aversive states.
Collapse
Affiliation(s)
- Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Veronika Kondev
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Niharika Loomba
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Haniffa S, Narain P, Hughes MA, Petković A, Šušić M, Mlambo V, Chaudhury D. Chronic social stress blunts core body temperature and molecular rhythms of Rbm3and Cirbpin mouse lateral habenula.. [DOI: 10.1101/2023.01.02.522528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractChronic social stress in mice causes behavioral and physiological changes that result in perturbed rhythms of body temperature, activity and sleep-wake cycle. To further understand the link between mood disorders and temperature rhythmicity in mice that are resilient or susceptible to stress, we measured core body temperature (Tcore) before and after exposure to chronic social defeat stress (CSDS). We found that Tcore amplitudes of stress-resilient and susceptible mice are dampened during exposure to CSDS. However, following CSDS, resilient mice recovered temperature amplitude faster than susceptible mice. Furthermore, the interdaily stability (IS) of temperature rhythms was fragmented in stress-exposed mice during CSDS, which recovered to control levels following stress. There were minimal changes in locomotor activity after stress exposure which correlates with regular rhythmic expression ofProk2- an output signal of the suprachiasmatic nucleus. We also determined that expression of thermosensitive genesRbm3andCirbpin the lateral habenula (LHb) were blunted 1-day after CSDS. Rhythmic expression of these genes recovered 10 days later. Overall, we show that CSDS blunts Tcore and thermosensitive gene rhythms. Tcore rhythm recovery is faster in stress-resilient mice, butRbm3andCirbprecovery is uniform across the phenotypes.
Collapse
|
15
|
Scheyer A, Yasmin F, Naskar S, Patel S. Endocannabinoids at the synapse and beyond: implications for neuropsychiatric disease pathophysiology and treatment. Neuropsychopharmacology 2023; 48:37-53. [PMID: 36100658 PMCID: PMC9700791 DOI: 10.1038/s41386-022-01438-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Endocannabinoids (eCBs) are lipid neuromodulators that suppress neurotransmitter release, reduce postsynaptic excitability, activate astrocyte signaling, and control cellular respiration. Here, we describe canonical and emerging eCB signaling modes and aim to link adaptations in these signaling systems to pathological states. Adaptations in eCB signaling systems have been identified in a variety of biobehavioral and physiological process relevant to neuropsychiatric disease states including stress-related disorders, epilepsy, developmental disorders, obesity, and substance use disorders. These insights have enhanced our understanding of the pathophysiology of neurological and psychiatric disorders and are contributing to the ongoing development of eCB-targeting therapeutics. We suggest future studies aimed at illuminating how adaptations in canonical as well as emerging cellular and synaptic modes of eCB signaling contribute to disease pathophysiology or resilience could further advance these novel treatment approaches.
Collapse
Affiliation(s)
| | - Farhana Yasmin
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Saptarnab Naskar
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Chicago, IL, USA.
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
The intersection of astrocytes and the endocannabinoid system in the lateral habenula: on the fast-track to novel rapid-acting antidepressants. Mol Psychiatry 2022; 27:3138-3149. [PMID: 35585261 DOI: 10.1038/s41380-022-01598-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/04/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Despite attaining significant advances toward better management of depressive disorders, we are still facing several setbacks. Developing rapid-acting antidepressants with sustained effects is an aspiration that requires thinking anew to explore possible novel targets. Recently, the lateral habenula (LHb), the brain's "anti-reward system", has been shown to go awry in depression in terms of various molecular and electrophysiological signatures. Some of the presumed contributors to such observed aberrations are astrocytes. These star-shaped cells of the brain can alter the firing pattern of the LHb, which keeps the activity of the midbrain's aminergic centers under tight control. Astrocytes are also integral parts of the tripartite synapses, and can therefore modulate synaptic plasticity and leave long-lasting changes in the brain. On the other hand, it was discovered that astrocytes express cannabinoid type 1 receptors (CB1R), which can also take part in long-term plasticity. Herein, we recount how the LHb of a depressed brain deviates from the "normal" one from a molecular perspective. We then try to touch upon the alterations of the endocannabinoid system in the LHb, and cast the idea that modulation of astroglial CB1R may help regulate habenular neuronal activity and synaptogenesis, thereby acting as a new pharmacological tool for regulation of mood and amelioration of depressive symptoms.
Collapse
|
17
|
Farinha-Ferreira M, Rei N, Fonseca-Gomes J, Miranda-Lourenço C, Serrão P, Vaz SH, Gomes JI, Martins V, de Alves Pereira B, Sebastião AM. Unexpected short- and long-term effects of chronic adolescent HU-210 exposure on emotional behavior. Neuropharmacology 2022; 214:109155. [PMID: 35660545 DOI: 10.1016/j.neuropharm.2022.109155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
Chronic adolescent cannabinoid receptor agonist exposure has been shown to lead to persistent increases in depressive-like behaviors. This has been a key obstacle to the development of cannabinoid-based therapeutics. However, most of the published work has been performed with only three compounds, namely Δ9-tetrahydrocannabinol, CP55,940 and WIN55,212-2. Hypothesizing that different compounds may lead to distinct outcomes, we herein used the highly potent CB1R/CB2R full agonist HU-210, and first aimed at replicating cannabinoid-induced long-lasting effects, by exposing adolescent female Sprague-Dawley rats to increasing doses of HU-210, for 11 days and testing them at adulthood, after a 30-day drug washout. Surprisingly, HU-210 did not significantly impact adult anxious- or depressive-like behaviors. We then tested whether chronic adolescent HU-210 treatment resulted in short-term (24h) alterations in depressive-like behavior. Remarkably, HU-210 treatment simultaneously induced marked antidepressant- and prodepressant-like responses, in the modified forced swim (mFST) and sucrose preference tests (SPT), respectively. Hypothesizing that mFST results were a misleading artifact of HU-210-induced behavioral hyperreactivity to stress, we assessed plasmatic noradrenaline and corticosterone levels, under basal conditions and following an acute swim-stress episode. Notably, we found that while HU-210 did not alter basal noradrenaline or corticosterone levels, it greatly augmented the stress-induced increase in both. Our results show that, contrary to previously studied cannabinoid receptor agonists, HU-210 does not induce persisting depressive-like alterations, despite inducing marked short-term increases in stress-induced reactivity. By showing that not all cannabinoid receptor agonists may induce long-term negative effects, these results hold significant relevance for the development of cannabinoid-based therapeutics.
Collapse
Affiliation(s)
- Miguel Farinha-Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Paula Serrão
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Joana I Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Valéria Martins
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Beatriz de Alves Pereira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| |
Collapse
|
18
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
19
|
Jeong B, Baek JY, Koo J, Park S, Ryu YK, Kim KS, Zhang S, Chung C, Dogan R, Choi HS, Um D, Kim TK, Lee WS, Jeong J, Shin WH, Lee JR, Kim NS, Lee DY. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127815. [PMID: 34823950 DOI: 10.1016/j.jhazmat.2021.127815] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/14/2023]
Abstract
As global plastic production continues to grow, microplastics released from a massive quantity of plastic wastes have become a critical environmental concern. These microplastic particles are found in a wide range of living organisms in a diverse array of ecosystems. In this study, we investigated the biological effects of polystyrene nanoplastic (PSNP) on development of the central nervous system using cultured neural stem cells (NSCs) and mice exposed to PSNP during developmental stages. Our study demonstrates that maternal administration of PSNP during gestation and lactating periods altered the functioning of NSCs, neural cell compositions, and brain histology in progeny. Similarly, PSNP-induced molecular and functional defects were also observed in cultured NSCs in vitro. Finally, we show that the abnormal brain development caused by exposure to high concentrations of PSNP results in neurophysiological and cognitive deficits in a gender-specific manner. Our data demonstrate the possibility that exposure to high amounts of PSNP may increase the risk of neurodevelopmental defects.
Collapse
Affiliation(s)
- Bohyeon Jeong
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Jeong Yeob Baek
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jahong Koo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Subin Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Young-Kyoung Ryu
- Laboratory animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Kyoung-Shim Kim
- Laboratory animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences (Neurophysiology Laboratory, C-Lab), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences (Neurophysiology Laboratory, C-Lab), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Rumeysa Dogan
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyung-Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Jae-Ran Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
20
|
Zheng Z, Guo C, Li M, Yang L, Liu P, Zhang X, Liu Y, Guo X, Cao S, Dong Y, Zhang C, Chen M, Xu J, Hu H, Cui Y. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron 2022; 110:1400-1415.e6. [PMID: 35114101 DOI: 10.1016/j.neuron.2022.01.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/18/2021] [Accepted: 01/10/2022] [Indexed: 01/05/2023]
Abstract
Chronic stress is a major risk factor for depression onset. However, it remains unclear how repeated stress sculpts neural circuits and finally elicits depression. Given the essential role of lateral habenula (LHb) in depression, here, we attempt to clarify how LHb-centric neural circuitry integrates stress-related information. We identify lateral hypothalamus (LH) as the most physiologically relevant input to LHb under stress. LH neurons fire with a unique pattern that efficiently drives postsynaptic potential summation and a closely followed LHb bursting (EPSP-burst pairing) in response to various stressors. We found that LH-LHb synaptic potentiation is determinant in stress-induced depression. Mimicking this repeated EPSP-burst pairings at LH-LHb synapses by photostimulation, we artificially induced an "emotional status" merely by potentiating this pathway in mice. Collectively, these results delineate the spatiotemporal dynamics of chronic stress processing from forebrain onto LHb in a pathway-, cell-type-, and pattern-specific manner, shedding light on early interventions before depression onset.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Chen Guo
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Min Li
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Liang Yang
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Pengyang Liu
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Xuliang Zhang
- Laboratory Animal Center, Zhejiang University, 310058 Hangzhou, China
| | - Yiqin Liu
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Xiaonan Guo
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Shuxia Cao
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China
| | - Yiyan Dong
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Chunlei Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Min Chen
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Jiamin Xu
- East China Normal University, Key Laboratory of Brain Functional Genomics, 200062 Shanghai, China
| | - Hailan Hu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China
| | - Yihui Cui
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058 Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121 Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
21
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
22
|
Lalive AL, Nuno-Perez A, Tchenio A, Mameli M. Mild stress accumulation limits GABAergic synaptic plasticity in the lateral habenula. Eur J Neurosci 2021; 55:377-387. [PMID: 34963191 PMCID: PMC9305738 DOI: 10.1111/ejn.15581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
Animals can cope with isolated stressful situations without enduring long-term consequences. However, when exposure to stressors becomes recurrent, behavioral symptoms of anxiety and depression can emerge. Yet, the neuronal mechanisms governing responsivity to isolated stressor remain elusive. Here, we investigate synaptic adaptations following mild stress in the lateral habenula (LHb), a structure engaged in aversion encoding and dysfunctional in depression. We describe that neuronal depolarization in the LHb drives long-term depression of inhibitory, but not excitatory, synaptic transmission (GABA LTD). This plasticity requires nitric oxide and presynaptic GABAB receptors, leading to a decrease in probability of GABA release. Mild stressors such as brief social isolation, or exposure to novel environment in the company of littermates, do not alter GABA LTD. In contrast, GABA LTD is absent after mice experience a novel environment in social isolation. Altogether, our results suggest that LHb GABAergic plasticity is sensitive to stress accumulation, which could represent a threshold mechanism for long-term alterations of LHb function.
Collapse
Affiliation(s)
- Arnaud L Lalive
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Alvaro Nuno-Perez
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Anna Tchenio
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.,Institut du Fer à Moulin, Inserm UMR-S 839, Paris, France
| |
Collapse
|
23
|
Kim W, Chung C. Brain-wide cellular mapping of acute stress-induced activation in male and female mice. FASEB J 2021; 35:e22041. [PMID: 34780680 DOI: 10.1096/fj.202101287r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/11/2022]
Abstract
Mood disorders are more prevalent and often reported to be more severe in women; however, little is known about the underlying mechanisms of this sexual prevalence. To gain insight into the functional differences in female brains in response to stress, we systemically compared brain activation in male and female C57BL/6N mice after acute stress exposure. We measured c-Fos expression levels in 18 brain areas related to stress responses after a 3-h long restraint stress and found that activation was sexually dimorphic in several brain areas, including the nucleus accumbens, ventral tegmental area, nucleus reuniens, and medial part of the lateral habenula. Moreover, stress-activated a substantial number of cells in the medial prefrontal cortex, amygdala, and lateral part of the lateral habenula; however, the levels of activation were comparable in males and females, suggesting that the core stress responding machineries are largely shared. Pearson correlation analysis revealed several interesting connections between the analyzed areas that are implicated in stress responses and depression. Overall, stress strengthened intra-circuitries in the hippocampus, amygdala, and prefrontal cortex in female mice, whereas more longer-range connections were highlighted in stressed male mice. Our study provides a highly valuable neuroanatomical framework for investigating the circuit mechanism underlying the higher vulnerability to depression in women.
Collapse
Affiliation(s)
- Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
24
|
Murray CH, Gaulden AD, Kawa AB, Milovanovic M, Caccamise AJ, Funke JR, Patel S, Wolf ME. CaMKII Modulates Diacylglycerol Lipase-α Activity in the Rat Nucleus Accumbens after Incubation of Cocaine Craving. eNeuro 2021; 8:ENEURO.0220-21.2021. [PMID: 34544759 PMCID: PMC8503962 DOI: 10.1523/eneuro.0220-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Relapse is a major challenge to the treatment of substance use disorders. A progressive increase in cue-induced drug craving, termed incubation of craving, is observed after withdrawal from multiple drugs of abuse in humans and rodents. Incubation of cocaine craving involves the strengthening of excitatory synapses onto nucleus accumbens (NAc) medium spiny neurons via postsynaptic accumulation of high-conductance Ca2+-permeable AMPA receptors. This enhances reactivity to drug-associated cues and is required for the expression of incubation. Additionally, incubation of cocaine craving is associated with loss of the synaptic depression normally triggered by stimulation of metabotropic glutamate receptor 5 (mGlu5), leading to endocannabinoid production, and expressed presynaptically via cannabinoid receptor 1 activation. Previous studies have found alterations in mGlu5 and Homer proteins associated with the loss of this synaptic depression. Here we conducted coimmunoprecipitation studies to investigate associations of diacylglycerol lipase-α (DGL), which catalyzes formation of the endocannabinoid 2-arachidonylglycerol (2-AG), with mGlu5 and Homer proteins. Although these interactions were unchanged in the NAc core at incubation-relevant withdrawal times, the association of DGL with total and phosphorylated Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) and CaMKIIβ was increased. This would be predicted, based on other studies, to inhibit DGL activity and therefore 2-AG production. This was confirmed by measuring DGL enzymatic activity. However, the magnitude of DGL inhibition did not correlate with the magnitude of incubation of craving for individual rats. These results suggest that CaMKII contributes to the loss of mGlu5-dependent synaptic depression after incubation, but the functional significance of this loss remains unclear.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Andrew D Gaulden
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37240
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Mike Milovanovic
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
| | - Aaron J Caccamise
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37240
| | - Marina E Wolf
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239-3098
| |
Collapse
|
25
|
Winters BL, Vaughan CW. Mechanisms of endocannabinoid control of synaptic plasticity. Neuropharmacology 2021; 197:108736. [PMID: 34343612 DOI: 10.1016/j.neuropharm.2021.108736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023]
Abstract
The endogenous cannabinoid transmitter system regulates synaptic transmission throughout the nervous system. Unlike conventional transmitters, specific stimuli induce synthesis of endocannabinoids (eCBs) in the postsynaptic neuron, and these travel backwards to modulate presynaptic inputs. In doing so, eCBs can induce short-term changes in synaptic strength and longer-term plasticity. While this eCB regulation is near ubiquitous, it displays major regional and synapse specific variations with different synapse specific forms of short-versus long-term plasticity throughout the brain. These differences are due to the plethora of pre- and postsynaptic mechanisms which have been implicated in eCB signalling, the intricacies of which are only just being realised. In this review, we shall describe the current understanding and highlight new advances in this area, with a focus on the retrograde action of eCBs at CB1 receptors (CB1Rs).
Collapse
Affiliation(s)
- Bryony Laura Winters
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia.
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
26
|
Shepard RD, Nugent FS. Targeting Endocannabinoid Signaling in the Lateral Habenula as an Intervention to Prevent Mental Illnesses Following Early Life Stress: A Perspective. Front Synaptic Neurosci 2021; 13:689518. [PMID: 34122037 PMCID: PMC8194269 DOI: 10.3389/fnsyn.2021.689518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Adverse events and childhood trauma increase the susceptibility towards developing psychiatric disorders (substance use disorder, anxiety, depression, etc.) in adulthood. Although there are treatment strategies that have utility in combating these psychiatric disorders, little attention is placed on how to therapeutically intervene in children exposed to early life stress (ELS) to prevent the development of later psychopathology. The lateral habenula (LHb) has been a topic of extensive investigation in mental health disorders due to its prominent role in emotion and mood regulation through modulation of brain reward and motivational neural circuits. Importantly, rodent models of ELS have been shown to promote LHb dysfunction. Moreover, one of the potential mechanisms contributing to LHb neuronal and synaptic dysfunction involves endocannabinoid (eCB) signaling, which has been observed to critically regulate emotion/mood and motivation. Many pre-clinical studies targeting eCB signaling suggest that this neuromodulatory system could be exploited as an intervention therapy to halt maladaptive processes that promote dysfunction in reward and motivational neural circuits involving the LHb. In this perspective article, we report what is currently known about the role of eCB signaling in LHb function and discuss our opinions on new research directions to determine whether the eCB system is a potentially attractive therapeutic intervention for the prevention and/or treatment of ELS-associated psychiatric illnesses.
Collapse
Affiliation(s)
- Ryan D Shepard
- Department of Pharmacology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
27
|
Zapata A, Lupica CR. Lateral habenula cannabinoid CB1 receptor involvement in drug-associated impulsive behavior. Neuropharmacology 2021; 192:108604. [PMID: 33965396 DOI: 10.1016/j.neuropharm.2021.108604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Animal and human studies show that cannabis or its derivatives can increase relapse to cocaine seeking following withdrawal. Moreover, cannabis use in humans is associated with impulse control deficits and animal studies implicate endogenous cannabinoids (eCB) in several impulsivity constructs. However, the brain areas where cannabinoids might control impulsivity or cocaine seeking are largely unknown. Here, we assess Lateral Habenula (LHb) involvement on performance in the 5-choice serial reaction time task (5CSRTT) in rats and investigate whether LHb cannabinoid CB1 receptors (CB1R) are involved in these effects. Systemic cocaine increased premature responding, a measure of impulsivity, at a dose (5 mg/kg) that did not alter other measures of task performance. Intra-LHb infusion of the CB1R antagonist AM251 blocked this effect. Systemic injection of the psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (Δ9-THC, 1 mg/kg), also increased 5CSRTT premature responding at a dose that did not otherwise disrupt task performance. This was blocked by intra-LHb infusion of AM251 in a subgroup of rats showing the largest increases in Δ9-THC-evoked premature responses. Systemic Δ9-THC also prompted impulsive cocaine seeking in a Go/NoGo cocaine self-administration task and this was blocked by intra-LHb AM251. These data show that LHb CB1Rs are involved in deficits in impulse control initiated by cocaine and Δ9-THC, as assessed by the 5CSRTT, and play a role in impulsive cocaine seeking during cocaine self-administration. This suggests that the LHb eCB system contributes to the control of impulsive behavior, and thus represents a potential target for therapeutic treatment of substance use disorders (SUDs) in humans.
Collapse
Affiliation(s)
- Agustin Zapata
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
28
|
Fu R, Tang Y, Li W, Ren Z, Li D, Zheng J, Zuo W, Chen X, Zuo QK, Tam KL, Zou Y, Bachmann T, Bekker A, Ye JH. Endocannabinoid signaling in the lateral habenula regulates pain and alcohol consumption. Transl Psychiatry 2021; 11:220. [PMID: 33854035 PMCID: PMC8046806 DOI: 10.1038/s41398-021-01337-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hyperalgesia, which often occurs in people suffering from alcohol use disorder, may drive excessive drinking and relapse. Emerging evidence suggests that the lateral habenula (LHb) may play a significant role in this condition. Previous research suggests that endocannabinoid signaling (eCBs) is involved in drug addiction and pain, and that the LHb contains core components of the eCBs machinery. We report here our findings in rats subjected to chronic ethanol vapor exposure. We detected a substantial increase in endocannabinoid-related genes, including Mgll and Daglb mRNA levels, as well as monoacylglycerol lipase (MAGL) protein levels, as well as a decrease in Cnr1 mRNA and type-1 cannabinoid receptor (CB1R) protein levels, in the LHb of ethanol-exposed rats. Also, rats withdrawing from ethanol exposure displayed hypersensitivity to mechanical and thermal nociceptive stimuli. Conversely, intra-LHb injection of the MAGL inhibitor JZL184, the fatty acid amide hydrolase inhibitor URB597, or the CB1R agonist WIN55,212-2 produced an analgesic effect, regardless of ethanol or air exposure history, implying that alcohol exposure does not change eCB pain responses. Intra-LHb infusion of the CB1R inverse agonist rimonabant eliminated the analgesic effect of these chemicals. Rimonabant alone elicited hyperalgesia in the air-, but not ethanol-exposed animals. Moreover, intra-LHb JZL184, URB597, or WIN55,212-2 reduced ethanol consumption in both homecages and operant chambers in rats exposed to ethanol vapor but not air. These findings suggest that LHb eCBs play a pivotal role in nociception and facilitating LHb eCBs may attenuate pain in drinkers.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ying Tang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ding Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiayi Zheng
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Xuejun Chen
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kelsey L Tam
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yucong Zou
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Thomas Bachmann
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
29
|
Jenkins BW, Khokhar JY. Cannabis Use and Mental Illness: Understanding Circuit Dysfunction Through Preclinical Models. Front Psychiatry 2021; 12:597725. [PMID: 33613338 PMCID: PMC7892618 DOI: 10.3389/fpsyt.2021.597725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with a serious mental illness often use cannabis at higher rates than the general population and are also often diagnosed with cannabis use disorder. Clinical studies reveal a strong association between the psychoactive effects of cannabis and the symptoms of serious mental illnesses. Although some studies purport that cannabis may treat mental illnesses, others have highlighted the negative consequences of use for patients with a mental illness and for otherwise healthy users. As epidemiological and clinical studies are unable to directly infer causality or examine neurobiology through circuit manipulation, preclinical animal models remain a valuable resource for examining the causal effects of cannabis. This is especially true considering the diversity of constituents in the cannabis plant contributing to its effects. In this mini-review, we provide an updated perspective on the preclinical evidence of shared neurobiological mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents, as well as rodent models of schizophrenia, depression, and bipolar disorder, and the resulting impact on electrophysiological indices of neural circuit activity. We propose a consolidated neural circuit-based understanding of the preclinical evidence to generate new hypotheses and identify novel therapeutic targets.
Collapse
Affiliation(s)
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
30
|
Cheon M, Park H, Chung C. Protein kinase C mediates neuropeptide Y-induced reduction in inhibitory neurotransmission in the lateral habenula. Neuropharmacology 2020; 180:108295. [PMID: 32882226 DOI: 10.1016/j.neuropharm.2020.108295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) is one of peptide neuromodulators, well known for orexigenic, anxiolytic and antidepressant effects. We previously reported that NPY decreases GABAergic transmission in the lateral habenula (LHb). In the current study, we aim to investigate the underlying signaling pathways that mediate inhibitory action of NPY in the LHb by employing whole-cell patch clamp recording with pharmacological interventions. Here, we revealed that Y1 receptors (Y1Rs) but not Y2Rs mediate NPY-induced decrease of GABAergic transmission in the LHb. Surprisingly, NPY-induced decrease of inhibitory transmission in the LHb was not dependent on adenylyl cyclase (AC)/protein kinase A (PKA)-dependent pathway as reported in other brain areas. Instead, pharmacological blockade of phospholipase C (PLC) or protein kinase C (PKC) activity abolished the decrease of GABAergic transmission by NPY in the LHb. Our findings suggest that Y1Rs in the LHb may trigger the activation of PLC/PKC-dependent pathway but not the classical AC/PKA-dependent pathway to decrease inhibitory transmission of the LHb.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
31
|
Kang M, Noh J, Chung JM. NMDA receptor-dependent long-term depression in the lateral habenula: implications in physiology and depression. Sci Rep 2020; 10:17921. [PMID: 33087756 PMCID: PMC7578045 DOI: 10.1038/s41598-020-74496-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Abnormally increased neuronal activity in the lateral habenula (LHb) is closely associated with depressive-like behavior. Despite the emphasis on the pathological importance of NMDA receptor (NMDAR)-dependent long-term depression (LTD) and the involvement of calcium permeable AMPA receptor (CP-AMPAR) as major Ca2+ source, the functions of NMDAR and CP-AMPAR on LTD modulation in the LHb still have not been fully investigated. Here, we found that NMDAR-dependent LTD by low frequency stimulation was induced in both synaptic and extrasynaptic regions in the LHb. In addition, CP-AMPAR was necessary for the activation of NMDAR in the induction phase of NMDAR-dependent LTD. The acute stress, which induced depressive behavior, had a blocked effect on synaptic NMDAR-dependent LTD but left extrasynaptic NMDAR-dependent LTD intact. These findings show that NMDAR-dependent LTD in LHb plays an important role in regulating neuronal activity, which is probable to be excessively increased by repeated stress, via maintaining homeostasis in both synaptic and extrasynaptic regions of the LHb. Moreover, NMDAR and CP-AMPAR may serve as a depression-related modulator and be regarded as a promising therapeutic target for treatment of psychopathology such as depression.
Collapse
Affiliation(s)
- Miseon Kang
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul, Republic of Korea.,Emotion, cognition & behavior research group, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, South Korea
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, Yongin-si, Republic of Korea.
| | - Jun-Mo Chung
- Department of Brain and Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Abstract
Until now, depression research has taken a surprisingly narrow approach to modelling the disease, mainly focusing on some form of psychomotor retardation within a mechanistic framework of depression etiology. However, depression has many symptoms and each is associated with a vast number of substrates. Thus, to deepen our insights, this SI ("Depression Symptoms") reviewed the behavioral and neurobiological sequelae of individual symptoms, specifically, psychomotor retardation, sadness, low motivation, fatigue, sleep/circadian disruption, weight/appetite changes, and cognitive affective biases. This manuscript aims to integrate the most central information provided by the individual reviews. As a result, a dynamic model of depression development is proposed, which views depression as a cumulative process, where different symptoms develop at different stages, referred to as early, intermediate, and advanced, that require treatment with different pharmaceutical agents, that is, selective serotonin reuptake inhibitors early on and dopamine-based antidepressants at the advanced stage. Furthermore, the model views hypothalamic disruption as the source of early symptoms and site of early intervention. Longitudinal animal models that are capable of modelling the different stages of depression, including transitions between the stages, may be helpful to uncover novel biomarkers and treatment approaches.
Collapse
Affiliation(s)
- Daniela Schulz
- Boğaziçi University, Institute of Biomedical Engineering, Center for Life Sciences and Technologies, Kandilli Campus, 34684 Istanbul, Turkey.
| |
Collapse
|
33
|
Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 2020; 21:277-295. [PMID: 32269316 DOI: 10.1038/s41583-020-0292-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain's 'antireward centre', receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.
Collapse
Affiliation(s)
- Hailan Hu
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China. .,Fountain-Valley Institute for Life Sciences, Guangzhou, China.
| | - Yihui Cui
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan Yang
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| |
Collapse
|
34
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
35
|
Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behav Brain Res 2019; 372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
36
|
Cheon M, Park H, Rhim H, Chung C. Actions of Neuropeptide Y on Synaptic Transmission in the Lateral Habenula. Neuroscience 2019; 410:183-190. [PMID: 31082535 DOI: 10.1016/j.neuroscience.2019.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y is a peptide neuromodulator with protective roles including anxiolytic and antidepressant-like effects in animal models of depression and post-traumatic stress disorder. The lateral habenula (LHb) is a brain region that encodes aversive information and is closely related with mood disorders. Although LHb neurons express NPY receptors, the physiological roles of NPY in this region remain uninvestigated. In this study, we examined the actions of NPY on synaptic transmission in the LHb using whole cell patch clamp recording. We observed that NPY inhibited excitatory neurotransmission in a subset of LHb neurons whereas potentiating in a small population of neurons. Inhibitory transmission remained unchanged by NPY application in a subset of neurons but was reduced in the majority of LHb neurons recorded. The overall outcome of NPY application was a decrease in the spontaneous firing rate of the LHb, leading to hypoactivation of the LHb. Our observations indicate that although NPY has divergent effects on excitatory and inhibitory transmission, NPY receptor activation decreases LHb activity, suggesting that the LHb may partly mediate the protective roles of NPY in the central nervous system.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 139-791, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
37
|
Park K, Chung C. Systemic Cellular Activation Mapping of an Extinction-Impaired Animal Model. Front Cell Neurosci 2019; 13:99. [PMID: 30941016 PMCID: PMC6433791 DOI: 10.3389/fncel.2019.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Fear extinction diminishes conditioned fear responses and impaired fear extinction has been reported to be related to anxiety disorders such as post-traumatic stress disorder (PTSD). We and others have reported that 129S1/SvImJ (129S1) strain of mice showed selective impairments in fear extinction following successful auditory or contextual fear conditioning. To investigate brain regions involved in the impaired fear extinction of 129S1 mice, we systemically analyzed c-Fos expression patterns before and after contextual fear conditioning and extinction. After fear conditioning, 129S1 mice showed significantly increased c-Fos expression in the medial division of the central amygdala (CEm), prelimbic (PL) cortex of the medial prefrontal cortex (mPFC), and dorsal CA3 of the hippocampus, compared to that of control C57BL/6 mice. Following fear extinction, 129S1 mice exhibited significantly more c-Fos-positive cells in the CEm, PL, and paraventricular nucleus of the thalamus (PVT) than did C57BL/6 mice. These results reveal the dynamic circuitry involved in different steps of fear memory formation and extinction, thus providing candidate brain regions to study the etiology and pathophysiology underlying impaired fear extinction.
Collapse
Affiliation(s)
- Kwanghoon Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
38
|
Hu H. Advances in Molecular and Circuitry Mechanisms of Depressive Disorder-A Focus on Lateral Habenula. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:135-146. [PMID: 31784961 DOI: 10.1007/978-981-32-9271-0_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Depression is a devastating disorder with a combination of diverse symptoms such as low self-esteem, lack of motivation, anhedonia, loss of appetite, low energy, and discomfort without a clear cause. Depression has been suggested to be the result of maladaptive changes in specific brain circuits. Recently, the lateral habenula (LHb) has emerged as a key brain region in the pathophysiology of depression. Increasing evidence from rodent, nonhuman primate, and human studies indicates that the aberrant activity of the LHb is associated with depressive symptoms such as helplessness, anhedonia, and excessive negative focus. Revealing the molecular, cellular, and circuit properties of the LHb will help explain how abnormalities in LHb activity are linked to depressive disorders and shed light on developing novel strategies for depression treatment.
Collapse
Affiliation(s)
- Hailan Hu
- Center for Neuroscience and Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
39
|
Browne CA, Hammack R, Lucki I. Dysregulation of the Lateral Habenula in Major Depressive Disorder. Front Synaptic Neurosci 2018; 10:46. [PMID: 30581384 PMCID: PMC6292991 DOI: 10.3389/fnsyn.2018.00046] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Clinical and preclinical evidence implicates hyperexcitability of the lateral habenula (LHb) in the development of psychiatric disorders including major depressive disorder (MDD). This discrete epithalamic nucleus acts as a relay hub linking forebrain limbic structures with midbrain aminergic centers. Central to reward processing, learning and goal directed behavior, the LHb has emerged as a critical regulator of the behaviors that are impaired in depression. Stress-induced activation of the LHb produces depressive- and anxiety-like behaviors, anhedonia and aversion in preclinical studies. Moreover, deep brain stimulation of the LHb in humans has been shown to alleviate chronic unremitting depression in treatment resistant depression. The diverse neurochemical processes arising in the LHb that underscore the emergence and treatment of MDD are considered in this review, including recent optogenetic studies that probe the anatomical connections of the LHb.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Robert Hammack
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
40
|
Endocannabinoid Signaling in the Habenula Regulates Adaptive Responses to Stress. Biol Psychiatry 2018; 84:553-554. [PMID: 30261976 DOI: 10.1016/j.biopsych.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/19/2023]
|
41
|
Berger AL, Henricks AM, Lugo JM, Wright HR, Warrick CR, Sticht MA, Morena M, Bonilla I, Laredo SA, Craft RM, Parsons LH, Grandes PR, Hillard CJ, Hill MN, McLaughlin RJ. The Lateral Habenula Directs Coping Styles Under Conditions of Stress via Recruitment of the Endocannabinoid System. Biol Psychiatry 2018; 84:611-623. [PMID: 29887035 PMCID: PMC6162143 DOI: 10.1016/j.biopsych.2018.04.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/30/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The ability to effectively cope with stress is a critical determinant of disease susceptibility. The lateral habenula (LHb) and the endocannabinoid (ECB) system have independently been shown to be involved in the selection of stress coping strategies, yet the role of ECB signaling in the LHb remains unknown. METHODS Using a battery of complementary techniques in rats, we examined the localization of type-1 cannabinoid receptors (CB1Rs) and assessed the behavioral and neuroendocrine effects of intra-LHb CB1R manipulations. We further tested the extent to which the ECB system in the LHb is impacted following chronic unpredictable stress or social defeat stress, and whether manipulation of LHb CB1Rs can bias coping strategies in rats with a history of chronic stress. RESULTS Electron microscopy studies revealed CB1R expression on presynaptic axon terminals, postsynaptic membranes, mitochondria, and glial processes in the rat LHb. In vivo microdialysis experiments indicated that acute stress increased the amount of 2-arachidonoylglycerol in the LHb, while intra-LHb CB1R blockade increased basal corticosterone, augmented proactive coping strategies, and reduced anxiety-like behavior. Basal LHb 2-arachidonoylglycerol content was similarly elevated in rats that were subjected to chronic unpredictable stress or social defeat stress and positively correlated with adrenal weight. Finally, intra-LHb CB1R blockade increased proactive behaviors in response to a novel conspecific, increasing approach behaviors irrespective of stress history and decreasing the latency to be attacked during an agonistic encounter. CONCLUSIONS Alterations in LHb ECB signaling may be relevant for development of stress-related pathologies in which LHb dysfunction and stress-coping impairments are hallmark symptoms.
Collapse
Affiliation(s)
- Anthony L Berger
- Department of Psychology, Washington State University, Pullman, Washington
| | - Angela M Henricks
- Department of Psychology, Washington State University, Pullman, Washington
| | - Janelle M Lugo
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Hayden R Wright
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Collin R Warrick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Martin A Sticht
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Maria Morena
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Itziar Bonilla
- Department of Neurosciences, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain
| | - Sarah A Laredo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, Washington
| | - Loren H Parsons
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Pedro R Grandes
- Department of Neurosciences, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain; Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea, Leioa, Spain; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew N Hill
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, Pullman, Washington; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.
| |
Collapse
|
42
|
Yang P, Tao R, He C, Liu S, Wang Y, Zhang X. The Risk Factors of the Alcohol Use Disorders-Through Review of Its Comorbidities. Front Neurosci 2018; 12:303. [PMID: 29867316 PMCID: PMC5958183 DOI: 10.3389/fnins.2018.00303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
Alcohol use disorders (AUDs) represent a severe, world-wide problem, and are usually comorbid with psychiatric disorders, comorbidity increases the risks associated with AUDs, and results in more serious consequences for patients. However, currently the underlying mechanisms of comorbid psychiatric disorders in AUDs are not clear. Studies investigating comorbidity could help us understand the neural mechanisms of AUDs. In this review, we explore three comorbidities in AUDs, including schizophrenia, major depressive disorder (MDD), and personality disorders (PDs). They are all co-morbidities of AUDs with rate of 33.7, 28, and 50–70%, respectively. The rate is significantly higher than other diseases. Therefore we review and analyze relevant literature to explore whether these three diseases are the risk factors of AUDs, focusing on studies assessing cognitive function and those using neural imaging. We found that memory deficits, impairment of cognitive control, negative emotion, and impulsivity may increase an individual's vulnerability to AUDs. This comorbidity may indicate the neural basis of AUDs and reveal characteristics associated with different types of comorbidity, leading to further development of new treatment approaches for AUDs.
Collapse
Affiliation(s)
- Ping Yang
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Rui Tao
- Department of Substance-Related Disorders, Anhui Mental Health Center, Hefei, China
| | - Chengsen He
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shen Liu
- Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, China
| | - Ying Wang
- Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, China
| | - Xiaochu Zhang
- Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
43
|
Lateral habenula in the pathophysiology of depression. Curr Opin Neurobiol 2018; 48:90-96. [DOI: 10.1016/j.conb.2017.10.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 01/30/2023]
|
44
|
Scarante FF, Vila-Verde C, Detoni VL, Ferreira-Junior NC, Guimarães FS, Campos AC. Cannabinoid Modulation of the Stressed Hippocampus. Front Mol Neurosci 2017; 10:411. [PMID: 29311804 PMCID: PMC5742214 DOI: 10.3389/fnmol.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Exposure to stressful situations is one of the risk factors for the precipitation of several psychiatric disorders, including Major Depressive Disorder, Posttraumatic Stress Disorder and Schizophrenia. The hippocampal formation is a forebrain structure highly associated with emotional, learning and memory processes; being particularly vulnerable to stress. Exposure to stressful stimuli leads to neuroplastic changes and imbalance between inhibitory/excitatory networks. These changes have been associated with an impaired hippocampal function. Endocannabinoids (eCB) are one of the main systems controlling both excitatory and inhibitory neurotransmission, as well as neuroplasticity within the hippocampus. Cannabinoids receptors are highly expressed in the hippocampus, and several lines of evidence suggest that facilitation of cannabinoid signaling within this brain region prevents stress-induced behavioral changes. Also, chronic stress modulates hippocampal CB1 receptors expression and endocannabinoid levels. Moreover, cannabinoids participate in mechanisms related to synaptic plasticity and adult neurogenesis. Here, we discussed the main findings supporting the involvement of hippocampal cannabinoid neurotransmission in stress-induced behavioral and neuroplastic changes.
Collapse
Affiliation(s)
- Franciele F Scarante
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Vinícius L Detoni
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Nilson C Ferreira-Junior
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), Cannabinoid Research Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|