1
|
Han J, Du J, Li X, Zhou Q, Zeng J, Lin JT, Zhou W, Cai J, Ye Y, Yang B, Wang J, Zhou X, Lian R, Yang Y, Zhu X, Guan H, Liu L, Cai J, Wu J, Li Y, Li M, Tian H. The Glycosyltransferase XYLT1 Activates NF-κB Signaling to Promote Metastasis of Early-Stage Lung Adenocarcinoma. Cancer Res 2025; 85:1628-1643. [PMID: 39992715 DOI: 10.1158/0008-5472.can-24-1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/05/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Early-stage lung adenocarcinoma generally has a favorable prognosis. However, more than 30% of early-stage lung adenocarcinoma cases relapse within 5 years of initial treatment, even after complete removal of the primary tumor. Identification of the factors contributing to early-stage lung adenocarcinoma metastasis is needed to develop effective prevention and treatment strategies. In this study, we found upregulation of xylosyltransferase 1 (XYLT1), a glycosyltransferase that initiates the biosynthesis of sulfated glycosaminoglycan (sGAG) chains, in metastatic recurrent lesions of early-stage lung adenocarcinoma, which correlated with poor prognosis. In vitro and in vivo experiments showed that XYLT1 promoted lung adenocarcinoma cell survival and metastasis by activating the NF-κB pathway. Mechanistically, XYLT1 interacted with IκBα and facilitated the biosynthesis of sGAG-conjugated IκBα, which enhanced the interaction between IκBα and IKKs to promote the proteasomal degradation of IκBα. These results illustrate that proteoglycan modification-mediated activation of NF-κB signaling is a driver of early-stage lung adenocarcinoma metastasis, providing a possibility for the detection and intervention of early lung adenocarcinoma metastasis. Significance: XYLT1 promotes metastatic recurrence of early-stage lung adenocarcinoma by facilitating sulfated glycosaminoglycan conjugation and proteasomal degradation of IκBα to activate NF-κB, providing potential biomarker and treatment strategies for lung cancer metastasis.
Collapse
Affiliation(s)
- Jian Han
- The Tenth Affiliated Hospital, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Du
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangmeng Li
- The Tenth Affiliated Hospital, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qingbo Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun-Tao Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenle Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiayi Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaokai Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bosui Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junsheng Wang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rong Lian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yi Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xun Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liping Liu
- Department of Laboratory Medicine, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Junchao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jueheng Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yun Li
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mengfeng Li
- The Tenth Affiliated Hospital, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Han Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Asamori T, Katoh H, Takata M, Komura D, Kakiuchi M, Hashimoto I, Sakurai M, Yamamoto A, Tsutsumi T, Asakage T, Ota Y, Ishikawa S. Molecular mimicry-driven autoimmunity in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2025; 155:1521-1535. [PMID: 39984131 DOI: 10.1016/j.jaci.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/28/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) remains a subject of discussion. Although both microbial infection and autoimmunity have been proposed as potential contributors to CRSwNP pathobiology, their respective roles and intricate interactions in disease progression remain unclear owing to the limited knowledge regarding dysregulated humoral immunity in CRSwNP. OBJECTIVE To deepen understanding of CRSwNP, we sought to identify the precise humoral antigens targeted by dominant B-cell clones within the disease environments. METHODS Immunoglobulin repertoire sequencing was performed to identify dominant B-cell clones in CRSwNP tissues. These immunoglobulin clones were reconstructed as antibodies, which were then used in immunoprecipitation and antigen array experiments for hypothesis-free global antigen profiling of autogenous and exogenous antigens. RESULTS From analysis of 13 patients with CRSwNP, 31 antibodies were reconstructed from dominant B-cell clones identified in 9 patients. Seven novel protein autoantigens were identified, 5 of which were nucleic acid-binding proteins, and all were associated with autoimmune diseases. Additionally, 9 microbial antigens, including various viruses, bacteria, and fungi, were discovered. Notably, 2 antibodies demonstrated dual reactivity, simultaneously recognizing both microbial and human proteins. For example, 1 antibody targeted cytomegalovirus, Clostridium tetani, and human PLEC, whereas another recognized Aspergillus niger and human DLAT, through molecular mimicry of shared amino acid homologies. CONCLUSION Our data indicate the possibility that the pathobiology of CRSwNP involves autoreactive humoral immunity, with a subset of cases potentially exhibiting molecular mimicry-driven autoimmune features triggered by microbial infections. Nevertheless, this hypothesis requires further investigation.
Collapse
Affiliation(s)
- Tomoaki Asamori
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Head and Neck Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan.
| | - Mikiya Takata
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Kakiuchi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Itaru Hashimoto
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Madoka Sakurai
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Tsutsumi
- Department of Otolaryngology, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Yasushi Ota
- Department of Otorhinolaryngology, Toho University Sakura Medical Center, Chiba, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan.
| |
Collapse
|
3
|
Zheng Y, Zhang Y, Wang Z, Guo X, Zhang L, Zhang Y. Multiple data sets to explore the key molecules and mechanism of lymph node metastasis in gastric cancer. Discov Oncol 2025; 16:606. [PMID: 40272615 PMCID: PMC12021760 DOI: 10.1007/s12672-025-02360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/10/2025] [Indexed: 04/27/2025] Open
Abstract
OBJECTIVE To explore the key molecules and regulatory mechanisms of lymph node metastasis in gastric cancer. METHODS The differential genes and key genes of lymph node metastasis in gastric cancer were analyzed by utilizing multiple data sets. The key genes were analyzed by GSEA analysis, transcription factor analysis, nomogram prediction model construction, immune infiltration analysis, GSVA analysis, drug sensitive analysis and single cell data analysis. RESULTS Abnormal expression of key genes including CDRT15P1, DENND3, F2R, FNDC3B, IRAK3, MS4A2, PDK4, PKIA and activation of related signaling pathways might be the result of ultraviolet radiation-induced DNA damage, which was closely related to lymph node metastasis in gastric cancer. The key genes were regulated by a variety of transcription factors, which were strongly connected with the invasion of immune cells and the sensitivity of a variety of drugs. The nomogram prediction model, which is based on the key genes associated with lymph node metastasis and the TNM of gastric cancer, demonstrated a high level of predictive efficiency. CONCLUSION CDRT15P1, DENND3, F2R, FNDC3B, IRAK3, MS4A2, PDK4 and PKIA may be the key genes affecting lymph node metastasis in gastric cancer, and F2R has higher biological importance.
Collapse
Affiliation(s)
- Yijun Zheng
- Lanzhou University Second Clinical Medical School, Lanzhou, 730030, China
- Lanzhou University Second Hospital Department of General Surgery, Lanzhou, 730030, China
| | - Yawu Zhang
- Lanzhou University Second Clinical Medical School, Lanzhou, 730030, China
- Lanzhou University Second Hospital Department of General Surgery, Lanzhou, 730030, China
| | - Zheyuan Wang
- Lanzhou University Second Clinical Medical School, Lanzhou, 730030, China
- Lanzhou University Second Hospital Department of General Surgery, Lanzhou, 730030, China
| | - Xiaohu Guo
- Lanzhou University Second Clinical Medical School, Lanzhou, 730030, China
- Lanzhou University Second Hospital Department of General Surgery, Lanzhou, 730030, China
| | - Lingyi Zhang
- Lanzhou University Second Clinical Medical School, Lanzhou, 730030, China
- Lanzhou University Second Hospital Department of General Surgery, Lanzhou, 730030, China
| | - Youcheng Zhang
- Lanzhou University Second Clinical Medical School, Lanzhou, 730030, China.
- Lanzhou University Second Hospital Department of General Surgery, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
5
|
Chen W, Zhang L, Gao M, Zhang N, Wang R, Liu Y, Niu Y, Jia L. Role of tertiary lymphoid structures and B cells in clinical immunotherapy of gastric cancer. Front Immunol 2025; 15:1519034. [PMID: 39840050 PMCID: PMC11747648 DOI: 10.3389/fimmu.2024.1519034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, and its treatment remains a significant challenge. In recent years, the role of various immune cells in the tumor microenvironment in cancer progression and treatment has gained increasing attention. Immunotherapy, primarily based on immune checkpoint inhibitors, has notably improved the prognosis of patients with gastric cancer; however, challenges regarding therapeutic efficacy persist. Histological features within the tumor microenvironment, such as tertiary lymphoid structures (TLSs), tumor-infiltrating lymphocytes, and the proportion of intratumoral stroma, are emerging as potentially effective prognostic factors. In gastric cancer, TLSs may serve as local immune hubs, enhancing the ability of immune cells to interact with and recognize tumor antigens, which is closely linked to the effectiveness of immunotherapy and improved survival rates in patients. However, the specific cell type driving TLS formation in tumors has not yet been elucidated. Mature TLSs are B-cell regions containing germinal centers. During germinal center formation, B cells undergo transformations to become mature cells with immune function, exerting anti-tumor effects. Therefore, targeting B cells within TLSs could provide new avenues for gastric cancer immunotherapy. This review, combined with current research on TLSs and B cells in gastric cancer, elaborates on the relationship between TLSs and B cells in the prognosis and immunotherapy of patients with gastric cancer, aiming to provide effective guidance for precise immunotherapy.
Collapse
Affiliation(s)
- Weiyi Chen
- Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lingli Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Man Gao
- Bayannur Clinical Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yan Niu
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
6
|
Horie M, Akiyama Y, Katoh H, Taguchi S, Nakamura M, Mizuguchi K, Ito Y, Matsushita T, Ushiku T, Ishikawa S, Goto A, Kume H, Homma Y, Maeda D. APRIL/BAFF upregulation is associated with clonal B-cell expansion in Hunner-type interstitial cystitis. J Pathol 2024; 264:383-395. [PMID: 39360360 DOI: 10.1002/path.6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Hunner-type interstitial cystitis (HIC) is a chronic inflammatory disease of the urinary bladder with an unknown etiology. We conducted comprehensive immunogenomic profiling of bladder specimens obtained by biopsy and cystectomy from 37 patients with HIC. Next-generation RNA sequencing demonstrated abundant plasma cell infiltration with frequent light chain restriction in HIC-affected bladder tissue. Subsequent analysis of the B-cell receptor repertoire revealed spatial and temporal expansion of B-cell clones. The extent of B-cell clonal expansion was significantly correlated with the gene expression levels of TNFSF13 and TNFSF13B, which encode APRIL and BAFF, respectively. These findings indicate that APRIL and BAFF are the key regulators of clonal B-cell expansion in HIC and might serve as therapeutic targets in this debilitating disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Akiyama
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Nakamura
- Department of Urology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Keishi Mizuguchi
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Yukinobu Ito
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Interstitial Cystitis Medicine, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Huang X, Xiong L, Zhang Y, Peng X, Ba H, Yang P. Proteomic profile of the antibody diversity in circulating extracellular vesicles of lung adenocarcinoma. Sci Rep 2024; 14:27953. [PMID: 39543163 PMCID: PMC11564652 DOI: 10.1038/s41598-024-78955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Immunoglobulin diversity encompasses B-cell receptor, T-cell receptor, and antibody diversity. Existing studies have focused more on the role of B-cell and T-cell receptor diversity in tumor immunity, while the role of antibody diversity is less understood. This study examined and compared the blood extracellular vesicles (EVs) of lung cancer patients and healthy individuals using proteomics and bioinformatics analyses. The results revealed that among the 270 identified proteins, those involved in defense mechanisms were the most abundant. Most of these were antibody subtypes, accounting for 50.00%. Similarly, of the 40 identified EVs differentially expressed proteins (DEPs), 29 were involved in defense mechanisms (72.50%), with a higher proportion being antibody subtypes (82.76%). Furthermore, 24 DEP antibody subtypes were implicated in 18 immune reaction-related signaling pathways. These findings suggest that human serum EVs contain a significant number of antibody subtypes, and the antibody subtypes from lung cancer serum EVs differ from those of healthy controls (HCs). The variations in antibody diversity may be closely associated with lung cancer tumor immunity.
Collapse
Affiliation(s)
- Xinfu Huang
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Lijuan Xiong
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Yang Zhang
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Xin Peng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Hongping Ba
- Department of Quality Evaluation, Wuhan Center for Clinical Laboratory, No. 24, Jianghan North Road, Jiang'an District, Wuhan, 430400, China.
| | - Peng Yang
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
| |
Collapse
|
8
|
Yang H, Zhang Z, Li J, Wang K, Zhu W, Zeng Y. The Dual Role of B Cells in the Tumor Microenvironment: Implications for Cancer Immunology and Therapy. Int J Mol Sci 2024; 25:11825. [PMID: 39519376 PMCID: PMC11546796 DOI: 10.3390/ijms252111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous tissue composed of various cell types, including tumor cells, stromal cells, and immune cells, as well as non-cellular elements. Given their pivotal role in humoral immunity, B cells have emerged as promising targets for anti-tumor therapies. The dual nature of B cells, exhibiting both tumor-suppressive and tumor-promoting functions, has garnered significant attention. Understanding the distinct effects of various B cell subsets on different tumors could pave the way for novel targeted tumor therapies. This review provides a comprehensive overview of the heterogeneous B cell subsets and their multifaceted roles in tumorigenesis, as well as the therapeutic potential of targeting B cells in cancer treatment. To develop more effective cancer immunotherapies, it is essential to decipher the heterogeneity of B cells and their roles in shaping the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China; (H.Y.); (Z.Z.); (J.L.); (K.W.); (W.Z.)
| |
Collapse
|
9
|
Bryushkova EA, Mushenkova NV, Turchaninova MA, Lukyanov DK, Chudakov DM, Serebrovskaya EO. B cell clonality in cancer. Semin Immunol 2024; 72:101874. [PMID: 38508089 DOI: 10.1016/j.smim.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/22/2024]
Abstract
Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles. However, the exact mechanisms that determine the contribution of clonal B cell lineages with different specificities and functions remain largely unclear. This is due to the variability of cancer types, the molecular heterogeneity of tumor cells, and, to a large extent, the individual pattern of each immune response. Further progress requires detailed investigation of the functional properties and phenotypes of clonally heterogeneous B cells in relation to their antigenic specificities, which determine the functionality of both effector B lymphocytes and immunoglobulins produced in the tumor environment. Based on a real understanding of the role of clonal antigen-specific populations of B lymphocytes in the tumor microenvironment, we need to learn how to develop new methods of targeted immunotherapy, as well as adapt existing treatment options to the specific needs of different patients and patient subgroups. In this review, we will cover B cells functional diversity and their multifaceted roles in the tumor environment.
Collapse
Affiliation(s)
- E A Bryushkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N V Mushenkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Unicorn Capital Partners, Moscow, Russia
| | - M A Turchaninova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - D K Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - D M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - E O Serebrovskaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Current position: Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
10
|
Wang L, Zhou Y, Cui H, Zhuang X, Cheng C, Weng Y, Liu H, Wang S, Pan X, Cui Y, Zhang W. IGH repertoire analysis at scale: deciphering the complexity of B cell infiltration and migration in esophageal squamous cell carcinoma. Cancer Gene Ther 2024; 31:131-147. [PMID: 37985722 DOI: 10.1038/s41417-023-00689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Tumor-infiltrating B-lineage cells have become predictors of prognosis and immunotherapy responses in various cancers. However, limited knowledge about their infiltration and migration patterns has hindered the understanding of their anti-tumor functions. Here, we examined the immunoglobulin heavy chain (IGH) repertoires in 496 multi-regional tumor, 107 normal tissue, and 48 metastatic lymph node samples obtained from 107 patients with esophageal squamous cell carcinoma (ESCC). Our study revealed higher IgG-type B-lineage cells infiltration in tumors than in healthy tissue, which was associated with improved patient outcomes. Genes such as ACTN1, COL6A5, and pathways like focal adhesion, which shapes the physical structure of tumors, could affect B-lineage cell infiltration. Notably, the IGH sequence was used as an identity-tag to monitor B cell migration, and their infiltration schema within the tumor were depicted based on our multi-regional tumor specimens. This analysis revealed an escalation in B cell clones overlapped between metastatic lymph nodes and tumors. Therefore, the Lymph Node Activation Index was defined, which could predict the outcomes of patients with lymph node metastasis. This research introduces a novel framework for probing B cell infiltration and migration within the tumor microenvironment using large-scale transcriptome data, while simultaneously providing fresh perspectives on B cell immunology within ESCC.
Collapse
Affiliation(s)
- Longlong Wang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Yong Zhou
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Heyang Cui
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Xuehan Zhuang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Chen Cheng
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Yongjia Weng
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Huijuan Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Shubin Wang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yongping Cui
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China.
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| | - Weimin Zhang
- Cancer Institute, Department of Oncology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, Guangdong, 518035, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518028, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
11
|
Kang JY, Yang J, Lee H, Park S, Gil M, Kim KE. Systematic Multiomic Analysis of PKHD1L1 Gene Expression and Its Role as a Predicting Biomarker for Immune Cell Infiltration in Skin Cutaneous Melanoma and Lung Adenocarcinoma. Int J Mol Sci 2023; 25:359. [PMID: 38203530 PMCID: PMC10778817 DOI: 10.3390/ijms25010359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of genetic factors that regulate the cancer immune microenvironment is important for understanding the mechanism of tumor progression and establishing an effective treatment strategy. Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is a large transmembrane protein that is highly expressed in immune cells; however, its association with tumor progression remains unclear. Here, we systematically analyzed the clinical relevance of PKHD1L1 in the tumor microenvironment in multiple cancer types using various bioinformatic tools. We found that the PKHD1L1 mRNA expression levels were significantly lower in skin cutaneous melanoma (SKCM) and lung adenocarcinoma (LUAD) than in normal tissues. The decreased expression of PKHD1L1 was significantly associated with unfavorable overall survival (OS) in SKCM and LUAD. Additionally, PKHD1L1 expression was positively correlated with the levels of infiltrating B cells, cluster of differentiation (CD)-8+ T cells, and natural killer (NK) cells, suggesting that the infiltration of immune cells could be associated with a good prognosis due to increased PKHD1L1 expression. Gene ontology (GO) analysis also revealed the relationship between PKHD1L1-co-altered genes and the activation of lymphocytes, including B and T cells. Collectively, this study shows that PKHD1L1 expression is positively correlated with a good prognosis via the induction of immune infiltration, suggesting that PKHD1L1 has potential prognostic value in SKCM and LUAD.
Collapse
Affiliation(s)
- Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Minchan Gil
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|
12
|
Cable J, Saphire EO, Hayday AC, Wiltshire TD, Mousa JJ, Humphreys DP, Breij ECW, Bruhns P, Broketa M, Furuya G, Hauser BM, Mahévas M, Carfi A, Cantaert T, Kwong PD, Tripathi P, Davis JH, Brewis N, Keyt BA, Fennemann FL, Dussupt V, Sivasubramanian A, Kim PM, Rawi R, Richardson E, Leventhal D, Wolters RM, Geuijen CAW, Sleeman MA, Pengo N, Donnellan FR. Antibodies as drugs-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1519:153-166. [PMID: 36382536 PMCID: PMC10103175 DOI: 10.1111/nyas.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.
Collapse
Affiliation(s)
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.,Cancer Research UK Cancer Immunotherapy Accelerator, London, UK.,Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | | | - Jarrod J Mousa
- Department of Infectious Diseases and Center for Vaccines and Immunology, College of Veterinary Medicine, Athens, Georgia, USA.,Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Esther C W Breij
- Translational Research and Precision Medicine, Genmab BV, Utrecht, the Netherlands
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Matteo Broketa
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Genta Furuya
- Department of Preventive Medicine and Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Matthieu Mahévas
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-immunes de l'adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Andrea Carfi
- Moderna Inc., Cambridge, Massachusetts, USA.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Bruce A Keyt
- IGM Biosciences, Inc., Mountainview, California, USA
| | | | - Vincent Dussupt
- Emerging Infectious Diseases Branch, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Philip M Kim
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eve Richardson
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Rachael M Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
13
|
Hayashi S, Ishikawa S. Analyzing Antibody Repertoire Using Next-Generation Sequencing and Machine Learning. Methods Mol Biol 2023; 2552:465-473. [PMID: 36346609 DOI: 10.1007/978-1-0716-2609-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advances in high-throughput sequencing technologies have enabled comprehensive sequencing of the immune repertoire. Since repertoire analysis can help to explain the relationship between the immune system and diseases, several methods have been developed for repertoire analysis. Here, using simulated and real-world datasets, we describe how to use DeepRC, a method that applies cutting-edge machine learning techniques.
Collapse
Affiliation(s)
- Shuto Hayashi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Katoh H, Komura D, Furuya G, Ishikawa S. Immune repertoire profiling for disease pathobiology. Pathol Int 2023; 73:1-11. [PMID: 36342353 PMCID: PMC10099665 DOI: 10.1111/pin.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
Lymphocytes consist of highly heterogeneous populations, each expressing a specific cell surface receptor corresponding to a particular antigen. Lymphocytes are both the cause and regulator of various diseases, including autoimmune/allergic diseases, lifestyle diseases, neurodegenerative diseases, and cancers. Recently, immune repertoire sequencing has attracted much attention because it helps obtain global profiles of the immune receptor sequences of infiltrating T and B cells in specimens. Immune repertoire sequencing not only helps deepen our understanding of the molecular mechanisms of immune-related pathology but also assists in discovering novel therapeutic modalities for diseases, thereby shedding colorful light on otherwise tiny monotonous cells when observed under a microscope. In this review article, we introduce and detail the background and methodology of immune repertoire sequencing and summarize recent scientific achievements in association with human diseases. Future perspectives on this genetic technique in the field of histopathological research will also be discussed.
Collapse
Affiliation(s)
- Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genta Furuya
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Diao FY. The Most Comprehensive Study at Single-Cell Resolution: A Giant Step toward Understanding Gastric Cancer. Glob Med Genet 2022; 9:265-267. [DOI: 10.1055/s-0042-1758763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fei-Yu Diao
- Department of General Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Furuya G, Katoh H, Atsumi S, Hashimoto I, Komura D, Hatanaka R, Senga S, Hayashi S, Akita S, Matsumura H, Miura A, Mita H, Nakakido M, Nagatoishi S, Sugiyama A, Suzuki R, Konishi H, Yamamoto A, Abe H, Hiraoka N, Aoki K, Kato Y, Seto Y, Yoshimura C, Miyadera K, Tsumoto K, Ushiku T, Ishikawa S. Nucleic acid-triggered tumoral immunity propagates pH-selective therapeutic antibodies through tumor-driven epitope spreading. Cancer Sci 2022; 114:321-338. [PMID: 36136061 PMCID: PMC9807517 DOI: 10.1111/cas.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Important roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs). These anti-dsGAG/NA antibodies matured and expanded via intratumoral immunological driving force of innate immunity via NAs. These human cancer-derived antibodies exhibited acidic pH-selective affinity across both antigens and showed specific reactivity to diverse spectrums of human tumor cells. The antibody-drug conjugate exerted therapeutic effects against multiple cancers in vivo by targeting cell surface dsGAG antigens. This study reveals that intratumoral immunological reactions propagate tumor-oriented immunoglobulin clones and demonstrates a new therapeutic modality for the universal treatment of human malignancies.
Collapse
Affiliation(s)
- Genta Furuya
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinichiro Atsumi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Itaru Hashimoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ryo Hatanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shogo Senga
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shuto Hayashi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shoji Akita
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hirofumi Matsumura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Akihiro Miura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hideaki Mita
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Satoru Nagatoishi
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akira Sugiyama
- Laboratory of Systems Biology and MedicineResearch Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Ryohei Suzuki
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroki Konishi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Asami Yamamoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobuyoshi Hiraoka
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Kazunori Aoki
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Yasumasa Kato
- Department of Oral Function and Molecular BiologyOhu University School of DentistryFukushimaJapan
| | - Yasuyuki Seto
- Department of Gastrointestinal SurgeryGraduate School of Medicine, The University of TokyoTokyoJapan
| | - Chihoko Yoshimura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kazutaka Miyadera
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kouhei Tsumoto
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
17
|
Noguchi K, Ikawa Y, Takenaka M, Sakai Y, Fujiki T, Kuroda R, Ikeda H, Nakada S, Nomura K, Sakai S, Fukuda M, Araki R, Takahashi Y, Wada T. Presence of identical B-cell clone in both cerebrospinal fluid and tumor tissue in a patient with opsoclonus-myoclonus syndrome associated with neuroblastoma. Pediatr Hematol Oncol 2022; 40:363-370. [PMID: 36125271 DOI: 10.1080/08880018.2022.2109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Opsoclonus-myoclonus syndrome associated with neuroblastoma (OMS-NB) is a refractory paraneoplastic syndrome which often remain neurological sequelae, and detailed pathogenesis has remained elusive. We encountered a pediatric patient with OMS-NB treated by immunosuppressed therapy who showed anti-glutamate receptor δ2 antibody and increased B-cells in cerebrospinal fluid (CSF), and multiple lymphoid follicles containing abundant Bcells in tumor tissue. Unbiased B-cell receptor repertoire analysis revealed identical B-cell clone was identified as the dominant clone in both CSF and tumor tissue. These identical B-cell clone may contribute to the pathogenesis of OMS-NB. Our results could facilitate the establishment of pathogenesis-based treatment strategies for OMS-NB.
Collapse
Affiliation(s)
- Kazuhiro Noguchi
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takenaka
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuta Sakai
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshihiro Fujiki
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Rie Kuroda
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroko Ikeda
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Satoko Nakada
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kozo Nomura
- Department of Pediatric Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Seisho Sakai
- Department of Pediatric Surgery, Kanazawa University Hospital, Kanazawa, Japan
| | - Masaki Fukuda
- Department of Pediatrics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Raita Araki
- Department of Pediatrics, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
18
|
Wang Z, Cheng Z, Lu S, Chard Dunmall LS, Wang J, Guo Y, Wang Y. Characterization of the Intra-tumoral B Cell Immunoglobulin Repertoire Is of Prognostic Value for Esophageal Squamous Cell Carcinoma. Front Immunol 2022; 13:896627. [PMID: 35812448 PMCID: PMC9257635 DOI: 10.3389/fimmu.2022.896627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal Squamous Cell carcinomas (ESCC) is a highly heterogeneous malignancy that is among the leading cause of cancer-related death worldwide. B cells play pivotal roles in the immune defense system and cancer progression and regression, yet the repertoire of tumor infiltrating B cells (TIBs) and its association with clinical outcome remains unexplored in ESCC. Here we collected bulk RNA-seq sequencing data from 119 ESCC tumors and matched adjacent normal samples to delineate the B cell repertoire. We found that ESCC is more heavily infiltrated by B cells and plasma cells compared to activated T cells. The immunoglobulin heavy chain variable region (IGHV) gene usage was remarkably biased and IGHV3-74 was under-represented in ESCC tumors. The TIBs showed a more oligoclonal profile along with widespread clonal expansion and IgG subclass switch events (CSRs). Survival analysis revealed several unexpected associations between tumor infiltrating B cells and prognosis. Higher levels of immunoglobulin expression (IGH), CD138 expression, IGH to MS4A1 ratio, CSR events and clone diversity are all associated with better survival. Notably, we found that the abundance of CD20-negative IgG2-producing plasma cells has a strong positive effect on overall survival with a hazard ratio (HR) of 0.40 (log-rank p: 0.002). Combing molecular subtyping, the IgG2-producing plasma cells could stratify high-risk patients more accurately with a HR of 0.253 (log-rank p: 0.0006). The direct link between protective B cell populations and ESCC prognosis provides biomarkers for high-risk patient selection and holds great promise for developing strategies for immunotherapy targeting B cells in ESCC patients.
Collapse
Affiliation(s)
- Zhizhong Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Pharmacology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Biomarkers Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Yaohe Wang, ; Yongjun Guo,
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Yaohe Wang, ; Yongjun Guo,
| |
Collapse
|
19
|
Delvecchio FR, Goulart MR, Fincham REA, Bombadieri M, Kocher HM. B cells in pancreatic cancer stroma. World J Gastroenterol 2022; 28:1088-1101. [PMID: 35431504 PMCID: PMC8985484 DOI: 10.3748/wjg.v28.i11.1088] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a disease with high unmet clinical need. Pancreatic cancer is also characterised by an intense fibrotic stroma, which harbours many immune cells. Studies in both human and animal models have demonstrated that the immune system plays a crucial role in modulating tumour onset and progression. In human pancreatic ductal adenocarcinoma, high B-cell infiltration correlates with better patient survival. Hence, B cells have received recent interest in pancreatic cancer as potential therapeutic targets. However, the data on the role of B cells in murine models is unclear as it is dependent on the pancreatic cancer model used to study. Nevertheless, it appears that B cells do organise along with other immune cells such as a network of follicular dendritic cells (DCs), surrounded by T cells and DCs to form tertiary lymphoid structures (TLS). TLS are increasingly recognised as sites for antigen presentation, T-cell activation, B-cell maturation and differentiation in plasma cells. In this review we dissect the role of B cells and provide directions for future studies to harness the role of B cells in treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Romana Delvecchio
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | - Michele Bombadieri
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
20
|
Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK, Tay ST, Ho SWT, Tan ALK, Ishimoto T, Kim G, Shabbir A, Chen Q, Zhang B, Xu S, Lam KP, Lum HYJ, Teh M, Yong WP, So JBY, Tan P. Single-Cell Atlas of Lineage States, Tumor Microenvironment, and Subtype-Specific Expression Programs in Gastric Cancer. Cancer Discov 2022; 12:670-691. [PMID: 34642171 PMCID: PMC9394383 DOI: 10.1158/2159-8290.cd-21-0683] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023]
Abstract
Gastric cancer heterogeneity represents a barrier to disease management. We generated a comprehensive single-cell atlas of gastric cancer (>200,000 cells) comprising 48 samples from 31 patients across clinical stages and histologic subtypes. We identified 34 distinct cell-lineage states including novel rare cell populations. Many lineage states exhibited distinct cancer-associated expression profiles, individually contributing to a combined tumor-wide molecular collage. We observed increased plasma cell proportions in diffuse-type tumors associated with epithelial-resident KLF2 and stage-wise accrual of cancer-associated fibroblast subpopulations marked by high INHBA and FAP coexpression. Single-cell comparisons between patient-derived organoids (PDO) and primary tumors highlighted inter- and intralineage similarities and differences, demarcating molecular boundaries of PDOs as experimental models. We complemented these findings by spatial transcriptomics, orthogonal validation in independent bulk RNA-sequencing cohorts, and functional demonstration using in vitro and in vivo models. Our results provide a high-resolution molecular resource of intra- and interpatient lineage states across distinct gastric cancer subtypes. SIGNIFICANCE We profiled gastric malignancies at single-cell resolution and identified increased plasma cell proportions as a novel feature of diffuse-type tumors. We also uncovered distinct cancer-associated fibroblast subtypes with INHBA-FAP-high cell populations as predictors of poor clinical prognosis. Our findings highlight potential origins of deregulated cell states in the gastric tumor ecosystem. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Nisha Padmanabhan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Mayu Koiwa
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Vivien Koh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Shamaine Wei Ting Ho
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Guowei Kim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Asim Shabbir
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore
| | - Biyan Zhang
- Singapore Immunology Network (SIgN), A*STAR, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), A*STAR, Singapore.,Department of Physiology, National University of Singapore, Singapore
| | - Kong-Peng Lam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore.,Singapore Immunology Network (SIgN), A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Ming Teh
- Department of Pathology, National University Health System, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jimmy Bok Yan So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore.,Division of Surgical Oncology, National University Cancer Institute, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Corresponding Author: Patrick Tan, Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore. Phone: 65-6516-1783; Fax: 65-6221-2402; E-mail:
| |
Collapse
|
21
|
Bai Z, Zhou Y, Ye Z, Xiong J, Lan H, Wang F. Tumor-Infiltrating Lymphocytes in Colorectal Cancer: The Fundamental Indication and Application on Immunotherapy. Front Immunol 2022; 12:808964. [PMID: 35095898 PMCID: PMC8795622 DOI: 10.3389/fimmu.2021.808964] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
The clinical success of immunotherapy has revolutionized the treatment of cancer patients, bringing renewed attention to tumor-infiltrating lymphocytes (TILs) of various cancer types. Immune checkpoint blockade is effective in patients with mismatched repair defects and high microsatellite instability (dMMR-MSI-H) in metastatic colorectal cancer (CRC), leading the FDA to accelerate the approval of two programmed cell death 1 (PD-1) blocking antibodies, pembrolizumab and nivolumab, for treatment of dMMR-MSI-H cancers. In contrast, patients with proficient mismatch repair and low levels of microsatellite stability or microsatellite instability (pMMR-MSI-L/MSS) typically have low tumor-infiltrating lymphocytes and have shown unsatisfied responses to the immune checkpoint inhibitor. Different TILs environments reflect different responses to immunotherapy, highlighting the complexity of the underlying tumor-immune interaction. Profiling of TILs fundamental Indication would shed light on the mechanisms of cancer-immune evasion, thus providing opportunities for the development of novel therapeutic strategies. In this review, we summarize phenotypic diversities of TILs and their connections with prognosis in CRC and provide insights into the subsets-specific nature of TILs with different MSI status. We also discuss current clinical immunotherapy approaches based on TILs as well as promising directions for future expansion, and highlight existing clinical data supporting its use.
Collapse
Affiliation(s)
- Ziyi Bai
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zifan Ye
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jialong Xiong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hongying Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
22
|
Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, Calvez A, Giglioli I, Verkarre V, Lacroix G, Verneau J, Sun CM, Laurent-Puig P, Vano YA, Elaïdi R, Méjean A, Sanchez-Salas R, Barret E, Cathelineau X, Oudard S, Reynaud CA, de Reyniès A, Sautès-Fridman C, Fridman WH. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 2022; 55:527-541.e5. [PMID: 35231421 DOI: 10.1016/j.immuni.2022.02.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022]
Abstract
The presence of intratumoral tertiary lymphoid structures (TLS) is associated with positive clinical outcomes and responses to immunotherapy in cancer. Here, we used spatial transcriptomics to examine the nature of B cell responses within TLS in renal cell carcinoma (RCC). B cells were enriched in TLS, and therein, we could identify all B cell maturation stages toward plasma cell (PC) formation. B cell repertoire analysis revealed clonal diversification, selection, expansion in TLS, and the presence of fully mature clonotypes at distance. In TLS+ tumors, IgG- and IgA-producing PCs disseminated into the tumor beds along fibroblastic tracks. TLS+ tumors exhibited high frequencies of IgG-producing PCs and IgG-stained and apoptotic malignant cells, suggestive of anti-tumor effector activity. Therapeutic responses and progression-free survival correlated with IgG-stained tumor cells in RCC patients treated with immune checkpoint inhibitors. Thus, intratumoral TLS sustains B cell maturation and antibody production that is associated with response to immunotherapy, potentially via direct anti-tumor effects.
Collapse
Affiliation(s)
- Maxime Meylan
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Florent Petitprez
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Etienne Becht
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France
| | - Antoine Bougoüin
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Guilhem Pupier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Anne Calvez
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Ilenia Giglioli
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Virginie Verkarre
- Département de pathologie, Hôpital européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris - Paris Centre, 75015 Paris, France; Université de Paris, 75006 Paris, France; PARCC, INSERM, Equipe Labellisée Ligue contre le Cancer, 75015 Paris, France
| | - Guillaume Lacroix
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Johanna Verneau
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Chen-Ming Sun
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, 75006 Paris, France
| | - Yann-Alexandre Vano
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France; Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Département d'oncologie médicale, Hôpital européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris - Paris Centre, F-75015 Paris, France; Université de Paris, 75006 Paris, France; PARCC, INSERM, Equipe Labellisée Ligue contre le Cancer, 75015 Paris, France
| | - Reza Elaïdi
- Association pour la Recherche de Thérapeutiques Innovantes en Cancérologie, 75015 Paris, France
| | - Arnaud Méjean
- Département d'urologie, Hôpital européen Georges Pompidou, Université de Paris, 75015 Paris, France
| | - Rafaël Sanchez-Salas
- Département d'urologie, Institut Mutualiste Montsouris, Université de Paris, 75014 Paris, France
| | - Eric Barret
- Département d'urologie, Institut Mutualiste Montsouris, Université de Paris, 75014 Paris, France
| | - Xavier Cathelineau
- Département d'urologie, Institut Mutualiste Montsouris, Université de Paris, 75014 Paris, France
| | - Stephane Oudard
- Département d'oncologie médicale, Hôpital européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris - Paris Centre, F-75015 Paris, France; Université de Paris, 75006 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMRS8253, Université de Paris, 75015 Paris, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France; MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, 75006 Paris, France; Université de Paris, 75006 Paris, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Equipe labellisée Ligue Contre le Cancer, 75006 Paris, France.
| |
Collapse
|
23
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Ma ES, Wang ZX, Zhu MQ, Zhao J. Immune evasion mechanisms and therapeutic strategies in gastric cancer. World J Gastrointest Oncol 2022; 14:216-229. [PMID: 35116112 PMCID: PMC8790417 DOI: 10.4251/wjgo.v14.i1.216] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality. The tumor immune microenvironment plays an important role in promoting cancer development and supports GC progression. Accumulating evidence shows that GC cells can exert versatile mechanisms to remodel the tumor immune microenvironment and induce immune evasion. In this review, we systematically summarize the intricate crosstalk between GC cells and immune cells, including tumor-associated macrophages, neutrophils, myeloid-derived suppressor cells, natural killer cells, effector T cells, regulatory T cells, and B cells. We focus on how GC cells alter these immune cells to create an immunosuppressive microenvironment that protects GC cells from immune attack. We conclude by compiling the latest progression of immune checkpoint inhibitor-based immunotherapies, both alone and in combination with conventional therapies. Anti-cytotoxic T-lymphocyte-associated protein 4 and anti-programmed cell death protein 1/programmed death-ligand 1 therapy alone does not provide substantial clinical benefit for GC treatment. However, the combination of immune checkpoint inhibitors with chemotherapy or targeted therapy has promising survival advantages in refractory and advanced GC patients. This review provides a comprehensive understanding of the immune evasion mechanisms of GC, and highlights promising immunotherapeutic strategies.
Collapse
Affiliation(s)
- En-Si Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Zheng-Xin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Institute of Organ Transplantation, Fudan University, Shanghai 200040, China
| | - Meng-Qi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
25
|
Abstract
Gastric cancer (GC) is a major health concern in many countries. GC is a heterogeneous disease stratified by histopathological differences. However, these variations are not used to determine GC management. Next-generation sequencing (NGS) technologies have become widely used, and cancer genomic analysis has recently revealed the relationships between various malignant tumors and genomic information. In 2014, studies using whole-exome sequencing (WES) and whole-genome sequencing (WGS) for GC revealed the entire structure of GC genomics. Genomics with NGS has been used to identify new therapeutic targets for GC. Moreover, personalized medicine to provide specific therapy for targets based on multiplex gene panel testing of tumor tissues has become of clinical use. Recently, immune checkpoint inhibitors (ICIs) have been used for GC treatment; however, their response rates are limited. To predict the anti-tumor effects of ICIs for GC and to select patients suitable for ICI treatment, genomics also provides informative data not only of tumors but also of tumor microenvironments, such as tumor-infiltrating lymphocytes. In therapeutic strategies for unresectable or recurrent malignant tumors, the target is not only the primary lesion but also metastatic lesions, and metastatic lesions are often resistant to chemotherapy. Unlike colorectal carcinoma, there is a heterogeneous status of genetic variants between the primary and metastatic lesions in GC. Liquid biopsy analysis is also helpful for predicting the genomic status of both primary and metastatic lesions. Genomics has become an indispensable tool for GC treatment and is expected to be further developed in the future.
Collapse
Affiliation(s)
- Takumi Onoyama
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
26
|
Jing Y, Xu F, Liang W, Liu J, Zhang L. Role of regulatory B cells in gastric cancer: Latest evidence and therapeutics strategies. Int Immunopharmacol 2021; 96:107581. [PMID: 33812259 DOI: 10.1016/j.intimp.2021.107581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Gastric cancer (GC) is the second most common cancer globally and kills about 700,000 people annually. Today's knowledge clearly shows a close and complicated relationship between the tumor microenvironment (TME) and the immune system. The immune system components can both stimulate tumor growth and inhibit tumor cells. However, numerous of these mechanisms are not yet fully understood. As an essential immune cell in humoral immunity, B lymphocytes can play a dual role during various pathologic states, including infections, autoimmune diseases, and cancer, depending on their phenotype and environmental signals. Inherently, B cells can inhibit tumor growth by producing antibodies as well as the presentation of tumor antigens. However, evidence suggests that a subset of these cells termed regulatory B cells (Bregs) with an inhibitory phenotype can suppress anti-tumor responses and support the tumor growth by producing anti-inflammatory cytokines and the expression of inhibitory molecules. Therefore, in this review, the role of Bregs in the microenvironment of GC and treatment strategies based on targeting this subset of B cells have been investigated.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, PR China.
| | - Fangming Xu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, PR China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, PR China
| | - Jian Liu
- Department of Hepatobiliary Surgery, Shanghai Oriental Hepatobiliary Hospital, Shanghai 200438, PR China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, PR China.
| |
Collapse
|
27
|
Sato Y, Shimoda M, Sota Y, Miyake T, Tanei T, Kagara N, Naoi Y, Kim SJ, Noguchi S, Shimazu K. Enhanced humoral immunity in breast cancer patients with high serum concentration of anti-HER2 autoantibody. Cancer Med 2021; 10:1418-1430. [PMID: 33506656 PMCID: PMC7926031 DOI: 10.1002/cam4.3742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/28/2022] Open
Abstract
Humoral immunity plays a substantial role in the suppression of breast cancer. We have revealed that a high serum concentration of anti‐HER2 autoantibody (HER2‐AAb) is associated with favorable outcomes in patients with invasive breast cancer. Thus, we aimed to clarify the association between high serum concentration of HER2‐AAb and humoral immune response in the tumor microenvironment. Out of 500 consecutive patients with invasive breast cancer, we selected those whose HER2‐AAb values were high (n = 33) or low (n = 20) based on the distribution of HER2‐AAb values of 100 healthy individuals. Tumor and regional lymph node formalin‐fixed paraffin‐embedded samples prepared from the surgical specimens were subjected to immunohistochemistry. We confirmed that the recurrence‐free survival of the high HER2‐AAb group was significantly longer than that of the low HER2‐AAb group (p = 0.015). The numbers of tumor‐infiltrating CD20+ immune cells (ICs) (p < 0.001), IGKC+ICs (p = 0.023), and CXCL13+ ICs (p = 0.044) were significantly higher in the high HER2‐AAb group than in the low HER2‐AAb group. The number of CD4+ ICs in the B‐cell follicles of the regional lymph nodes was also significantly greater in the high HER2‐AAb group than in the low HER2‐AAb group (p = 0.026). Our findings indicate that a high level of HER2‐AAb is associated with enhanced humoral immunity against breast cancer and thus may provide a rationale for the association of HER2‐AAb with favorable prognosis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiaki Sota
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Hyogo Prefectural Nishinomiya Hospital, Nishinomiya, Hyogo, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
28
|
Davern M, Lysaght J. Cooperation between chemotherapy and immunotherapy in gastroesophageal cancers. Cancer Lett 2020; 495:89-99. [DOI: 10.1016/j.canlet.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
|
29
|
Ni Z, Xing D, Zhang T, Ding N, Xiang D, Zhao Z, Qu J, Hu C, Shen X, Xue X, Zhou J. Tumor-infiltrating B cell is associated with the control of progression of gastric cancer. Immunol Res 2020; 69:43-52. [PMID: 33236222 DOI: 10.1007/s12026-020-09167-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
This study aimed to further explore the clinicopathological correlation of B cell infiltration in gastric cancer (GC) and its impact on prognostic. By immunohistochemical method, CD20+ B cells, CD3+ T cells, CD66b+ tumor-associated neutrophils, CD163+ tumor-associated macrophages, and CD57+ natural killer cells were analyzed in consecutive sections of 584 GC tissues and 69 normal adjacent tissues. Kaplan-Meier and Cox regression analyses determined the relationship between clinical relevance or prognosis and B cell infiltration. The correlation between total B cell infiltration and various T cell subtype infiltration in GC tissues from 407 patients in the TCGA data was also analyzed. Kaplan-Meier and Cox regression analyses determined the effects of total B cell infiltration and various B cell subtype infiltration on the prognosis of patients with GC. The infiltration level of CD20+ B cells was positively correlated with that of T cells (risk ratio [RR] = 0.0930), especially CD4+ T cells and CD8+ T cells (P < 0.05). A high level of CD20+ B cell infiltration was significantly associated with low lymph node involvement and low TNM stage (P < 0.05). High levels of CD20+ B cell infiltration were significantly associated with improvements in overall survival and disease-free survival. Univariate Cox regression and multivariate Cox regression analysis showed that CD20+ B cell infiltration was an independent protective factor of prognosis. Higher levels of class-switched memory B cell and plasma cell also reflected better overall survival, and class-switched memory B cell and plasma cell were independent protective factors for prognosis. The findings indicate that B cell infiltration in GC, especially switched memory B cells and plasma cells, has a significant effect on tumor progression and prognosis.
Collapse
Affiliation(s)
- Zhonglin Ni
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Dong Xing
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China
| | - Teming Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Ning Ding
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China
| | - Dan Xiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou, 325027, Zhejiang Province, China.
| | - Jinmiao Qu
- Department of Oncology, The First Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
| | - Changyuan Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, University Town, Chashan, Wenzhou, 325035, Zhejiang Province, China.
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
30
|
Atsumi S, Katoh H, Komura D, Hashimoto I, Furuya G, Koda H, Konishi H, Suzuki R, Yamamoto A, Yuba S, Abe H, Rino Y, Oshima T, Ushiku T, Fukayama M, Seto Y, Ishikawa S. Focal adhesion ribonucleoprotein complex proteins are major humoral cancer antigens and targets in autoimmune diseases. Commun Biol 2020; 3:588. [PMID: 33067514 PMCID: PMC7567837 DOI: 10.1038/s42003-020-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/15/2020] [Indexed: 01/06/2023] Open
Abstract
Despite the accumulating evidences of the significance of humoral cancer immunity, its molecular mechanisms have largely remained elusive. Here we show that B-cell repertoire sequencing of 102 clinical gastric cancers and molecular biological analyses unexpectedly reveal that the major humoral cancer antigens are not case-specific neo-antigens but are rather commonly identified as ribonucleoproteins (RNPs) in the focal adhesion complex. These common antigens are shared as autoantigens with multiple autoimmune diseases, suggesting a direct molecular link between cancer- and auto-immunity on the focal adhesion RNP complex. This complex is partially exposed to the outside of cancer cell surfaces, which directly evokes humoral immunity and enables functional bindings of antibodies to cancer cell surfaces in physiological conditions. These findings shed light on humoral cancer immunity in that it commonly targets cellular components fundamental for cytoskeletal integrity and cell movement, pointing to a novel modality of immunotherapy using humoral immunological reactions to cancers.
Collapse
Affiliation(s)
- Shinichiro Atsumi
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Itaru Hashimoto
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Surgery, Yokohama City University, Kanagawa, Japan
| | - Genta Furuya
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hirotomo Koda
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroki Konishi
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Ryohei Suzuki
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Satsuki Yuba
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.,Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Kanagawa, Japan
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, Kanagawa, Japan.,Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
32
|
Abstract
Tumor immunology is undergoing a renaissance due to the recent profound clinical successes of tumor immunotherapy. These advances have coincided with an exponential growth in the development of -omics technologies. Armed with these technologies and their associated computational and modeling toolsets, systems biologists have turned their attention to tumor immunology in an effort to understand the precise nature and consequences of interactions between tumors and the immune system. Such interactions are inherently multivariate, spanning multiple time and size scales, cell types, and organ systems, rendering systems biology approaches particularly amenable to their interrogation. While in its infancy, the field of 'Cancer Systems Immunology' has already influenced our understanding of tumor immunology and immunotherapy. As the field matures, studies will move beyond descriptive characterizations toward functional investigations of the emergent behavior that govern tumor-immune responses. Thus, Cancer Systems Immunology holds incredible promise to advance our ability to fight this disease.
Collapse
Affiliation(s)
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
33
|
Impact of T-cell receptor and B-cell receptor repertoire on the recurrence of early stage lung adenocarcinoma. Exp Cell Res 2020; 394:112134. [PMID: 32540399 DOI: 10.1016/j.yexcr.2020.112134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Surgical resection is the only curative treatment for patients with early stage non-small cell lung cancer. However, approximately 33% of non-small cell lung cancer patients recur with the stage I disease, which may be attributed to a deficiency in antitumor immunity. In the present study, for early stage lung adenocarcinoma patients with early recurrence and early non-recurrence, we investigated the quantity of tumor-infiltrating T and B cells by immunohistochemistry, as well as the genes in the complementarity determining region 3 of the T-cell receptor β chain and the B-cell receptor immunoglobulin heavy chain. A decreased number of tumor-infiltrating lymphocytes cells (CD3+, CD4+, CD8+ and CD20+) was present in early recurrence patients. A significant increase in oligoclones and a reduction in T-cell receptor diversity were observed in the early recurrence group. Furthermore, there was a preference for V, J gene, and VJ gene combinations in patients with early recurrence versus non-recurrence, suggesting that this may be a new biomarker for the recurrence of early stage lung adenocarcinoma. These data indicate that T and B cell receptor repertoires influence the depth of human adaptive immune responses, and in addition to the quantity of tumor infiltrating T and B cells, may contribute to the prevention of early stage lung adenocarcinoma recurrence after surgical resection. Our study illustrates the potential value of the immune repertoire for predicting clinical efficacy and patient outcomes.
Collapse
|
34
|
Umakoshi M, Miyabe K, Ishii H, Kudo-Asabe Y, Ito Y, Yoshida M, Maeda D, Sageshima M, Goto A. A case of Russell body gastritis with multifocal lesions. SAGE Open Med Case Rep 2020; 8:2050313X20923840. [PMID: 32577282 PMCID: PMC7290262 DOI: 10.1177/2050313x20923840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/12/2020] [Indexed: 11/16/2022] Open
Abstract
Russell body gastritis is an extremely rare gastritis characterized by abundant infiltration of plasma cells with Russell body and eccentric nuclei, known as Mott cells. An 81-year-old Japanese woman with Helicobacter pylori and hepatitis C virus infection complaining of abdominal discomfort underwent upper gastrointestinal endoscopy, which detected an elevated lesion 2 cm in diameter at the anterior wall of the gastric body. A histological examination of the lesion revealed the infiltration of numerous Mott cells with an abundant eosinophilic crystal structure and eccentric nuclei in the lamina propria, resulting in a pathological diagnosis of Russell body gastritis. Endoscopic submucosal dissection (ESD) was performed subsequently. The histological findings of the resected specimen were compatible with those of Russell body gastritis. Upper gastrointestinal endoscopy performed 2 months after endoscopic submucosal dissection revealed the presence of new multiple flat elevated lesions in the antrum up to 1 cm in diameter, distant from the site of endoscopic submucosal dissection. A histological examination revealed a few Mott cells in the biopsy specimens taken from the new lesions. In turn, H. pylori eradication therapy was performed 1 month after the detection of the new lesions. One year after the eradication therapy, follow-up upper gastrointestinal endoscopy revealed that multiple lesions had almost disappeared, and the histological examination of the gastric biopsy specimens confirmed the disappearance of Mott cells. We herein report a case of Russell body gastritis in which multifocal lesions were observed after endoscopic submucosal dissection, and which was subsequently treated by H. pylori eradication therapy.
Collapse
Affiliation(s)
- Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ken Miyabe
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hajime Ishii
- Department of Gastroenterology, Akita City Hospital, Akita, Japan
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yukinobu Ito
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Makoto Yoshida
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Daichi Maeda
- Department of Clinical Genomics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
35
|
Conejo-Garcia JR, Biswas S, Chaurio R. Humoral immune responses: Unsung heroes of the war on cancer. Semin Immunol 2020; 49:101419. [PMID: 33183950 PMCID: PMC7738315 DOI: 10.1016/j.smim.2020.101419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Solid cancers progress from primordial lesions through complex interactions between tumor-promoting and anti-tumor immune cell types, ultimately leading to the orchestration of humoral and T cell adaptive immune responses, albeit in an immunosuppressive environment. B cells infiltrating most established tumors have been associated with a dual role: Some studies have associated antibodies produced by tumor-associated B cells with the promotion of regulatory activities on myeloid cells, and also with direct immunosuppression through the production of IL-10, IL-35 or TGF-β. In contrast, recent studies in multiple human malignancies identify B cell responses with delayed malignant progression and coordinated T cell protective responses. This includes the elusive role of Tertiary Lymphoid Structures identified in many human tumors, where the function of B cells remains unknown. Here, we discuss emerging data on the dual role of B cell responses in the pathophysiology of human cancer, providing a perspective on future directions and possible novel interventions to restore the coordinated action of both branches of the adaptive immune response, with the goal of maximizing immunotherapeutic effectiveness.
Collapse
Affiliation(s)
- Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ricardo Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
36
|
Zhang L, Wang IM, Solban N, Cristescu R, Zeng G, Long B. Comprehensive investigation of T and B cell receptor repertoires in an MC38 tumor model following murine anti‑PD‑1 administration. Mol Med Rep 2020; 22:975-985. [PMID: 32468004 PMCID: PMC7339640 DOI: 10.3892/mmr.2020.11169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/20/2020] [Indexed: 11/15/2022] Open
Abstract
The MC38 (derived from carcinogen-induced colon adenocarcinoma) tumor model is sensitive to anti-programmed cell death-1 (anti-PD-1) treatment. However, there is no comprehensive description of the T and B cell receptor (TCR, BCR) repertoires of the MC38 tumor model following anti-PD-1 treatment, an improved understanding of which is highly important in the development of anti-PD-1 immunotherapy. The present study analyzed the TCR and BCR repertoires of three types of tissue, including tumor, spleen and tumor draining lymph node (DLN) from 20 MC38 syngeneic mice receiving murine anti-PD-1 (mDX400) treatment or mouse immunoglobulin G1 (mIgG1) control treatment. To obtain enough tissues for high-throughput sequencing, samples were collected on day 8 after the start of initial treatment. The usage frequencies of seven TCR β chain (TRB) V genes and one TRBJ gene were significantly different between mDX400- and mIgG1-group tumors. TCR repertoire diversity was significantly lower in mDX400-group tumors compared with mIgG1-group tumors, with the top 10 most frequent TCR clonotypes notably expanded in mDX400-group tumors. In addition, the proportion of high-frequency TCR clonotypes from mDX400-group tumors that were also present both in the DLN and spleen was significantly higher than that in mIgG1-group tumors. Among the highly expanded TCR clonotypes, one TCR clonotype was consistently expanded in >50% of the mDX400-group tumors compared with mIgG1-group tumors. Similarly, one BCR clonal family was highly expanded in >50% of mDX400-group tumor samples. The consistently expanded TCR and BCR clones were co-expanded in 29% of mDX400-group tumors. Moreover, mutation rates of immunoglobulin heavy chain sequences in the spleen within complementarity determining region 2 and framework region 3 were significantly higher in the mDX400 group than in the mIgG1 group. The findings of this study may contribute to an improved understanding of the molecular mechanisms of anti-PD-1 treatment.
Collapse
Affiliation(s)
- Lu Zhang
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - I-Ming Wang
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | | | | | - Gefei Zeng
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| | - Brian Long
- Merck and Co., Inc., Kenilworth, NJ 07033, USA
| |
Collapse
|
37
|
Suzuki A, Katoh H, Komura D, Kakiuchi M, Tagashira A, Yamamoto S, Tatsuno K, Ueda H, Nagae G, Fukuda S, Umeda T, Totoki Y, Abe H, Ushiku T, Matsuura T, Sakai E, Ohshima T, Nomura S, Seto Y, Shibata T, Rino Y, Nakajima A, Fukayama M, Ishikawa S, Aburatani H. Defined lifestyle and germline factors predispose Asian populations to gastric cancer. SCIENCE ADVANCES 2020; 6:eaav9778. [PMID: 32426482 PMCID: PMC7202881 DOI: 10.1126/sciadv.aav9778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/03/2020] [Indexed: 05/11/2023]
Abstract
Germline and environmental effects on the development of gastric cancers (GC) and their ethnic differences have been poorly understood. Here, we performed genomic-scale trans-ethnic analysis of 531 GCs (319 Asian and 212 non-Asians). There was one distinct GC subclass with clear alcohol-associated mutation signature and strong Asian specificity, almost all of which were attributable to alcohol intake behavior, smoking habit, and Asian-specific defective ALDH2 allele. Alcohol-related GCs have low mutation burden and characteristic immunological profiles. In addition, we found frequent (7.4%) germline CDH1 variants among Japanese GCs, most of which were attributed to a few recurrent single-nucleotide variants shared by Japanese and Koreans, suggesting the existence of common ancestral events among East Asians. Specifically, approximately one-fifth of diffuse-type GCs were attributable to the combination of alcohol intake and defective ALDH2 allele or to CDH1 variants. These results revealed uncharacterized impacts of germline variants and lifestyles in the high incidence areas.
Collapse
Affiliation(s)
- Akihiro Suzuki
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miwako Kakiuchi
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Amane Tagashira
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Shiro Fukuda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Takayoshi Umeda
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Matsuura
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Eiji Sakai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Takashi Ohshima
- Department of Surgery, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Laboratory of Molecular Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Corresponding author. (H.A.); (S.I.)
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
- Corresponding author. (H.A.); (S.I.)
| |
Collapse
|
38
|
Chen VE, Greenberger BA, Taylor JM, Edelman MJ, Lu B. The Underappreciated Role of the Humoral Immune System and B Cells in Tumorigenesis and Cancer Therapeutics: A Review. Int J Radiat Oncol Biol Phys 2020; 108:38-45. [PMID: 32251756 DOI: 10.1016/j.ijrobp.2020.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
The advent of immunotherapy has ushered in a new era in both cancer research and cancer treatment strategies. Published reviews have described potential mechanisms for therapeutic synergisms from the combination of radiation therapy and immunotherapy, largely overlooking the role of humoral immunity by only focusing on cellular immunity. Given that these 2 branches of the immune system are highly interdependent, in this review we detail both what has already been established regarding the role of humoral immunity in cancer and propose potential avenues that are ripe for further investigation and potential clinical applications.
Collapse
Affiliation(s)
- Victor E Chen
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin A Greenberger
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - James M Taylor
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Martin J Edelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Bo Lu
- Department of Radiation Oncology, Sidney Kimmel Medical College & Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
39
|
Zhang J, Hu X, Wang J, Sahu AD, Cohen D, Song L, Ouyang Z, Fan J, Wang B, Fu J, Gu S, Sade-Feldman M, Hacohen N, Li W, Ying X, Li B, Liu XS. Immune receptor repertoires in pediatric and adult acute myeloid leukemia. Genome Med 2019; 11:73. [PMID: 31771646 PMCID: PMC6880565 DOI: 10.1186/s13073-019-0681-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML), caused by the abnormal proliferation of immature myeloid cells in the blood or bone marrow, is one of the most common hematologic malignancies. Currently, the interactions between malignant myeloid cells and the immune microenvironment, especially T cells and B cells, remain poorly characterized. METHODS In this study, we systematically analyzed the T cell receptor and B cell receptor (TCR and BCR) repertoires from the RNA-seq data of 145 pediatric and 151 adult AML samples as well as 73 non-tumor peripheral blood samples. RESULTS We inferred over 225,000 complementarity-determining region 3 (CDR3) sequences in TCR α, β, γ, and δ chains and 1,210,000 CDR3 sequences in B cell immunoglobulin (Ig) heavy and light chains. We found higher clonal expansion of both T cells and B cells in the AML microenvironment and observed many differences between pediatric and adult AML. Most notably, adult AML samples have significantly higher level of B cell activation and more secondary Ig class switch events than pediatric AML or non-tumor samples. Furthermore, adult AML with highly expanded IgA2 B cells, which might represent an immunosuppressive microenvironment, are associated with regulatory T cells and worse overall survival. CONCLUSIONS Our comprehensive characterization of the AML immune receptor repertoires improved our understanding of T cell and B cell immunity in AML, which may provide insights into immunotherapies in hematological malignancies.
Collapse
MESH Headings
- Adult
- Age Factors
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cellular Microenvironment/genetics
- Cellular Microenvironment/immunology
- Child
- Complementarity Determining Regions
- Disease Susceptibility
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Sequence Analysis, RNA
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Jian Zhang
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Xihao Hu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jin Wang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Avinash Das Sahu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - David Cohen
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Li Song
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Zhangyi Ouyang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jingyu Fan
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Binbin Wang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingxin Fu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengqing Gu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA USA
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA USA
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA USA
- Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA USA
| | - Wuju Li
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaomin Ying
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX USA
| | - X. Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
40
|
Ho SWT, Tan P. Dissection of gastric cancer heterogeneity for precision oncology. Cancer Sci 2019; 110:3405-3414. [PMID: 31495054 PMCID: PMC6825006 DOI: 10.1111/cas.14191] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) remains the fifth most prevalent cancer worldwide and the third leading cause of global cancer mortality. Comprehensive ‐omic studies have unveiled a heterogeneous GC landscape, with considerable molecular diversity both between and within tumors. Given the complex nature of GC, a long‐sought goal includes effective identification of distinct patient subsets with prognostic and/or predictive outcomes to enable tailoring of specific treatments (“precision oncology”). In this review, we highlight various approaches to molecular classification in GC, covering recent genomic, transcriptomic, proteomic and epigenomic features. We pay special attention to the translational significance of classifier systems and examine potential confounding factors which deserve further investigation. In particular, we discuss recent advancements in our knowledge of intra‐subtype, intra‐patient and intra‐tumor heterogeneity, and the pivotal role of the tumor stromal microenvironment.
Collapse
Affiliation(s)
- Shamaine Wei Ting Ho
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| |
Collapse
|
41
|
Konishi H, Komura D, Katoh H, Atsumi S, Koda H, Yamamoto A, Seto Y, Fukayama M, Yamaguchi R, Imoto S, Ishikawa S. Capturing the differences between humoral immunity in the normal and tumor environments from repertoire-seq of B-cell receptors using supervised machine learning. BMC Bioinformatics 2019; 20:267. [PMID: 31138102 PMCID: PMC6537402 DOI: 10.1186/s12859-019-2853-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The recent success of immunotherapy in treating tumors has attracted increasing interest in research related to the adaptive immune system in the tumor microenvironment. Recent advances in next-generation sequencing technology enabled the sequencing of whole T-cell receptors (TCRs) and B-cell receptors (BCRs)/immunoglobulins (Igs) in the tumor microenvironment. Since BCRs/Igs in tumor tissues have high affinities for tumor-specific antigens, the patterns of their amino acid sequences and other sequence-independent features such as the number of somatic hypermutations (SHMs) may differ between the normal and tumor microenvironments. However, given the high diversity of BCRs/Igs and the rarity of recurrent sequences among individuals, it is far more difficult to capture such differences in BCR/Ig sequences than in TCR sequences. The aim of this study was to explore the possibility of discriminating BCRs/Igs in tumor and in normal tissues, by capturing these differences using supervised machine learning methods applied to RNA sequences of BCRs/Igs. RESULTS RNA sequences of BCRs/Igs were obtained from matched normal and tumor specimens from 90 gastric cancer patients. BCR/Ig-features obtained in Rep-Seq were used to classify individual BCR/Ig sequences into normal or tumor classes. Different machine learning models using various features were constructed as well as gradient boosting machine (GBM) classifier combining these models. The results demonstrated that BCR/Ig sequences between normal and tumor microenvironments exhibit their differences. Next, by using a GBM trained to classify individual BCR/Ig sequences, we tried to classify sets of BCR/Ig sequences into normal or tumor classes. As a result, an area under the curve (AUC) value of 0.826 was achieved, suggesting that BCR/Ig repertoires have distinct sequence-level features in normal and tumor tissues. CONCLUSIONS To the best of our knowledge, this is the first study to show that BCR/Ig sequences derived from tumor and normal tissues have globally distinct patterns, and that these tissues can be effectively differentiated using BCR/Ig repertoires.
Collapse
Affiliation(s)
- Hiroki Konishi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
- Institute of Medical Science, Health Intelligence Center, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Shinichiro Atsumi
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Hirotomo Koda
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Asami Yamamoto
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Rui Yamaguchi
- Institute of Medical Science, Human Genome Center, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Seiya Imoto
- Institute of Medical Science, Health Intelligence Center, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
42
|
Largeot A, Pagano G, Gonder S, Moussay E, Paggetti J. The B-side of Cancer Immunity: The Underrated Tune. Cells 2019; 8:cells8050449. [PMID: 31086070 PMCID: PMC6562515 DOI: 10.3390/cells8050449] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Tumor-infiltrating lymphocytes are known to be critical in controlling tumor progression. While the role of T lymphocytes has been extensively studied, the function of B cells in this context is still ill-defined. In this review, we propose to explore the role of B cells in tumor immunity. First of all we define their dual role in promoting and inhibiting cancer progression depending on their phenotype. To continue, we describe the influence of different tumor microenvironment factors such as hypoxia on B cells functions and differentiation. Finally, the role of B cells in response to therapy and as potential target is examined. In accordance with the importance of B cells in immuno-oncology, we conclude that more studies are required to throw light on the precise role of B cells in the tumor microenvironment in order to have a better understanding of their functions, and to design new strategies that efficiently target these cells by immunotherapy.
Collapse
Affiliation(s)
- Anne Largeot
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Giulia Pagano
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Susanne Gonder
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxenbourg, Luxembourg.
| |
Collapse
|
43
|
Hu X, Zhang J, Wang J, Fu J, Li T, Zheng X, Wang B, Gu S, Jiang P, Fan J, Ying X, Zhang J, Carroll MC, Wucherpfennig KW, Hacohen N, Zhang F, Zhang P, Liu JS, Li B, Liu XS. Landscape of B cell immunity and related immune evasion in human cancers. Nat Genet 2019; 51:560-567. [PMID: 30742113 PMCID: PMC6773274 DOI: 10.1038/s41588-018-0339-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
Tumor-infiltrating B cells are an important component in the microenvironment but have unclear anti-tumor effects. We enhanced our previous computational algorithm TRUST to extract the B cell immunoglobulin hypervariable regions from bulk tumor RNA-sequencing data. TRUST assembled more than 30 million complementarity-determining region 3 sequences of the B cell heavy chain (IgH) from The Cancer Genome Atlas. Widespread B cell clonal expansions and immunoglobulin subclass switch events were observed in diverse human cancers. Prevalent somatic copy number alterations in the MICA and MICB genes related to antibody-dependent cell-mediated cytotoxicity were identified in tumors with elevated B cell activity. The IgG3-1 subclass switch interacts with B cell-receptor affinity maturation and defects in the antibody-dependent cell-mediated cytotoxicity pathway. Comprehensive pancancer analyses of tumor-infiltrating B cell-receptor repertoires identified novel tumor immune evasion mechanisms through genetic alterations. The IgH sequences identified here are potentially useful resources for future development of immunotherapies.
Collapse
Affiliation(s)
- Xihao Hu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jian Zhang
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jin Wang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingxin Fu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Binbin Wang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengqing Gu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Peng Jiang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jingyu Fan
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaomin Ying
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing Zhang
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Department of Statistics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
44
|
Tokunaga R, Naseem M, Lo JH, Battaglin F, Soni S, Puccini A, Berger MD, Zhang W, Baba H, Lenz HJ. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev 2018; 73:10-19. [PMID: 30551036 DOI: 10.1016/j.ctrv.2018.12.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/10/2023]
Abstract
B cells are recognized as the main effector cells of humoral immunity which suppress tumor progression by secreting immunoglobulins, promoting T cell response, and killing cancer cells directly. Given these properties, their anti-tumor immune response in the tumor micro-environment (TME) is of great interest. Although T cell-related immune responses have become a therapeutic target with the introduction of immune checkpoint inhibitors, not all patients benefit from these treatments. B cell and B cell-related pathways (CCL19, -21/CCR7 axis and CXCL13/CXCR5 axis) play key roles in activating immune response through humoral immunity and local immune activation via tertiary lymphoid structure (TLS) formation. However they have some protumorigenic works in the TME. Thus, a better understanding of B cell and B cell-related pathways is necessary to develop effective cancer control. In this review, we summarize recent evidences regarding the roles of B cell and B cell-related pathways in the TME and immune response and discuss their potential roles for novel cancer treatment strategies.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| |
Collapse
|
45
|
Zhang C, Huang H, Miao Y, Xiong H, Lu Z. Clonal distribution and intratumour heterogeneity of the B-cell repertoire in oesophageal squamous cell carcinoma. J Pathol 2018; 246:323-330. [PMID: 30027584 DOI: 10.1002/path.5142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Recent successes in tumour immunotherapies have highlighted the importance of tumour immunity. However, most previous studies to date have focused on T-cell immune response, although B cells are key players in the core immune network and are associated with T-cell immune response. Based on our previous study delineating T-cell receptor (TCR) repertoire in seven patients with oesophageal squamous cell carcinoma (ESCC), this study profiled the B-cell receptor (BCR) repertoire of multiple tumour regions, adjacent normal tissue, and blood from the same seven patients to reveal the characteristics of B-cell immunity and the relationship to TCR repertoire in ESCC patients. We found that intratumour BCR repertoire was significantly more oligoclonal than matched adjacent normal tissue or peripheral blood and, moreover, clonal amplification of B cells in multiple tumour regions was significantly heterogeneous, although clonal amplification of the TCR repertoire across different tissue compartments and regions of the same tumour was similar. However, both BCR and TCR repertoires in the tumour microenvironment were distinct from those in adjacent normal tissues and blood, and thus represented a group of B and T cells that were spatially confined to the tumour microenvironment and could react to tumour antigens. Additionally, B- and T-cell clones varying between different tumour regions showed intratumour heterogeneity of B- and T-cell immune response. Thus, multiple tumour biopsies could be essential to comprehensively delineate the adaptive immune response to an individual ESCC. These findings expand our understanding of adaptive anti-tumour immunity and shed more light on ESCC immunotherapy. This study provides insights into the intratumour heterogeneity of the BCR repertoire as well as the difference and relationship between the BCR and TCR repertoire in ESCC, expanding our understanding of adaptive anti-tumour immunity and ESCC immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Hongying Huang
- Department of Pathology, New York University Langone Medical Center, New York, NY, USA
| | - Yu Miao
- MyGenostics Inc, Beijing, PR China
| | - Hongchao Xiong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery, Peking University Cancer Hospital & Institute, Beijing, PR China
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, PR China
| |
Collapse
|
46
|
Reply to Chien: Clarification of the effect of ligand on γδ-TCR repertoire selection. Proc Natl Acad Sci U S A 2018; 115:E3607-E3608. [PMID: 29615510 DOI: 10.1073/pnas.1804193115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|