1
|
Fermani F, Chang S, Mastrodicasa Y, Peters C, Gaitanos L, Alcala Morales PL, Ramakrishnan C, Deisseroth K, Klein R. Food and water intake are regulated by distinct central amygdala circuits revealed using intersectional genetics. Nat Commun 2025; 16:3072. [PMID: 40157920 PMCID: PMC11954953 DOI: 10.1038/s41467-025-58144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
The central amygdala (CeA) plays a crucial role in defensive and appetitive behaviours. It contains genetically defined GABAergic neuron subpopulations distributed over three anatomical subregions, capsular (CeC), lateral (CeL), and medial (CeM). The roles that these molecularly- and anatomically-defined CeA neurons play in appetitive behavior remain unclear. Using intersectional genetics in mice, we found that neurons driving food or water consumption are confined to the CeM. Separate CeM subpopulations exist for water only versus water or food consumption. In vivo calcium imaging revealed that CeMHtr2a neurons promoting feeding are responsive towards appetitive cues with little regard for their physical attributes. CeMSst neurons involved in drinking are sensitive to the physical properties of salient stimuli. Both CeM subtypes receive inhibitory input from CeL and send projections to the parabrachial nucleus to promote appetitive behavior. These results suggest that distinct CeM microcircuits evaluate liquid and solid appetitive stimuli to drive the appropriate behavioral responses.
Collapse
Affiliation(s)
- Federica Fermani
- Department of Molecules - Signaling - Development, Max-Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Simon Chang
- Cellular Neurobiology, Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Ylenia Mastrodicasa
- Department of Molecules - Signaling - Development, Max-Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Christian Peters
- Department of Molecules - Signaling - Development, Max-Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Louise Gaitanos
- Department of Molecules - Signaling - Development, Max-Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Pilar L Alcala Morales
- Department of Molecules - Signaling - Development, Max-Planck Institute for Biological Intelligence, Martinsried, Germany
| | | | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Rüdiger Klein
- Department of Molecules - Signaling - Development, Max-Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
2
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Duran M, Willis JR, Dalvi N, Fokakis Z, Virkus SA, Hardaway JA. Integration of Glucagon-Like Peptide 1 Receptor Actions Through the Central Amygdala. Endocrinology 2025; 166:bqaf019. [PMID: 39888375 PMCID: PMC11850305 DOI: 10.1210/endocr/bqaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Understanding the detailed mechanism of action of glucagon-like peptide 1 receptor (GLP-1R) agonists on distinct topographic and genetically defined brain circuits is critical for improving the efficacy and mitigating adverse side effects of these compounds. In this mini-review, we propose that the central nucleus of the amygdala (CeA) is a critical mediator of GLP-1R agonist-driven hypophagia. Here, we review the extant literature demonstrating CeA activation via GLP-1R agonists across multiple species and through multiple routes of administration. The precise role of GLP-1Rs within the CeA is unclear but the site-specific GLP-1Rs may mediate distinct behavioral and physiological hallmarks of GLP-1R agonists on food intake. Thus, we propose important novel directions and methods to test the role of the CeA in mediating GLP-1R actions.
Collapse
Affiliation(s)
- Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer R Willis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nilay Dalvi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zoe Fokakis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Yang L, Fang F, Wang WX, Xie Y, Cang J, Li SB. Substantia Innominata Glutamatergic Neurons Modulate Sevoflurane Anesthesia in Male Mice. Anesth Analg 2025; 140:353-365. [PMID: 39008422 DOI: 10.1213/ane.0000000000007092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Accumulated evidence suggests that brain regions that promote wakefulness also facilitate emergence from general anesthesia (GA). Glutamatergic neurons in the substantia innominata (SI) regulate motivation-related aversive, depressive, and aggressive behaviors relying on heightened arousal. Here, we hypothesize that glutamatergic neurons in the SI are also involved in the regulation of the effects of sevoflurane anesthesia. METHODS With a combination of fiber photometry, chemogenetic and optogenetic tools, behavioral tests, and cortical electroencephalogram recordings, we investigated whether and how SI glutamatergic neurons and their projections to the lateral hypothalamus (LH) regulate sevoflurane anesthesia in adult male mice. RESULTS Population activity of glutamatergic neurons in the SI gradually decreased upon sevoflurane-induced loss of consciousness (LOC) and slowly returned as soon as inhalation of sevoflurane discontinued before recovery of consciousness (ROC). Chemogenetic activation of SI glutamatergic neurons dampened the animals' sensitivity to sevoflurane exposure, prolonged induction time (mean ± standard deviation [SD]; 389 ± 67 seconds vs 458 ± 53 seconds; P = .047), and shortened emergence time (305 seconds, 95% confidence interval [CI], 242-369 seconds vs 207 seconds, 95% CI, 135-279 seconds; P = .004), whereas chemogenetic inhibition of these neurons facilitated sevoflurane anesthesia. Furthermore, optogenetic activation of SI glutamatergic neurons and their terminals in LH induced cortical activation and behavioral emergence from different depths of sevoflurane anesthesia. CONCLUSIONS Our study shows that SI glutamatergic neuronal activity facilitates emergence from sevoflurane anesthesia and provides evidence for the involvement of the SI-LH glutamatergic pathway in the regulation of consciousness during GA.
Collapse
Affiliation(s)
- Li Yang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Fang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Xu Wang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Frontiers Center for Brain Science of the Ministry of Education (MOE), Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesiology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Cang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Bin Li
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Tian X, Russo SJ, Li L. Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder. Neurosci Bull 2025; 41:272-288. [PMID: 39120643 PMCID: PMC11794861 DOI: 10.1007/s12264-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024] Open
Abstract
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Long Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Laing BT, Anderson MS, Jayan A, Park AS, Erbaugh LJ, Solis O, Wilson DJ, Michaelides M, Aponte Y. Repetitive Grooming Behavior Following Aversive Stimulus Coincides with a Decrease in Anterior Hypothalamic Area Activity. eNeuro 2025; 12:ENEURO.0417-24.2024. [PMID: 39837667 PMCID: PMC11801231 DOI: 10.1523/eneuro.0417-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
The anterior hypothalamic area (AHA) is a key brain region for orchestrating defensive behaviors. Using in vivo calcium imaging in mice, we observed that AHA neuronal activity increases during footshock delivery and footshock-associated auditory cues. We found that following shock-induced increases in AHA activity, a decrease in activity coincides with the onset of grooming behavior. Next, we optogenetically activated the projections from the ventromedial hypothalamus (VMH) to the AHA and observed that photoactivation of the VMH→AHA pathway drives avoidance. Interestingly, repetitive grooming behavior occurs following cessation of stimulation. To identify changes in brain-wide activity patterns that occur due to optogenetic VMH→AHA stimulation, we combined optogenetic stimulation with positron emission tomography (PET)-based metabolic mapping. This approach revealed the amygdala as a downstream area activated by the stimulation of this pathway. Our findings show that the rise and fall of AHA neuronal activity triggers repetitive grooming behavior following learned fear and optogenetic stimulation. In addition, activation of the VMH→AHA pathway triggers changes in the activity patterns of downstream brain regions that are reported to be associated with displacement grooming.
Collapse
Affiliation(s)
- Brenton T Laing
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677
| | - Megan S Anderson
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
| | - Aishwarya Jayan
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
| | - Anika S Park
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
| | - Lydia J Erbaugh
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
| | - Oscar Solis
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
| | - Danielle J Wilson
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yeka Aponte
- Neuronal Circuits and Behavior Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224-6823
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
7
|
Xiang X, Wang F, Chen C, Guan Z, Zhou W. Orexinergic projections to substantia innominata mediate arousal and analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620973. [PMID: 39554139 PMCID: PMC11565723 DOI: 10.1101/2024.10.29.620973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Understanding neural circuits involved in anesthesia is crucial for improving its safety and efficacy. Hypothalamic orexin neurons (LHA OX ), projecting broadly, are essential in regulating arousal and pain. However, the precise targets remain unclear. Here we investigated the orexin projections to the substantia innominata (SI). Combining optogenetics, fiber photometry, and EEG/EMG allowed us to manipulate orexin activities, while simultaneously recording local ligand release and global cortical activities during anesthesia. Brain slice electrophysiology revealed the synaptic connections in the SI, while RNAscope was employed to examine the distribution of orexin receptors and downstream neuronal types. Presynaptic vesicles were identified in the orexin terminals in the SI, where 49.16% of cells expressed OX2R and 6.8% expressed OX1R. Orexin release in the SI was reversibly suppressed by isoflurane. Optogenetic activation of the LHA OX →SI circuit significantly increased orexin release and promoted arousal from various anesthesia stages, including reanimation during 0.75% isoflurane (p < 0.0001), prolongation of 3% isoflurane induction (p = 0.0033), and acceleration of emergence from 2% isoflurane (p < 0.0001). Furthermore, activating this circuit induced analgesia to both thermal (p = 0.0074) and inflammatory (p = 0.0127) pain. Patch-clamp recordings revealed that optogenetic activation of orexin terminals in the SI elicited excitatory postsynaptic currents, which were blocked by the OX2R antagonist. SI contains more GABAergic (28.17%) and glutamatergic (11.96%) neurons than cholinergic neurons (4.13%), all of which expressed OX2R. Thus, LHA OX neurons innervate SI neurons to regulate both arousal and pain predominantly through OX2R.
Collapse
|
8
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. eLife 2024; 13:RP92085. [PMID: 39475218 PMCID: PMC11524582 DOI: 10.7554/elife.92085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
9
|
Toivainen S, Petrella M, Xu L, Visser E, Weiss T, Vellere S, Zeier Z, Wahlestedt C, Barbier E, Domi E, Heilig M. Generation and Characterization of a Novel Prkcd-Cre Rat Model. J Neurosci 2024; 44:e0528242024. [PMID: 38977300 PMCID: PMC11308323 DOI: 10.1523/jneurosci.0528-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Activity of central amygdala (CeA) PKCδ expressing neurons has been linked to appetite regulation, anxiety-like behaviors, pain sensitivity, and addiction-related behaviors. Studies of the role that CeA PKCδ+ neurons play in these behaviors have largely been carried out in mice, and genetic tools that would allow selective manipulation of PKCδ+ cells in rats have been lacking. Here, we used a CRISPR/Cas9 strategy to generate a transgenic Prkcd-cre knock-in rat and characterized this model using anatomical, electrophysiological, and behavioral approaches in both sexes. In the CeA, Cre was selectively expressed in PKCδ+ cells. Anterograde projections of PKCδ+ neurons to cortical regions, subcortical regions, several hypothalamic nuclei, the amygdala complex, and midbrain dopaminergic regions were largely consistent with published mouse data. In a behavioral screen, we found no differences between Cre+ rats and Cre- wild-type littermates. Optogenetic stimulation of CeA PKCδ+ neurons in a palatable food intake assay resulted in an increased latency to first feeding and decreased total food intake, once again replicating published mouse findings. Lastly, using a real-time place preference task, we found that stimulation of PKCδ+ neurons promoted aversion, without affecting locomotor activity. Collectively, these findings establish the novel Prkcd-Cre rat line as a valuable tool that complements available mouse lines for investigating the functional role of PKCδ+ neurons.
Collapse
Affiliation(s)
- Sanne Toivainen
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Michele Petrella
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Li Xu
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Esther Visser
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Tamina Weiss
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Sofia Vellere
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Estelle Barbier
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Esi Domi
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Markus Heilig
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| |
Collapse
|
10
|
Comyn T, Preat T, Pavlowsky A, Plaçais PY. PKCδ is an activator of neuronal mitochondrial metabolism that mediates the spacing effect on memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561186. [PMID: 38948698 PMCID: PMC11212906 DOI: 10.1101/2023.10.06.561186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Relevance-based selectivity and high energy cost are two distinct features of long-term memory (LTM) formation that warrant its default inhibition. Spaced repetition of learning is a highly conserved cognitive mechanism that can lift this inhibition. Here, we questioned how the spacing effect integrates experience selection and energy efficiency at the cellular and molecular levels. We showed in Drosophila that spaced training triggers LTM formation by extending over several hours an increased mitochondrial metabolic activity in neurons of the associative memory center, the mushroom bodies (MBs). We found that this effect is mediated by PKCδ, a member of the so-called 'novel PKC' family of enzymes, which uncovers the critical function of PKCδ in neurons as a regulator of mitochondrial metabolism for LTM. Additionally, PKCδ activation and translocation to mitochondria result from LTM-specific dopamine signaling on MB neurons. By bridging experience-dependent neuronal circuit activity with metabolic modulation of memory-encoding neurons, PKCδ signaling binds the cognitive and metabolic constraints underlying LTM formation into a unified gating mechanism.
Collapse
Affiliation(s)
- Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Co-corresponding authors
| |
Collapse
|
11
|
Heilig M, Petrella M. Neural pathways for reward and relief promote fentanyl addiction. Nature 2024; 630:38-39. [PMID: 38778188 DOI: 10.1038/d41586-024-01361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
|
12
|
Wang J, Yang Q, Liu X, Li J, Wen YL, Hu Y, Xu TL, Duan S, Xu H. The basal forebrain to lateral habenula circuitry mediates social behavioral maladaptation. Nat Commun 2024; 15:4013. [PMID: 38740778 DOI: 10.1038/s41467-024-48378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Elucidating the neural basis of fear allows for more effective treatments for maladaptive fear often observed in psychiatric disorders. Although the basal forebrain (BF) has an essential role in fear learning, its function in fear expression and the underlying neuronal and circuit substrates are much less understood. Here we report that BF glutamatergic neurons are robustly activated by social stimulus following social fear conditioning in male mice. And cell-type-specific inhibition of those excitatory neurons largely reduces social fear expression. At the circuit level, BF glutamatergic neurons make functional contacts with the lateral habenula (LHb) neurons and these connections are potentiated in conditioned mice. Moreover, optogenetic inhibition of BF-LHb glutamatergic pathway significantly reduces social fear responses. These data unravel an important function of the BF in fear expression via its glutamatergic projection onto the LHb, and suggest that selective targeting BF-LHb excitatory circuitry could alleviate maladaptive fear in relevant disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| | - Qian Yang
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue Liu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jie Li
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ya-Lan Wen
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Tian-Le Xu
- Center for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shumin Duan
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Han Xu
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
13
|
Ding W, Weltzien H, Peters C, Klein R. Nausea-induced suppression of feeding is mediated by central amygdala Dlk1-expressing neurons. Cell Rep 2024; 43:113990. [PMID: 38551964 DOI: 10.1016/j.celrep.2024.113990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
The motivation to eat is suppressed by satiety and aversive stimuli such as nausea. The neural circuit mechanisms of appetite suppression by nausea are not well understood. Pkcδ neurons in the lateral subdivision of the central amygdala (CeA) suppress feeding in response to satiety signals and nausea. Here, we characterized neurons enriched in the medial subdivision (CeM) of the CeA marked by expression of Dlk1. CeADlk1 neurons are activated by nausea, but not satiety, and specifically suppress feeding induced by nausea. Artificial activation of CeADlk1 neurons suppresses drinking and social interactions, suggesting a broader function in attenuating motivational behavior. CeADlk1 neurons form projections to many brain regions and exert their anorexigenic activity by inhibition of neurons of the parabrachial nucleus. CeADlk1 neurons are inhibited by appetitive CeA neurons, but also receive long-range monosynaptic inputs from multiple brain regions. Our results illustrate a CeA circuit that regulates nausea-induced feeding suppression.
Collapse
Affiliation(s)
- Wenyu Ding
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Helena Weltzien
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Peters
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
14
|
Ma W, Li L, Kong L, Zhang H, Yuan P, Huang Z, Wang Y. Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther 2023; 29:4147-4159. [PMID: 37424163 PMCID: PMC10651995 DOI: 10.1111/cns.14338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons. METHODS This study used retrograde tracing systems based on the rabies virus, Cre-LoxP technology, and immunofluorescence analysis. RESULTS We found that 59 nuclei projected monosynaptic inputs to the LPAG glutamatergic neurons. In addition, seven hypothalamic nuclei, namely the lateral hypothalamic area (LH), lateral preoptic area (LPO), substantia innominata (SI), medial preoptic area, ventral pallidum, posterior hypothalamic area, and lateral globus pallidus, projected most densely to the LPAG glutamatergic neurons. Notably, we discovered through further immunofluorescence analysis that the inputs to the LPAG glutamatergic neurons were colocalized with several markers related to important neurological functions associated with physiological behaviors. CONCLUSION The LPAG glutamatergic neurons received dense projections from the hypothalamus, especially nuclei such as LH, LPO, and SI. The input neurons were colocalized with several markers of physiological behaviors, which show the pivotal role of glutamatergic neurons in the physiological behaviors regulation by LPAG.
Collapse
Affiliation(s)
- Wei‐Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Lei Li
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ling‐Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Ping‐Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re‐evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of PharmacyWannan Medical CollegeWuhuChina
| | - Zhi‐Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yi‐Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Wang XY, Xu X, Chen R, Jia WB, Xu PF, Liu XQ, Zhang Y, Liu XF, Zhang Y. The thalamic reticular nucleus-lateral habenula circuit regulates depressive-like behaviors in chronic stress and chronic pain. Cell Rep 2023; 42:113170. [PMID: 37738124 DOI: 10.1016/j.celrep.2023.113170] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
Chronic stress and chronic pain are two major predisposing factors to trigger depression. Enhanced excitatory input to the lateral habenula (LHb) has been implicated in the pathophysiology of depression. However, the contribution of inhibitory transmission remains unclear. Here, we dissect an inhibitory projection from the sensory thalamic reticular nucleus (sTRN) to the LHb, which is activated by acute aversive stimuli. However, chronic restraint stress (CRS) weakens sTRN-LHb synaptic strength, and this synaptic attenuation is indispensable for CRS-induced LHb neural hyperactivity and depression onset. Moreover, artificially inhibiting the sTRN-LHb circuit induces depressive-like behaviors in healthy mice, while enhancing this circuit relieves depression induced by both chronic stress and chronic pain. Intriguingly, neither neuropathic pain nor comorbid mechanical hypersensitivity in chronic stress is affected by this pathway. Altogether, our study demonstrates an sTRN-LHb circuit in establishing and modulating depression, thus shedding light on potential therapeutic targets for preventing or managing depression.
Collapse
Affiliation(s)
- Xin-Yue Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiang Xu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Rui Chen
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wen-Bin Jia
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peng-Fei Xu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiao-Qing Liu
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing 100191, China.
| | - Xin-Feng Liu
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Yan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
16
|
Gordon-Fennell A, Barbakh JM, Utley MT, Singh S, Bazzino P, Gowrishankar R, Bruchas MR, Roitman MF, Stuber GD. An open-source platform for head-fixed operant and consummatory behavior. eLife 2023; 12:e86183. [PMID: 37555578 PMCID: PMC10499376 DOI: 10.7554/elife.86183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023] Open
Abstract
Head-fixed behavioral experiments in rodents permit unparalleled experimental control, precise measurement of behavior, and concurrent modulation and measurement of neural activity. Here, we present OHRBETS (Open-Source Head-fixed Rodent Behavioral Experimental Training System; pronounced 'Orbitz'), a low-cost, open-source platform of hardware and software to flexibly pursue the neural basis of a variety of motivated behaviors. Head-fixed mice tested with OHRBETS displayed operant conditioning for caloric reward that replicates core behavioral phenotypes observed during freely moving conditions. OHRBETS also permits optogenetic intracranial self-stimulation under positive or negative operant conditioning procedures and real-time place preference behavior, like that observed in freely moving assays. In a multi-spout brief-access consumption task, mice displayed licking as a function of concentration of sucrose, quinine, and sodium chloride, with licking modulated by homeostatic or circadian influences. Finally, to highlight the functionality of OHRBETS, we measured mesolimbic dopamine signals during the multi-spout brief-access task that display strong correlations with relative solution value and magnitude of consumption. All designs, programs, and instructions are provided freely online. This customizable platform enables replicable operant and consummatory behaviors and can be incorporated with methods to perturb and record neural dynamics in vivo.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Joumana M Barbakh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - MacKenzie T Utley
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Shreya Singh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Paula Bazzino
- Department of Psychology, University of Illinois at ChicagoChicagoUnited States
- Graduate Program in Neuroscience, University of Illinois at ChicagoChicagoUnited States
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at ChicagoChicagoUnited States
- Graduate Program in Neuroscience, University of Illinois at ChicagoChicagoUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
17
|
Peters C, He S, Fermani F, Lim H, Ding W, Mayer C, Klein R. Transcriptomics reveals amygdala neuron regulation by fasting and ghrelin thereby promoting feeding. SCIENCE ADVANCES 2023; 9:eadf6521. [PMID: 37224253 DOI: 10.1126/sciadv.adf6521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The central amygdala (CeA) consists of numerous genetically defined inhibitory neurons that control defensive and appetitive behaviors including feeding. Transcriptomic signatures of cell types and their links to function remain poorly understood. Using single-nucleus RNA sequencing, we describe nine CeA cell clusters, of which four are mostly associated with appetitive and two with aversive behaviors. To analyze the activation mechanism of appetitive CeA neurons, we characterized serotonin receptor 2a (Htr2a)-expressing neurons (CeAHtr2a) that comprise three appetitive clusters and were previously shown to promote feeding. In vivo calcium imaging revealed that CeAHtr2a neurons are activated by fasting, the hormone ghrelin, and the presence of food. Moreover, these neurons are required for the orexigenic effects of ghrelin. Appetitive CeA neurons responsive to fasting and ghrelin project to the parabrachial nucleus (PBN) causing inhibition of target PBN neurons. These results illustrate how the transcriptomic diversification of CeA neurons relates to fasting and hormone-regulated feeding behavior.
Collapse
Affiliation(s)
- Christian Peters
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Songwei He
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Federica Fermani
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Hansol Lim
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Wenyu Ding
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Christian Mayer
- Laboratory of Neurogenomics, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
18
|
Gordon-Fennell A, Barbakh JM, Utley M, Singh S, Bazzino P, Gowrishankar R, Bruchas MR, Roitman MF, Stuber GD. An Open-Source Platform for Head-Fixed Operant and Consummatory Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523828. [PMID: 36712040 PMCID: PMC9882199 DOI: 10.1101/2023.01.13.523828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Head-fixed behavioral experiments in rodents permit unparalleled experimental control, precise measurement of behavior, and concurrent modulation and measurement of neural activity. Here we present OHRBETS (Open-Source Head-fixed Rodent Behavioral Experimental Training System; pronounced 'Orbitz'), a low-cost, open-source ecosystem of hardware and software to flexibly pursue the neural basis of a variety of motivated behaviors. Head-fixed mice tested with OHRBETS displayed operant conditioning for caloric reward that replicates core behavioral phenotypes observed during freely moving conditions. OHRBETS also permits for optogenetic intracranial self-stimulation under positive or negative operant conditioning procedures and real-time place preference behavior, like that observed in freely moving assays. In a multi-spout brief-access consumption task, mice displayed licking as a function of concentration of sucrose, quinine, and sodium chloride, with licking modulated by homeostatic or circadian influences. Finally, to highlight the functionality of OHRBETS, we measured mesolimbic dopamine signals during the multi-spout brief-access task that display strong correlations with relative solution value and magnitude of consumption. All designs, programs, and instructions are provided freely online. This customizable ecosystem enables replicable operant and consummatory behaviors and can be incorporated with methods to perturb and record neural dynamics in vivo . Impact Statement A customizable open-source hardware and software ecosystem for conducting diverse head-fixed behavioral experiments in mice.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Joumana M. Barbakh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - MacKenzie Utley
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Shreya Singh
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Paula Bazzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607
| | - Raajaram Gowrishankar
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Michael R. Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Mitchell F. Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL 60607
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| |
Collapse
|
19
|
Zhao J, Liu C, Zhang F, Zheng Z, Luo F, Xia J, Wang Y, Zhang Z, Tang J, Song Z, Li S, Xu K, Chen M, Jiang C, He C, Tang L, Hu Z, Gao D, Ren S. A paraventricular thalamus to central amygdala neural circuit modulates acute stress-induced heightened wakefulness. Cell Rep 2022; 41:111824. [PMID: 36516774 DOI: 10.1016/j.celrep.2022.111824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Heightened wakefulness in response to stressors is essential for survival but can also lead to sleep disorders like insomnia. The paraventricular thalamus (PVT) is both a critical thalamic area for wakefulness and a stress-sensitive brain region. However, whether the PVT and its neural circuitries are involved in controlling wakefulness in stress conditions remains unknown. Here, we find that PVT neurons projecting to the central amygdala (CeA) are activated by different stressors. These neurons are wakefulness-active and increase their activities upon sleep to wakefulness transitions. Optogenetic activation of the PVT-CeA circuit evokes transitions from sleep to wakefulness, whereas selectively silencing the activity of this circuit decreases time spent in wakefulness. Specifically, chemogenetic inhibition of CeA-projecting PVT neurons not only alleviates stress responses but also attenuates the acute stress-induced increase of wakefulness. Thus, our results demonstrate that the PVT-CeA circuit controls physiological wakefulness and modulates acute stress-induced heightened wakefulness.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Chengyu Liu
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China; Department of Neurology, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing 400050, China
| | - Fenyan Zhang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Ziyi Zheng
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jinxiang Tang
- Sleep and Psychology Center, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Siyu Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Kan Xu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Mengting Chen
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chenggang Jiang
- Psychology Department, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Dong Gao
- Department of Sleep and Psychology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Army 953 Hospital, Army Medical University, Shigatse 857000, China.
| |
Collapse
|
20
|
A circuit from the ventral subiculum to anterior hypothalamic nucleus GABAergic neurons essential for anxiety-like behavioral avoidance. Nat Commun 2022; 13:7464. [PMID: 36463200 PMCID: PMC9719513 DOI: 10.1038/s41467-022-35211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Behavioral observations suggest a connection between anxiety and predator defense, but the underlying neural mechanisms remain unclear. Here we examine the role of the anterior hypothalamic nucleus (AHN), a node in the predator defense network, in anxiety-like behaviors. By in vivo recordings in male mice, we find that activity of AHN GABAergic (AHNVgat+) neurons shows individually stable increases when animals approach unfamiliar objects in an open field (OF) or when they explore the open-arm of an elevated plus-maze (EPM). Moreover, object-evoked AHN activity overlap with predator cue responses and correlate with the object and open-arm avoidance. Crucially, exploration-triggered optogenetic inhibition of AHNVgat+ neurons reduces object and open-arm avoidance. Furthermore, retrograde viral tracing identifies the ventral subiculum (vSub) of the hippocampal formation as a significant input to AHNVgat+ neurons in driving avoidance behaviors in anxiogenic situations. Thus, convergent activation of AHNVgat+ neurons serves as a shared mechanism between anxiety and predator defense to promote behavioral avoidance.
Collapse
|
21
|
Hansen N, Müller SJ, Khadhraoui E, Riedel CH, Langer P, Wiltfang J, Timäus CA, Bouter C, Ernst M, Lange C. Metric magnetic resonance imaging analysis reveals pronounced substantia-innominata atrophy in dementia with Lewy bodies with a psychiatric onset. Front Aging Neurosci 2022; 14:815813. [PMID: 36274999 PMCID: PMC9580213 DOI: 10.3389/fnagi.2022.815813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Dementia with Lewy bodies (DLB) is a type of dementia often diagnosed in older patients. Since its initial symptoms range from delirium to psychiatric and cognitive symptoms, the diagnosis is often delayed. Objectives In our study, we evaluated the magnetic resonance imaging (MRI) of patients suffering from DLB in correlation with their initial symptoms taking a new pragmatic approach entailing manual measurements in addition to an automated volumetric analysis of MRI. Methods A total of 63 patients with diagnosed DLB and valid 3D data sets were retrospectively and blinded evaluated. We assessed atrophy patterns (1) manually for the substantia innominata and (2) via FastSurfer for the most common supratentorial regions. Initial symptoms were categorized by (1) mild cognitive impairment (MCI), (2) psychiatric episodes, and (3) delirium. Results Manual metric MRI measurements revealed moderate, but significant substantia-innominata (SI) atrophy in patients with a psychiatric onset. FastSurfer analysis revealed no regional volumetric differences between groups. Conclusion The SI in patients with DLB and a psychiatric-onset is more atrophied than that in patients with initial MCI. Our results suggest potential differences in SI between DLB subtypes at the prodromal stage, which are useful when taking a differential-diagnostic approach. This finding should be confirmed in larger patient cohorts.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- *Correspondence: Niels Hansen,
| | - Sebastian Johannes Müller
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
- Sebastian Johannes Müller,
| | - Eya Khadhraoui
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Heiner Riedel
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Philip Langer
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Charles-Arnold Timäus
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg August University, Göttingen, Germany
| | - Marielle Ernst
- Institute of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
22
|
Moscarello JM, Penzo MA. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 2022; 25:999-1008. [PMID: 35915178 DOI: 10.1038/s41593-022-01130-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In nature, animals display defensive behaviors that reflect the spatiotemporal distance of threats. Laboratory-based paradigms that elicit specific defensive responses in rodents have provided valuable insight into the brain mechanisms that mediate the construction of defensive modes with varying degrees of threat imminence. In this Review, we discuss accumulating evidence that the central nucleus of the amygdala (CeA) plays a key role in this process. Specifically, we propose that the mutually inhibitory circuits of the CeA use a winner-takes-all strategy that supports transitioning across defensive modes and the execution of specific defensive behaviors to previously formed threat associations. Our proposal provides a conceptual framework in which seemingly divergent observations regarding CeA function can be interpreted and identifies various areas of priority for future research.
Collapse
Affiliation(s)
- Justin M Moscarello
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Cui Y, Huang X, Huang P, Huang L, Feng Z, Xiang X, Chen X, Li A, Ren C, Li H. Reward ameliorates depressive-like behaviors via inhibition of the substantia innominata to the lateral habenula projection. SCIENCE ADVANCES 2022; 8:eabn0193. [PMID: 35857453 PMCID: PMC9269896 DOI: 10.1126/sciadv.abn0193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The lateral habenula (LHb) is implicated in emotional processing, especially depression. Recent studies indicate that the basal forebrain (BF) transmits reward or aversive signals to the LHb. However, the contribution of the BF-LHb circuit to the pathophysiology of depression still needs to be determined. Here, we find that the excitatory projection to the LHb from the substantia innominata (SI), a BF subregion, is activated by aversive stimuli and inhibited by reward stimuli. Furthermore, chronic activation of the SI-LHb circuit is sufficient to induce depressive-like behaviors, whereas inhibition of the circuit alleviates chronic stress-induced depressive-like phenotype. We also find that reward consumption buffers depressive-like behaviors induced by chronic activation of the SI-LHb circuit. In summary, we systematically define the function and mechanism of the SI-LHb circuit in modulating depressive-like behaviors, thus providing important insights to better decipher LHb processing in the pathophysiology of depression.
Collapse
Affiliation(s)
- Yuting Cui
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodan Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Pengcheng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhao Feng
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinfeng Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510530, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Haohong Li
- Affiliated Mental Health Centre and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310013 Zhejiang, China
- The MOE Frontier Research Center of Brain and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| |
Collapse
|
24
|
Partial Ablation of Postsynaptic Dopamine D2 Receptors in the Central Nucleus of the Amygdala Increases Risk Avoidance in Exploratory Tasks. eNeuro 2022; 9:ENEURO.0528-21.2022. [PMID: 35210287 PMCID: PMC8925651 DOI: 10.1523/eneuro.0528-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
The central nucleus of the amygdala (CeA) is involved in the expression of fear and has been implicated in several anxiety disorders. This structure is densely innervated by DAergic projections that impinge on amygdalar neurons expressing various dopamine (DA) receptor subtypes, including D2 receptors (D2Rs). Although various pharmacological approaches have assessed the role of D2Rs in the CeA, the actual participation of postsynaptic D2Rs in the CeA to defensive behaviors remains unclear. Here, we investigated the distribution of D2Rs in the CeA and their role in modifying neuronal activity and fear related behaviors in mice. First, using the mouse reporter strain D2R-EGFP, we verified that D2Rs are present both in neurons of the CeA and in A10 dorsocaudal (A10dc) DAergic neurons that innervate the CeA. Moreover, we showed that pharmacological stimulation of D2Rs increases the activity of protein kinase C (PKC)δ cells present in the CeA, a type of neuron previously associated with reduced defensive behaviors. Finally, using a molecular genetics approach that discriminates postsynaptic D2Rs from presynaptic D2 autoreceptors, we demonstrated that mice carrying targeted deletions of postsynaptic D2Rs in the CeA display increased risk avoidance in exploratory tasks. Together, our results indicate that postsynaptic D2Rs in the CeA attenuate behavioral reactions to potential environmental threats.
Collapse
|
25
|
Yu H, Miao W, Ji E, Huang S, Jin S, Zhu X, Liu MZ, Sun YG, Xu F, Yu X. Social touch-like tactile stimulation activates a tachykinin 1-oxytocin pathway to promote social interactions. Neuron 2022; 110:1051-1067.e7. [PMID: 35045339 DOI: 10.1016/j.neuron.2021.12.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/29/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
It is well known that affective and pleasant touch promotes individual well-being and facilitates affiliative social communication, although the neural circuit that mediates this process is largely unknown. Here, we show that social-touch-like tactile stimulation (ST) enhances firing of oxytocin neurons in the mouse paraventricular hypothalamus (PVH) and promotes social interactions and positively reinforcing place preference. These results link pleasant somatosensory stimulation to increased social interactions and positive affective valence. We further show that tachykinin 1 (Tac1+) neurons in the lateral and ventrolateral periaqueductal gray (l/vlPAG) send monosynaptic excitatory projections to PVH oxytocin neurons. Functionally, activation of PVH-projecting Tac1+ neurons increases firing of oxytocin neurons, promotes social interactions, and increases preference for the social touch context, whereas reducing activity of Tac1+ neurons abolishes ST-induced oxytocin neuronal firing. Together, these results identify a dipeptidergic pathway from l/vlPAG Tac1+ neurons to PVH oxytocin neurons, through which pleasant sensory experience promotes social behavior.
Collapse
Affiliation(s)
- Hang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanying Miao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - En Ji
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shajin Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sen Jin
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xutao Zhu
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Ming-Zhe Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
26
|
Zeng N, Cutts EJ, Lopez CB, Kaur S, Duran M, Virkus SA, Hardaway JA. Anatomical and Functional Characterization of Central Amygdala Glucagon-Like Peptide 1 Receptor Expressing Neurons. Front Behav Neurosci 2022; 15:724030. [PMID: 35002645 PMCID: PMC8739476 DOI: 10.3389/fnbeh.2021.724030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Glucagon-like peptide 1 receptors (GLP-1Rs) are highly expressed in the brain and are responsible for mediating the acute anorexigenic actions of widely prescribed GLP-1R agonists. Neurobiological efforts to localize the hypophagic effects of GLP-1R agonists in the brain have mainly focused on the hypothalamus and hindbrain. In this study, we performed a deep anatomical and neurophysiological characterization of GLP-1Rs in the central nucleus of the amygdala (CeA). At an mRNA level, we found that Glp1r is diffusely coexpressed in known CeA subpopulations like protein kinase c δ (Prkcd), somatostatin (Sst), or tachykinin2 (Tac2). At a cellular level, we used Glp1r-Cre mice and viral Cre-dependent tracing to map the anatomical positions of GLP-1R cells across the rostral-caudal axis of the CeA and in CeA subdivisions. We found that Glp1rCeA cells are highly enriched in the medial subdivision of the CeA (CeM). Using whole cell patch clamp electrophysiology, we found that Glp1rCeA neurons are characterized by the presence of Ih-like currents and resemble a low threshold bursting neuronal subtype in response to hyperpolarizing and depolarizing current injections. We observed sex differences in the magnitude of Ih-like currents and membrane capacitance. At rest, we observed that nearly half of Glp1rCeA neurons are spontaneously active. We observed that active and inactive neurons display significant differences in excitability even when normalized to an identical holding potential. Our data are the first to deeply characterize the pattern of Glp1r in the CeA and study the neurophysiological characteristics of CeA neurons expressing Glp1r. Future studies leveraging these data will be important to understanding the impact of GLP-1R agonists on feeding and motivation.
Collapse
Affiliation(s)
- Ningxiang Zeng
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elam J Cutts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christian B Lopez
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Simran Kaur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Chen S, Chen F, Amin N, Ren Q, Ye S, Hu Z, Tan X, Jiang M, Fang M. Defects of parvalbumin-positive interneurons in the ventral dentate gyrus region are implicated depression-like behavior in mice. Brain Behav Immun 2022; 99:27-42. [PMID: 34562597 DOI: 10.1016/j.bbi.2021.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Depression is an increasingly common but extremely serve mood disorder that remains poorly understood and inadequately treated. Fast-spiking parvalbumin-positive interneurons (PVIs), a subpopulation of GABAergic interneurons (GABA, g-aminobutyric acid), exhibit a widespread distribution throughout the hippocampus, and has been reported to play an important role in a variety of mental disorders. However, the relationship between depression and hippocampal PVIs remains unclear. Here in this present study, a series of experiments were conducted to clarify the potential relationship. Here, chronic unpredicted mild stress (CUMS) and Lipopolysaccharide (LPS) injection were introduced to induce depression-like behavior in mice, and led to a clear decline in PVIs numbers in the ventral hippocampal (vHPC), particularly in the ventral dentate gyrus (vDG) subfield. After a selectively removal of the PVIs in PV-ires-Cre::Ai14 mice, we confirmed that ablation of PVIs from the vDG induced depression-like behavior. Furthermore, we found that the removal of vDG-PVIs induced depression likely to be accounted for upregulation of neuroinflammation. These findings facilitate us better understand the role of hippocampal PVIs in depression.
Collapse
Affiliation(s)
- Shijia Chen
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengpei Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nashwa Amin
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Department of Zoology, Faculty of Science, Aswan University, Aswan 81521, Egypt
| | - Qiannan Ren
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shan Ye
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou 310003, China
| | - Xiaoning Tan
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Institute of Neuroscience, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mizu Jiang
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Marong Fang
- Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
28
|
Cooper AH, Hedden NS, Corder G, Lamerand SR, Donahue RR, Morales-Medina JC, Selan L, Prasoon P, Taylor BK. Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain. J Neurosci Res 2022; 100:48-65. [PMID: 33957003 PMCID: PMC8571119 DOI: 10.1002/jnr.24846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naomi S. Hedden
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Corder
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney R. Lamerand
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neurosciences at the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Lindsay Selan
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Bourhy L, Mazeraud A, Costa LHA, Levy J, Rei D, Hecquet E, Gabanyi I, Bozza FA, Chrétien F, Lledo PM, Sharshar T, Lepousez G. OUP accepted manuscript. Brain 2022; 145:1391-1409. [PMID: 35441215 PMCID: PMC9128826 DOI: 10.1093/brain/awab475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lena Bourhy
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Université Paris Cité, Collège doctoral, F-75005 Paris, France
| | - Aurélien Mazeraud
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- Université Paris Cité, Collège doctoral, F-75005 Paris, France
- GHU Paris Psychiatrie Neurosciences, Service hospitalo-universitaire de Neuro-anesthésie réanimation, Paris, France
| | - Luis H. A. Costa
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jarod Levy
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
| | - Damien Rei
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
| | - Estéban Hecquet
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
| | - Ilana Gabanyi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, Microenvironment and Immunity Unit, F-75015 Paris, France
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas (INI), OswaldoCruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Fabrice Chrétien
- Institut Pasteur, Université Paris Cité, Laboratory for Experimental Neuropathology, F-75015 Paris, France
- GHU Paris Psychiatrie Neurosciences, Service hospitalo-universitaire de Neuropathologie, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Correspondence may also be addressed to: Pierre-Marie Lledo E-mail:
| | - Tarek Sharshar
- GHU Paris Psychiatrie Neurosciences, Service hospitalo-universitaire de Neuro-anesthésie réanimation, Paris, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France
| | - Gabriel Lepousez
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Perception and Memory Unit, F-75015 Paris, France
- Correspondence to: Gabriel Lepousez Laboratory for Perception and Memory Institut Pasteur 25 rue du Docteur Roux, 75724 Paris Cedex 15, France E-mail:
| |
Collapse
|
31
|
Yu H, Xiang X, Chen Z, Wang X, Dai J, Wang X, Huang P, Zhao ZD, Shen WL, Li H. Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice. Nat Commun 2021; 12:6523. [PMID: 34764279 PMCID: PMC8586038 DOI: 10.1038/s41467-021-26852-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Sequential encoding of motor programs is essential for behavior generation. However, whether it is critical for instinctive behavior is still largely unknown. Mouse hunting behavior typically contains a sequential motor program, including the prey search, chase, attack, and consumption. Here, we reveal that the neuronal activity in the lateral periaqueductal gray (LPAG) follows a sequential pattern and is time-locked to different hunting actions. Optrode recordings and photoinhibition demonstrate that LPAGVgat neurons are required for the prey detection, chase and attack, while LPAGVglut2 neurons are selectively required for the attack. Ablation of inputs that could trigger hunting, including the central amygdala, the lateral hypothalamus, and the zona incerta, interrupts the activity sequence pattern and substantially impairs hunting actions. Therefore, our findings reveal that periaqueductal gray neuronal ensembles encode the sequential hunting motor program, which might provide a framework for decoding complex instinctive behaviors. Hunting behavior typically contains a sequential motor program, including search, chase, attack, and consumption. Here, the authors show that periaqueductal gray neuronal ensembles encode the sequential hunting motor program, which might provide a framework for decoding complex instinctive behaviors.
Collapse
Affiliation(s)
- Hong Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,College of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zongming Chen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, Shanghaitech University, Shanghai, 201210, China
| | - Xu Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiaqi Dai
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinxin Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Pengcheng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng-Dong Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Wei L Shen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, Shanghaitech University, Shanghai, 201210, China.
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China. .,Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China. .,The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
32
|
Gordon-Fennell A, Stuber GD. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion. Neuropharmacology 2021; 198:108725. [PMID: 34375625 DOI: 10.1016/j.neuropharm.2021.108725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Reinforcement, reward, and aversion are fundamental processes for guiding appropriate behaviors. Longstanding theories have pointed to dopaminergic neurons of the ventral tegmental area (VTA) and the limbic systems' descending pathways as crucial systems for modulating these behaviors. The application of optogenetic techniques in neurotransmitter- and projection-specific circuits has supported and enhanced many preexisting theories but has also revealed many unexpected results. Here, we review the past decade of optogenetic experiments to study the neural circuitry of reinforcement and reward/aversion with a focus on the mesolimbic dopamine system and brain areas along the medial forebrain bundle (MFB). The cumulation of these studies to date has revealed generalizable findings across molecularly defined cell types in areas of the basal forebrain and anterior hypothalamus. Optogenetic stimulation of GABAergic neurons in these brain regions drives reward and can support positive reinforcement and optogenetic stimulation of glutamatergic neurons in these regions drives aversion. We also review studies of the activity dynamics of neurotransmitter defined populations in these areas which have revealed varied response patterns associated with motivated behaviors.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA.
| |
Collapse
|
33
|
Whittle N, Fadok J, MacPherson KP, Nguyen R, Botta P, Wolff SBE, Müller C, Herry C, Tovote P, Holmes A, Singewald N, Lüthi A, Ciocchi S. Central amygdala micro-circuits mediate fear extinction. Nat Commun 2021; 12:4156. [PMID: 34230461 PMCID: PMC8260764 DOI: 10.1038/s41467-021-24068-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Fear extinction is an adaptive process whereby defensive responses are attenuated following repeated experience of prior fear-related stimuli without harm. The formation of extinction memories involves interactions between various corticolimbic structures, resulting in reduced central amygdala (CEA) output. Recent studies show, however, the CEA is not merely an output relay of fear responses but contains multiple neuronal subpopulations that interact to calibrate levels of fear responding. Here, by integrating behavioural, in vivo electrophysiological, anatomical and optogenetic approaches in mice we demonstrate that fear extinction produces reversible, stimulus- and context-specific changes in neuronal responses to conditioned stimuli in functionally and genetically defined cell types in the lateral (CEl) and medial (CEm) CEA. Moreover, we show these alterations are absent when extinction is deficient and that selective silencing of protein kinase C delta-expressing (PKCδ) CEl neurons impairs fear extinction. Our findings identify CEA inhibitory microcircuits that act as critical elements within the brain networks mediating fear extinction.
Collapse
Affiliation(s)
- Nigel Whittle
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Jonathan Fadok
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Psychology and Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Kathryn P MacPherson
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Robin Nguyen
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Paolo Botta
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Steffen B E Wolff
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christian Müller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Cyril Herry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Philip Tovote
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Zhu Z, Ma Q, Miao L, Yang H, Pan L, Li K, Zeng LH, Zhang X, Wu J, Hao S, Lin S, Ma X, Mai W, Feng X, Hao Y, Sun L, Duan S, Yu YQ. A substantia innominata-midbrain circuit controls a general aggressive response. Neuron 2021; 109:1540-1553.e9. [DOI: 10.1016/j.neuron.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/08/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
|
35
|
Walker LC, Hand LJ, Letherby B, Huckstep KL, Campbell EJ, Lawrence AJ. Cocaine and amphetamine regulated transcript (CART) signalling in the central nucleus of the amygdala modulates stress-induced alcohol seeking. Neuropsychopharmacology 2021; 46:325-333. [PMID: 32826981 PMCID: PMC7852518 DOI: 10.1038/s41386-020-00807-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/19/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The central nucleus of the amygdala (CeA) is a key hub of the neural circuitry regulating alcohol and stress interactions. However, the exact neuronal populations that govern this interaction are not well defined. Here we examined the role of the neuropeptide cocaine and amphetamine regulated transcript (CART) within the CeA in stress-induced alcohol seeking. We found that CART-containing neurons are predominantly expressed in the capsular/lateral division of the CeA and are a subpopulation of protein kinase Cδ (PKCδ) cells, distinct from corticotrophin releasing factor (CRF)-expressing cells. Both stress (yohimbine) and stress-induced alcohol seeking activated CART cells within the CeA, while neutralisation of endogenous CeA CART signalling (via antibody administration) attenuated stress-induced alcohol, but not sucrose seeking. Further, blocking CART signalling within the CeA did not alter the motivation to obtain and consume alcohol but did attenuate stressor-induced anxiety-like behaviour during abstinence from alcohol. Together, these data identify CeA CART cells as a subpopulation of PKCδ cells that influence stress × alcohol interactions and mediate stress-induced alcohol seeking behaviours.
Collapse
Affiliation(s)
- Leigh C. Walker
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Lexi J. Hand
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Bethany Letherby
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Kate L. Huckstep
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Erin J. Campbell
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| | - Andrew J. Lawrence
- grid.418025.a0000 0004 0606 5526Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XFlorey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, 3052 Australia
| |
Collapse
|
36
|
Huang P, Xiang X, Chen X, Li H. Somatostatin Neurons Govern Theta Oscillations Induced by Salient Visual Signals. Cell Rep 2020; 33:108415. [PMID: 33238116 DOI: 10.1016/j.celrep.2020.108415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/14/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023] Open
Abstract
Salient visual stimuli enhance theta oscillations and spike-phase locking in the theta band in the primary visual cortex (V1) of mice; however, the detailed mechanisms remain unknown. GABAergic neurons play a vital role in regulating these oscillations. Here, we use optogenetic recordings to tag cell-type-specific neurons in V1 of head-fixed mice and demonstrate that salient visual stimuli facilitate somatostatin (SOM)-expressing neuron responses and firing with theta band oscillations but suppress activities of parvalbumin (PV)-expressing neurons. Furthermore, inactivation of SOM neurons attenuates the enhancement of theta oscillations induced by salient visual stimuli and rhythmic activation of SOM neurons enhances theta oscillations. These results reveal a potential cortical theta oscillation mechanism governed by SOM neurons.
Collapse
Affiliation(s)
- Pengcheng Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xinfeng Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haohong Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
37
|
Kargl D, Kaczanowska J, Ulonska S, Groessl F, Piszczek L, Lazovic J, Buehler K, Haubensak W. The amygdala instructs insular feedback for affective learning. eLife 2020; 9:60336. [PMID: 33216712 PMCID: PMC7679142 DOI: 10.7554/elife.60336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Affective responses depend on assigning value to environmental predictors of threat or reward. Neuroanatomically, this affective value is encoded at both cortical and subcortical levels. However, the purpose of this distributed representation across functional hierarchies remains unclear. Using fMRI in mice, we mapped a discrete cortico-limbic loop between insular cortex (IC), central amygdala (CE), and nucleus basalis of Meynert (NBM), which decomposes the affective value of a conditioned stimulus (CS) into its salience and valence components. In IC, learning integrated unconditioned stimulus (US)-evoked bodily states into CS valence. In turn, CS salience in the CE recruited these CS representations bottom-up via the cholinergic NBM. This way, the CE incorporated interoceptive feedback from IC to improve discrimination of CS valence. Consequently, opto-/chemogenetic uncoupling of hierarchical information flow disrupted affective learning and conditioned responding. Dysfunctional interactions in the IC↔CE/NBM network may underlie intolerance to uncertainty, observed in autism and related psychiatric conditions.
Collapse
Affiliation(s)
- Dominic Kargl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Joanna Kaczanowska
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Sophia Ulonska
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH (VRVis), Vienna, Austria
| | - Florian Groessl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Lukasz Piszczek
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility (pcIMAG), Vienna Biocenter Core Facilities (VBCF), Vienna, Austria
| | - Katja Buehler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH (VRVis), Vienna, Austria
| | - Wulf Haubensak
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
38
|
Hardaway JA. Central Amygdala Discovery Efforts in Primates Reveals New Clues on Anxious Temperament. Biol Psychiatry 2020; 88:e35-e36. [PMID: 32972516 PMCID: PMC8085899 DOI: 10.1016/j.biopsych.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
|
39
|
Kovner R, Souaiaia T, Fox AS, French DA, Goss CE, Roseboom PH, Oler JA, Riedel MK, Fekete EM, Fudge JL, Knowles JA, Kalin NH. Transcriptional Profiling of Primate Central Nucleus of the Amygdala Neurons to Understand the Molecular Underpinnings of Early-Life Anxious Temperament. Biol Psychiatry 2020; 88:638-648. [PMID: 32709417 PMCID: PMC7530008 DOI: 10.1016/j.biopsych.2020.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Children exhibiting extreme anxious temperament (AT) are at an increased risk for developing anxiety and depression. Our previous mechanistic and neuroimaging work in young rhesus monkeys linked the central nucleus of the amygdala to AT and its underlying neural circuit. METHODS Here, we used laser capture microscopy and RNA sequencing in 47 young rhesus monkeys to investigate AT's molecular underpinnings by focusing on neurons from the lateral division of the central nucleus of the amygdala (CeL). RNA sequencing identified numerous AT-related CeL transcripts, and we used immunofluorescence (n = 3) and tract-tracing (n = 2) methods in a different sample of monkeys to examine the expression, distribution, and projection pattern of neurons expressing one of these transcripts. RESULTS We found 555 AT-related transcripts, 14 of which were confirmed with high statistical confidence (false discovery rate < .10), including protein kinase C delta (PKCδ), a CeL microcircuit cell marker implicated in rodent threat processing. We characterized PKCδ neurons in the rhesus CeL, compared its distribution with that of the mouse, and demonstrated that a subset of these neurons project to the laterodorsal bed nucleus of the stria terminalis. CONCLUSIONS These findings demonstrate that CeL PKCδ is associated with primate anxiety, provides evidence of a CeL to laterodorsal bed nucleus of the stria terminalis circuit that may be relevant to understanding human anxiety, and points to specific molecules within this circuit that could serve as potential treatment targets for anxiety disorders.
Collapse
Affiliation(s)
- Rothem Kovner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Tade Souaiaia
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California
| | - Delores A French
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Cooper E Goss
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Marissa K Riedel
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Eva M Fekete
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Julie L Fudge
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York; Department of Neuroscience/Del Monte Institute for Brain Research, University of Rochester Medical Center, Rochester, New York
| | - James A Knowles
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
40
|
Fu JY, Yu XD, Zhu Y, Xie SZ, Tang MY, Yu B, Li XM. Whole-Brain Map of Long-Range Monosynaptic Inputs to Different Cell Types in the Amygdala of the Mouse. Neurosci Bull 2020; 36:1381-1394. [PMID: 32691225 PMCID: PMC7674542 DOI: 10.1007/s12264-020-00545-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
The amygdala, which is involved in various behaviors and emotions, is reported to connect with the whole brain. However, the long-range inputs of distinct cell types have not yet been defined. Here, we used a retrograde trans-synaptic rabies virus to generate a whole-brain map of inputs to the main cell types in the mouse amygdala. We identified 37 individual regions that projected to neurons expressing vesicular glutamate transporter 2, 78 regions to parvalbumin-expressing neurons, 104 regions to neurons expressing protein kinase C-δ, and 89 regions to somatostatin-expressing neurons. The amygdala received massive projections from the isocortex and striatum. Several nuclei, such as the caudate-putamen and the CA1 field of the hippocampus, exhibited input preferences to different cell types in the amygdala. Notably, we identified several novel input areas, including the substantia innominata and zona incerta. These findings provide anatomical evidence to help understand the precise connections and diverse functions of the amygdala.
Collapse
Affiliation(s)
- Jia-Yu Fu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bin Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Hua T, Chen B, Lu D, Sakurai K, Zhao S, Han BX, Kim J, Yin L, Chen Y, Lu J, Wang F. General anesthetics activate a potent central pain-suppression circuit in the amygdala. Nat Neurosci 2020; 23:854-868. [PMID: 32424286 PMCID: PMC7329612 DOI: 10.1038/s41593-020-0632-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
General anesthesia (GA) can produce analgesia (loss of pain) independent of inducing loss of consciousness, but the underlying mechanisms remain unclear. We hypothesized that GA suppresses pain in part by activating supraspinal analgesic circuits. We discovered a distinct population of GABAergic neurons activated by GA in the mouse central amygdala (CeAGA neurons). In vivo calcium imaging revealed that different GA drugs activate a shared ensemble of CeAGA neurons. CeAGA neurons also possess basal activity that mostly reflects animals' internal state rather than external stimuli. Optogenetic activation of CeAGA potently suppressed both pain-elicited reflexive and self-recuperating behaviors across sensory modalities and abolished neuropathic pain-induced mechanical (hyper-)sensitivity. Conversely, inhibition of CeAGA activity exacerbated pain, produced strong aversion and canceled the analgesic effect of low-dose ketamine. CeAGA neurons have widespread inhibitory projections to many affective pain-processing centers. Our study points to CeAGA as a potential powerful therapeutic target for alleviating chronic pain.
Collapse
Affiliation(s)
- Thuy Hua
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| | - Bin Chen
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Dongye Lu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Jiwoo Kim
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Luping Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Jinghao Lu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
42
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
43
|
Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat Neurosci 2019; 22:921-932. [DOI: 10.1038/s41593-019-0404-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 02/05/2023]
|
44
|
Abstract
The neural mechanisms underlying emotional valence are at the interface between perception and action, integrating inputs from the external environment with past experiences to guide the behavior of an organism. Depending on the positive or negative valence assigned to an environmental stimulus, the organism will approach or avoid the source of the stimulus. Multiple convergent studies have demonstrated that the amygdala complex is a critical node of the circuits assigning valence. Here we examine the current progress in identifying valence coding properties of neural populations in different nuclei of the amygdala, based on their activity, connectivity, and gene expression profile.
Collapse
Affiliation(s)
- Michele Pignatelli
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 02139 MA, USA
| | - Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, 146 Rue Léo Saignat, 33000 Bordeaux, France
| |
Collapse
|
45
|
Zhang X, Li B. A Pathway to Avoiding Threats? Neuron 2018; 100:780-782. [PMID: 30465764 DOI: 10.1016/j.neuron.2018.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How does our brain give rise to passive or active defensive responses when we are confronted with threats? In a recent study in Cell, Terburg, Scheggia and colleagues (Terburg et al., 2018) show that, in both humans and rats, a pathway originating from the amygdala can help suppress passive responses, thereby facilitating active responses to imminent threats.
Collapse
Affiliation(s)
- Xian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
46
|
Abstract
Anticipatory defensive responses to an aversive or harmful event depend on memories linking the event with the predictive environmental cues. Extensive evidence indicates that the central amygdala is essential for the acquisition and recall of such memories. The evidence came initially from studies that relied on traditional lesion and pharmacological techniques, and recently from studies in which new methodologies were used to target, record and manipulate neuronal activities with improved precision and specificity. In this review, I will discuss the current understanding of the roles of central amygdala neurons in the learning and expression of defensive behaviors, with a focus on the major neuronal populations identified on the basis of their genetic markers.
Collapse
|
47
|
Dorsal tegmental dopamine neurons gate associative learning of fear. Nat Neurosci 2018; 21:952-962. [PMID: 29950668 PMCID: PMC6166775 DOI: 10.1038/s41593-018-0174-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Functional neuroanatomy of Pavlovian fear has identified neuronal circuits and synapses associating conditioned stimuli with aversive events. Hebbian plasticity within these networks requires additional reinforcement to store particularly salient experiences into long-term memory. Here, we have identified a circuit reciprocally connecting the ventral periaqueductal grey (vPAG)/dorsal raphe (DR) region and the central amygdala (CE) that gates fear learning. We found that vPAG/DR dopaminergic (vPdRD) neurons encode a positive prediction error in response to unpredicted shocks, and may reshape intra-amygdala connectivity via a dopamine-dependent form of long-term potentiation (LTP). Negative feedback from the CE to vPdRD neurons might limit reinforcement to events that have not been predicted. These findings add a new module to the midbrain DA circuit architecture underlying associative reinforcement learning and identify vPdRD neurons as critical component of Pavlovian fear conditioning. We propose that dysregulation of vPdRD neuronal activity may contribute to fear-related psychiatric disorders.
Collapse
|
48
|
A Central Extended Amygdala Circuit That Modulates Anxiety. J Neurosci 2018; 38:5567-5583. [PMID: 29844022 DOI: 10.1523/jneurosci.0705-18.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Both the amygdala and the bed nucleus of the stria terminalis (BNST) have been implicated in maladaptive anxiety characteristics of anxiety disorders. However, the underlying circuit and cellular mechanisms have remained elusive. Here we show that mice with Erbb4 gene deficiency in somatostatin-expressing (SOM+) neurons exhibit heightened anxiety as measured in the elevated plus maze test and the open field test, two assays commonly used to assess anxiety-related behaviors in rodents. Using a combination of electrophysiological, molecular, genetic, and pharmacological techniques, we demonstrate that the abnormal anxiety in the mutant mice is caused by enhanced excitatory synaptic inputs onto SOM+ neurons in the central amygdala (CeA), and the resulting reduction in inhibition onto downstream SOM+ neurons in the BNST. Notably, our results indicate that an increase in dynorphin signaling in SOM+ CeA neurons mediates the paradoxical reduction in inhibition onto SOM+ BNST neurons, and that the consequent enhanced activity of SOM+ BNST neurons is both necessary for and sufficient to drive the elevated anxiety. Finally, we show that the elevated anxiety and the associated synaptic dysfunctions and increased dynorphin signaling in the CeA-BNST circuit of the Erbb4 mutant mice can be recapitulated by stress in wild-type mice. Together, our results unravel previously unknown circuit and cellular processes in the central extended amygdala that can cause maladaptive anxiety.SIGNIFICANCE STATEMENT The central extended amygdala has been implicated in anxiety-related behaviors, but the underlying mechanisms are unclear. Here we found that somatostatin-expressing neurons in the central amygdala (CeA) controls anxiety through modulation of the stria terminalis, a process that is mediated by an increase in dynorphin signaling in the CeA. Our results reveal circuit and cellular dysfunctions that may account for maladaptive anxiety.
Collapse
|
49
|
Hua R, Yu S, Liu M, Li H. A PCR-Based Method for RNA Probes and Applications in Neuroscience. Front Neurosci 2018; 12:266. [PMID: 29770110 PMCID: PMC5942160 DOI: 10.3389/fnins.2018.00266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
In situ hybridization (ISH) is a powerful technique that is used to detect the localization of specific nucleic acid sequences for understanding the organization, regulation, and function of genes. However, in most cases, RNA probes are obtained by in vitro transcription from plasmids containing specific promoter elements and mRNA-specific cDNA. Probes originating from plasmid vectors are time-consuming and not suitable for the rapid gene mapping. Here, we introduce a simplified method to prepare digoxigenin (DIG)-labeled non-radioactive RNA probes based on polymerase chain reaction (PCR) amplification and applications in free-floating mouse brain sections. Employing a transgenic reporter line, we investigate the expression of the somatostatin (SST) mRNA in the adult mouse brain. The method can be applied to identify the colocalization of SST mRNA and proteins including corticotrophin-releasing hormone (CRH) and protein kinase C delta type (PKC-δ) using double immunofluorescence, which is useful for understanding the organization of complex brain nuclei. Moreover, the method can also be incorporated with retrograde tracing to visualize the functional connection in the neural circuitry. Briefly, the PCR-based method for non-radioactive RNA probes is a useful tool that can be substantially utilized in neuroscience studies.
Collapse
Affiliation(s)
- Ruifang Hua
- Ministry of Education Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shanshan Yu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mugen Liu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haohong Li
- Ministry of Education Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Chen X, Li H. ArControl: An Arduino-Based Comprehensive Behavioral Platform with Real-Time Performance. Front Behav Neurosci 2017; 11:244. [PMID: 29321735 PMCID: PMC5732142 DOI: 10.3389/fnbeh.2017.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022] Open
Abstract
Studying animal behavior in the lab requires reliable delivering stimulations and monitoring responses. We constructed a comprehensive behavioral platform (ArControl: Arduino Control Platform) that was an affordable, easy-to-use, high-performance solution combined software and hardware components. The hardware component was consisted of an Arduino UNO board and a simple drive circuit. As for software, the ArControl provided a stand-alone and intuitive GUI (graphical user interface) application that did not require users to master scripts. The experiment data were automatically recorded with the built in DAQ (data acquisition) function. The ArControl also allowed the behavioral schedule to be entirely stored in and operated on the Arduino chip. This made the ArControl a genuine, real-time system with high temporal resolution (<1 ms). We tested the ArControl, based on strict performance measurements and two mice behavioral experiments. The results showed that the ArControl was an adaptive and reliable system suitable for behavioral research.
Collapse
Affiliation(s)
- Xinfeng Chen
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haohong Li
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|