1
|
Li YH, Huang XJ, Zhao XY. Translational study of the regulatory mechanism by which immune synapses enhance immune cell function. Cancer Lett 2025; 614:217542. [PMID: 39924076 DOI: 10.1016/j.canlet.2025.217542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Immune synapses, which were initially discovered at the interface between antigen-presenting cells (APCs) and T cells, are special structures formed at the contact site between antigen-presenting cells and immune cells and constitute the structural basis for immune cells to kill tumours and synthesise antibodies. Their structures are very similar to those of neural synapses in the nervous system, and they contain different functional structural regions. With the development of cell visualization research, scientists have increasingly conducted in-depth research on immune synapses. At present, it is known that T cells, B cells, and NK cells can form different immune synapses with target cells. Immune synapses formed by different cell subsets as well as CAR-T cells have their own characteristics, mainly in terms of their structure, formation process and regulatory mechanism. Therefore, how to enhance immune cell killing function by enhancing immune synaptic function has long been a research hotspot. At present, the killing function of immune cells can be enhanced by influencing the signalling molecules of immune synapses and the cell microenvironment and modifying the structure of immune synapses. Through a review of the factors affecting immune synapses, we can better explore the target for enhancing immune system function.
Collapse
Affiliation(s)
- Ya-Hui Li
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China.
| |
Collapse
|
2
|
Lingel H, Fischer L, Remstedt S, Kuropka B, Philipsen L, Han I, Sander JE, Freund C, Arra A, Brunner-Weinzierl MC. SLAMF7 (CD319) on activated CD8 + T cells transduces environmental cues to initiate cytotoxic effector cell responses. Cell Death Differ 2025; 32:561-572. [PMID: 39390117 PMCID: PMC11893764 DOI: 10.1038/s41418-024-01399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
CD8+ T-cell responses are meticulously orchestrated processes regulated by intercellular receptor:ligand interactions. These interactions critically control the dynamics of CD8+ T-cell populations that is crucial to overcome threats such as viral infections or cancer. Yet, the mechanisms governing these dynamics remain incompletely elucidated. Here, we identified a hitherto unknown T-cell referred function of the self-ligating surface receptor SLAMF7 (CD319) on CD8+ T cells during initiation of cytotoxic T-cell responses. According to its cytotoxicity related expression on T effector cells, we found that CD8+ T cells could utilize SLAMF7 to transduce environmental cues into cellular interactions and information exchange. Indeed, SLAMF7 facilitated a dose-dependent formation of stable homotypic contacts that ultimately resulted in stable cell-contacts, quorum populations and commitment to expansion and differentiation. Using pull-down assays and network analyses, we identified novel SLAMF7-binding intracellular signaling molecules including the CRK, CRKL, and Nck adaptors, which are involved in T-cell contact formation and may mediate SLAMF7 functions in sensing and adhesion. Hence, providing SLAMF7 signals during antigen recognition of CD8+ T cells enhanced their overall magnitude, particularly in responses towards low-affinity antigens, resulting in a significant boost in their proliferation and cytotoxic capacity. Overall, we have identified and characterized a potent initiator of the cytotoxic T lymphocyte response program and revealed advanced mechanisms to improve CD8+ T-cell response decisions against weak viral or tumor-associated antigens, thereby strengthening our defense against such adversaries.
Collapse
Affiliation(s)
- Holger Lingel
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Laura Fischer
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sven Remstedt
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Philipsen
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
- Multi-parametric bioimaging and cytometry (MPBIC) core facility, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Cellular and Molecular Immunology, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
| | - Irina Han
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jan-Erik Sander
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Aditya Arra
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Monika C Brunner-Weinzierl
- Department of Experimental Paediatrics, University Hospital, Otto-von-Guericke-University, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
3
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
4
|
Carpentier Solorio Y, Lemaître F, Jabbour B, Tastet O, Arbour N, Bou Assi E. Classification of T lymphocyte motility behaviors using a machine learning approach. PLoS Comput Biol 2023; 19:e1011449. [PMID: 37695797 PMCID: PMC10513376 DOI: 10.1371/journal.pcbi.1011449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/21/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
T lymphocytes migrate into organs and interact with local cells to perform their functions. How human T lymphocytes communicate with organ-specific cells and participate in pathobiological processes remains unresolved. Brain infiltration of T lymphocytes is associated with multiple neurological disorders. Thus, to characterize the behavior of human T lymphocytes reaching the human brain, we performed time-lapse microscopy on human CD8+ T lymphocytes co-cultured with either primary human astrocytes or neurons. Using traditional manual and visual assessment of microscopy data, we identified distinct CD8+ T lymphocyte motility behaviors. However, such characterization is time and labor-intensive. In this work, we trained and validated a machine-learning model for the automated classification of behaviors of CD8+ T lymphocytes interacting with astrocytes and neurons. A balanced random forest was trained for the binary classification of established classes of cell behaviors (synapse vs. kinapse) as well as visually identified behaviors (scanning, dancing, and poking). Feature selection was performed during 3-fold cross-validation using the minimum redundancy maximum relevance algorithm. Results show promising performances when tested on a held-out dataset of CD8+ T lymphocytes interacting with astrocytes with a new experimenter and a held-out independent dataset of CD8+ T lymphocytes interacting with neurons. When tested on the independent CD8+ T cell-neuron dataset, the final model achieved a binary classification accuracy of 0.82 and a 3-class accuracy of 0.79. This novel automated classification approach could significantly reduce the time required to label cell motility behaviors while facilitating the identification of interactions of T lymphocytes with multiple cell types.
Collapse
Affiliation(s)
- Yves Carpentier Solorio
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Florent Lemaître
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Bassam Jabbour
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Olivier Tastet
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Nathalie Arbour
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Elie Bou Assi
- Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
The endothelial diapedesis synapse regulates transcellular migration of human T lymphocytes in a CX3CL1- and SNAP23-dependent manner. Cell Rep 2022; 38:110243. [PMID: 35045291 DOI: 10.1016/j.celrep.2021.110243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding how cytotoxic T lymphocytes (CTLs) efficiently leave the circulation to target cancer cells or contribute to inflammation is of high medical interest. Here, we demonstrate that human central memory CTLs cross the endothelium in a predominantly paracellular fashion, whereas effector and effector memory CTLs cross the endothelium preferably in a transcellular fashion. We find that effector CTLs show a round morphology upon adhesion and induce a synapse-like interaction with the endothelium where ICAM-1 is distributed at the periphery. Moreover, the interaction of ICAM-1:β2integrin and endothelial-derived CX3CL1:CX3CR1 enables transcellular migration. Mechanistically, we find that ICAM-1 clustering recruits the SNARE-family protein SNAP23, as well as syntaxin-3 and -4, for the local release of endothelial-derived chemokines like CXCL1/8/10. In line, silencing of endothelial SNAP23 drives CTLs across the endothelium in a paracellular fashion. In conclusion, our data suggest that CTLs trigger local chemokine release from the endothelium through ICAM-1-driven signals driving transcellular migration.
Collapse
|
6
|
Dustin ML. The staying power of hematopoietic stem cells. J Cell Biol 2021; 220:e202109019. [PMID: 34661601 PMCID: PMC8530228 DOI: 10.1083/jcb.202109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) use specialized adhesive structures referred to as magnupodium to stay in hematopoietic niches. Bessey et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202005085) define new characteristics of the magnupodium, including centriole polarization and the necessary and sufficient role of CXCR4 signaling.
Collapse
|
7
|
Eidell KP, Lovy A, Sylvain NR, Scangarello FA, Muendlein HI, Ophir MJ, Nguyen K, Seminario MC, Bunnell SC. LFA-1 and kindlin-3 enable the collaborative transport of SLP-76 microclusters by myosin and dynein motors. J Cell Sci 2021; 134:270974. [PMID: 34279667 DOI: 10.1242/jcs.258602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Integrin engagement within the immune synapse enhances T cell activation, but our understanding of this process is incomplete. In response to T cell receptor (TCR) ligation, SLP-76 (LCP2), ADAP (FYB1) and SKAP55 (SKAP1) are recruited into microclusters and activate integrins via the effectors talin-1 and kindlin-3 (FERMT3). We postulated that integrins influence the centripetal transport and signaling of SLP-76 microclusters via these linkages. We show that contractile myosin filaments surround and are co-transported with SLP-76 microclusters, and that TCR ligand density governs the centripetal movement of both structures. Centripetal transport requires formin activity, actomyosin contraction, microtubule integrity and dynein motor function. Although immobilized VLA-4 (α4β1 integrin) and LFA-1 (αLβ2 integrin) ligands arrest the centripetal movement of SLP-76 microclusters and myosin filaments, VLA-4 acts distally, while LFA-1 acts in the lamellum. Integrin β2, kindlin-3 and zyxin are required for complete centripetal transport, while integrin β1 and talin-1 are not. CD69 upregulation is similarly dependent on integrin β2, kindlin-3 and zyxin, but not talin-1. These findings highlight the integration of cytoskeletal systems within the immune synapse and reveal extracellular ligand-independent roles for LFA-1 and kindlin-3. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keith P Eidell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Alenka Lovy
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas R Sylvain
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Frank A Scangarello
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Graduate Program in Genetics, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Michael J Ophir
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Ken Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | | | - Stephen C Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Cassioli C, Balint S, Compeer EB, Felce JH, Gamberucci A, Della Bella C, Felce SL, Brunetti J, Valvo S, Pende D, D’Elios MM, Moretta L, Dustin ML, Baldari CT. Increasing LFA-1 Expression Enhances Immune Synapse Architecture and T Cell Receptor Signaling in Jurkat E6.1 Cells. Front Cell Dev Biol 2021; 9:673446. [PMID: 34368126 PMCID: PMC8343233 DOI: 10.3389/fcell.2021.673446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
The Jurkat E6.1 clone has been extensively used as a powerful tool for the genetic and biochemical dissection of the TCR signaling pathway. More recently, these cells have been exploited in imaging studies to identify key players in immunological synapse (IS) assembly in superantigen-specific conjugates and to track the dynamics of signaling molecules on glass surfaces coated with activating anti-CD3 antibodies. By comparison, Jurkat cells have been used only scantily for imaging on supported lipid bilayers (SLBs) incorporating laterally mobile TCR and integrin ligands, which allow to study synaptic rearrangements of surface molecules and the fine architecture of the mature IS, likely due to limitations in the assembly of immune synapses with well-defined architecture. Here we have explored whether upregulating the low levels of endogenous LFA-1 expression on Jurkat E6.1 cells through transduction with CD11a- and CD18-encoding lentiviruses can improve IS architecture. We show that, while forced LFA-1 expression did not affect TCR recruitment to the IS, E6.1 LFA-1 high cells assembled better structured synapses, with a tighter distribution of signaling-competent TCRs at the center of the IS. LFA-1 upregulation enhanced protein phosphotyrosine signaling on SLBs but not at the IS formed in conjugates with SEE-pulsed APCs, and led to the constitutive formation of an intracellular phosphotyrosine pool co-localizing with endosomal CD3ζ. This was paralleled by an increase in the levels of p-ZAP-70 and p-Erk both under basal conditions and following activation, and in enhanced Ca2+ mobilization from intracellular stores. The enhancement in early signaling E6.1 LFA-1 high cells did not affect expression of the early activation marker CD69 but led to an increase in IL-2 expression. Our results highlight a new role for LFA-1 in the core architecture of the IS that can be exploited to study the spatiotemporal redistribution of surface receptors on SLBs, thereby extending the potential of E6.1 cells and their derivatives for fine-scale imaging studies.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ewoud B. Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - James H. Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Suet Ling Felce
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Daniela Pende
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mario M. D’Elios
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
9
|
Verron Q, Forslund E, Brandt L, Leino M, Frisk TW, Olofsson PE, Önfelt B. NK cells integrate signals over large areas when building immune synapses but require local stimuli for degranulation. Sci Signal 2021; 14:14/684/eabe2740. [PMID: 34035142 DOI: 10.1126/scisignal.abe2740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune synapses are large-scale, transient molecular assemblies that serve as platforms for antigen presentation to B and T cells and for target recognition by cytotoxic T cells and natural killer (NK) cells. The formation of an immune synapse is a tightly regulated, stepwise process in which the cytoskeleton, cell surface receptors, and intracellular signaling proteins rearrange into supramolecular activation clusters (SMACs). We generated artificial immune synapses (AIS) consisting of synthetic and natural ligands for the NK cell-activating receptors LFA-1 and CD16 by microcontact printing the ligands into circular-shaped SMAC structures. Live-cell imaging and analysis of fixed human NK cells in this reductionist system showed that the spatial distribution of activating ligands influenced the formation, stability, and outcome of NK cell synapses. Whereas engagement of LFA-1 alone promoted synapse initiation, combined engagement of LFA-1 and CD16 was required for the formation of mature synapses and degranulation. Organizing LFA-1 and CD16 ligands into donut-shaped AIS resulted in fewer long-lasting, symmetrical synapses compared to dot-shaped AIS. NK cells spreading evenly over either AIS shape exhibited similar arrangements of the lytic machinery. However, degranulation only occurred in regions containing ligands that therefore induced local signaling, suggesting the existence of a late checkpoint for degranulation. Our results demonstrate that the spatial organization of ligands in the synapse can affect its outcome, which could be exploited by target cells as an escape mechanism.
Collapse
Affiliation(s)
- Quentin Verron
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Elin Forslund
- Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ludwig Brandt
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mattias Leino
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thomas W Frisk
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Per E Olofsson
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Biophysics, Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden. .,Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Lemaître F, Carmena Moratalla A, Farzam-Kia N, Carpentier Solorio Y, Tastet O, Cleret-Buhot A, Guimond JV, Haddad E, Arbour N. Capturing T Lymphocytes' Dynamic Interactions With Human Neural Cells Using Time-Lapse Microscopy. Front Immunol 2021; 12:668483. [PMID: 33968073 PMCID: PMC8100528 DOI: 10.3389/fimmu.2021.668483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
To fully perform their functions, T lymphocytes migrate within organs’ parenchyma and interact with local cells. Infiltration of T lymphocytes within the central nervous system (CNS) is associated with numerous neurodegenerative disorders. Nevertheless, how these immune cells communicate and respond to neural cells remains unresolved. To investigate the behavior of T lymphocytes that reach the CNS, we have established an in vitro co-culture model and analyzed the spatiotemporal interactions between human activated CD8+ T lymphocytes and primary human astrocytes and neurons using time-lapse microscopy. By combining multiple variables extracted from individual CD8+ T cell tracking, we show that CD8+ T lymphocytes adopt a more motile and exploratory behavior upon interacting with astrocytes than with neurons. Pretreatment of astrocytes or neurons with IL-1β to mimic in vivo inflammation significantly increases CD8+ T lymphocyte motility. Using visual interpretation and analysis of numerical variables extracted from CD8+ T cell tracking, we identified four distinct CD8+ T lymphocyte behaviors: scanning, dancing, poking and round. IL-1β-pretreatment significantly increases the proportion of scanning CD8+ T lymphocytes, which are characterized by active exploration, and reduces the proportion of round CD8+ T lymphocytes, which are less active. Blocking MHC class I on astrocytes significantly diminishes the proportion of poking CD8+ T lymphocytes, which exhibit synapse-like interactions. Lastly, our co-culture time-lapse model is easily adaptable and sufficiently sensitive and powerful to characterize and quantify spatiotemporal interactions between human T lymphocytes and primary human cells in different conditions while preserving viability of fragile cells such as neurons and astrocytes.
Collapse
Affiliation(s)
- Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Olivier Tastet
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jean Victor Guimond
- Centre Local de Services Communautaires des Faubourgs, Centre Intégré Universitaire en Santé et Services Sociaux du Centre-Sud-de-l'Ile-de-Montréal, Montréal, QC, Canada
| | - Elie Haddad
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
11
|
Lee JH, Shao S, Kim M, Fernandes SM, Brown JR, Kam LC. Multi-Factor Clustering Incorporating Cell Motility Predicts T Cell Expansion Potential. Front Cell Dev Biol 2021; 9:648925. [PMID: 33898440 PMCID: PMC8063612 DOI: 10.3389/fcell.2021.648925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Expansion of an initial population of T cells is essential for cellular immunotherapy. In Chronic Lymphocytic Leukemia (CLL), expansion is often complicated by lack of T cell proliferation, as these cells frequently show signs of exhaustion. This report seeks to identify specific biomarkers or measures of cell function that capture the proliferative potential of a starting population of cells. Mixed CD4+/CD8+ T cells from healthy donors and individuals previously treated for CLL were characterized on the basis of proliferative potential and in vitro cellular functions. Single-factor analysis found little correlation between the number of populations doublings reached during expansion and either Rai stage (a clinical measure of CLL spread) or PD-1 expression. However, inclusion of in vitro IL-2 secretion and the propensity of cells to align onto micropatterned features of activating proteins as factors identified three distinct groups of donors. Notably, these group assignments provided an elegant separation of donors with regards to proliferative potential. Furthermore, these groups exhibited different motility characteristics, suggesting a mechanism that underlies changes in proliferative potential. This study describes a new set of functional readouts that augment surface marker panels to better predict expansion outcomes and clinical prognosis.
Collapse
Affiliation(s)
- Joanne H. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Shuai Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Michelle Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Stacey M. Fernandes
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jennifer R. Brown
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
12
|
Fang T, Alvelid J, Spratt J, Ambrosetti E, Testa I, Teixeira AI. Spatial Regulation of T-Cell Signaling by Programmed Death-Ligand 1 on Wireframe DNA Origami Flat Sheets. ACS NANO 2021; 15:3441-3452. [PMID: 33556239 PMCID: PMC7905882 DOI: 10.1021/acsnano.0c10632] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Programmed Death-1 (PD-1) is a coinhibitory receptor expressed on activated T cells that suppresses T-cell signaling and effector functions. It has been previously shown that binding to its ligand PD-L1 induces a spatial reorganization of PD-1 receptors into microclusters on the cell membrane. However, the roles of the spatial organization of PD-L1 on PD-1 clustering and T-cell signaling have not been elucidated. Here, we used DNA origami flat sheets to display PD-L1 ligands at defined nanoscale distances and investigated their ability to inhibit T-cell activation in vitro. We found that DNA origami flat sheets modified with CD3 and CD28 activating antibodies (FS-α-CD3-CD28) induced robust T-cell activation. Co-treatment with flat sheets presenting PD-L1 ligands separated by ∼200 nm (FS-PD-L1-200), but not 13 nm (FS-PD-L1-13) or 40 nm (FS-PD-L1-40), caused an inhibition of T-cell signaling, which increased with increasing molar ratio of FS-PD-L1-200 to FS-α-CD3-CD28. Furthermore, FS-PD-L1-200 induced the formation of smaller PD-1 nanoclusters and caused a larger reduction in IL-2 expression compared to FS-PD-L1-13. Together, these findings suggest that the spatial organization of PD-L1 determines its ability to regulate T-cell signaling and may guide the development of future nanomedicine-based immunomodulatory therapies.
Collapse
Affiliation(s)
- Trixy Fang
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Jonatan Alvelid
- Department
of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Joel Spratt
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Elena Ambrosetti
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ilaria Testa
- Department
of Applied Physics and Science for Life Laboratory, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Ana I. Teixeira
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 65 Stockholm, Sweden
| |
Collapse
|
13
|
Felce JH, Parolini L, Sezgin E, Céspedes PF, Korobchevskaya K, Jones M, Peng Y, Dong T, Fritzsche M, Aarts D, Frater J, Dustin ML. Single-Molecule, Super-Resolution, and Functional Analysis of G Protein-Coupled Receptor Behavior Within the T Cell Immunological Synapse. Front Cell Dev Biol 2021; 8:608484. [PMID: 33537301 PMCID: PMC7848080 DOI: 10.3389/fcell.2020.608484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
A central process in immunity is the activation of T cells through interaction of T cell receptors (TCRs) with agonistic peptide-major histocompatibility complexes (pMHC) on the surface of antigen presenting cells (APCs). TCR-pMHC binding triggers the formation of an extensive contact between the two cells termed the immunological synapse, which acts as a platform for integration of multiple signals determining cellular outcomes, including those from multiple co-stimulatory/inhibitory receptors. Contributors to this include a number of chemokine receptors, notably CXC-chemokine receptor 4 (CXCR4), and other members of the G protein-coupled receptor (GPCR) family. Although best characterized as mediators of ligand-dependent chemotaxis, some chemokine receptors are also recruited to the synapse and contribute to signaling in the absence of ligation. How these and other GPCRs integrate within the dynamic structure of the synapse is unknown, as is how their normally migratory Gαi-coupled signaling is terminated upon recruitment. Here, we report the spatiotemporal organization of several GPCRs, focusing on CXCR4, and the G protein Gαi2 within the synapse of primary human CD4+ T cells on supported lipid bilayers, using standard- and super-resolution fluorescence microscopy. We find that CXCR4 undergoes orchestrated phases of reorganization, culminating in recruitment to the TCR-enriched center. This appears to be dependent on CXCR4 ubiquitination, and does not involve stable interactions with TCR microclusters, as viewed at the nanoscale. Disruption of this process by mutation impairs CXCR4 contributions to cellular activation. Gαi2 undergoes active exclusion from the synapse, partitioning from centrally-accumulated CXCR4. Using a CRISPR-Cas9 knockout screen, we identify several diverse GPCRs with contributions to T cell activation, most significantly the sphingosine-1-phosphate receptor S1PR1, and the oxysterol receptor GPR183. These, and other GPCRs, undergo organization similar to CXCR4; including initial exclusion, centripetal transport, and lack of receptor-TCR interactions. These constitute the first observations of GPCR dynamics within the synapse, and give insights into how these receptors may contribute to T cell activation. The observation of broad GPCR contributions to T cell activation also opens the possibility that modulating GPCR expression in response to cell status or environment may directly regulate responsiveness to pMHC.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Erdinc Sezgin
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanchun Peng
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.,Rosalind Franklin Institute, Didcot, United Kingdom
| | - Dirk Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Unraveling the mechanobiology of immune cells. Curr Opin Biotechnol 2020; 66:236-245. [PMID: 33007634 PMCID: PMC7524653 DOI: 10.1016/j.copbio.2020.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/27/2022]
Abstract
Immune cells can sense and respond to biophysical cues - from dynamic forces to spatial features - during their development, activation, differentiation and expansion. These biophysical signals regulate a variety of immune cell functions such as leukocyte extravasation, macrophage polarization, T cell selection and T cell activation. Recent studies have advanced our understanding on immune responses to biophysical cues and the underlying mechanisms of mechanotransduction, which provides rational basis for the design and development of immune-modulatory therapeutics. This review discusses the recent progress in mechanosensing and mechanotransduction of immune cells, particularly monocytes/macrophages and T lymphocytes, and features new biomaterial designs and biomedical devices that translate these findings into biomedical applications.
Collapse
|
15
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
16
|
Mørch AM, Bálint Š, Santos AM, Davis SJ, Dustin ML. Coreceptors and TCR Signaling - the Strong and the Weak of It. Front Cell Dev Biol 2020; 8:597627. [PMID: 33178706 PMCID: PMC7596257 DOI: 10.3389/fcell.2020.597627] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/02/2022] Open
Abstract
The T-cell coreceptors CD4 and CD8 have well-characterized and essential roles in thymic development, but how they contribute to immune responses in the periphery is unclear. Coreceptors strengthen T-cell responses by many orders of magnitude - beyond a million-fold according to some estimates - but the mechanisms underlying these effects are still debated. T-cell receptor (TCR) triggering is initiated by the binding of the TCR to peptide-loaded major histocompatibility complex (pMHC) molecules on the surfaces of other cells. CD4 and CD8 are the only T-cell proteins that bind to the same pMHC ligand as the TCR, and can directly associate with the TCR-phosphorylating kinase Lck. At least three mechanisms have been proposed to explain how coreceptors so profoundly amplify TCR signaling: (1) the Lck recruitment model and (2) the pseudodimer model, both invoked to explain receptor triggering per se, and (3) two-step coreceptor recruitment to partially triggered TCRs leading to signal amplification. More recently it has been suggested that, in addition to initiating or augmenting TCR signaling, coreceptors effect antigen discrimination. But how can any of this be reconciled with TCR signaling occurring in the absence of CD4 or CD8, and with their interactions with pMHC being among the weakest specific protein-protein interactions ever described? Here, we review each theory of coreceptor function in light of the latest structural, biochemical, and functional data. We conclude that the oldest ideas are probably still the best, i.e., that their weak binding to MHC proteins and efficient association with Lck allow coreceptors to amplify weak incipient triggering of the TCR, without comprising TCR specificity.
Collapse
Affiliation(s)
- Alexander M. Mørch
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Štefan Bálint
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Regulatory T cells suppress Th17 cell Ca 2+ signaling in the spinal cord during murine autoimmune neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:20088-20099. [PMID: 32732436 PMCID: PMC7443932 DOI: 10.1073/pnas.2006895117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T lymphocyte motility and interaction dynamics with other immune cells are vital determinants of immune responses. Regulatory T (Treg) cells prevent autoimmune disorders by suppressing excessive lymphocyte activity, but how interstitial motility patterns of Treg cells limit neuroinflammation is not well understood. We used two-photon microscopy to elucidate the spatial organization, motility characteristics, and interactions of endogenous Treg and Th17 cells together with antigen-presenting cells (APCs) within the spinal cord leptomeninges in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Th17 cells arrive before the onset of clinical symptoms, distribute uniformly during the peak, and decline in numbers during later stages of EAE. In contrast, Treg cells arrive after Th17 cells and persist during the chronic phase. Th17 cells meander widely, interact with APCs, and exhibit cytosolic Ca2+ transients and elevated basal Ca2+ levels before the arrival of Treg cells. In contrast, Treg cells adopt a confined, repetitive-scanning motility while contacting APCs. These locally confined but highly motile Treg cells limit Th17 cells from accessing APCs and suppress Th17 cell Ca2+ signaling by a mechanism that is upstream of store-operated Ca2+ entry. Finally, Treg cell depletion increases APC numbers in the spinal cord and exaggerates ongoing neuroinflammation. Our results point to fundamental differences in motility characteristics between Th17 and Treg cells in the inflamed spinal cord and reveal three potential cellular mechanisms by which Treg cells regulate Th17 cell effector functions: reduction of APC density, limiting access of Th17 cells to APCs, and suppression of Th17 Ca2+ signaling.
Collapse
|
18
|
Are Synapse-Like Structures a Possible Way for Crosstalk of Cancer with Its Microenvironment? Cancers (Basel) 2020; 12:cancers12040806. [PMID: 32230806 PMCID: PMC7226151 DOI: 10.3390/cancers12040806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/03/2023] Open
Abstract
The failure of therapies directed at targets within cancer cells highlight the necessity for a paradigm change in cancer therapy. The attention of researchers has shifted towards the disruption of cancer cell interactions with the tumor microenvironment. A typical example of such a disruption is the immune checkpoint cancer therapy that disrupts interactions between the immune and the cancer cells. The interaction of cancer antigens with T cells occurs in the immunological synapses. This is characterized by several special features, i.e., the proximity of the immune cells and their target cells, strong intercellular adhesion, and secretion of signaling cytokines into the intercellular cleft. Earlier, we hypothesized that the cancer-associated fibroblasts interacting with cancer cells through a synapse-like adhesion might play an important role in cancer tumors. Studies of the interactions between cancer cells and cancer-associated fibroblasts showed that their clusterization on the membrane surface determined their strength and specificity. The hundreds of interacting pairs are involved in the binding that may indicate the formation of synapse-like structures. These interactions may be responsible for successful metastasis of cancer cells, and their identification and disruption may open new therapeutic possibilities.
Collapse
|
19
|
Blumenthal D, Burkhardt JK. Multiple actin networks coordinate mechanotransduction at the immunological synapse. J Cell Biol 2020; 219:e201911058. [PMID: 31977034 PMCID: PMC7041673 DOI: 10.1083/jcb.201911058] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Activation of naive T cells by antigen-presenting cells (APCs) is an essential step in mounting an adaptive immune response. It is known that antigen recognition and T cell receptor (TCR) signaling depend on forces applied by the T cell actin cytoskeleton, but until recently, the underlying mechanisms have been poorly defined. Here, we review recent advances in the field, which show that specific actin-dependent structures contribute to the process in distinct ways. In essence, T cell priming involves a tug-of-war between the cytoskeletons of the T cell and the APC, where the actin cytoskeleton serves as a mechanical intermediate that integrates force-dependent signals. We consider each of the relevant actin-rich T cell structures separately and address how they work together at the topologically and temporally complex cell-cell interface. In addition, we address how this mechanobiology can be incorporated into canonical immunological models to improve how these models explain T cell sensitivity and antigenic specificity.
Collapse
Affiliation(s)
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Kumari S, Mak M, Poh YC, Tohme M, Watson N, Melo M, Janssen E, Dustin M, Geha R, Irvine DJ. Cytoskeletal tension actively sustains the migratory T-cell synaptic contact. EMBO J 2020; 39:e102783. [PMID: 31894880 PMCID: PMC7049817 DOI: 10.15252/embj.2019102783] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
When migratory T cells encounter antigen-presenting cells (APCs), they arrest and form radially symmetric, stable intercellular junctions termed immunological synapses which facilitate exchange of crucial biochemical information and are critical for T-cell immunity. While the cellular processes underlying synapse formation have been well characterized, those that maintain the symmetry, and thereby the stability of the synapse, remain unknown. Here we identify an antigen-triggered mechanism that actively promotes T-cell synapse symmetry by generating cytoskeletal tension in the plane of the synapse through focal nucleation of actin via Wiskott-Aldrich syndrome protein (WASP), and contraction of the resultant actin filaments by myosin II. Following T-cell activation, WASP is degraded, leading to cytoskeletal unraveling and tension decay, which result in synapse breaking. Thus, our study identifies and characterizes a mechanical program within otherwise highly motile T cells that sustains the symmetry and stability of the T cell-APC synaptic contact.
Collapse
Affiliation(s)
- Sudha Kumari
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA
| | - Michael Mak
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Yeh-Chuin Poh
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Mira Tohme
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicki Watson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Mariane Melo
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darrell J Irvine
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
21
|
Abu-Shah E, Demetriou P, Bálint Š, Mayya V, Kutuzov MA, Dushek O, Dustin ML. A tissue-like platform for studying engineered quiescent human T-cells' interactions with dendritic cells. eLife 2019; 8:e48221. [PMID: 31552826 PMCID: PMC6910819 DOI: 10.7554/elife.48221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/24/2019] [Indexed: 12/29/2022] Open
Abstract
Research in the field of human immunology is restricted by the lack of a system that reconstitutes the in-situactivation dynamics of quiescent human antigen-specific T-cells interacting with dendritic cells. Here we report a tissue-like system that recapitulates the dynamics of engineered primary human immune cell. Our approach facilitates real-time single-cell manipulations, tracking of interactions and functional responses complemented by population-based measurements of cytokines, activation status and proliferation. As a proof of concept, we recapitulate immunological phenomenon such as CD4 T-cells' help to CD8 T-cells through enhanced maturation of DCs and the effect of PD-1 checkpoint blockades. In addition, we characterise unique dynamics of T-cell/DC interactions as a function of antigen affinity.
Collapse
Affiliation(s)
- Enas Abu-Shah
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | | | - Štefan Bálint
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
| | - Viveka Mayya
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
| | - Mikhail A Kutuzov
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Omer Dushek
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Michael L Dustin
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUnited Kingdom
- Skirball Institute of Biomolecular MedicineNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
22
|
Saliba DG, Céspedes-Donoso PF, Bálint Š, Compeer EB, Korobchevskaya K, Valvo S, Mayya V, Kvalvaag A, Peng Y, Dong T, Tognoli ML, O'Neill E, Bonham S, Fischer R, Kessler BM, Dustin ML. Composition and structure of synaptic ectosomes exporting antigen receptor linked to functional CD40 ligand from helper T cells. eLife 2019; 8:e47528. [PMID: 31469364 PMCID: PMC6748831 DOI: 10.7554/elife.47528] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Planar supported lipid bilayers (PSLB) presenting T cell receptor (TCR) ligands and ICAM-1 induce budding of extracellular microvesicles enriched in functional TCR, defined here as synaptic ectosomes (SE), from helper T cells. SE bind peptide-MHC directly exporting TCR into the synaptic cleft, but incorporation of other effectors is unknown. Here, we utilized bead supported lipid bilayers (BSLB) to capture SE from single immunological synapses (IS), determined SE composition by immunofluorescence flow cytometry and enriched SE for proteomic analysis by particle sorting. We demonstrate selective enrichment of CD40L and ICOS in SE in response to addition of CD40 and ICOSL, respectively, to SLB presenting TCR ligands and ICAM-1. SE are enriched in tetraspanins, BST-2, TCR signaling and ESCRT proteins. Super-resolution microscopy demonstrated that CD40L is present in microclusters within CD81 defined SE that are spatially segregated from TCR/ICOS/BST-2. CD40L+ SE retain the capacity to induce dendritic cell maturation and cytokine production.
Collapse
Affiliation(s)
- David G Saliba
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
- Department of Applied Biomedical Science, Faculty of Health ScienceUniversity of MaltaMsidaMalta
| | - Pablo F Céspedes-Donoso
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Štefan Bálint
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Kseniya Korobchevskaya
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Viveka Mayya
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Yanchun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Medicine, Chinese Academy of Medical Science Oxford InstituteUniversity of OxfordOxfordUnited Kingdom
| | - Tao Dong
- MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUnited Kingdom
- Nuffield Department of Medicine, Chinese Academy of Medical Science Oxford InstituteUniversity of OxfordOxfordUnited Kingdom
| | | | - Eric O'Neill
- Department of OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Sarah Bonham
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Benedikt M Kessler
- Discovery Proteomics Facility, Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
23
|
HIV Infection Stabilizes Macrophage-T Cell Interactions To Promote Cell-Cell HIV Spread. J Virol 2019; 93:JVI.00805-19. [PMID: 31270227 DOI: 10.1128/jvi.00805-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophages are susceptible to HIV infection and play an important role in viral dissemination through cell-cell contacts with T cells. However, our current understanding of macrophage-to-T cell HIV transmission is derived from studies that do not consider the robust migration and cell-cell interaction dynamics between these cells. Here, we performed live-cell imaging studies in 3-dimensional (3D) collagen that allowed CD4+ T cells to migrate and to locate and engage HIV-infected macrophages, modeling the dynamic aspects of the in situ environment in which these contacts frequently occur. We show that HIV+ macrophages form stable contacts with CD4+ T cells that are facilitated by both gp120-CD4 and LFA-1-ICAM-1 interactions and that prolonged contacts are a prerequisite for efficient viral spread. LFA-1-ICAM-1 adhesive contacts function to restrain highly motile T cells, since their blockade substantially destabilized macrophage-T cell contacts, resulting in abnormal tethering events that reduced cell-cell viral spread. HIV-infected macrophages displayed strikingly elongated podosomal extensions that were dependent on Nef expression but were dispensable for stable cell-cell contact formation. Finally, we observed persistent T cell infection in dynamic monocyte-derived macrophage (MDM)-T cell cocultures in the presence of single high antiretroviral drug concentrations but achieved complete inhibition with combination therapy. Together, our data implicate macrophages as drivers of T cell infection by altering physiological MDM-T cell contact dynamics to access and restrain large numbers of susceptible, motile T cells within lymphoid tissues.IMPORTANCE Once HIV enters the lymphoid organs, exponential viral replication in T cells ensues. Given the densely packed nature of these tissues, where infected and uninfected cells are in nearly constant contact with one another, efficient HIV spread is thought to occur through cell-cell contacts in vivo However, this has not been formally demonstrated. In this study, we performed live-cell imaging studies within a 3-dimensional space to recapitulate the dynamic aspects of the lymphoid microenvironment and asked whether HIV can alter the morphology, migration capacity, and cell-cell contact behaviors between macrophages and T cells. We show that HIV-infected macrophages can engage T cells in stable contacts through binding of virus- and host-derived adhesive molecules and that stable macrophage-T cell contacts were required for high viral spread. Thus, HIV alters physiological macrophage-T cell interactions in order to access and restrain large numbers of susceptible, motile T cells, thereby playing an important role in HIV progression.
Collapse
|
24
|
Mintz MA, Felce JH, Chou MY, Mayya V, Xu Y, Shui JW, An J, Li Z, Marson A, Okada T, Ware CF, Kronenberg M, Dustin ML, Cyster JG. The HVEM-BTLA Axis Restrains T Cell Help to Germinal Center B Cells and Functions as a Cell-Extrinsic Suppressor in Lymphomagenesis. Immunity 2019; 51:310-323.e7. [PMID: 31204070 PMCID: PMC6703922 DOI: 10.1016/j.immuni.2019.05.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
The tumor necrosis factor receptor superfamily member HVEM is one of the most frequently mutated surface proteins in germinal center (GC)-derived B cell lymphomas. We found that HVEM deficiency increased B cell competitiveness during pre-GC and GC responses. The immunoglobulin (Ig) superfamily protein BTLA regulated HVEM-expressing B cell responses independently of B-cell-intrinsic signaling via HVEM or BTLA. BTLA signaling into T cells through the phosphatase SHP1 reduced T cell receptor (TCR) signaling and preformed CD40 ligand mobilization to the immunological synapse, thus diminishing the help delivered to B cells. Moreover, T cell deficiency in BTLA cooperated with B cell Bcl-2 overexpression, leading to GC B cell outgrowth. These results establish that HVEM restrains the T helper signals delivered to B cells to influence GC selection outcomes, and they suggest that BTLA functions as a cell-extrinsic suppressor of GC B cell lymphomagenesis.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Cell Proliferation
- Germinal Center/immunology
- Immunological Synapses
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Mice, Transgenic
- Paracrine Communication
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Michelle A Mintz
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Marissa Y Chou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ying Xu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jinping An
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongmei Li
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Takaharu Okada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
DNA probes that store mechanical information reveal transient piconewton forces applied by T cells. Proc Natl Acad Sci U S A 2019; 116:16949-16954. [PMID: 31391300 DOI: 10.1073/pnas.1904034116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The advent of molecular tension probes for real-time mapping of piconewton forces in living systems has had a major impact on mechanobiology. For example, DNA-based tension probes have revealed roles for mechanics in platelet, B cell, T cell, and fibroblast function. Nonetheless, imaging short-lived forces transmitted by low-abundance receptors remains a challenge. This is a particular problem for mechanoimmunology where ligand-receptor bindings are short lived, and a few antigens are sufficient for cell triggering. Herein, we present a mechanoselection strategy that uses locking oligonucleotides to preferentially and irreversibly bind DNA probes that are mechanically strained over probes at rest. Thus, infrequent and short-lived mechanical events are tagged. This strategy allows for integration and storage of mechanical information into a map of molecular tension history. Upon addition of unlocking oligonucleotides that drive toehold-mediated strand displacement, the probes reset to the real-time state, thereby erasing stored mechanical information. As a proof of concept, we applied this strategy to study OT-1 T cells, revealing that the T cell receptor (TCR) mechanically samples antigens carrying single amino acid mutations. Such events are not detectable using conventional tension probes. Each mutant peptide ligand displayed a different level of mechanical sampling and spatial scanning by the TCR that strongly correlated with its functional potency. Finally, we show evidence that T cells transmit pN forces through the programmed cell death receptor-1 (PD1), a major target in cancer immunotherapy. We anticipate that mechanical information storage will be broadly useful in studying the mechanobiology of the immune system.
Collapse
|
26
|
Abstract
Communication between cells is essential for multicellular life. During cognate immune interactions, T cells communicate with antigen-presenting cells (APC) via direct cell-cell contact or the release of molecules and vesicles containing T cell messages. A wide variety of mechanisms have been reported and among them a process called "trogocytosis" has traditionally been thought to be the fastest way to directly transfer membrane portions containing intact proteins from one cell to another; however, the mechanism is unverified. Trogocytosis has been distinguished from the generation of extracellular vesicles (EVs), a term that encompasses exosomes and microvesicles, as EVs are released via a contact-independent manner and are suggested to potentially send molecular messages over a distance. However, some previous reports regarding EVs in T cells may be misleading in terms of explaining their cellular origins. In addition, there is little evidence on how EVs are generated from T cells in vivo and function to regulate complex immune responses. A recent work demonstrated that T cell microvilli-thin and finger-like membrane protrusions-are highly fragile and easily separated as membrane particles by trogocytosis, forming a new class of EVs. Surprisingly, released T cell microvilli-derived particles act as vectors, transmitting T cell messages to cognate APCs. This review focuses on how T cell microvilli vesicles are connected with immune regulation mechanisms discovered previously.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, South Korea
| |
Collapse
|
27
|
Mayya V, Judokusumo E, Abu-Shah E, Neiswanger W, Sachar C, Depoil D, Kam LC, Dustin ML. Cutting Edge: Synapse Propensity of Human Memory CD8 T Cells Confers Competitive Advantage over Naive Counterparts. THE JOURNAL OF IMMUNOLOGY 2019; 203:601-606. [PMID: 31201237 PMCID: PMC6643047 DOI: 10.4049/jimmunol.1801687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
Abstract
Microcontact printing can be used to mimic spatially limiting Ag presentation. High synapse propensity of human memory CD8 T cells prevents naive cell recruitment.
Memory T cells are endowed with multiple functional features that enable them to be more protective than naive T cells against infectious threats. It is not known if memory cells have a higher synapse propensity (SP; i.e., increased probability to form immature immunological synapses that then provide an entry into different modes of durable interaction with APCs). In this study, we show that only human memory CD8 T cells have remarkably high SP compared with naive counterparts. Such a dichotomy between naive and memory cells is not observed within the human CD4 or murine CD8 T cell population. Higher SP in human memory CD8 T cells allows them to outcompete and prevent naive CD8 T cells from getting recruited to the response. This observation has implications for original antigenic sin and aging of the immune system in humans.
Collapse
Affiliation(s)
- Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom.,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Edward Judokusumo
- Department of Biological Engineering, Columbia University, New York, NY 10027; and
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Willie Neiswanger
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Chirag Sachar
- Department of Biological Engineering, Columbia University, New York, NY 10027; and
| | - David Depoil
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Lance C Kam
- Department of Biological Engineering, Columbia University, New York, NY 10027; and
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom; .,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
28
|
Wan Z, Shaheen S, Chau A, Zeng Y, Liu W. Imaging: Gear up for mechano-immunology. Cell Immunol 2019; 350:103926. [PMID: 31151736 DOI: 10.1016/j.cellimm.2019.103926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Immune cells including B and T lymphocytes have a remarkable ability to sense the physical perturbations through their surface expressed receptors. At the advent of modern imaging technologies paired with biophysical methods, we have gained the understanding of mechanical forces exerted by immune cells to perform their functions. This review will go over the imaging techniques already being used to study mechanical forces in immune cells. We will also discuss the dire need for new modern technologies for future work.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Alicia Chau
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
29
|
Torralba D, Martín-Cófreces NB, Sanchez-Madrid F. Mechanisms of polarized cell-cell communication of T lymphocytes. Immunol Lett 2019; 209:11-20. [PMID: 30954509 DOI: 10.1016/j.imlet.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 01/07/2023]
Abstract
Cell-cell communication comprises a variety of molecular mechanisms that immune cells use to respond appropriately to diverse pathogenic stimuli. T lymphocytes polarize in response to different stimuli, such as cytokines, adhesion to specific ligands and cognate antigens presented in the context of MHC. Polarization takes different shapes, from migratory front-back polarization to the formation of immune synapses (IS). The formation of IS between a T cell and an antigen-presenting cell involves early events of receptor-ligand interaction leading to the reorganization of the plasma membrane and the cytoskeleton to orchestrate vesicular and endosomal traffic and directed secretion of several types of mediators, including cytokines and nanovesicles. Cell polarization involves the repositioning of many subcellular organelles, including the endosomal compartment, which becomes an effective platform for the shuttling of molecules as vesicular cargoes that lately will be secreted to transfer information to antigen-presenting cells. Overall, the polarized interaction between a T cell and APC modifies the recipient cell in different ways that are likely lineage-dependent, e.g. dendritic cells, B cells or even other T cells. In this review, we will discuss the mechanisms that mediate the polarization of different membrane receptors, cytoskeletal components and organelles in T cells in a variety of immune contexts.
Collapse
Affiliation(s)
- D Torralba
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - N B Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - F Sanchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
30
|
Glatzová D, Cebecauer M. Dual Role of CD4 in Peripheral T Lymphocytes. Front Immunol 2019; 10:618. [PMID: 31001252 PMCID: PMC6454155 DOI: 10.3389/fimmu.2019.00618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/07/2023] Open
Abstract
The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.
Collapse
Affiliation(s)
- Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
31
|
T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun 2018; 9:3630. [PMID: 30194420 PMCID: PMC6128830 DOI: 10.1038/s41467-018-06090-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022] Open
Abstract
Microvilli on T cells have been proposed to survey surfaces of antigen-presenting cells (APC) or facilitate adhesion under flow; however, whether they serve essential functions during T cell activation remains unclear. Here we show that antigen-specific T cells deposit membrane particles derived from microvilli onto the surface of cognate antigen-bearing APCs. Microvilli carry T cell receptors (TCR) at all stages of T cell activation and are released as large TCR-enriched, T cell microvilli particles (TMP) in a process of trogocytosis. These microvilli exclusively contain protein arrestin-domain-containing protein 1, which is directly involved in membrane budding and, in combination with vacuolar protein-sorting-associated protein 4, transforms large TMPs into smaller, exosome-sized TMPs. Notably, TMPs from CD4+ T cells are enriched with LFA-2/CD2 and various cytokines involved in activating dendritic cells. Collectively, these results demonstrate that T cell microvilli constitute “immunological synaptosomes” that carry T cell messages to APCs. Microvilli can participate in adhesion or migration of T cells, but whether they are involved in function regulation is unclear. Here the authors show that T cell microvilli form budding vesicles containing T cell signalling components for deposition onto antigen presenting cells (APC) and modulation of APC functions.
Collapse
|
32
|
Abstract
Natural killer cells target antibody-bound cells following engagement of the Fc receptor CD16. Srpan et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201712085) reveal that activation-induced shedding of CD16 leads to more motile behavior, allowing more targets to be engaged and killed in a given time.
Collapse
Affiliation(s)
- James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Hons M, Kopf A, Hauschild R, Leithner A, Gaertner F, Abe J, Renkawitz J, Stein JV, Sixt M. Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nat Immunol 2018; 19:606-616. [PMID: 29777221 DOI: 10.1038/s41590-018-0109-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/11/2018] [Indexed: 01/13/2023]
Abstract
Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux.
Collapse
Affiliation(s)
- Miroslav Hons
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Aglaja Kopf
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Florian Gaertner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jun Abe
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Jörg Renkawitz
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|