1
|
Sachan V, Susan-Resiga D, Lam K, Seidah NG. The Biology and Clinical Implications of PCSK7. Endocr Rev 2025; 46:281-299. [PMID: 39661471 PMCID: PMC11894536 DOI: 10.1210/endrev/bnae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Discovered in 1996, PCSK7 is the seventh of the 9-membered proprotein convertase subtilisin-kexin (PCSK) family. This article reviews the various aspects of the multifaceted biology of PCSK7 and what makes it an exciting new target for metabolic dysfunction-associated steatotic liver disease (MASLD), affecting ∼30% of the population globally, dyslipidemia, cardiovascular disease, and likely cancer/metastasis. We will systematically review and discuss all the available epidemiological data, and structural, cell biology, and in vivo evidence that eventually led to the discovery of PCSK7 as a novel post-translational regulator of apolipoprotein B. Interestingly, PCSK7 is the only convertase, other than PCSK9, that exhibits noncanonical/nonenzymatic functions, which will be amply described in this review. The data so far have suggested that PCSK7 is a potential safe target in MASLD treatment. This was based on human epidemiological data, as well as mouse Pcsk7 knockout and mRNA translation inhibition using hepatocyte-targeted antisense oligonucleotides following a diet-induced MASLD. Additionally, of all the 9 convertases only the gene deletion of Pcsk7 and/or Pcsk9 in mice leads to healthy and fertile animals with no apparent deleterious consequences, suggesting that their pharmacological targeting is likely safe. Accordingly, the synergistic effects of inhibiting both PCSK7 and PCSK9 in a clinical setting may represent a novel therapy for various diseases. We believe that the current surge in oligonucleotide therapy, with many Food and Drug Administration-approved oligonucleotide-based drugs now available in clinics, and the urgent need for novel MASLD therapeutics present an opportune moment for this timely review article.
Collapse
Affiliation(s)
- Vatsal Sachan
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| | - Kalista Lam
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada
| |
Collapse
|
2
|
Bulliard M, Pinjusic K, Iacobucci L, Schmuziger C, Fournier N, Constam DB. Kallikrein-8 mediates furin-independent Activin-A precursor processing to stimulate tumor growth in melanoma. Nat Commun 2025; 16:2354. [PMID: 40064965 PMCID: PMC11893775 DOI: 10.1038/s41467-025-57661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Receptor binding of TGF-β and related ligands such as Activin-A requires cleavage of a furin site in their dimeric precursor proteins. Melanoma cells cleave one Activin-A subunit independently of furin and related proprotein convertases, raising questions of how this half-processed intermediate is generated and whether it influences tumor growth. Here, an siRNA library screen for proteases mediating this furin-independent "hemicleavage" identifies kallikrein (Klk)-8. While a KLK8 cleavage site in proActivin-A overlaps with the furin recognition sequence, its exposure is limited and requires prior transient acidification. Therefore, only furin efficiently converts proActivin-A to fully mature form both in tumor cells and in cell-free cleavage assays. Moreover, knockdown of Klk8 in syngeneic melanoma grafts suppresses Activin-A induced tumor growth, demonstrating that cleavage by only furin is not sufficient. Besides elucidating how Activin-A processing is regulated, our findings show that KLK8 holds promise as a target to mitigate Activin-A induced tumor growth.
Collapse
Affiliation(s)
- Manon Bulliard
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Katarina Pinjusic
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Laura Iacobucci
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Céline Schmuziger
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
| | - Nadine Fournier
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland
- Translational Data Science (TDS) facility, Agora Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1015, Lausanne, Switzerland
| | - Daniel B Constam
- École Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015, Lausanne, Switzerland.
| |
Collapse
|
3
|
Pinjusic K, Bulliard M, Rothé B, Ansaryan S, Liu YC, Ginefra P, Schmuziger C, Altug H, Constam DB. Stepwise release of Activin-A from its inhibitory prodomain is modulated by cysteines and requires furin coexpression to promote melanoma growth. Commun Biol 2024; 7:1383. [PMID: 39448726 PMCID: PMC11502825 DOI: 10.1038/s42003-024-07053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The Activin-A precursor dimer can be cleaved by furin, but how this proteolytic maturation is regulated in vivo and how it facilitates access to signaling receptors is unclear. Here, analysis in a syngeneic melanoma grafting model shows that without furin coexpression, Activin-A failed to accelerate tumor growth, correlating with failure of one or both subunits to undergo cleavage in signal-sending cells, even though compensatory processing by host cells nonetheless sustained elevated circulating Activin-A levels. In reporter assays, furin-independent cleavage of one subunit enabled juxtacrine Activin-A signaling, whereas completion of proteolytic maturation by coexpressed furin or by recipient cells stimulated contact-independent activity, crosstalk with BMP receptors, and signal inhibition by follistatin. Mechanistically, Activin-A processing was modulated by allosteric disulfide bonds flanking the furin site. Disruption of these disulfide linkages with the prodomain enabled Activin-A binding to cognate type II receptors independently of proteolytic maturation. Stepwise proteolytic maturation is a novel mechanism to control Activin-A protein interactions and signaling.
Collapse
Affiliation(s)
- Katarina Pinjusic
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Manon Bulliard
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Saeid Ansaryan
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Yeng-Cheng Liu
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Pierpaolo Ginefra
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
- University of Lausanne, Department of Oncology, Ludwig Cancer Institute, Epalinges, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland
| | - Hatice Altug
- Ecole Polytechnique Fédérale de Lausanne (EPFL) STI IBI-STI BIOS BM, Station 17, Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, Lausanne, Switzerland.
| |
Collapse
|
4
|
Cassari L, Pavan A, Zoia G, Chinellato M, Zeni E, Grinzato A, Rothenberger S, Cendron L, Dettin M, Pasquato A. SARS-CoV-2 S Mutations: A Lesson from the Viral World to Understand How Human Furin Works. Int J Mol Sci 2023; 24:4791. [PMID: 36902222 PMCID: PMC10003014 DOI: 10.3390/ijms24054791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological agent responsible for the worldwide pandemic and has now claimed millions of lives. The virus combines several unusual characteristics and an extraordinary ability to spread among humans. In particular, the dependence of the maturation of the envelope glycoprotein S from Furin enables the invasion and replication of the virus virtually within the entire body, since this cellular protease is ubiquitously expressed. Here, we analyzed the naturally occurring variation of the amino acids sequence around the cleavage site of S. We found that the virus grossly mutates preferentially at P positions, resulting in single residue replacements that associate with gain-of-function phenotypes in specific conditions. Interestingly, some combinations of amino acids are absent, despite the evidence supporting some cleavability of the respective synthetic surrogates. In any case, the polybasic signature is maintained and, as a consequence, Furin dependence is preserved. Thus, no escape variants to Furin are observed in the population. Overall, the SARS-CoV-2 system per se represents an outstanding example of the evolution of substrate-enzyme interaction, demonstrating a fast-tracked optimization of a protein stretch towards the Furin catalytic pocket. Ultimately, these data disclose important information for the development of drugs targeting Furin and Furin-dependent pathogens.
Collapse
Affiliation(s)
- Leonardo Cassari
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Angela Pavan
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Giulia Zoia
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Chinellato
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Elena Zeni
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alessandro Grinzato
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
5
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
6
|
Post-Transcriptional Effects of miRNAs on PCSK7 Expression and Function: miR-125a-5p, miR-143-3p, and miR-409-3p as Negative Regulators. Metabolites 2022; 12:metabo12070588. [PMID: 35888711 PMCID: PMC9323720 DOI: 10.3390/metabo12070588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
The regulatory mechanism of PCSK7 gene is still unknown, although its encoded protein PC7 is the most ancient and highly conserved of all proprotein convertases and exhibits enzymatic and non-enzymatic functions in liver triglyceride regulation. Bioinformatics algorithms were used to predict regulatory microRNAs (miRNAs) of PCSK7 expression. This led to the identification of four miRNAs, namely miR-125a-5p, miR-143-3p, miR-409-3p, and miR-320a-3p, with potential binding sites on the 3′-untranslated region (3′-UTR) of human PCSK7 mRNA. The expression patterns of these miRNAs and PCSK7 mRNA were assessed in three different cell lines with quantitative polymerase chain reaction (qPCR), which revealed reciprocal expression patterns between the expression levels of the four selected miRNAs and PCSK7. Next, the interactions and effects of these miRNAs on PCSK7 expression levels were investigated via cell-based expression analysis, dual-luciferase assay, and Western blot analysis. The data revealed that PCSK7 mRNA levels decreased in cells transfected with vectors overexpressing miR-125a-5p, miR-143-3p, and miR-409-3p, but not miR-320a-3p. The dual-luciferase assay demonstrated that the above three miRNAs could directly interact with putative target sites in PCSK7 3′-UTR and regulate its expression, whereas miR-320-3p exhibited no interaction. Western blot analysis further revealed that the overexpression of miR-125a-5p in Huh7 cells inhibits the expression and ability of PC7 to cleave human transferrin receptor 1. Our results support a regulatory role of these miRNAs on PCSK7 expression and function and open the way to assess their roles in the regulation of PC7 activity in vivo in the development of hepatic steatosis.
Collapse
|
7
|
He Z, Khatib AM, Creemers JWM. The proprotein convertase furin in cancer: more than an oncogene. Oncogene 2022; 41:1252-1262. [PMID: 34997216 DOI: 10.1038/s41388-021-02175-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
Furin is the first discovered proprotein convertase member and is present in almost all mammalian cells. Therefore, by regulating the maturation of a wide range of proproteins, Furin expression and/or activity is involved in various physiological and pathophysiological processes ranging from embryonic development to carcinogenesis. Since many of these protein precursors are involved in initiating and maintaining the hallmarks of cancer, Furin has been proposed as a potential target for treating several human cancers. In contrast, other studies have revealed that some types of cancer do not benefit from Furin inhibition. Therefore, understanding the heterogeneous functions of Furin in cancer will provide important insights into the design of effective strategies targeting Furin in cancer treatment. Here, we present recent advances in understanding how Furin expression and activity are regulated in cancer cells and their influences on the activity of Furin substrates in carcinogenesis. Furthermore, we discuss how Furin represses tumorigenic properties of several cancer cells and why Furin inhibition leads to aggressive phenotypes in other tumors. Finally, we summarize the clinical applications of Furin inhibition in treating human cancers.
Collapse
Affiliation(s)
- Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Abdel-Majid Khatib
- INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.
- Institut Bergoinié, Bordeaux, France.
| | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
9
|
Identification of critical amino acid residues in the regulatory N-terminal domain of PMEL. Sci Rep 2021; 11:7730. [PMID: 33833328 PMCID: PMC8032716 DOI: 10.1038/s41598-021-87259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
The pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.
Collapse
|
10
|
Oleaga C, Hay J, Gurcan E, David LL, Mueller PA, Tavori H, Shapiro MD, Pamir N, Fazio S. Insights into the kinetics and dynamics of the furin-cleaved form of PCSK9. J Lipid Res 2020; 62:100003. [PMID: 33429337 PMCID: PMC7890205 DOI: 10.1194/jlr.ra120000964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low density lipoprotein receptors (LDLRs). Plasma PCSK9 has 2 main molecular forms: a 62 kDa mature form (PCSK9_62) and a 55 kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLRs. We aimed to identify the site of PCSK9_55 formation (intracellular vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Coexpressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions, we found that i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase analysis, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the nonsecreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency than PCSK9_62. Collectively, our data show that 1) PCSK9_55 is formed extracellularly; 2) PCSK9_55 has a shorter half-life; 3) there is a small intracellular pool of PCSK9_55 that is not secreted; and 4) PCSK9_55 retained within the cell maintains a reduced efficiency to cause LDLR degradation.
Collapse
Affiliation(s)
- Carlota Oleaga
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Joshua Hay
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Emma Gurcan
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Paul A Mueller
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Hagai Tavori
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Michael D Shapiro
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Nathalie Pamir
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA.
| | - Sergio Fazio
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Shedding of cancer susceptibility candidate 4 by the convertases PC7/furin unravels a novel secretory protein implicated in cancer progression. Cell Death Dis 2020; 11:665. [PMID: 32820145 PMCID: PMC7441151 DOI: 10.1038/s41419-020-02893-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients’ data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.
Collapse
|
12
|
Mesquita FS, van der Goot FG, Sergeeva OA. Mammalian membrane trafficking as seen through the lens of bacterial toxins. Cell Microbiol 2020; 22:e13167. [PMID: 32185902 PMCID: PMC7154709 DOI: 10.1111/cmi.13167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
A fundamental question of eukaryotic cell biology is how membrane organelles are organised and interact with each other. Cell biologists address these questions by characterising the structural features of membrane compartments and the mechanisms that coordinate their exchange. To do so, they must rely on variety of cargo molecules and treatments that enable targeted perturbation, localisation, and labelling of specific compartments. In this context, bacterial toxins emerged in cell biology as paradigm shifting molecules that enabled scientists to not only study them from the side of bacterial infection but also from the side of the mammalian host. Their selectivity, potency, and versatility made them exquisite tools for uncovering much of our current understanding of membrane trafficking mechanisms. Here, we will follow the steps that lead toxins until their intracellular targets, highlighting how specific events helped us comprehend membrane trafficking and establish the fundamentals of various cellular organelles and processes. Bacterial toxins will continue to guide us in answering crucial questions in cellular biology while also acting as probes for new technologies and applications.
Collapse
Affiliation(s)
| | | | - Oksana A Sergeeva
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| |
Collapse
|
13
|
He Z, Thorrez L, Siegfried G, Meulemans S, Evrard S, Tejpar S, Khatib AM, Creemers JWM. The proprotein convertase furin is a pro-oncogenic driver in KRAS and BRAF driven colorectal cancer. Oncogene 2020; 39:3571-3587. [PMID: 32139876 DOI: 10.1038/s41388-020-1238-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022]
Abstract
Mutations in KRAS and/or BRAF that activate the ERK kinase are frequently found in colorectal cancer (CRC) and drive resistance to targeted therapies. Therefore, the identification of therapeutic targets that affect multiple signaling pathways simultaneously is crucial for improving the treatment of patients with KRAS or BRAF mutations. The proprotein convertase furin activates several oncogenic protein precursors involved in the ERK-MAPK pathway by endoproteolytic cleavage. Here we show that genetic inactivation of furin suppresses tumorigenic growth, proliferation, and migration in KRAS or BRAF mutant CRC cell lines but not in wild-type KRAS and BRAF cells. In a mouse xenograft model, these KRAS or BRAF mutant cells lacking furin displayed reduced growth and angiogenesis, and increased apoptosis. Mechanistically, furin inactivation prevents the processing of various protein pecursors including proIGF1R, proIR, proc-MET, proTGF-β1 and NOTCH1 leading to potent and durable ERK-MAPK pathway suppression in KRAS or BRAF mutant cells. Furthermore, we identified genes involved in activating the ERK-MAPK pathway, such as PTGS2, which are downregulated in the KRAS or BRAF mutant cells after furin inactivation but upregulated in wild-type KRAS and BRAF cells. Analysis of human colorectal tumor samples reveals a positive correlation between enhanced furin expression and KRAS or BRAF expression. These results indicate that furin plays an important role in KRAS or BRAF-associated ERK-MAPK pathway activation and tumorigenesis, providing a potential target for personalized treatment.
Collapse
Affiliation(s)
- Zongsheng He
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Lieven Thorrez
- Interdisciplinary Research Facility, Department of Development and Regeneration, KU Leuven, Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Sandra Meulemans
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Serge Evrard
- INSERM, LAMC, UMR, Allée Geoffroy St Hilaire, 1029, Pessac, France.,Institut Bergonié, Bordeaux, France
| | - Sabine Tejpar
- Digestive Oncology Unit, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - John W M Creemers
- Laboratory of Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Ashraf Y, Duval S, Sachan V, Essalmani R, Susan-Resiga D, Roubtsova A, Hamelin J, Gerhardy S, Kirchhofer D, Tagliabracci VS, Prat A, Kiss RS, Seidah NG. Proprotein convertase 7 (PCSK7) reduces apoA-V levels. FEBS J 2020; 287:3565-3578. [PMID: 31945259 DOI: 10.1111/febs.15212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023]
Abstract
The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser505 phosphorylation at the structurally exposed Ser-X-Glu507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7-/- mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.
Collapse
Affiliation(s)
- Yahya Ashraf
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Stéphanie Duval
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Vatsal Sachan
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Josée Hamelin
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Stefan Gerhardy
- Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Robert Scott Kiss
- Research Institute, McGill University Health Center, Montreal, QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| |
Collapse
|
15
|
Durand L, Duval S, Evagelidis A, Guillemot J, Dianati V, Sikorska E, Schu P, Day R, Seidah NG. The motif E XE XXXL in the cytosolic tail of the secretory human proprotein convertase PC7 regulates its trafficking and cleavage activity. J Biol Chem 2020; 295:2068-2083. [PMID: 31915245 DOI: 10.1074/jbc.ra119.011775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Many secretory proteins are activated by cleavage at specific sites. The proprotein convertases (PCs) form a family of nine secretory subtilisin-like serine proteases, seven of which cleave at specific basic residues within the trans-Golgi network, granules, or at the cell surface/endosomes. The seventh member, PC7, is a type-I transmembrane (TM) protein with a 97-residue-long cytosolic tail (CT). PC7 sheds human transferrin receptor 1 (hTfR1) into soluble shTfR1 in endosomes. To better understand the physiological roles of PC7, here we focused on the relationship between the CT-regulated trafficking of PC7 and its ability to shed hTfR1. Deletion of the TMCT resulted in soluble PC7 and loss of its hTfR1 shedding activity. Extensive CT deletions and mutagenesis analyses helped us zoom in on three residues in the CT, namely Glu-719, Glu-721, and Leu-725, that are part of a novel motif, EXEXXXL725, critical for PC7 activity on hTfR1. NMR studies of two 14-mer peptides mimicking this region of the CT and its Ala variants revealed that the three exposed residues are on the same side of the molecule. This led to the identification of adaptor protein 2 (AP-2) as a protein that recognizes the EXEXXXL725 motif, thus representing a potentially new regulator of PC7 trafficking and cleavage activity. Immunocytochemistry of the subcellular localization of PC7 and its Ala variants of Leu-725 and Glu-719 and Glu-721 revealed that Leu-725 enhances PC7 localization to early endosomes and that, together with Glu-719 and Glu-721, it increases the endosomal activity of PC7 on hTfR1.
Collapse
Affiliation(s)
- Loreleï Durand
- Laboratory of Biochemical Neuroendocrinology, Clinical Research of Montreal, affiliated with Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Stéphanie Duval
- Laboratory of Biochemical Neuroendocrinology, Clinical Research of Montreal, affiliated with Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Alexandra Evagelidis
- Laboratory of Biochemical Neuroendocrinology, Clinical Research of Montreal, affiliated with Université de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Johann Guillemot
- CIRI, Centre International de Recherche en Infectiologie, Team Pathogenesis of Legionella, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Université Lyon, Villeurbanne, 69100 France
| | - Vahid Dianati
- Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, and Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec J 1H 5N4, Canada
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-233 Poland
| | - Peter Schu
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Humboldtallee 23, 37073 Goettingen, Germany
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, and Faculté de Médecine et des Sciences de la Santé, Sherbrooke, Quebec J 1H 5N4, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research of Montreal, affiliated with Université de Montréal, Montreal, Quebec H2W 1R7, Canada.
| |
Collapse
|
16
|
Löw K, Hardes K, Fedeli C, Seidah NG, Constam DB, Pasquato A, Steinmetzer T, Roulin A, Kunz S. A novel cell-based sensor detecting the activity of individual basic proprotein convertases. FEBS J 2019; 286:4597-4620. [PMID: 31276291 DOI: 10.1111/febs.14979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The basic proprotein convertases (PCs) furin, PC1/3, PC2, PC5/6, PACE4, PC4, and PC7 are promising drug targets for human diseases. However, developing selective inhibitors remains challenging due to overlapping substrate recognition motifs and limited structural information. Classical drug screening approaches for basic PC inhibitors involve homogeneous biochemical assays using soluble recombinant enzymes combined with fluorogenic substrate peptides that may not accurately recapitulate the complex cellular context of the basic PC-substrate interaction. Herein we report basic PC sensor (BPCS), a novel cell-based molecular sensor that allows rapid screening of candidate inhibitors and their selectivity toward individual basic PCs within mammalian cells. BPCS consists of Gaussia luciferase linked to a sortilin-1 membrane anchor via a cleavage motif that allows efficient release of luciferase specifically if individual basic PCs are provided in the same membrane. Screening of selected candidate peptidomimetic inhibitors revealed that BPCS can readily distinguish between general and selective PC inhibitors in a high-throughput screening format. The robust and cost-effective assay format of BPCS makes it suitable to identify novel specific small-molecule inhibitors against basic PCs for therapeutic application. Its cell-based nature will allow screening for drug targets in addition to the catalytically active mature enzyme, including maturation, transport, and cellular factors that modulate the enzyme's activity. This broadened 'target range' will enhance the likelihood to identify novel small-molecule compounds that inhibit basic PCs in a direct or indirect manner and represents a conceptual advantage.
Collapse
Affiliation(s)
- Karin Löw
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Kornelia Hardes
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Chiara Fedeli
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, (Affiliated to the University of Montreal), Canada
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Switzerland
| | - Antonella Pasquato
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| | - Torsten Steinmetzer
- Department of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Germany
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center, University of Lausanne, Switzerland
| |
Collapse
|
17
|
Graham M, Tzika AC, Mitchell SM, Liu X, Leonhardt RM. Repeat domain-associated O-glycans govern PMEL fibrillar sheet architecture. Sci Rep 2019; 9:6101. [PMID: 30988362 PMCID: PMC6465243 DOI: 10.1038/s41598-019-42571-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
PMEL is a pigment cell-specific protein that forms a functional amyloid matrix in melanosomes. The matrix consists of well-separated fibrillar sheets on which the pigment melanin is deposited. Using electron tomography, we demonstrate that this sheet architecture is governed by the PMEL repeat (RPT) domain, which associates with the amyloid as an accessory proteolytic fragment. Thus, the RPT domain is dispensable for amyloid formation as such but shapes the morphology of the matrix, probably in order to maximize the surface area available for pigment adsorption. Although the primary amino acid sequence of the RPT domain differs vastly among various vertebrates, we show that it is a functionally conserved, interchangeable module. RPT domains of all species are predicted to be very highly O-glycosylated, which is likely the common defining feature of this domain. O-glycosylation is indeed essential for RPT domain function and the establishment of the PMEL sheet architecture. Thus, O-glycosylation, not amino acid sequence, appears to be the major factor governing the characteristic PMEL amyloid morphology.
Collapse
Affiliation(s)
- Morven Graham
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Athanasia C Tzika
- Department of Genetics & Evolution, Laboratory of Artificial & Natural Evolution (LANE), Sciences III Building, 1211, Geneva, 4, Switzerland
| | - Susan M Mitchell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06519, USA
| | - Ralf M Leonhardt
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|
18
|
Anthrax toxin requires ZDHHC5-mediated palmitoylation of its surface-processing host enzymes. Proc Natl Acad Sci U S A 2019; 116:1279-1288. [PMID: 30610172 PMCID: PMC6347675 DOI: 10.1073/pnas.1812588116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxins exploit numerous pathways of their host cells to gain cellular entry and promote intoxication. Therefore, studying the action of toxins allows us to better understand basic mechanisms in cell biology. In this study, we found that ZDHHC5, an enzyme that adds a lipid posttranslational modification to cysteines of proteins, is responsible for allowing anthrax toxin to enter cells. This enzyme acts on proprotein convertases that are needed to cleave these toxins to their active forms. ZDHHC5 does not affect the enzymatic activity of these proteases, but allows them to encounter the toxin by favoring their partitioning in microdomains on the cell surface, domains where the toxin has previously been shown to preferentially reside. The protein acyl transferase ZDHHC5 was recently proposed to regulate trafficking in the endocytic pathway. Therefore, we explored the function of this enzyme in controlling the action of bacterial toxins. We found that ZDHHC5 activity is required for two very different toxins: the anthrax lethal toxin and the pore-forming toxin aerolysin. Both of these toxins have precursor forms, the protoxins, which can use the proprotein convertases Furin and PC7 for activation. We show that ZDHHC5 indeed affects the processing of the protoxins to their active forms. We found that Furin and PC7 can both be S-palmitoylated and are substrates of ZDHHC5. The impact of ZDHHC5 on Furin/PC7-mediated anthrax toxin cleavage is dual, having an indirect and a direct component. First, ZDHHC5 affects the homeostasis and trafficking of a subset of cellular proteins, including Furin and PC7, presumably by affecting the endocytic/recycling pathway. Second, while not inhibiting the protease activity per se, ZDHHC5-mediated Furin/PC7 palmitoylation is required for the cleavage of the anthrax toxin. Finally, we show that palmitoylation of Furin and PC7 promotes their association with plasma membrane microdomains. Both the receptor-bound toxin and the convertases are of very low abundance at the cell surface. Their encounter is unlikely on reasonable time scales. This work indicates that palmitoylation drives their encounter in specific domains, allowing processing and thereby intoxication of the cell.
Collapse
|