1
|
Cao J, Wang Y, Lin Q, Wang S, Shen Y, Zhang L, Li W, Chen L, Liu C, Yao S, Shuai L, Chen X, Li Z, Chang Y. IL-1β stimulates ADAMTS9 expression and contributes to preterm prelabor rupture of membranes. Cell Commun Signal 2025; 23:127. [PMID: 40057799 PMCID: PMC11890524 DOI: 10.1186/s12964-025-02120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Preterm prelabor rupture of membranes (pPROM) is a leading cause of neonatal morbidity and mortality. While intra-amniotic infection is a well-established driver of pPROM, the role of sterile intra-amniotic inflammation remains unclear. Recent evidence suggests that interleukin-1 beta (IL-1β) promotes extracellular matrix (ECM) remodeling via downstream effectors, a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9), while protein O-fucosyltransferase 2 (POFUT2) facilitates its O-fucosylation and secretion, amplifying ECM degradation. This study investigates how IL-1β-triggered nuclear factor kappa-B (NF-κB) activation promotes ADAMTS9 and POFUT2 expression, ultimately driving fetal membrane ECM remodeling and weakening in pPROM without signs of intra-amniotic infection. METHODS A nested case-control study included maternal serum and fetal membrane samples from 60 pregnant women (34 pPROM, 26 full-term births [FTB]). ELISA measured serum levels of IL-1β and ADAMTS9, and their correlations were analyzed. Mechanistic studies utilized primary human amniotic epithelial cells (hAECs) and fetal membrane-decidua explants with IL-1β treatment. The role of NF-κB was explored using chromatin immunoprecipitation (ChIP) and luciferase assays to assess NF-κB binding to the promoters of ADAMTS9 and POFUT2. A murine model of sterile intra-amniotic inflammation under ultrasound-guided IL-1β injection was used to validate in vitro findings and assess pregnancy outcomes. RESULTS Serum IL-1β and ADAMTS9 levels at 16 weeks of gestation were significantly higher in pPROM cases compared to FTB controls (P < 0.001). A combined model of these biomarkers demonstrated high predictive accuracy for pPROM (AUC = 0.83). Mechanistically, IL-1β activated NF-κB, leading to its binding to the promoters of ADAMTS9 and POFUT2. NF-κB activation promoted ADAMTS9 expression, while POFUT2 enhanced its secretion. Together, these processes drove versican degradation and ECM weakening. Intra-amniotic administration of IL-1β in mice induced fetal membrane weakening, preterm birth, and adverse neonatal outcomes, which were mitigated by the NF-κB inhibitor BAY 11-7082 treatment. CONCLUSION Maternal serum ADAMTS9 levels at mid-gestation are promising non-invasive biomarkers for pPROM risk stratification. Mechanistically, IL-1β-induced NF-κB activation promotes ADAMTS9 expression and POFUT2-dependent secretion, contributing to fetal membrane weakening. These findings provide new insights into the role and potential therapeutic target for sterile intra-amniotic inflammation in pPROM.
Collapse
Affiliation(s)
- Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Yixin Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Shuqi Wang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Lei Zhang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
- Tianjin Institute of Gynecology Obstetrics, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Ling Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Chunliu Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Shihan Yao
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Ling Shuai
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Xu Chen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China
| | - Zongjin Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China.
- Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300100, China.
- Medical School, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
2
|
Mead TJ, Bhutada S, Peruzzi N, Adegboye J, Seifert DE, Cahill E, Drinko J, Donnellan E, Guggiliam A, Popovic Z, Griffin B, Tran-Lundmark K, Apte SS. ADAMTS7, a target in atherosclerosis, cooperates with its homolog ADAMTS12 to protect against myxomatous valve degeneration. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100288. [PMID: 40115634 PMCID: PMC11925103 DOI: 10.1016/j.jmccpl.2025.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
The physiological roles of the metalloprotease-proteoglycan ADAMTS7, a drug target in atherosclerosis and vascular restenosis, and its homolog ADAMTS12, are undefined in the cardiovascular system. The objective of the present work was to investigate their roles in mice with genetic inactivation of both proteases and in relation to the resulting valve defects, to define their proteolytic activities in the matrisome. Here, we demonstrate that Adamts7 and Adamts12 are co-expressed in heart valves and each buffers inactivation of the other by compensatory upregulation. Leaflets of Adamts7 -/-;Adamts12 -/- aortic valves, but not the respective single mutants, were abnormally shaped at birth, with progressively severe disorganization and enlargement occurring thereafter. Doppler echocardiography showed that Adamts7 -/-;Adamts12 -/- mice had stenotic and regurgitant aortic valves. We investigated ADAMTS7 and ADAMTS12 substrates relevant to the valve matrisome in secretome libraries from Adamts7 -/-;Adamts12 -/- cells using the N-terminomics technique Terminal Amine Isotopic Labeling of Substrates (TAILS). Although ADAMTS7 and ADAMTS12 shared several extracellular matrix (ECM) substrates, cleavage sites and sequence preference for each protease were distinct. Adamts7 -/-;Adamts12 -/- valve leaflets showed accumulation of several of the identified ECM substrates, including periostin, a matricellular protein crucial for cardiac valve homeostasis. We conclude that the myxomatous degeneration in Adamts7 -/-;Adamts12 -/- valve leaflets reflects a complex disturbance of ECM proteostasis with accumulation of multiple ADAMTS7 and ADAMTS12 ECM substrates, and perturbation of regulatory pathways with roots in ECM, such as TGFβ signaling, which was increased in the mutant valves.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Niccolò Peruzzi
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Janet Adegboye
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deborah E Seifert
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Elisabeth Cahill
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Jeanne Drinko
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Eoin Donnellan
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anu Guggiliam
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zoran Popovic
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Griffin
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
3
|
Mead TJ, Bhutada S, Foulcer SJ, Peruzzi N, Nelson CM, Seifert DE, Larkin J, Tran-Lundmark K, Filmus J, Apte SS. Combined genetic-pharmacologic inactivation of tightly linked ADAMTS proteases in temporally specific windows uncovers distinct roles for versican proteolysis and glypican-6 in cardiac development. Matrix Biol 2024; 131:1-16. [PMID: 38750698 PMCID: PMC11526477 DOI: 10.1016/j.matbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Simon J Foulcer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Courtney M Nelson
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deborah E Seifert
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Karin Tran-Lundmark
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Jorge Filmus
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
4
|
Minisy FM, Shawki HH, Fujita T, Moustafa AM, Sener R, Nishio Y, Shimada IS, Saitoh S, Sugiura-Ogasawara M, Oishi H. Transcription Factor 23 is an Essential Determinant of Murine Term Parturition. Mol Cell Biol 2024; 44:316-333. [PMID: 39014976 PMCID: PMC11296541 DOI: 10.1080/10985549.2024.2376146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
Pregnancy involving intricate tissue transformations governed by the progesterone hormone (P4). P4 signaling via P4 receptors (PRs) is vital for endometrial receptivity, decidualization, myometrial quiescence, and labor initiation. This study explored the role of TCF23 as a downstream target of PR during pregnancy. TCF23 was found to be expressed in female reproductive organs, predominantly in uterine stromal and smooth muscle cells. Tcf23 expression was high during midgestation and was specifically regulated by P4, but not estrogen. The Tcf23 knockout (KO) mouse was generated and analyzed. Female KO mice aged 4-6 months exhibited subfertility, reduced litter size, and defective parturition. Uterine histology revealed disrupted myometrial structure, altered collagen organization, and disarrayed smooth muscle sheets at the conceptus sites of KO mice. RNA-Seq analysis of KO myometrium revealed dysregulation of genes associated with cell adhesion and extracellular matrix organization. TCF23 potentially modulates TCF12 activity to mediate cell-cell adhesion and matrix modulation in smooth muscle cells. Overall, TCF23 deficiency leads to impaired myometrial remodeling, causing parturition delay and fetal demise. This study sheds light on the critical role of TCF23 as a dowstream mediator of PR in uterine remodeling, reflecting the importance of cell-cell communication and matrix dynamics in myometrial activation and parturition.
Collapse
Affiliation(s)
- Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, National Research Centre, Cairo, Egypt
| | - Hossam H. Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Animal Genetic Resources, National Gene Bank of Egypt, ARC, Giza, Egypt
| | - Tsubasa Fujita
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ahmed M. Moustafa
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rumeysa Sener
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youske Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Issei S. Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
5
|
Huang C, Feng F, Dai R, Ren W, Li X, Zhaxi T, Ma X, Wu X, Chu M, La Y, Bao P, Guo X, Pei J, Yan P, Liang C. Whole-transcriptome analysis of longissimus dorsi muscle in cattle-yaks reveals the regulatory functions of ADAMTS6 gene in myoblasts. Int J Biol Macromol 2024; 262:129985. [PMID: 38342263 DOI: 10.1016/j.ijbiomac.2024.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ta Zhaxi
- Animal Husbandry and Veterinary Workstation in Qilian County, Qilian 810400, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
6
|
Yu Q, Guo K, Yang Y, Liu H, Huang Y, Li W. LncRNA ADAMTS9-AS2 regulates periodontal ligament cell migration under mechanical compression via ADAMTS9/fibronectin. J Periodontal Res 2024; 59:174-186. [PMID: 37957805 DOI: 10.1111/jre.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Periodontal ligament cells (PDLCs) are key mechanosensory cells involved in extracellular matrix (ECM) remodeling during orthodontic tooth movement (OTM). Mechanical force changes the ECM components, such as collagens and matrix metalloproteinases. However, the associations between the changes in ECM molecules and cellular dynamics during OTM remain largely uncharacterized. OBJECTIVES To investigate the influence of mechanical force on the morphology and migration of PDLCs and explore the interaction between ECM remodeling and cellular dynamics, including the detailed mechanisms involved. METHODS Human PDLCs (hPDLCs) were subjected to a static mechanical compression to mimic the compression state of OTM in vitro. A mouse OTM model was used to mimic the OTM procedure in vivo. The migration of hPDLCs was compared by wound healing and transwell migration assays. Moreover, expression levels of ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) and fibronectin (FN) in hPDLCs were determined via western blotting, immunofluorescence staining, and enzyme-linked immunosorbent assays. Expression levels of ADAMTS9 and FN in mice were assessed via immunohistochemical staining. Additionally, the relative expression of long non-coding RNA (lncRNA) ADAMTS9-antisense RNA 2 (ADAMTS9-AS2) was assessed via quantitative real-time polymerase chain reaction. ADAMTS9-AS2 knockdown was performed to confirm its function in hPDLCs. RESULTS Mechanical compression induced changes in the morphology of hPDLCs. It also promoted migration and simultaneous upregulation of FN and downregulation of ADAMTS9, a fibronectinase. The mouse OTM model showed the same expression patterns of the two proteins on the compression side of the periodontium of the moved teeth. RNA sequencing revealed that lncRNA ADAMTS9-AS2 expression was significantly upregulated in hPDLCs under mechanical compression. After knocking down ADAMTS9-AS2, hPDLCs migration was significantly inhibited. ADAMTS9 expression was increased as FN expression decreased compared to that in the control group. Moreover, knockdown of ADAMTS9-AS2 reduced the effect of mechanical compression on hPDLCs migration and reversed the expression change of ADAMTS9 and FN. RNA immunoprecipitation revealed direct binding between ADAMTS9-AS2 and ADAMTS9 protein. CONCLUSION Our study suggests that mechanical compression induces the expression of ADAMTS9-AS2, which directly binds to ADAMTS9 and inhibits its function, leading to the promotion of downstream FN expression and ECM remodeling to facilitate hPDLCs migration and maintain the stability of the periodontium.
Collapse
Affiliation(s)
- Qianyao Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kunyao Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
7
|
Rojas MG, Zigmond ZM, Pereira-Simon S, Santos Falcon N, Suresh Kumar M, Stoyell-Conti FF, Kosanovic C, Griswold AJ, Salama A, Yang X, Tabbara M, Vazquez-Padron RI, Martinez L. The intricate cellular ecosystem of human peripheral veins as revealed by single-cell transcriptomic analysis. PLoS One 2024; 19:e0296264. [PMID: 38206912 PMCID: PMC10783777 DOI: 10.1371/journal.pone.0296264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024] Open
Abstract
The venous system has been historically understudied despite its critical roles in blood distribution, heart function, and systemic immunity. This study dissects the microanatomy of upper arm veins at the single cell level, and how it relates to wall structure, remodeling processes, and inflammatory responses to injury. We applied single-cell RNA sequencing to 4 non-diseased human veins (3 basilic, 1 cephalic) obtained from organ donors, followed by bioinformatic and histological analyses. Unsupervised clustering of 20,006 cells revealed a complex ecosystem of endothelial cell (EC) types, smooth muscle cell (SMCs) and pericytes, various types of fibroblasts, and immune cell populations. The venous endothelium showed significant upregulation of cell adhesion genes, with arteriovenous zonation EC phenotypes highlighting the heterogeneity of vasa vasorum (VV) microvessels. Venous SMCs had atypical contractile phenotypes and showed widespread localization in the intima and media. MYH11+DESlo SMCs were transcriptionally associated with negative regulation of contraction and pro-inflammatory gene expression. MYH11+DEShi SMCs showed significant upregulation of extracellular matrix genes and pro-migratory mediators. Venous fibroblasts ranging from secretory to myofibroblastic phenotypes were 4X more abundant than SMCs and widely distributed throughout the wall. Fibroblast-derived angiopoietin-like factors were identified as versatile signaling hubs to regulate angiogenesis and SMC proliferation. An abundant monocyte/macrophage population was detected and confirmed by histology, including pro-inflammatory and homeostatic phenotypes, with cell counts positively correlated with age. Ligand-receptor interactome networks identified the venous endothelium in the main lumen and the VV as a niche for monocyte recruitment and infiltration. This study underscores the transcriptional uniqueness of venous cells and their relevance for vascular inflammation and remodeling processes. Findings from this study may be relevant for molecular investigations of upper arm veins used for vascular access creation, where single-cell analyses of cell composition and phenotypes are currently lacking.
Collapse
Affiliation(s)
- Miguel G. Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Zachary M. Zigmond
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, United States of America
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Maya Suresh Kumar
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Filipe F. Stoyell-Conti
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Christina Kosanovic
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Alghidak Salama
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, United States of America
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
8
|
Bacchetti R, Yuan S, Rainero E. ADAMTS Proteases: Their Multifaceted Role in the Regulation of Cancer Metastasis. DISEASES & RESEARCH 2024; 4:40-52. [PMID: 38948119 PMCID: PMC7616120 DOI: 10.54457/dr.202401004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cancer leads to nearly 10 million deaths worldwide per year. The tumour microenvironment (TME) is fundamental for tumour growth and progression. A key component of the TME, the extracellular matrix (ECM) has recently become a focus of interest in cancer research. Dysregulation of ECM synthesis and proteolysis leads to uncontrolled tumour growth and metastasis. Matrix remodelling enzymes, secreted by cancer cells and stromal cells, modify the overall structure and organisation of ECM proteins, therefore influencing biochemical interactions, tissue integrity and tissue turnover. While A Disintegrin and Metalloproteinases (ADAMs)' and matrix metalloproteinases' role in cancer has been deeply investigated, other proteolytic enzymes, like ADAMs with thrombospondin(-like) motifs (ADAMTSs) have been gaining interest due to their roles in modulating cancer cell-ECM interactions and oncogenic signalling pathways. In this review, we will discuss the dysregulation of ADAMTSs in cancer and their roles in regulating cancer development and progression, via ECM remodelling and cell signalling modulation.
Collapse
Affiliation(s)
- Rachele Bacchetti
- School of Biosciences, Department of Biomedical science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Shengnan Yuan
- School of Biosciences, Department of Biomedical science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Elena Rainero
- School of Biosciences, Department of Biomedical science, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Ruiz-Rodríguez MJ, Oller J, Martínez-Martínez S, Alarcón-Ruiz I, Toral M, Sun Y, Colmenar Á, Méndez-Olivares MJ, López-Maderuelo D, Kern CB, Nistal JF, Evangelista A, Teixido-Tura G, Campanero MR, Redondo JM. Versican accumulation drives Nos2 induction and aortic disease in Marfan syndrome via Akt activation. EMBO Mol Med 2024; 16:132-157. [PMID: 38177536 PMCID: PMC10897446 DOI: 10.1038/s44321-023-00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition associated with Marfan syndrome (MFS), a disease caused by fibrillin-1 gene mutations. While various conditions causing TAAD exhibit aortic accumulation of the proteoglycans versican (Vcan) and aggrecan (Acan), it is unclear whether these ECM proteins are involved in aortic disease. Here, we find that Vcan, but not Acan, accumulated in Fbn1C1041G/+ aortas, a mouse model of MFS. Vcan haploinsufficiency protected MFS mice against aortic dilation, and its silencing reverted aortic disease by reducing Nos2 protein expression. Our results suggest that Acan is not an essential contributor to MFS aortopathy. We further demonstrate that Vcan triggers Akt activation and that pharmacological Akt pathway inhibition rapidly regresses aortic dilation and Nos2 expression in MFS mice. Analysis of aortic tissue from MFS human patients revealed accumulation of VCAN and elevated pAKT-S473 staining. Together, these findings reveal that Vcan plays a causative role in MFS aortic disease in vivo by inducing Nos2 via Akt activation and identify Akt signaling pathway components as candidate therapeutic targets.
Collapse
Affiliation(s)
- María Jesús Ruiz-Rodríguez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge Oller
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Vascular Pathology, Hospital IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Iván Alarcón-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Yilin Sun
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ángel Colmenar
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María José Méndez-Olivares
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Christine B Kern
- Medical University of South Carolina (MUSC), Charleston, SC, 29425, USA
| | - J Francisco Nistal
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, Santander, 39005, Spain
| | | | - Gisela Teixido-Tura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron (VHIR), Barcelona, 08035, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
10
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
11
|
Bao J, Wang X, Chen L, Wen B, Gao Q, Pan X, Chen Y, Ji K, Liu H. Upregulated TIMP1 facilitates and coordinates myometrial contraction by decreasing collagens and cell adhesive capacity during human labor. Mol Hum Reprod 2023; 29:gaad034. [PMID: 37774003 PMCID: PMC10581194 DOI: 10.1093/molehr/gaad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
Myometrial contraction is one of the key events involved in parturition. Increasing evidence suggests the importance of the extracellular matrix (ECM) in this process, in addition to the functional role of myometrial smooth muscle cells, and our previous study identified an upregulated tissue inhibitor of metalloproteinase 1 (TIMP1) in human laboring myometrium compared to nonlabor samples. This study aimed to further explore the potential role of TIMP1 in myometrial contraction. First, we confirmed increased myometrial TIMP1 levels in labor and during labor with cervical dilation using transcriptomic and proteomic analyses, followed by real-time PCR, western blotting, and immunohistochemistry. Then, a cell contraction assay was performed to verify the decreased contractility after TIMP1 knockdown in vitro. To further understand the underlying mechanism, we used RNA-sequencing analysis to reveal the upregulated genes after TIMP1 knockdown; these genes were enriched in collagen fibril organization, cell adhesion, and ECM organization. Subsequently, a human matrix metalloproteinase (MMP) array and collagen staining were performed to determine the TIMPs, MMPs and collagens in laboring and nonlabor myometrium. A real-time cell adhesion assay was used to detect cell adhesive capacity. The results showed upregulated MMP8 and MMP9, downregulated collagens, and attenuated cell adhesive capacity in laboring myometrium, while lower MMP levels and higher collagen levels and cell adhesive capacity were observed in nonlabor. Moreover, TIMP1 knockdown led to restoration of cell adhesive capacity. Together, these results indicate that upregulated TIMP1 during labor facilitates and coordinates myometrial contraction by decreasing collagen and cell adhesive capacity, which may provide effective strategies for the regulation of myometrial contraction.
Collapse
Affiliation(s)
- Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiu Gao
- Department of Pathology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Pan
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women & Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Nandadasa S, Martin D, Deshpande G, Robert KL, Stack MS, Itoh Y, Apte SS. Degradomic Identification of Membrane Type 1-Matrix Metalloproteinase as an ADAMTS9 and ADAMTS20 Substrate. Mol Cell Proteomics 2023; 22:100566. [PMID: 37169079 PMCID: PMC10267602 DOI: 10.1016/j.mcpro.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023] Open
Abstract
The secreted metalloproteases ADAMTS9 and ADAMTS20 are implicated in extracellular matrix proteolysis and primary cilium biogenesis. Here, we show that clonal gene-edited RPE-1 cells in which ADAMTS9 was inactivated, and which constitutively lack ADAMTS20 expression, have morphologic characteristics distinct from parental RPE-1 cells. To investigate underlying proteolytic mechanisms, a quantitative terminomics method, terminal amine isotopic labeling of substrates was used to compare the parental and gene-edited RPE-1 cells and their medium to identify ADAMTS9 substrates. Among differentially abundant neo-amino (N) terminal peptides arising from secreted and transmembrane proteins, a peptide with lower abundance in the medium of gene-edited cells suggested cleavage at the Tyr314-Gly315 bond in the ectodomain of the transmembrane metalloprotease membrane type 1-matrix metalloproteinase (MT1-MMP), whose mRNA was also reduced in gene-edited cells. This cleavage, occurring in the MT1-MMP hinge, that is, between the catalytic and hemopexin domains, was orthogonally validated both by lack of an MT1-MMP catalytic domain fragment in the medium of gene-edited cells and restoration of its release from the cell surface by reexpression of ADAMTS9 and ADAMTS20 and was dependent on hinge O-glycosylation. A C-terminally semitryptic MT1-MMP peptide with greater abundance in WT RPE-1 medium identified a second ADAMTS9 cleavage site in the MT1-MMP hemopexin domain. Consistent with greater retention of MT1-MMP on the surface of gene-edited cells, pro-MMP2 activation, which requires cell surface MT1-MMP, was increased. MT1-MMP knockdown in gene-edited ADAMTS9/20-deficient cells restored focal adhesions but not ciliogenesis. The findings expand the web of interacting proteases at the cell surface, suggest a role for ADAMTS9 and ADAMTS20 in regulating cell surface activity of MT1-MMP, and indicate that MT1-MMP shedding does not underlie their observed requirement in ciliogenesis.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Daniel Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Gauravi Deshpande
- Imaging Core Facility, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Karyn L Robert
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry and Harper Cancer Center, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yoshifumi Itoh
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.
| |
Collapse
|
13
|
Hernández-Delgado P, Felix-Portillo M, Martínez-Quintana JA. ADAMTS Proteases: Importance in Animal Reproduction. Genes (Basel) 2023; 14:1181. [PMID: 37372361 DOI: 10.3390/genes14061181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Many reproductive physiological processes, such as folliculogenesis, ovulation, implantation, and fertilization, require the synthesis, remodeling, and degradation of the extracellular matrix (ECM). The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) family genes code for key metalloproteinases in the remodeling process of different ECM. Several genes of this family encode for proteins with important functions in reproductive processes; in particular, ADAMTS1, 4, 5 and 9 are genes that are differentially expressed in cell types and the physiological stages of reproductive tissues. ADAMTS enzymes degrade proteoglycans in the ECM of the follicles so that the oocytes can be released and regulate follicle development during folliculogenesis, favoring the action of essential growth factors, such as FGF-2, FGF-7 and GDF-9. The transcriptional regulation of ADAMTS1 and 9 in preovulatory follicles occurs because of the gonadotropin surge in preovulatory follicles, via the progesterone/progesterone receptor complex. In addition, in the case of ADAMTS1, pathways involving protein kinase A (PKA), extracellular signal regulated protein kinase (ERK1/2) and the epidermal growth factor receptor (EGFR) might contribute to ECM regulation. Different Omic studies indicate the importance of genes of the ADAMTS family from a reproductive aspect. ADAMTS genes could serve as biomarkers for genetic improvement and contribute to enhance fertility and animal reproduction; however, more research related to these genes, the synthesis of proteins encoded by these genes, and regulation in farm animals is needed.
Collapse
|
14
|
Yu S, Choi YJ, Rim JH, Kim HY, Bekheirnia N, Swartz SJ, Dai H, Gu SL, Lee S, Nishinakamura R, Hildebrandt F, Bekheirnia MR, Gee HY. Disease modeling of ADAMTS9-related nephropathy using kidney organoids reveals its roles in tubular cells and podocytes. Front Med (Lausanne) 2023; 10:1089159. [PMID: 37035301 PMCID: PMC10079903 DOI: 10.3389/fmed.2023.1089159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Mutations in ADAMTS9 cause nephronophthisis-related ciliopathies (NPHP-RC), which are characterized by multiple developmental defects and kidney diseases. Patients with NPHP-RC usually have normal glomeruli and negligible or no proteinuria. Herein, we identified novel compound-heterozygous ADAMTS9 variants in two siblings with NPHP-RC who had glomerular manifestations, including proteinuria. Methods To investigate whether ADAMTS9 dysfunction causes NPHP and glomerulopathy, we differentiated ADAMTS9 knockout human induced pluripotent stem cells (hiPSCs) into kidney organoids. Single-cell RNA sequencing was utilized to elucidate the gene expression profiles from the ADAMTS9 knockout kidney organoids. Results ADAMTS9 knockout had no effect on nephron differentiation; however, it reduced the number of primary cilia, thereby recapitulating renal ciliopathy. Single-cell transcriptomics revealed that podocyte clusters express the highest levels of ADAMTS9, followed by the proximal tubules. Loss of ADAMTS9 increased the activity of multiple signaling pathways, including the Wnt/PCP signaling pathway, in podocyte clusters. Conclusions Mutations in ADMATS9 cause a glomerulotubular nephropathy in kidney and our study provides insights into the functional roles of ADMATS9 in glomeruli and tubules.
Collapse
Affiliation(s)
- Seyoung Yu
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yo Jun Choi
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nasim Bekheirnia
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States
| | - Sarah Jane Swartz
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine/Baylor Genetics, Houston, TX, United States
| | - Shen Linda Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine/Baylor Genetics, Houston, TX, United States
| | - Soyeon Lee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Friedhelm Hildebrandt
- Department of Medicine, Division of Nephrology, Boston Children's Hospital, Boston, MA, United States
| | - Mir Reza Bekheirnia
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Mir Reza Bekheirnia,
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Heon Yung Gee,
| |
Collapse
|
15
|
Cao R, Yang ZS, Hu SL, Liang SJ, Zhang SM, Zhu SQ, Lu L, Long CH, Yao ST, Ma YJ, Liang XH. Molecular Mechanism of Mouse Uterine Smooth Muscle Regulation on Embryo Implantation. Int J Mol Sci 2022; 23:ijms232012494. [PMID: 36293350 PMCID: PMC9604262 DOI: 10.3390/ijms232012494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Myometrium plays critical roles in multiple processes such as embryo spacing through peristalsis during mouse implantation, indicating vital roles of smooth muscle in the successful establishment and quality of implantation. Actin, a key element of cytoskeleton structure, plays an important role in the movement and contraction of smooth muscle cells (SMCs). However, the function of peri-implantation uterine smooth muscle and the regulation mechanism of muscle tension are still unclear. This study focused on the molecular mechanism of actin assembly regulation on implantation in smooth muscle. Phalloidin is a highly selective bicyclic peptide used for staining actin filaments (also known as F-actin). Phalloidin staining showed that F-actin gradually weakened in the CD-1 mouse myometrium from day 1 to day 4 of early pregnancy. More than 3 mice were studied for each group. Jasplakinolide (Jasp) used to inhibit F-actin depolymerization promotes F-actin polymerization in SMCs during implantation window and consequently compromises embryo implantation quality. Transcriptome analysis following Jasp treatment in mouse uterine SMCs reveals significant molecular changes associated with actin assembly. Tagln is involved in the regulation of the cell cytoskeleton and promotes the polymerization of G-actin to F-actin. Our results show that Tagln expression is gradually reduced in mouse uterine myometrium from day 1 to 4 of pregnancy. Furthermore, progesterone inhibits the expression of Tagln through the progesterone receptor. Using siRNA to knock down Tagln in day 3 SMCs, we found that phalloidin staining is decreased, which confirms the critical role of Tagln in F-actin polymerization. In conclusion, our data suggested that decreases in actin assembly in uterine smooth muscle during early pregnancy is critical to optimal embryo implantation. Tagln, a key molecule involved in actin assembly, regulates embryo implantation by controlling F-actin aggregation before implantation, suggesting moderate uterine contractility is conducive to embryo implantation. This study provides new insights into how the mouse uterus increases its flexibility to accommodate implanting embryos in the early stage of pregnancy.
Collapse
|
16
|
Ouellette A, Mahendroo M, Nallasamy S. Collagen and elastic fiber remodeling in the pregnant mouse myometrium†. Biol Reprod 2022; 107:741-751. [PMID: 35594450 PMCID: PMC9767674 DOI: 10.1093/biolre/ioac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The myometrium undergoes progressive tissue remodeling from early to late pregnancy to support fetal growth and transitions to the contractile phase to deliver a baby at term. Much of our effort has been focused on understanding the functional role of myometrial smooth muscle cells, but the role of extracellular matrix is not clear. This study was aimed to demonstrate the expression profile of sub-sets of genes involved in the synthesis, processing, and assembly of collagen and elastic fibers, their structural remodeling during pregnancy, and hormonal regulation. Myometrial tissues were isolated from non-pregnant and pregnant mice to analyze gene expression and protein levels of components of collagen and elastic fibers. Second harmonic generation imaging was used to examine the morphology of collagen and elastic fibers. Gene and protein expressions of collagen and elastin were induced very early in pregnancy. Further, the gene expressions of some of the factors involved in the synthesis, processing, and assembly of collagen and elastic fibers were differentially expressed in the pregnant mouse myometrium. Our imaging analysis demonstrated that the collagen and elastic fibers undergo structural reorganization from early to late pregnancy. Collagen and elastin were differentially induced in response to estrogen and progesterone in the myometrium of ovariectomized mice. Collagen was induced by both estrogen and progesterone. By contrast, estrogen induced elastin, but progesterone suppressed its expression. The current study suggests progressive extracellular matrix remodeling and its potential role in the myometrial tissue mechanical function during pregnancy and parturition.
Collapse
Affiliation(s)
- Alexis Ouellette
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shanmugasundaram Nallasamy
- Correspondence: Division of Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA. Tel: +18026568668; Fax: +18026568771; E-mail:
| |
Collapse
|
17
|
Ren H, Li Y, Ma X, Zhang C, Peng R, Ming L. Differential microRNA expression profile of Trichinella spiralis larvae after exposure to the host small intestinal milieu. Acta Trop 2022; 226:106174. [PMID: 34627754 DOI: 10.1016/j.actatropica.2021.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The process by which Trichinella spiralis muscle larvae are activated to infect the intestine after exposure to the host small intestinal milieu is crucial for the successful establishment of T. spiralis infection. However, the molecular mechanism underlying the invasion of intestinal epithelial cells by T. spiralis has not been elucidated. MicroRNAs are a class of small noncoding RNAs that participate in parasite growth and development, pathogenic processes, and host-parasite interactions. In the present study, the differential expression profile of miRNAs in T. spiralis after exposure to the mouse small intestinal milieu was analysed using Solexa high-throughput sequencing technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to analyse the functions of miRNA target genes, and dual-luciferase reporter assays were subsequently applied to test the regulatory effects of one significantly decreased miRNA (let-7) on its four predicted target genes. In total, 2,000 known miRNAs (930 upregulated and 1070 downregulated) and 43 novel miRNAs (22 upregulated and 21 downregulated) were found to be differentially expressed in intestinal larvae, compared with muscle larvae. The KEGG pathway analysis showed that the predicted target genes of differentially expressed miRNAs were involved in 299 different pathways, and the top 10 pathways were metabolic pathways, biosynthesis of secondary metabolites, neuroactive ligand-receptor interaction, lysosome, focal adhesion, purine metabolism, starch and sucrose metabolism, tight junction, carbohydrate digestion and absorption, and pathways in cancer. As one of the most widely studied miRNA families, the expression of let-7 was significantly decreased in T. spiralis after exposure to host small intestinal milieu. A dual-luciferase reporter assay revealed that neuropeptide Y receptor type 6 and carboxypeptidase E were direct target genes of let-7, and were downregulated by binding with their 3' UTR. GO function analysis showed that carboxypeptidase E had multiple enzymatic activities, suggesting that it might participate in cell membrane damage and larval invasion. These data suggest that the differentially expressed miRNAs in T. spiralis might have a regulatory role in the invasion of host intestinal epithelial cells. This study provides a new insight into the molecular mechanisms of invasion by T. spiralis and the regulatory functions of miRNAs in host-Trichinella interactions.
Collapse
Affiliation(s)
- Huijun Ren
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China.
| | - Yi Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Xiaohan Ma
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Chunli Zhang
- Department of General Surgery, the People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Ruoyu Peng
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Liang Ming
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| |
Collapse
|
18
|
Colon-Caraballo M, Lee N, Nallasamy S, Myers K, Hudson D, Iozzo RV, Mahendroo M. Novel regulatory roles of small leucine-rich proteoglycans in remodeling of the uterine cervix in pregnancy. Matrix Biol 2022; 105:53-71. [PMID: 34863915 PMCID: PMC9446484 DOI: 10.1016/j.matbio.2021.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023]
Abstract
The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.
Collapse
Affiliation(s)
- Mariano Colon-Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Nicole Lee
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - Shanmugasundaram Nallasamy
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Burlington, Vermont 05405
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - David Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington Seattle, Washington 98165
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Correspondence to: Mala Mahendroo, Ph.D, Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
19
|
Barallobre-Barreiro J, Radovits T, Fava M, Mayr U, Lin WY, Ermolaeva E, Martínez-López D, Lindberg EL, Duregotti E, Daróczi L, Hasman M, Schmidt LE, Singh B, Lu R, Baig F, Siedlar AM, Cuello F, Catibog N, Theofilatos K, Shah AM, Crespo-Leiro MG, Doménech N, Hübner N, Merkely B, Mayr M. Extracellular Matrix in Heart Failure: Role of ADAMTS5 in Proteoglycan Remodeling. Circulation 2021; 144:2021-2034. [PMID: 34806902 PMCID: PMC8687617 DOI: 10.1161/circulationaha.121.055732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Remodeling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulfate proteoglycans such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown. METHODS Versican remodeling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5ΔCat). Proteomics was applied to study ECM remodeling in left ventricular samples from patients with HF, with a particular focus on the effects of common medications used for the treatment of HF. RESULTS Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in patients with ischemic HF. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II infusion. In Adamts5ΔCat mice, angiotensin II infusion resulted in an aggravated versican build-up and hyaluronic acid disarrangement, accompanied by reduced levels of integrin β1, filamin A, and connexin 43. Echocardiographic assessment of Adamts5ΔCat mice revealed a reduced ejection fraction and an impaired global longitudinal strain on angiotensin II infusion. Cardiac hypertrophy and collagen deposition were similar to littermate controls. In a proteomics analysis of a larger cohort of cardiac explants from patients with ischemic HF (n=65), the use of β-blockers was associated with a reduction in ECM deposition, with versican being among the most pronounced changes. Subsequent experiments in cardiac fibroblasts confirmed that β1-adrenergic receptor stimulation increased versican expression. Despite similar clinical characteristics, patients with HF treated with β-blockers had a distinct cardiac ECM profile. CONCLUSIONS Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart and that versican accumulation is associated with impaired cardiac function. A comprehensive characterization of the cardiac ECM in patients with ischemic HF revealed that β-blockers may have a previously unrecognized beneficial effect on cardiac chondroitin sulfate proteoglycan content.
Collapse
Affiliation(s)
- Javier Barallobre-Barreiro
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Tamás Radovits
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Budapest, Hungary (T.R., L.D., B.M.)
| | - Marika Fava
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Ursula Mayr
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Wen-Yu Lin
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (W.-Y.L.)
| | - Elizaveta Ermolaeva
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Diego Martínez-López
- IIS-Fundación Jiménez Díaz–Universidad Autónoma and CIBERCV, Madrid, Spain (D.M.-L.)
| | - Eric L. Lindberg
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (E.L.L., N.H.)
| | - Elisa Duregotti
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - László Daróczi
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Budapest, Hungary (T.R., L.D., B.M.)
| | - Maria Hasman
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Lukas E. Schmidt
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Bhawana Singh
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Ruifang Lu
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Ferheen Baig
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Aleksandra Malgorzata Siedlar
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, German Center for Heart Research (DZHK), Hamburg, Germany (F.C.)
| | - Norman Catibog
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Konstantinos Theofilatos
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Ajay M. Shah
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| | - Maria G. Crespo-Leiro
- Instituto de Investigación Biomédica de A Coruña (INIBIC)–CIBERCV, Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña, Spain (M.G.C.-L., N.D.)
| | - Nieves Doménech
- Instituto de Investigación Biomédica de A Coruña (INIBIC)–CIBERCV, Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña, Spain (M.G.C.-L., N.D.)
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (E.L.L., N.H.)
- Charité-Universitätsmedizin, Berlin, Germany (N.H.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany (N.H.)
| | - Béla Merkely
- Heart and Vascular Center, Department of Cardiology, Semmelweis University, Budapest, Hungary (T.R., L.D., B.M.)
| | - Manuel Mayr
- King’s BHF Centre of Research Excellence, London, UK (J.B.-B., M.F., U.M., W.-Y.L., E.E., E.D., M.H., L.E.S., B.S., R.L., F.B., A.M.S., N.C., K.T., A.M.S., M.M.)
| |
Collapse
|
20
|
Martin DR, Santamaria S, Koch CD, Ahnström J, Apte SS. Identification of novel ADAMTS1, ADAMTS4 and ADAMTS5 cleavage sites in versican using a label-free quantitative proteomics approach. J Proteomics 2021; 249:104358. [PMID: 34450332 PMCID: PMC8713443 DOI: 10.1016/j.jprot.2021.104358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
The chondroitin sulfate proteoglycan versican is important for embryonic development and several human disorders. The versican V1 splice isoform is widely expressed and cleaved by ADAMTS proteases at a well-characterized site, Glu441-Ala442. Since ADAMTS proteases cleave the homologous proteoglycan aggrecan at multiple sites, we hypothesized that additional cleavage sites existed within versican. We report a quantitative label-free approach that ranks abundance of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-identified semi-tryptic peptides after versican digestion by ADAMTS1, ADAMTS4 and ADAMTS5 to identify site-specific cleavages. Recombinant purified versican V1 constructs were digested with the recombinant full-length proteases, using catalytically inactive mutant proteases in control digests. Semi-tryptic peptide abundance ratios determined by LC-MS/MS in ADAMTS:control digests were compared to the mean of all identified peptides to obtain a z-score by which outlier peptides were ranked, using semi-tryptic peptides identifying Glu441 -Ala442 cleavage as the benchmark. Tryptic peptides with higher abundance in control digests supported cleavage site identification. We identified several novel cleavage sites supporting the ADAMTS1/4/5 cleavage site preference for a P1-Glu residue in proteoglycan substrates. Digestion of proteins in vitro and application of this z-score approach is potentially widely applicable for mapping protease cleavage sites using label-free proteomics. SIGNIFICANCE: Versican abundance and turnover are relevant to the pathogenesis of several human disorders. Versican is cleaved by A Disintegrin-like And Metalloprotease with Thrombospondin type 1 motifs (ADAMTS) family members at Glu441-Ala442, generating a bioactive proteoform called versikine, but additional cleavage sites and the site-specificity of individual ADAMTS proteases is unexplored. Here, we used a label-free proteomics strategy to identify versican cleavage sites for 3 ADAMTS proteases, applying a novel z-score-based statistical approach to compare the protease digests of versican to controls (digests with inactive protease) using the known protease cleavage site as a benchmark. We identified 21 novel cleavage sites that had a comparable z-score to the benchmark. Given the functional significance of versikine, they represent potentially significant cleavages and helped to refine a substrate site preference for each protease.The z-score approach is potentially widely applicable for discovery of site-specific cleavages within an purified protein or small ensemble of proteins using any protease.
Collapse
Affiliation(s)
- Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, 5th Floor Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom
| | - Christopher D Koch
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, 5th Floor Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
21
|
Isolation and Purification of Versican and Analysis of Versican Proteolysis. Methods Mol Biol 2021. [PMID: 34626407 DOI: 10.1007/978-1-0716-1398-6_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Versican is a widely distributed chondroitin sulfate proteoglycan that forms large complexes with the glycosaminoglycan hyaluronan (HA). As a consequence of HA binding to its receptor CD44 and interactions of the versican C-terminal globular (G3) domain with a variety of extracellular matrix proteins, versican is a key component of well-defined networks in pericellular matrix and extracellular matrix. Versican is crucial for several developmental processes in the embryo ranging from cardiac development to digit separation, and there is an increasing interest in its roles in cancer and inflammation. Versican proteolysis by ADAMTS proteases is highly regulated, occurs at specific peptide bonds, and is relevant to several physiological and disease mechanisms. In this chapter, methods are described for the isolation and detection of intact and cleaved versican in tissues using morphologic and biochemical techniques. These, together with the methodologies for purification and analysis of recombinant versican and an N-terminal versican fragment named versikine that are provided here, are likely to facilitate further progress on the biology of versican and its proteolysis.
Collapse
|
22
|
Rhen T, Even Z, Brenner A, Lodewyk A, Das D, Singh S, Simmons R. Evolutionary Turnover in Wnt Gene Expression but Conservation of Wnt Signaling during Ovary Determination in a TSD Reptile. Sex Dev 2021; 15:47-68. [PMID: 34280932 DOI: 10.1159/000516973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/01/2021] [Indexed: 11/19/2022] Open
Abstract
Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species.
Collapse
Affiliation(s)
- Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zachary Even
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alaina Brenner
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alexandra Lodewyk
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Debojyoti Das
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sunil Singh
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Rebecca Simmons
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
23
|
Nandadasa S, Burin des Roziers C, Koch C, Tran-Lundmark K, Dours-Zimmermann MT, Zimmermann DR, Valleix S, Apte SS. A new mouse mutant with cleavage-resistant versican and isoform-specific versican mutants demonstrate that proteolysis at the Glu 441-Ala 442 peptide bond in the V1 isoform is essential for interdigital web regression. Matrix Biol Plus 2021; 10:100064. [PMID: 34195596 PMCID: PMC8233476 DOI: 10.1016/j.mbplus.2021.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Two inherent challenges in the mechanistic interpretation of protease-deficient phenotypes are defining the specific substrate cleavages whose reduction generates the phenotypes and determining whether the phenotypes result from loss of substrate function, substrate accumulation, or loss of a function(s) embodied in the substrate fragments. Hence, recapitulation of a protease-deficient phenotype by a cleavage-resistant substrate would stringently validate the importance of a proteolytic event and clarify the underlying mechanisms. Versican is a large proteoglycan required for development of the circulatory system and proper limb development, and is cleaved by ADAMTS proteases at the Glu441-Ala442 peptide bond located in its alternatively spliced GAGβ domain. Specific ADAMTS protease mutants have impaired interdigit web regression leading to soft tissue syndactyly that is associated with reduced versican proteolysis. Versikine, the N-terminal proteolytic fragment generated by this cleavage, restores interdigit apoptosis in ADAMTS mutant webs. Here, we report a new mouse transgene, Vcan AA, with validated mutations in the GAGβ domain that specifically abolish this proteolytic event. Vcan AA/AA mice have partially penetrant hindlimb soft tissue syndactyly. However, Adamts20 inactivation in Vcan AA/AA mice leads to fully penetrant, more severe syndactyly affecting all limbs, suggesting that ADAMTS20 cleavage of versican at other sites or of other substrates is an additional requirement for web regression. Indeed, immunostaining with a neoepitope antibody against a cleavage site in the versican GAGα domain demonstrated reduced staining in the absence of ADAMTS20. Significantly, mice with deletion of Vcan exon 8, encoding the GAGβ domain, consistently developed soft tissue syndactyly, whereas mice unable to include exon 7, encoding the GAGα domain in Vcan transcripts, consistently had fully separated digits. These findings suggest that versican is cleaved within each GAG-bearing domain during web regression, and affirms that proteolysis in the GAGβ domain, via generation of versikine, has an essential role in interdigital web regression.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Cyril Burin des Roziers
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Paris Descartes University Medical School, 24, Rue du faubourg Saint Jacques, 75014 Paris, France
| | - Christopher Koch
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | | | - Dieter R. Zimmermann
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sophie Valleix
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Paris Descartes University Medical School, 24, Rue du faubourg Saint Jacques, 75014 Paris, France
| | - Suneel S. Apte
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
24
|
Nandadasa S, O'Donnell A, Murao A, Yamaguchi Y, Midura RJ, Olson L, Apte SS. The versican-hyaluronan complex provides an essential extracellular matrix niche for Flk1 + hematoendothelial progenitors. Matrix Biol 2021; 97:40-57. [PMID: 33454424 DOI: 10.1016/j.matbio.2021.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Little is known about extracellular matrix (ECM) contributions to formation of the earliest cell lineages in the embryo. Here, we show that the proteoglycan versican and glycosaminoglycan hyaluronan are associated with emerging Flk1+ hematoendothelial progenitors at gastrulation. The mouse versican mutant Vcanhdf lacks yolk sac vasculature, with attenuated yolk sac hematopoiesis. CRISPR/Cas9-mediated Vcan inactivation in mouse embryonic stem cells reduced vascular endothelial and hematopoietic differentiation within embryoid bodies, which generated fewer blood colonies, and had an impaired angiogenic response to VEGF165. Hyaluronan was severely depleted in Vcanhdf embryos, with corresponding upregulation of the hyaluronan-depolymerase TMEM2. Conversely, hyaluronan-deficient mouse embryos also had vasculogenic suppression but with increased versican proteolysis. VEGF165 and Indian hedgehog, crucial vasculogenic factors, utilized the versican-hyaluronan matrix, specifically versican chondroitin sulfate chains, for binding. Versican-hyaluronan ECM is thus an obligate requirement for vasculogenesis and primitive hematopoiesis, providing a vasculogenic factor-enriching microniche for Flk1+ progenitors from their origin at gastrulation.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Anna O'Donnell
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Ayako Murao
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Ronald J Midura
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Lorin Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Suneel S Apte
- Department of Biomedical Engineering (ND20), Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States.
| |
Collapse
|
25
|
Miyabayashi K, Baker LA, Deschênes A, Traub B, Caligiuri G, Plenker D, Alagesan B, Belleau P, Li S, Kendall J, Jang GH, Kawaguchi RK, Somerville TDD, Tiriac H, Hwang CI, Burkhart RA, Roberts NJ, Wood LD, Hruban RH, Gillis J, Krasnitz A, Vakoc CR, Wigler M, Notta F, Gallinger S, Park Y, Tuveson DA. Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discov 2020; 10:1566-1589. [PMID: 32703770 PMCID: PMC7664990 DOI: 10.1158/2159-8290.cd-20-0133] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common malignancy, with little improvement in patient outcomes over the past decades. Recently, subtypes of pancreatic cancer with different prognoses have been elaborated; however, the inability to model these subtypes has precluded mechanistic investigation of their origins. Here, we present a xenotransplantation model of PDAC in which neoplasms originate from patient-derived organoids injected directly into murine pancreatic ducts. Our model enables distinction of the two main PDAC subtypes: intraepithelial neoplasms from this model progress in an indolent or invasive manner representing the classical or basal-like subtypes of PDAC, respectively. Parameters that influence PDAC subtype specification in this intraductal model include cell plasticity and hyperactivation of the RAS pathway. Finally, through intratumoral dissection and the direct manipulation of RAS gene dosage, we identify a suite of RAS-regulated secreted and membrane-bound proteins that may represent potential candidates for therapeutic intervention in patients with PDAC. SIGNIFICANCE: Accurate modeling of the molecular subtypes of pancreatic cancer is crucial to facilitate the generation of effective therapies. We report the development of an intraductal organoid transplantation model of pancreatic cancer that models the progressive switching of subtypes, and identify stochastic and RAS-driven mechanisms that determine subtype specification.See related commentary by Pickering and Morton, p. 1448.This article is highlighted in the In This Issue feature, p. 1426.
Collapse
Affiliation(s)
- Koji Miyabayashi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Lindsey A Baker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benno Traub
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Surgery, University of California, San Diego, La Jolla, California
| | - Chang-Il Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
- Department of Microbiology and Molecular Genetics, University of California, Davis, California
| | - Richard A Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicholas J Roberts
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura D Wood
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | | | - Michael Wigler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
26
|
Abstract
Aggrecan is a large proteoglycan that forms giant hydrated aggregates with hyaluronan in the extracellular matrix (ECM). The extraordinary resistance of these aggregates to compression explains their abundance in articular cartilage of joints where they ensure adequate load-bearing. In the brain, they provide mechanical buffering and contribute to formation of perineuronal nets, which regulate synaptic plasticity. Aggrecan is also present in cardiac jelly, developing heart valves, and blood vessels during cardiovascular development. Whereas aggrecan is essential for skeletal development, its function in the developing cardiovascular system remains to be fully elucidated. An excess of aggrecan was demonstrated in cardiovascular tissues in aortic aneurysms, atherosclerosis, vascular re-stenosis after injury, and varicose veins. It is a product of vascular smooth muscle and is likely to be an important component of pericellular matrix, where its levels are regulated by proteases. Aggrecan can contribute to specific biophysical and regulatory properties of cardiovascular ECM via the diverse interactions of its domains, and its accumulation is likely to have a significant role in developmental and disease pathways. Here, the established biological functions of aggrecan, its cardiovascular associations, and potential roles in cardiovascular development and disease are discussed.
Collapse
Affiliation(s)
- Christopher D Koch
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Chan Mi Lee
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
27
|
Vaisar T, Hu JH, Airhart N, Fox K, Heinecke J, Nicosia RF, Kohler T, Potter ZE, Simon GM, Dix MM, Cravatt BF, Gharib SA, Dichek DA. Parallel Murine and Human Plaque Proteomics Reveals Pathways of Plaque Rupture. Circ Res 2020; 127:997-1022. [PMID: 32762496 PMCID: PMC7508285 DOI: 10.1161/circresaha.120.317295] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jie H Hu
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Nathan Airhart
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Kate Fox
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jay Heinecke
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Roberto F Nicosia
- Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (R.F.N.), VA Puget Sound Health Care System, Seattle, WA
| | - Ted Kohler
- Departments of Surgery (T.K.), University of Washington, Seattle.,Departments of Surgery (T.K.), VA Puget Sound Health Care System, Seattle, WA
| | - Zachary E Potter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | | | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Sina A Gharib
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle
| |
Collapse
|
28
|
Role of Extracellular Matrix in Pathophysiology of Patent Ductus Arteriosus: Emphasis on Vascular Remodeling. Int J Mol Sci 2020; 21:ijms21134761. [PMID: 32635482 PMCID: PMC7369762 DOI: 10.3390/ijms21134761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
The ductus arteriosus (DA) is a shunt vessel between the aorta and the pulmonary artery during the fetal period that is essential for the normal development of the fetus. Complete closure usually occurs after birth but the vessel might remain open in certain infants, as patent ductus arteriosus (PDA), causing morbidity or mortality. The mechanism of DA closure is a complex process involving an orchestration of cell-matrix interaction between smooth muscle cells (SMC), endothelial cells, and extracellular matrix (ECM). ECM is defined as the noncellular component secreted by cells that consists of macromolecules such as elastin, collagens, proteoglycan, hyaluronan, and noncollagenous glycoproteins. In addition to its role as a physical scaffold, ECM mediates diverse signaling that is critical in development, maintenance, and repair in the cardiovascular system. In this review, we aim to outline the current understandings of ECM and its role in the pathophysiology of PDA, with emphasis on DA remodeling and highlight future outlooks. The molecular diversity and plasticity of ECM present a rich array of potential therapeutic targets for the management of PDA.
Collapse
|
29
|
Kang N, Matsui TS, Liu S, Fujiwara S, Deguchi S. Comprehensive analysis on the whole Rho‐GAP family reveals that ARHGAP4 suppresses EMT in epithelial cells under negative regulation by Septin9. FASEB J 2020; 34:8326-8340. [DOI: 10.1096/fj.201902750rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Na Kang
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Tsubasa S. Matsui
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Shiyou Liu
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Sachiko Fujiwara
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Shinji Deguchi
- Division of Bioengineering Graduate School of Engineering Science Osaka University Toyonaka Japan
| |
Collapse
|
30
|
Ma X, Sun J, Zhu S, Du Z, Li D, Li W, Li Z, Tian Y, Kang X, Sun G. MiRNAs and mRNAs Analysis during Abdominal Preadipocyte Differentiation in Chickens. Animals (Basel) 2020; 10:ani10030468. [PMID: 32168898 PMCID: PMC7143929 DOI: 10.3390/ani10030468] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary We sequenced the miRNAs and mRNAs of preabdominal fat cells and differentiated adipocytes, and target genes of miRNA combined with mRNA transcriptome data jointly. We found that the MAPK signal pathway, insulin signal pathway, fatty acid metabolism, ECM( extracellular matrix)–receptor interaction, and other signal pathways were involved in the differentiation of preabdominal fat cells. In addition, we found that some miRNAs–mRNAs combinations were strongly related to the differentiation of fat cells (miR-214−ACSBG2, NFKB2, CAMK2A, ACLY, CCND3, PLK3, ITGB2; miR-148a-5p−ROCK2; miR-10a-5p−ELOVL5; miR-146b-5p−LAMA4; miR-6615-5p−FLNB; miR-1774−COL6A1). Our findings provide important resources for the study of adipocyte differentiation. Abstract The excessive deposition of abdominal fat has become an important factor in restricting the production efficiency of chickens, so reducing abdominal fat deposition is important for improving growth rate. It has been proven that miRNAs play an important role in regulating many physiological processes of organisms. In this study, we constructed a model of adipogenesis by isolating preadipocytes (Ab-Pre) derived from abdominal adipose tissue and differentiated adipocytes (Ab-Ad) in vitro. Deep sequencing of miRNAs and mRNAs expressed in Ab-Pre and Ab-Ad groups was conducted to explore the effect of miRNAs and mRNAs on fat deposition. We identified 80 differentially expressed miRNAs (DEMs) candidates, 58 of which were up-regulated and 22 down-regulated. Furthermore, six miRNAs and six mRNAs were verified by qRT-PCR, and the results showed that the expression of the DEMs and differentially expressed genes (DEGs) in the two groups was consistent with our sequencing results. When target genes of miRNA were combined with mRNA transcriptome data, a total of 891 intersection genes were obtained, we predicted the signal pathways of cross genes enrichment to the MAPK signal pathway, insulin signal pathway, fatty acid metabolism, and ECM–receptor interaction. Meanwhile, we constructed miRNA and negatively correlated mRNA target networks, including 12 miRNA–mRNAs pairs, which showed a strong association with the abdominal adipocyte differentiation (miR-214−ACSBG2, NFKB2, CAMK2A, ACLY, CCND3, PLK3, ITGB2; miR-148a-5p−ROCK2; miR-10a-5p−ELOVL5; miR-146b-5p−LAMA4; miR-6615-5p−FLNB; miR-1774−COL6A1). Overall, these findings provide a background for further research on lipid metabolism. Thus, we can better understand the molecular genetic mechanism of chicken abdominal fat deposition.
Collapse
|
31
|
Ma XH, Ren HJ, Peng RY, Li Y, Ming L. Comparative expression profiles of host circulating miRNAs in response to Trichinella spiralis infection. Vet Res 2020; 51:39. [PMID: 32156309 PMCID: PMC7065375 DOI: 10.1186/s13567-020-00758-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Trichinellosis is an important food-borne parasitic zoonosis throughout the world. At present, the mechanisms of Trichinella spiralis infection remain unclear. Acquiring detailed information on the host-Trichinella interaction would be beneficial for the development of new strategies for trichinellosis control. Circulating miRNAs are stably detectable in the blood of humans and animals infected with parasites. Circulating miRNAs might regulate the expression of target genes in pathological responses during infection and might be novel potential biomarkers of parasitic diseases. In the present study, a total of ten differentially expressed circulating mouse miRNAs with |log2(fold change)| ≥ 1.0 and FDR < 0.01 were found during T. spiralis infection, of which five were upregulated and five were downregulated. GO and KEGG analyses showed that the target genes of the ten miRNAs were enriched in many signalling pathways, especially focal adhesion, MAPK pathway, and so on. The results of qRT-PCR showed that among the five upregulated miRNAs, mmu-miR-467a-3p and mmu-miR-467d-3p expression in mouse serum reached a peak at 30 days post-infection (dpi). The expression of mmu-miR-376b-3p and mmu-miR-664-3p increased significantly at 18 dpi and then decreased at 30 dpi. The expression of mmu-miR-292a-5p gradually decreased from 12 to 30 dpi. Among the 5 downregulated miRNAs, mmu-miR-199a-5p expression was significantly downregulated at 30 dpi, while the expression levels of the other four miRNAs (mmu-miR-455-5p, mmu-miR-125b-5p, mmu-miR-125a-5p, and mmu-miR-615-3p) were significantly lower compared with the control, showing a steady downregulation at different phases of infection. These findings will help to further understand the host-Trichinella interaction and provide promising serum biomarkers for trichinellosis.
Collapse
Affiliation(s)
- Xiao Han Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Hui Jun Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China.
| | - Ruo Yu Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Yi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China.
| |
Collapse
|
32
|
Abstract
Rapidly increasing scientific reports of exosomes and their biological effects have improved our understanding of their cellular sources and their cell-to-cell communication. These nano-sized vesicles act as potent carriers of regulatory bio-macromolecules and can induce regulatory functions by delivering them from its source to recipient cells. The details of their communication network are less understood. Recent studies have shown that apart from delivering its cargo to the cells, it can directly act on extracellular matrix (ECM) proteins and growth factors and can induce various remodeling events. More importantly, exosomes carry many surface-bound proteases, which can cleave different ECM proteins and carbohydrates and can shed cell surface receptors. These local extracellular events can modulate signaling cascades, which consequently influences the whole tissue and organ. This review aims to highlight the critical roles of exosomal proteases and their mechanistic insights within the cellular and extracellular environment.
Collapse
|
33
|
Taye N, Karoulias SZ, Hubmacher D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res 2020; 38:23-35. [PMID: 31410892 PMCID: PMC6917864 DOI: 10.1002/jor.24440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level. The structure and function of adult tendons is largely determined by the hierarchical organization of collagen type I fibrils. However, non-collagenous ECM proteins such as small leucine-rich proteoglycans (SLRPs), ADAMTS proteases, and cross-linking enzymes play critical roles in collagen fibrillogenesis and guide the hierarchical bundling of collagen fibrils into tendon fascicles. Other non-collagenous ECM proteins such as the less abundant collagens, fibrillins, or elastin, contribute to tendon formation or determine some of their biomechanical properties. The interfascicular matrix or endotenon and the outer layer of tendons, the epi- and paratenon, includes collagens and non-collagenous ECM proteins, but their function is less well understood. The ECM proteins in the epi- and paratenon may provide the appropriate microenvironment to maintain the identity of distinct tendon cell populations that are thought to play a role during repair processes after injury. The aim of this review is to provide an overview of the role of non-collagenous ECM proteins and less abundant collagens in tendon development and homeostasis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:23-35, 2020.
Collapse
Affiliation(s)
- Nandaraj Taye
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Stylianos Z. Karoulias
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| |
Collapse
|
34
|
Koch CD, Apte SS. Characterization of Proteoglycanomes by Mass Spectrometry. EXTRACELLULAR MATRIX OMICS 2020. [DOI: 10.1007/978-3-030-58330-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Wei W, Faubel JL, Selvakumar H, Kovari DT, Tsao J, Rivas F, Mohabir AT, Krecker M, Rahbar E, Hall AR, Filler MA, Washburn JL, Weigel PH, Curtis JE. Self-regenerating giant hyaluronan polymer brushes. Nat Commun 2019; 10:5527. [PMID: 31797934 PMCID: PMC6892876 DOI: 10.1038/s41467-019-13440-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
Tailoring interfaces with polymer brushes is a commonly used strategy to create functional materials for numerous applications. Existing methods are limited in brush thickness, the ability to generate high-density brushes of biopolymers, and the potential for regeneration. Here we introduce a scheme to synthesize ultra-thick regenerating hyaluronan polymer brushes using hyaluronan synthase. The platform provides a dynamic interface with tunable brush heights that extend up to 20 microns - two orders of magnitude thicker than standard brushes. The brushes are easily sculpted into micropatterned landscapes by photo-deactivation of the enzyme. Further, they provide a continuous source of megadalton hyaluronan or they can be covalently-stabilized to the surface. Stabilized brushes exhibit superb resistance to biofilms, yet are locally digested by fibroblasts. This brush technology provides opportunities in a range of arenas including regenerating tailorable biointerfaces for implants, wound healing or lubrication as well as fundamental studies of the glycocalyx and polymer physics.
Collapse
Affiliation(s)
- Wenbin Wei
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jessica L Faubel
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hemaa Selvakumar
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daniel T Kovari
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Joanna Tsao
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Felipe Rivas
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amar T Mohabir
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michelle Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam R Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael A Filler
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer L Washburn
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul H Weigel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer E Curtis
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
- Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
36
|
Wang LW, Nandadasa S, Annis DS, Dubail J, Mosher DF, Willard BB, Apte SS. A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9) regulates fibronectin fibrillogenesis and turnover. J Biol Chem 2019; 294:9924-9936. [PMID: 31085586 PMCID: PMC6597835 DOI: 10.1074/jbc.ra118.006479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The secreted metalloprotease ADAMTS9 has dual roles in extracellular matrix (ECM) turnover and biogenesis of the primary cilium during mouse embryogenesis. Its gene locus is associated with several human traits and disorders, but ADAMTS9 has few known interacting partners or confirmed substrates. Here, using a yeast two-hybrid screen for proteins interacting with its C-terminal Gon1 domain, we identified three putative ADAMTS9-binding regions in the ECM glycoprotein fibronectin. Using solid-phase binding assays and surface plasmon resonance experiments with purified proteins, we demonstrate that ADAMTS9 and fibronectin interact. ADAMTS9 constructs, including those lacking Gon1, co-localized with fibronectin fibrils formed by cultured fibroblasts lacking fibrillin-1, which co-localizes with fibronectin and binds several ADAMTSs. We observed no fibrillar ADAMTS9 staining after blockade of fibroblast fibronectin fibrillogenesis with a peptide based on the functional upstream domain of a Staphylococcus aureus adhesin. These findings indicate that ADAMTS9 binds fibronectin dimers and fibrils directly through multiple sites in both molecules. Proteolytically active ADAMTS9, but not a catalytically inactive variant, disrupted fibronectin fibril networks formed by fibroblasts in vitro, and ADAMTS9-deficient RPE1 cells assembled a robust fibronectin fibril network, unlike WT cells. Targeted LC-MS analysis of fibronectin digested by ADAMTS9-expressing cells identified a semitryptic peptide arising from cleavage at Gly2196-Leu2197 We noted that this scissile bond is in the linker between fibronectin modules III17 and I10, a region targeted also by other proteases. These findings, along with stronger fibronectin staining previously observed in Adamts9 mutant embryos, suggest that ADAMTS9 contributes to fibronectin turnover during ECM remodeling.
Collapse
Affiliation(s)
| | | | - Douglas S Annis
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Belinda B Willard
- the Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | | |
Collapse
|
37
|
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS. Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nat Commun 2019; 10:953. [PMID: 30814516 PMCID: PMC6393521 DOI: 10.1038/s41467-019-08520-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 01/20/2023] Open
Abstract
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis. Ciliogenesis is a complex process requiring hundreds of molecules, although few secreted proteins have been implicated. Here, the authors show that the secreted metalloproteases ADAMTS9 and ADAMTS20 intracellularly regulate ciliogenesis from unique periciliary vesicles with proteolytic activity.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Caroline M Kraft
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Anna O'Donnell
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Rushabh Patel
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, South Korea
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.,Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 E 25th St, Kansas City, MO, 64108, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Suneel S Apte
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
38
|
Rogerson FM, Last K, Golub SB, Gauci SJ, Stanton H, Bell KM, Fosang AJ. ADAMTS-9 in Mouse Cartilage Has Aggrecanase Activity That Is Distinct from ADAMTS-4 and ADAMTS-5. Int J Mol Sci 2019; 20:ijms20030573. [PMID: 30699963 PMCID: PMC6387038 DOI: 10.3390/ijms20030573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 01/18/2023] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 are the principal aggrecanases in mice and humans; however, mice lacking the catalytic domain of both enzymes (TS-4/5∆cat) have no skeletal phenotype, suggesting there is an alternative aggrecanase for modulating normal growth and development in these mice. We previously identified aggrecanase activity that (a) cleaved at E↓G rather than E↓A bonds in the aggrecan core protein, and (b) was upregulated by retinoic acid but not IL-1α. The present study aimed to identify the alternative aggrecanase. Femoral head cartilage explants from TS-4/5∆cat mice were stimulated with IL-1α or retinoic acid and total RNA was analysed by microarray. In addition to ADAMTS-5 and matrix metalloproteinase (MMP)-13, which are not candidates for the novel aggrecanase, the microarray analyses identified MMP-11, calpain-5 and ADAMTS-9 as candidate aggrecanases upregulated by retinoic acid. When calpain-5 and MMP-11 failed to meet subsequent criteria, ADAMTS-9 emerged as the most likely candidate for the novel aggrecanase. Immunohistochemistry revealed ADAMTS-9 expression throughout the mouse growth plate and strong expression, particularly in the proliferative zone of the TS-4/5-∆cat mice. In conclusion, ADAMTS-9 has a novel specificity for aggrecan, cleaving primarily at E↓G rather than E↓A bonds in mouse cartilage. ADAMTS-9 might have more important roles in normal skeletal development compared with ADAMTS-4 and ADAMTS-5, which have key roles in joint pathology.
Collapse
Affiliation(s)
- Fraser M Rogerson
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Royal Melbourne Institute of Technology, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| | - Karena Last
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Suzanne B Golub
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Stephanie J Gauci
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Heather Stanton
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Katrina M Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | - Amanda J Fosang
- University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| |
Collapse
|
39
|
Wang LW, Kutz WE, Mead TJ, Beene LC, Singh S, Jenkins MW, Reinhardt DP, Apte SS. Adamts10 inactivation in mice leads to persistence of ocular microfibrils subsequent to reduced fibrillin-2 cleavage. Matrix Biol 2018; 77:117-128. [PMID: 30201140 DOI: 10.1016/j.matbio.2018.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 02/02/2023]
Abstract
Mutations in the secreted metalloproteinase ADAMTS10 cause recessive Weill-Marchesani syndrome (WMS), comprising ectopia lentis, short stature, brachydactyly, thick skin and cardiac valve anomalies. Dominant WMS caused by FBN1 mutations is clinically similar and affects fibrillin-1 microfibrils, which are a major component of the ocular zonule. ADAMTS10 was previously shown to enhance fibrillin-1 assembly in vitro. Here, Adamts10 null mice were analyzed to determine the impact of ADAMTS10 deficiency on fibrillin microfibrils in vivo. An intragenic lacZ reporter identified widespread Adamts10 expression in the eye, musculoskeletal tissues, vasculature, skin and lung. Adamts10-/- mice had reduced viability on the C57BL/6 background, and although surviving mice were slightly smaller and had stiff skin, they lacked brachydactyly and cardiovascular defects. Ectopia lentis was not observed in Adamts10-/- mice, similar to Fbn1-/- mice, most likely because the mouse zonule contains fibrillin-2 in addition to fibrillin-1. Unexpectedly, in contrast to wild-type eyes, Adamts10-/- zonule fibers were thicker and immunostained strongly with fibrillin-2 antibodies into adulthood, whereas fibrillin-1 staining was reduced. Furthermore, fibrillin-2 staining of hyaloid vasculature remnants persisted post-natally in Adamts10-/- eyes. ADAMTS10 was found to cleave fibrillin-2, providing an explanation for persistence of fibrillin-2 at these sites. Thus, analysis of Adamts10-/- mice led to identification of fibrillin-2 as a novel ADAMTS10 substrate and defined a proteolytic mechanism for clearance of ocular fibrillin-2 at the end of the juvenile period.
Collapse
Affiliation(s)
- Lauren W Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wendy E Kutz
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy J Mead
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lauren C Beene
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shweta Singh
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Pediatrics and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|