1
|
Song S, Fan Y, Zou G, Huo L, Kumar J, Li Y, Wang R, Dai E, Jin J, Scott AW, Shao S, Pizzi MP, Vykoukal JV, Katayama H, Hanash S, Calin GA, Zhang X, Lee MG, Wang Z, Lo YH, Gan Q, Waters RE, Yin F, Wang L, Cheng X, Ajani JA, Dhar SS. KAP1 promotes gastric adenocarcinoma progression by activating Hippo/YAP1 signaling via binding to HNRNPAB. Cancer Lett 2025; 621:217695. [PMID: 40189014 DOI: 10.1016/j.canlet.2025.217695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Gastric adenocarcinoma (GAC) remains a significant global health challenge, with over a million new cases annually. Peritoneal carcinomatosis (PC), detected in ∼20 % of cases at diagnosis and ∼45 % later, is uniformly fatal, with limited treatment options. This study investigated the role of KAP1 in GAC progression, focusing on its interaction with YAP1 and cancer stemness traits. Analysis of over 596 primary GACs and 72 PC samples revealed that high nuclear KAP1 expression correlates with poor prognosis. KAP1 knockdown reduced oncogenic activity and stemness traits in GAC cells. Mechanistically, KAP1 positively regulates YAP1 transcription by binding to its promoter and reducing H3K27ac levels. Mass spectrometry identified an interaction between KAP1 and HNRNPAB, further modulating YAP1 signaling. Expression of the KRAB domain of ZFP568 without its DNA-binding zinc fingers inhibited both KAP1 and YAP1 expression, significantly reducing colony formation and tumor growth in vivo. Additionally, emerging antisense oligonucleotides (ASOs) targeting KAP1 or YAP1 effectively suppressed mouse tumor progression. These findings establish KAP1 as a critical driver of tumor progression in GAC through YAP1 regulation and HNRNPAB interaction, highlighting its potential therapeutic target. This study advances our understanding and offers a preclinical framework to improve outcomes for GAC.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yibo Fan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gengyi Zou
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Longfei Huo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janani Kumar
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ruiping Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Shao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Pool Pizzi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody V Vykoukal
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xing Zhang
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Gyu Lee
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Yuan-Hung Lo
- Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiong Gan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca E Waters
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Yin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Cheng
- Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shilpa S Dhar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Huang J, Zhao N, Li J, Zhu J, Liang G, Chen X, Wang N, Zhu H, Pang N, An C, Xiong X. Development of a potent BET inhibitor for the treatment of renal fibrosis. Eur J Med Chem 2025; 295:117822. [PMID: 40449119 DOI: 10.1016/j.ejmech.2025.117822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/19/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
BRD4 serving as an attractive target for the treatment of renal fibrosis has recently received considerable attention. However, to date, the BRD4 inhibitors developed for renal fibrosis treatment were relatively few. Herein, we report the discovery of novel BRD4 inhibitors from virtual screening hit compound 1 with moderate inhibitory activity (IC50 = 7.5 ± 2.9 μM). Through the medicinal chemistry optimization program, leading to the discovery of three potent BRD4 inhibitors, 10, 19 and 31 with IC50 values of 20.0 ± 7.1, 17.5 ± 6.4 and 13.5 ± 4.9 nM, respectively. Among them, 31 showed an acceptable liver microsomal stability and displayed a desired pharmacokinetic profile. Further, we confirmed the therapeutic efficacy of 31 in alleviating renal fibrosis on both UUO and folic acid (FA)-induced renal fibrosis mouse models. Collectively, our results indicated that compound 31 might be a promising candidate for renal fibrosis treatment and deserves further investigations.
Collapse
Affiliation(s)
- Jianhang Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Na Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jian Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jiayi Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Guoao Liang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Naiyuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huilong Zhu
- School of Sciences, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Ningning Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Chunmei An
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xiaochun Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
Ma Z, McAninch S, Liu Z, Zhang C, Chen H, He J, Yang W, Panganiban RP, Cong Y, Yochum G, Brasier AR, Pinchuk IV, Tian B, Zhou J. Orally Bioavailable BRD4 BD1 Inhibitor ZL0516 Effectively Suppresses Colonic Inflammation in Animal Models of Inflammatory Bowel Disease. ACS Pharmacol Transl Sci 2025; 8:1152-1167. [PMID: 40242579 PMCID: PMC11997885 DOI: 10.1021/acsptsci.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Inflammatory bowel disease (IBD), a chronic, progressive, and recurrent gastrointestinal inflammatory disorder, poses a significant threat to global health and exerts an adverse effect on the quality of life. Currently, there is a lack of effective therapies for IBD. Developing novel targeted therapies for IBD, particularly orally effective therapeutics, is a vital need for IBD patients. Herein, we first demonstrate that BRD4/NF-κB signaling is aberrantly activated in the colons of human IBD biopsy samples compared to that of normal healthy controls. ZL0516, a potent, selective, and orally bioavailable BRD4 BD1 inhibitor, significantly inhibits the TNFα- and LPS-induced expression of inflammatory cytokines in human colonic epithelial cells (HCECs) and peripheral blood mononuclear cells (PBMCs) with low cytotoxicity. Intriguingly, when administered in a preventive mode, ZL0516 significantly blocks dextran sulfate sodium (DSS)-induced murine colitis. When used in a therapeutic mode, ZL0516 effectively suppresses colonic inflammation in several IBD-relevant animal models: DSS-, oxazolone (OXA)-, and flagellin (Cbir1) T cell-induced chronic murine colitis models of IBD. ZL0516 suppresses IBD inflammatory responses in vitro and in vivo by blocking the activation of the BRD4/NF-κB signaling pathway. Also, we found that RVX208, a selective BRD4 BD2 inhibitor in Phase III clinical development, only displayed marginal effects in these IBD animal models. Collectively, our results demonstrate that specific BRD4 BD1 inhibition is a novel therapeutic strategy for IBD-associated colonic inflammation, and orally effective inhibitor ZL0516 is a promising candidate for the development of a novel therapeutic regimen against IBD.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Steven McAninch
- Department
of Medicine, Penn State Health Milton S.
Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Zhiqing Liu
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Cun Zhang
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jing He
- Department
of Pathology, University of Texas Medical
Branch (UTMB), Galveston, Texas 77555, United States
| | - Wenjing Yang
- Division
of Gastroenterology and Hepatology, Department of Medicine, Feinberg
School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Ronaldo P. Panganiban
- Department
of Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Yingzi Cong
- Division
of Gastroenterology and Hepatology, Department of Medicine, Feinberg
School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Gregory Yochum
- Division
of Colon and Rectal Surgery, Department of Surgery, and Department
of Biochemistry and Molecular Biology, Penn
State Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Allan R. Brasier
- Institute
for Clinical and Translational Research (ICTR) School of Medicine
and Public Health, 4248 Health Sciences Learning Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Irina V. Pinchuk
- Department
of Medicine, Penn State Health Milton S.
Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Bing Tian
- Department
of Internal Medicine, University of Texas
Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical
Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
4
|
Chen S, Yang J, Wang X, Liu X, Li X, Ye Y, Wang P, Liu Z, Wang CY. Marine natural product-inspired discovery of novel BRD4 inhibitors with anti-inflammatory activity. Eur J Med Chem 2025; 284:117193. [PMID: 39740323 DOI: 10.1016/j.ejmech.2024.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Bromodomain-containing protein 4 (BRD4) has been identified as a promising target in drug discovery, and the development of novel specific BRD4 bromodomain inhibitors will benefit anti-inflammatory drug discovery as well as bromodomain function role disclose. Herein, inspired by marine quinazolinone alkaloid penipanoid C, we designed and synthesized a series of quinazolin-4(3H)-ones with diverse linkers between two aromatic ring systems. Among them, compound 25 possessed good in vitro BRD4 inhibitory activities (IC50 = 3.64 μM for BRD4 BD1 and IC50 = 0.12 μM for BRD4 BD2) and anti-inflammatory activity (IC50 = 1.98 μM for NO production assay). Meantime, 25 obviously suppressed the expression of TNF-α and IL-6 in LPS-stimulated Raw 264.7 and THP-1 cells. Notablely, 25 displayed in vivo therapeutic efficacies in an acute inflammation model without obvious cytotoxicity. These findings suggest that 25 is a selective BRD4 BD2 inhibitor which is a promising anti-inflammatory lead compound worthy for further investigation.
Collapse
Affiliation(s)
- Shuxia Chen
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jichen Yang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiangyu Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao, 266003, China
| | - Xiuxue Li
- Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China
| | - Yansheng Ye
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Pingyuan Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Zhiqing Liu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
5
|
Brasier AR. Interactions between epithelial mesenchymal plasticity, barrier dysfunction and innate immune pathways shape the genesis of allergic airway disease. Expert Rev Respir Med 2025; 19:29-41. [PMID: 39745473 PMCID: PMC11757041 DOI: 10.1080/17476348.2024.2449079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization. AREAS COVERED 1. Characteristics of sentinel epithelial cells of the bronchoalveolar junction, 2. The effect of aeroallergens on epithelial PRRs, 3. Role of tight junctions (TJs) in barrier function and how aeroallergens disrupt their function, 4. Induction of mucosal TGF autocrine loops activating type-2 innate lymphoid cells (ICL2s) leading to Th2 polarization, 5. How respiratory syncytial virus (RSV) directs goblet cell hyperplasia, and 6. Coupling of endoplasmic reticulum (ER) stress to metabolic adaptations and effects on basal lamina remodeling. EXPERT OPINION When aeroallergens or viral infections activate innate immunity in sentinel cells of the bronchoalveolar junction, normal barrier function is disrupted, promoting chronic inflammation and Th2 responses. An improved mechanistic understanding of how activated PRRs induce EMP couples with TJ disruption, metabolic reprogramming and ECM deposition provides new biologically validated targets to restore barrier function, reduce sensitization, and remodeling in AA.
Collapse
Affiliation(s)
- Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States
- The Institute for Clinical and Translational Research, Madison, Wisconsin, United States
| |
Collapse
|
6
|
Devaiah BN, Singh AK, Mu J, Chen Q, Meerzaman D, Singer DS. Phosphorylation by JNK switches BRD4 functions. Mol Cell 2024; 84:4282-4296.e7. [PMID: 39454579 PMCID: PMC11585421 DOI: 10.1016/j.molcel.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Bromodomain 4 (BRD4), a key regulator with pleiotropic functions, plays crucial roles in cancers and cellular stress responses. It exhibits dual functionality: chromatin-bound BRD4 regulates remodeling through its histone acetyltransferase (HAT) activity, while promoter-associated BRD4 regulates transcription through its kinase activity. Notably, chromatin-bound BRD4 lacks kinase activity, and RNA polymerase II (RNA Pol II)-bound BRD4 exhibits no HAT activity. This study unveils one mechanism underlying BRD4's functional switch. In response to diverse stimuli, c-Jun N-terminal kinase (JNK)-mediated phosphorylation of human BRD4 at Thr1186 and Thr1212 triggers its transient release from chromatin, disrupting its HAT activity and potentiating its kinase activity. Released BRD4 directly interacts with and phosphorylates RNA Pol II, PTEFb, and c-Myc, thereby promoting transcription of target genes involved in immune and inflammatory responses. JNK-mediated BRD4 functional switching induces CD8 expression in thymocytes and epithelial-to-mesenchymal transition (EMT) in prostate cancer cells. These findings elucidate the mechanism by which BRD4 transitions from a chromatin regulator to a transcriptional activator.
Collapse
Affiliation(s)
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jie Mu
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Dinah S Singer
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Ma Z, Bolinger AA, Pinchuk IV, Tian B, Zhou J. BRD4 as an emerging epigenetic therapeutic target for inflammatory bowel disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:203-236. [PMID: 39521601 DOI: 10.1016/bs.apha.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder, mainly comprising two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). IBD, featured by recurrent symptoms and significant morbidity, poses a significant threat to global health and has an adverse impact on quality of life. Currently, there is no curative therapy for IBD, and the available medications are only for managing the disease condition, likely owing to the insufficient understanding of the underlying pathophysiology processes involved in IBD, and the lack of safe and effective medicines. Thus, novel targeted therapies for IBD are urgently needed for better efficacy with an improved adverse event profile. As the most extensively studied member of bromodomain and extra terminal domain (BET) family proteins, bromodomain-containing protein 4 (BRD4) is emerging as a promising epigenetic therapeutic target for IBD. Pharmacological inhibition of BRD4 with selective small molecule inhibitors shows potent anti-inflammatory effects in both in vitro and different IBD mouse models. Herein, we summarize current knowledge in understanding the role of BRD4 in the pathogenesis and development of IBD, and the clinical landscape of developing BET/BRD4 inhibitors and emerging BRD4-targeted degraders as promising therapeutical alternatives. Challenges and opportunities, as well as future directions in drug discovery by targeting BRD4 are also briefly discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
8
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
9
|
Skibba ME, Brasier AR. NF-κB/RelA signaling in secretoglobin progenitors mediates plasticity and MMP-induced barrier disruption in house dust mite-induced allergic asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L86-L101. [PMID: 38713619 PMCID: PMC11380976 DOI: 10.1152/ajplung.00066.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
The mechanisms how aeroallergens induce sensitization are incompletely understood. The house dust mite (HDM) Dermatophagoides pteronyssius (Der p) is a ubiquitous aeroallergen that represents a major cause of allergic rhinitis and asthma. Herein, we tested whether HDM-induced aeroallergen exposure sensitivity is caused by the innate-immune response in small airway epithelial cells. HDM exposure is a rapid activator of NF-κB/RelA in the Secretoglobin (Scgb1a1+) lineage associated with upregulation of NF-κB/RelA-dependent markers of epithelial plasticity. To determine the effect of epithelial NF-κB signaling, NF-κB was depleted in a tamoxifen (TMX)-inducible Scgb1a1-CreERTM mouse within a CL57B/L6 background. Corn oil or TMX-treated/RelA-depleted [RelA knockdown (KD)] mice were repetitively exposed to airway HDM challenges to induce airway hyperresponsiveness (AHR). Strikingly, we observed that HDM induces hallmarks of epithelial plasticity through upregulation of the mesenchymal core factors SNAI1 and ZEB1 and production of metalloproteinase (MMP)9 that are RelA-dependent. Downstream, HDM-induced mucous metaplasia, Th2 polarization, allergen sensitivity, and airway hyperreactivity were all reduced in the RelA-depleted mice. Mechanistically, HDM-induced functional and structural barrier disruption was dependent on RelA signaling and associated with active MMP secretion into the bronchoalveolar lavage fluid. To establish the role of MMP2/9 in barrier disruption, we observe that a small-molecule MMP inhibitor (SB-3CT) blocked HDM-induced barrier disruption and activation of plasticity in naïve wild-type (WT) mice. Loss of functional barrier was associated with MMP disruption of zona occludens (ZO)-1 containing adherens junctions. Overall, this data indicates that host innate signaling in the Scgb1a1+ progenitors is directly linked to epithelial plasticity, MMP9 secretion, and enhanced barrier permeability that allows allergen penetration, sensitization producing allergic asthma (AA) in vivo. We propose that maintenance of epithelial integrity may reduce allergic sensitization and AA.NEW & NOTEWORTHY Allergic asthma from house dust mite (HDM) allergy causes substantial morbidity. This study examines the dynamic changes in small airway epithelial cells in a mouse model of HDM exposure. Our findings indicate that NF-κB/RelA signaling mediates matrix metalloproteinase production, disrupting the epithelial barrier resulting in allergic sensitization. Our findings bring new insight into mechanisms for epithelial cell-state change in the allergen response, creating a potential therapeutic pathway for maintaining barrier function in asthma.
Collapse
Affiliation(s)
- Melissa E Skibba
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States
| | - Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States
- Institute for Clinical and Translational Research, Madison, Wisconsin, United States
| |
Collapse
|
10
|
Xu X, Qiao D, Brasier AR. Cooperative interaction of interferon regulatory factor -1 and bromodomain-containing protein 4 on RNA polymerase activation for intrinsic innate immunity. Front Immunol 2024; 15:1366235. [PMID: 38601157 PMCID: PMC11004252 DOI: 10.3389/fimmu.2024.1366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Mann MW, Fu Y, Gearhart RL, Xu X, Roberts DS, Li Y, Zhou J, Ge Y, Brasier AR. Bromodomain-containing Protein 4 regulates innate inflammation via modulation of alternative splicing. Front Immunol 2023; 14:1212770. [PMID: 37435059 PMCID: PMC10331468 DOI: 10.3389/fimmu.2023.1212770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Bromodomain-containing Protein 4 (BRD4) is a transcriptional regulator which coordinates gene expression programs controlling cancer biology, inflammation, and fibrosis. In the context of airway viral infection, BRD4-specific inhibitors (BRD4i) block the release of pro-inflammatory cytokines and prevent downstream epithelial plasticity. Although the chromatin modifying functions of BRD4 in inducible gene expression have been extensively investigated, its roles in post-transcriptional regulation are not well understood. Given BRD4's interaction with the transcriptional elongation complex and spliceosome, we hypothesize that BRD4 is a functional regulator of mRNA processing. Methods To address this question, we combine data-independent analysis - parallel accumulation-serial fragmentation (diaPASEF) with RNA-sequencing to achieve deep and integrated coverage of the proteomic and transcriptomic landscapes of human small airway epithelial cells exposed to viral challenge and treated with BRD4i. Results We discover that BRD4 regulates alternative splicing of key genes, including Interferon-related Developmental Regulator 1 (IFRD1) and X-Box Binding Protein 1 (XBP1), related to the innate immune response and the unfolded protein response (UPR). We identify requirement of BRD4 for expression of serine-arginine splicing factors, splicosome components and the Inositol-Requiring Enzyme 1 IREα affecting immediate early innate response and the UPR. Discussion These findings extend the transcriptional elongation-facilitating actions of BRD4 in control of post-transcriptional RNA processing via modulating splicing factor expression in virus-induced innate signaling.
Collapse
Affiliation(s)
- Morgan W. Mann
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
| | - Yao Fu
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
| | - Robert L. Gearhart
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, United States
| | - Xiaofang Xu
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, United States
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin – Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin – Madison, Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Duan Y, Zhou S, Wang J. BRD4 is involved in viral exacerbation of chronic obstructive pulmonary disease. Respir Res 2023; 24:37. [PMID: 36721187 PMCID: PMC9887738 DOI: 10.1186/s12931-023-02348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Our previous studies have suggested that bromodomain protein 4 (BRD4) is increased in the lung of stable chronic obstructive pulmonary disease (COPD) patients, which has been shown to be involved in inflammatory responses. We investigated its role in the viral exacerbation of COPD. METHODS BRD4, interleukin (IL)-6 and IL-8 were measured in the blood and sputum of stable COPD patients and patients with viral exacerbation. Mice were exposed to cigarette smoke (CS) and/or infected with influenza virus as an in vivo model. BRD4, IL-6 and keratinocyte-derived chemokine (KC) were measured in the lung. BEAS-2B cells were treated with CS extract and/or influenza virus as an in vitro model. BRD4, IL-6 and IL-8 were measured in the cells and/or culture supernatant. RESULTS BRD4 was increased in COPD patients with viral exacerbation compared with those in stable condition and its expression was correlated with IL-6 and IL-8 expression. Inflammatory cells, IL-6, KC and BRD4 were synergistically induced in the lung of mice by viral infection and CS exposure, and the former three were decreased by JQ1 (BRD4 inhibitor) treatment. IL-6, IL-8 and BRD4 were significantly induced by CS extract and influenza virus in bronchial epithelial cells, and this upregulation was suppressed by knockdown of BRD4 expression. CONCLUSIONS Our findings indicate that CS and viruses may synergistically induce IL-6 and IL-8 expression through their synergistic induction of BRD4 expression, which might contribute to the enhanced inflammatory response in the viral exacerbation of COPD.
Collapse
Affiliation(s)
- Yifei Duan
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030 China
| | - Siyi Zhou
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030 China
| | - Jianmiao Wang
- grid.33199.310000 0004 0368 7223Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, 430030 China
| |
Collapse
|
13
|
Ma Z, Bolinger AA, Zhou J, Tian B. Bromodomain-containing protein 4 (BRD4): a key player in inflammatory bowel disease and potential to inspire epigenetic therapeutics. Expert Opin Ther Targets 2023; 27:1-7. [PMID: 36710583 PMCID: PMC11092387 DOI: 10.1080/14728222.2023.2175317] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Inflammatory bowel diseases (IBDs) are debilitating chronic inflammatory disorders with increasing prevalence worldwide. Epigenetic regulator bromodomain-containing protein 4 (BRD4) is critical in controlling gene expression of IBD-associated inflammatory cytokine networks. BRD4 as a promising therapeutic target is also tightly associated with many other diseases, such as airway inflammation and fibrosis, cancers, infectious diseases and central nervous system disorders. AREAS COVERED This review briefly summarized the critical role of BRD4 in the pathogenesis of IBDs and the current clinical landscape of developing bromodomain and extra terminal domain (BET) inhibitors. The challenges and opportunities as well as future directions of targeting BRD4 inhibition for potential IBD medications were also discussed. EXPERT OPINION Targeting BRD4 with potent and specific inhibitors may offer novel effective therapeutics for IBD patients, particularly those who are refractory to anti-TNFα therapy and IBD-related profibrotic. Developing highly specific BRD4 inhibitors for IBD medications may help erase the drawbacks of most current pan-BET/BRD4 inhibitors, such as off-target effects, poor oral bioavailability, and low gut mucosal absorbance. Novel strategies such as combinatorial therapy, BRD4-based dual inhibitors and proteolysis targeting chimeras (PROTACs) may also have great potential to mitigate side effects and overcome drug resistance during IBD treatment.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Brasier AR. Innate Immunity, Epithelial Plasticity, and Remodeling in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:265-285. [PMID: 37464126 DOI: 10.1007/978-3-031-32259-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Innate immune responses (IIR) of the epithelium play a critical role in the initiation and progression of asthma. The core of the IIR is an intracellular signaling pathway activated by pattern recognition receptors (PRRs) to limit the spread of infectious organisms. This chapter will focus on the epithelium as the major innate sentinel cell and its role in acute exacerbations (AEs). Although the pathways of how the IIR activates the NFκB transcription factor, triggering cytokine secretion, dendritic cell activation, and Th2 polarization are well-described, recent exciting work has developed mechanistic insights into how chronic activation of the IIR is linked to mucosal adaptive responses. These adaptations include changes in cell state, now called epithelial-mesenchymal plasticity (EMP). EMP is a coordinated, genomic response to airway injury disrupting epithelial barrier function, expanding the basal lamina, and producing airway remodeling. EMP is driven by activation of the unfolded protein response (UPR), a transcriptional response producing metabolic shunting of glucose through the hexosamine biosynthetic pathway (HBP) to protein N-glycosylation. NFκB signaling and UPR activation pathways potentiate each other in remodeling the basement membrane. Understanding of injury-repair process of epithelium provides new therapeutic targets for precision approaches to the treatment of asthma exacerbations and their sequelae.
Collapse
Affiliation(s)
- Allan R Brasier
- Department of Medicine and Institute for Clinical and Translational Research (ICTR), School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Liu Z, Li Y, Chen H, Lai HT, Wang P, Wu SY, Wold EA, Leonard PG, Joseph S, Hu H, Chiang CM, Brasier AR, Tian B, Zhou J. Discovery, X-ray Crystallography, and Anti-inflammatory Activity of Bromodomain-containing Protein 4 (BRD4) BD1 Inhibitors Targeting a Distinct New Binding Site. J Med Chem 2022; 65:2388-2408. [PMID: 34982556 PMCID: PMC8989062 DOI: 10.1021/acs.jmedchem.1c01851] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 (52) targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities in vitro and in vivo. The X-ray crystal structural analysis of ZL0590 in complex with human BRD4 BD1 and the associated mutagenesis study illustrate a first-in-class nonacetylated lysine (KAc) binding site located at the helix αB and αC interface that contains important BRD4 residues (e.g., Glu151) not commonly shared among other family members and is spatially distinct from the classic KAc recognition pocket. This new finding facilitates further elucidation of the complex biology underpinning bromodomain specificity among BRD4 and its protein-protein interaction partners.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul G Leonard
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Sarah Joseph
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | | | | | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison School of Medicine and Public Health, 4248 Health Sciences Learning Center, Madison, Wisconsin 53705, United States
| | | | | |
Collapse
|
16
|
Li Y, Liu X, Ma Z. EGFR, NF-κB and noncoding RNAs in precision medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:189-218. [DOI: 10.1016/bs.pmbts.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Brasier AR, Qiao D, Zhao Y. The Hexosamine Biosynthetic Pathway Links Innate Inflammation With Epithelial-Mesenchymal Plasticity in Airway Remodeling. Front Pharmacol 2021; 12:808735. [PMID: 35002741 PMCID: PMC8727908 DOI: 10.3389/fphar.2021.808735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Disruption of the lower airway epithelial barrier plays a major role in the initiation and progression of chronic lung disease. Here, repetitive environmental insults produced by viral and allergens triggers metabolic adaptations, epithelial-mesenchymal plasticity (EMP) and airway remodeling. Epithelial plasticity disrupts epithelial barrier function, stimulates release of fibroblastic growth factors, and remodels the extracellular matrix (ECM). This review will focus on recent work demonstrating how the hexosamine biosynthetic pathway (HBP) links innate inflammation to airway remodeling. The HBP is a core metabolic pathway of the unfolded protein response (UPR) responsible for protein N-glycosylation, relief of proteotoxic stress and secretion of ECM modifiers. We will overview findings that the IκB kinase (IKK)-NFκB pathway directly activates expression of the SNAI-ZEB1 mesenchymal transcription factor module through regulation of the Bromodomain Containing Protein 4 (BRD4) chromatin modifier. BRD4 mediates transcriptional elongation of SNAI1-ZEB as well as enhancing chromatin accessibility and transcription of fibroblast growth factors, ECM and matrix metalloproteinases (MMPs). In addition, recent exciting findings that IKK cross-talks with the UPR by controlling phosphorylation and nuclear translocation of the autoregulatory XBP1s transcription factor are presented. HBP is required for N glycosylation and secretion of ECM components that play an important signaling role in airway remodeling. This interplay between innate inflammation, metabolic reprogramming and lower airway plasticity expands a population of subepithelial myofibroblasts by secreting fibroblastic growth factors, producing changes in ECM tensile strength, and fibroblast stimulation by MMP binding. Through these actions on myofibroblasts, EMP in lower airway cells produces expansion of the lamina reticularis and promotes airway remodeling. In this manner, metabolic reprogramming by the HBP mediates environmental insult-induced inflammation with remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX, United States
| |
Collapse
|
18
|
Skibba ME, Xu X, Weiss K, Huisken J, Brasier AR. Role of Secretoglobin + (club cell) NFκB/RelA-TGFβ signaling in aero-allergen-induced epithelial plasticity and subepithelial myofibroblast transdifferentiation. Respir Res 2021; 22:315. [PMID: 34930252 PMCID: PMC8690490 DOI: 10.1186/s12931-021-01910-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Repetitive aeroallergen exposure is linked to sensitization and airway remodeling through incompletely understood mechanisms. In this study, we examine the dynamic mucosal response to cat dander extract (CDE), a ubiquitous aero-allergen linked to remodeling, sensitization and asthma. We find that daily exposure of CDE in naïve C57BL/6 mice activates innate neutrophilic inflammation followed by transition to a lymphocytic response associated with waves of mucosal transforming growth factor (TGF) isoform expression. In parallel, enhanced bronchiolar Smad3 expression and accumulation of phospho-SMAD3 was observed, indicating paracrine activation of canonical TGFβR signaling. CDE exposure similarly triggered epithelial cell plasticity, associated with expression of mesenchymal regulatory factors (Snai1 and Zeb1), reduction of epithelial markers (Cdh1) and activation of the NFκB/RelA transcriptional activator. To determine whether NFκB functionally mediates CDE-induced growth factor response, mice were stimulated with CDE in the absence or presence of a selective IKK inhibitor. IKK inhibition substantially reduced the level of CDE-induced TGFβ1 expression, pSMAD3 accumulation, Snai1 and Zeb1 expression. Activation of epithelial plasticity was demonstrated by flow cytometry in whole lung homogenates, where CDE induces accumulation of SMA+Epcam+ population. Club cells are important sources of cytokine and growth factor production. To determine whether Club cell innate signaling through NFκB/RelA mediated CDE induced TGFβ signaling, we depleted RelA in Secretoglobin (Scgb1a1)-expressing bronchiolar cells. Immunofluorescence-optical clearing light sheet microscopy showed a punctate distribution of Scgb1a1 progenitors throughout the small airway. We found that RelA depletion in Secretoglobin+ cells results in inhibition of the mucosal TGFβ response, blockade of EMT and reduced subepithelial myofibroblast expansion. We conclude that the Secretoglobin—derived bronchiolar cell is central to coordinating the innate response required for mucosal TGFβ1 response, EMT and myofibroblast expansion. These data have important mechanistic implications for how aero-allergens trigger mucosal injury response and remodeling in the small airway.
Collapse
Affiliation(s)
- Melissa E Skibba
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA
| | - Xiaofang Xu
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA
| | - Kurt Weiss
- Morgridge Institute for Research, Madison, WI, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.,Dept. of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA. .,Institute for Clinical and Translational Research, Madison, WI, USA.
| |
Collapse
|
19
|
Progress in the development of domain selective inhibitors of the bromo and extra terminal domain family (BET) proteins. Eur J Med Chem 2021; 226:113853. [PMID: 34547507 DOI: 10.1016/j.ejmech.2021.113853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Dysfunction of the bromo and extra terminal domain (BET) family proteins is associated with many human diseases, therefore the BET family proteins have been considered as promising targets for drug development. Numerous small molecular compounds targeting the N-terminal two tandem bromodomains BD1 and BD2 of the BET family proteins have been reported, and a number of them have been advanced into clinical trials. Most of the BET inhibitors entered clinical trials are pan-BET inhibitors which show poor selectivity among BET members and bind to the BD1 and BD2 of the BET family proteins with comparable binding affinities. In order to elucidate the distinct functions of BD1s and BD2s, many BD1 and BD2 selective BET inhibitors have also been developed. In this review, we summarized the recent progress in the development of BD1 and BD2 selective BET inhibitors, and provided the perspectives for future studies of BET inhibitors.
Collapse
|
20
|
Li Y, Chen J, Bolinger AA, Chen H, Liu Z, Cong Y, Brasier AR, Pinchuk IV, Tian B, Zhou J. Target-Based Small Molecule Drug Discovery Towards Novel Therapeutics for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2021; 27:S38-S62. [PMID: 34791293 DOI: 10.1093/ibd/izab190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a class of severe and chronic diseases of the gastrointestinal (GI) tract with recurrent symptoms and significant morbidity. Long-term persistence of chronic inflammation in IBD is a major contributing factor to neoplastic transformation and the development of colitis-associated colorectal cancer. Conversely, persistence of transmural inflammation in CD is associated with formation of fibrosing strictures, resulting in substantial morbidity. The recent introduction of biological response modifiers as IBD therapies, such as antibodies neutralizing tumor necrosis factor (TNF)-α, have replaced nonselective anti-inflammatory corticosteroids in disease management. However, a large proportion (~40%) of patients with the treatment of anti-TNF-α antibodies are discontinued or withdrawn from therapy because of (1) primary nonresponse, (2) secondary loss of response, (3) opportunistic infection, or (4) onset of cancer. Therefore, the development of novel and effective therapeutics targeting specific signaling pathways in the pathogenesis of IBD is urgently needed. In this comprehensive review, we summarize the recent advances in drug discovery of new small molecules in preclinical or clinical development for treating IBD that target biologically relevant pathways in mucosal inflammation. These include intracellular enzymes (Janus kinases, receptor interacting protein, phosphodiesterase 4, IκB kinase), integrins, G protein-coupled receptors (S1P, CCR9, CXCR4, CB2) and inflammasome mediators (NLRP3), etc. We will also discuss emerging evidence of a distinct mechanism of action, bromodomain-containing protein 4, an epigenetic regulator of pathways involved in the activation, communication, and trafficking of immune cells. We highlight their chemotypes, mode of actions, structure-activity relationships, characterizations, and their in vitro/in vivo activities and therapeutic potential. The perspectives on the relevant challenges, new opportunities, and future directions in this field are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew A Bolinger
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin, Madison, WI, USA
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, PA, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
21
|
Xu X, Mann M, Qiao D, Li Y, Zhou J, Brasier AR. Bromodomain Containing Protein 4 (BRD4) Regulates Expression of its Interacting Coactivators in the Innate Response to Respiratory Syncytial Virus. Front Mol Biosci 2021; 8:728661. [PMID: 34765643 PMCID: PMC8577543 DOI: 10.3389/fmolb.2021.728661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Bromodomain-containing protein 4 plays a central role in coordinating the complex epigenetic component of the innate immune response. Previous studies implicated BRD4 as a component of a chromatin-modifying complex that is dynamically recruited to a network of protective cytokines by binding activated transcription factors, polymerases, and histones to trigger their rapid expression via transcriptional elongation. Our previous study extended our understanding of the airway epithelial BRD4 interactome by identifying over 100 functionally important coactivators and transcription factors, whose association is induced by respiratory syncytial virus (RSV) infection. RSV is an etiological agent of recurrent respiratory tract infections associated with exacerbations of chronic obstructive pulmonary disease. Using a highly selective small-molecule BRD4 inhibitor (ZL0454) developed by us, we extend these findings to identify the gene regulatory network dependent on BRD4 bromodomain (BD) interactions. Human small airway epithelial cells were infected in the absence or presence of ZL0454, and gene expression profiling was performed. A highly reproducible dataset was obtained which indicated that BRD4 mediates both activation and repression of RSV-inducible gene regulatory networks controlling cytokine expression, interferon (IFN) production, and extracellular matrix remodeling. Index genes of functionally significant clusters were validated independently. We discover that BRD4 regulates the expression of its own gene during the innate immune response. Interestingly, BRD4 activates the expression of NFκB/RelA, a coactivator that binds to BRD4 in a BD-dependent manner. We extend this finding to show that BRD4 also regulates other components of its functional interactome, including the Mediator (Med) coactivator complex and the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) subunits. To provide further insight into mechanisms for BRD4 in RSV expression, we mapped 7,845 RSV-inducible Tn5 transposase peaks onto the BRD4-dependent gene bodies. These were located in promoters and introns of cytostructural and extracellular matrix (ECM) formation genes. These data indicate that BRD4 mediates the dynamic response of airway epithelial cells to RNA infection by modulating the expression of its coactivators, controlling the expression of host defense mechanisms and remodeling genes through changes in promoter accessibility.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Morgan Mann
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Allan R Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States.,Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
22
|
A Network Pharmacology and Molecular Docking Approach to Investigate the Anticoronavirus-Induced Diseases Effect of Yinqiao Powder Combined With Modified Sangju Decoction. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211035290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) once caused great harm in China, but now it is the coronavirus disease 2019 (COVID-19) pandemic that has become a huge threat to global health, which raises urgent demand for developing effective treatment strategies to avoid the recurrence of tragedies. Yinqiao powder, combined with modified Sangju decoction (YPCMSD), has been clinically proven to have a good therapeutic effect on COVID-19 in China. This study aimed to analyze the common mechanism of YPCMSD in the treatment of SARS and COVID-19 through network pharmacology and molecular docking and further explore the potential application value of YPCMSD in the treatment of coronavirus infections. Firstly, the active components were collected from the literature and Traditional Chinese Medicine Systems Pharmacology database platform. The COVID-19 and SARS associated targets of the active components were forecasted by the SwissTargetPrediction database and GeneCards. A protein–protein-interaction network was drawn and the core targets were obtained by selecting the targets larger than the average degree. By importing the core targets into database for annotation, visualization, and integrated discovery, enrichment analysis of gene ontology, and construction of a Kyoto Encyclopedia of genes and genomes pathway was conducted. Cytoscape 3.6.1 software was used to construct a “components–targets–pathways” network. Active components were selected to dock with acute respiratory syndrome coronavirus type 2 (SARS-COV-2) 3CL and angiotensin-converting enzyme 2 (ACE2) through Discovery Studio 2016 software. A network of “components–targets–pathways” was successfully constructed, with key targets involving mitogen-activated protein kinase 1, caspase-3 (CASP3), tumor necrosis factor (TNF), and interleukin 6. Major metabolic pathways affected were those in cancer, the hypoxia-inducible factor 1 signaling pathway, the TNF signaling pathway, the Toll-like receptor signaling pathway, and the PI3K-Akt signaling pathway. The core components, such as arctiin, scopolin, linarin, and isovitexin, showed a strong binding ability with SARS-COV-2 3CL and ACE2. We predicted that the mechanism of action of this prescription in the treatment of COVID-19 and SARS might be associated with multicomponents that bind to SARS-COV-2 3CL and ACE2, thereby regulating targets that coexpressed with them and pathways related to inflammation and the immune system.
Collapse
|
23
|
An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells. Bioorg Chem 2021; 114:105158. [PMID: 34378541 DOI: 10.1016/j.bioorg.2021.105158] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
Acetylation of NF-κB's RelA subunit at lysine-310 (AcLys310) helps to maintain constitutive NF-κB activity in cancers such as triple-negative breast cancer (TNBC). Bromodomain-containing factor BRD4 binds to acetylated RelA to promote the activity of NF-κB. Hence, interfering with the acetylated RelA-BRD4 interaction is a potential strategy for treating NF-κB-driven TNBC. Here, a new compound 13a was obtained by structural optimization and modification of our previously reported compound. In comparison with the well-known BRD4 inhibitor (+)-JQ1, 13a showed more potent anticancer activity in NF-κB-active MDA-MB-231 cells. Mechanistically, 13a antagonized the protein-protein interaction (PPI) between BRD4 and acetylated RelA, decreased levels of IL-6, IL-8, Snail, Vimentin, and ZEB1, induced cell senescence and DNA damage, and weakened the adhesion, metastasis, and invasion ability of TNBC cells. Our results provide insights into avenues for the further development of potent BRD4-acetylated RelA PPI inhibitors. Moreover, our findings highlight the effectiveness and feasibility of blocking the interaction between BRD4 and acetylated RelA against NF-κB-active cancers, and of screening antagonists of this PPI.
Collapse
|
24
|
Ijaz T, Burke MA. BET Protein-Mediated Transcriptional Regulation in Heart Failure. Int J Mol Sci 2021; 22:6059. [PMID: 34199719 PMCID: PMC8199980 DOI: 10.3390/ijms22116059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Heart failure is a complex disease process with underlying aberrations in neurohormonal systems that promote dysregulated cellular signaling and gene transcription. Over the past 10 years, the advent of small-molecule inhibitors that target transcriptional machinery has demonstrated the importance of the bromodomain and extraterminal (BET) family of epigenetic reader proteins in regulating gene transcription in multiple mouse models of cardiomyopathy. BETs bind to acetylated histone tails and transcription factors to integrate disparate stress signaling networks into a defined gene expression program. Under myocardial stress, BRD4, a BET family member, is recruited to superenhancers and promoter regions of inflammatory and profibrotic genes to promote transcription elongation. Whole-transcriptome analysis of BET-dependent gene networks suggests a major role of nuclear-factor kappa b and transforming growth factor-beta in the development of cardiac fibrosis and systolic dysfunction. Recent investigations also suggest a prominent role of BRD4 in maintaining cardiomyocyte mitochondrial respiration under basal conditions. In this review, we summarize the data from preclinical heart failure studies that explore the role of BET-regulated transcriptional mechanisms and delve into landmark studies that define BET bromodomain-independent processes involved in cardiac homeostasis.
Collapse
Affiliation(s)
| | - Michael A. Burke
- Division of Cardiology, Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
25
|
Mann M, Brasier AR. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Rev Proteomics 2021; 18:379-394. [PMID: 34018899 PMCID: PMC8277732 DOI: 10.1080/14789450.2021.1931130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) is a major human pathogen associated with long term morbidity. RSV replication occurs primarily in the epithelium, producing a complex cellular response associated with acute inflammation and long-lived changes in pulmonary function and allergic disease. Proteomics approaches provide important insights into post-transcriptional regulatory processes including alterations in cellular complexes regulating the coordinated innate response and epigenome.Areas covered: Peer-reviewed proteomics studies of host responses to RSV infections and proteomics techniques were analyzed. Methodologies identified include 1)." bottom-up" discovery proteomics, 2). Organellar proteomics by LC-gel fractionation; 3). Dynamic changes in protein interaction networks by LC-MS; and 4). selective reaction monitoring MS. We introduce recent developments in single-cell proteomics, top-down mass spectrometry, and photo-cleavable surfactant chemistries that will have impact on understanding how RSV induces extracellular matrix (ECM) composition and airway remodeling.Expert opinion: RSV replication induces global changes in the cellular proteome, dynamic shifts in nuclear proteins, and remodeling of epigenetic regulatory complexes linked to the innate response. Pathways discovered by proteomics technologies have led to deeper mechanistic understanding of the roles of heat shock proteins, redox response, transcriptional elongation complex remodeling and ECM secretion remodeling in host responses to RSV infections and pathological sequelae.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, USA
| | - Allan R Brasier
- Department of Internal Medicine and Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
26
|
Rouka E, Gourgoulianis KI, Zarogiannis SG. In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1057-L1063. [PMID: 33822639 PMCID: PMC8203416 DOI: 10.1152/ajplung.00443.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Viroporins, integral viral membrane ion channel proteins, interact with host-cell proteins deregulating physiological processes and activating inflammasomes. Severity of COVID-19 might be associated with hyperinflammation, thus we aimed at the complete immunoinformatic analysis of the SARS-CoV-2 viroporin E, P0DTC4. We also identified the human proteins interacting with P0DTC4 and the enriched molecular functions of the corresponding genes. The complete sequence of P0DTC4 in FASTA format was processed in 10 databases relative to secondary and tertiary protein structure analyses and prediction of optimal vaccine epitopes. Three more databases were accessed for the retrieval and the molecular functional characterization of the P0DTC4 human interactors. The immunoinformatics analysis resulted in the identification of 4 discontinuous B-cell epitopes along with 1 linear B-cell epitope and 11 T-cell epitopes which were found to be antigenic, immunogenic, nonallergen, nontoxin, and unable to induce autoimmunity thus fulfilling prerequisites for vaccine design. The functional enrichment analysis showed that the predicted host interactors of P0DTC4 target the cellular acetylation network. Two of the identified host-cell proteins – BRD2 and BRD4 – have been shown to be promising targets for antiviral therapy. Thus, our findings have implications for COVID-19 therapy and indicate that viroporin E could serve as a promising vaccine target against SARS-CoV-2. Validation experiments are required to complement these in silico results.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
27
|
Sato M, Kondo T, Kohno Y, Seto S. Discovery of benzo[f]pyrido[4,3-b][1,4]oxazepin-10-one derivatives as orally available bromodomain and extra-terminal domain (BET) inhibitors with efficacy in an in vivo psoriatic animal model. Bioorg Med Chem 2021; 34:116015. [PMID: 33549905 DOI: 10.1016/j.bmc.2021.116015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 11/25/2022]
Abstract
Bromodomain and extra-terminal domain (BET) protein plays an important role in epigenetic regulation, and the regulation of disruption contributes to the pathogenesis of cancer and inflammatory disease. With the goal of discovering novel BET inhibitors, especially BRD4 inhibitors, we designed and synthesized several compounds starting from our previously reported pyrido-benzodiazepinone derivative 4 to enhance BRD4 inhibitory activity while avoiding hERG inhibition. Molecular docking studies and structure-activity relationship studies led to the identification of 9-fluorobenzo[f]pyrido[4,3-b][1,4]oxazepin-10-one derivative 43, which exhibited potent BRD4 inhibitory activity with excellent potency in imiquimod-induced psoriasis model mice.
Collapse
Affiliation(s)
- Masanori Sato
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Takekazu Kondo
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Yasushi Kohno
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Shigeki Seto
- Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848, Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| |
Collapse
|
28
|
Xu X, Qiao D, Dong C, Mann M, Garofalo RP, Keles S, Brasier AR. The SWI/SNF-Related, Matrix Associated, Actin-Dependent Regulator of Chromatin A4 Core Complex Represses Respiratory Syncytial Virus-Induced Syncytia Formation and Subepithelial Myofibroblast Transition. Front Immunol 2021; 12:633654. [PMID: 33732255 PMCID: PMC7957062 DOI: 10.3389/fimmu.2021.633654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics plays an important role in the priming the dynamic response of airway epithelial cells to infectious and environmental stressors. Here, we examine the epigenetic role of the SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin A4 (SMARCA4) in the epithelial response to RSV infection. Depletion of SMARCA4 destabilized the abundance of the SMARCE1/ARID1A SWI/SNF subunits, disrupting the innate response and triggering a hybrid epithelial/mesenchymal (E/M) state. Assaying SMARCA4 complex-regulated open chromatin domains by transposase cleavage -next generation sequencing (ATAC-Seq), we observed that the majority of cleavage sites in uninfected cells have reduced chromatin accessibility. Paradoxically, SMARCA4 complex-depleted cells showed enhanced RSV-inducible chromatin opening and gene expression in the EMT pathway genes, MMP9, SNAI1/2, VIM, and CDH2. Focusing on the key MMP9, we observed that SMARCA4 complex depletion reduced basal BRD4 and RNA Polymerase II binding, but enhanced BRD4/Pol II binding in response to RSV infection. In addition, we observed that MMP9 secretion in SMARCA4 complex deficient cells contributes to mesenchymal transition, cellular fusion (syncytia) and subepithelial myofibroblast transition. We conclude the SMARCA4 complex is a transcriptional repressor of epithelial plasticity, whose depletion triggers a hybrid E/M state that affects the dynamic response of the small airway epithelial cell in mucosal remodeling via paracrine MMP9 activity.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Chenyang Dong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Allan R. Brasier
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
29
|
Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23. [PMID: 33462181 PMCID: PMC7813845 DOI: 10.1038/s41392-020-00384-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity serves as the rapid and first-line defense against invading pathogens, and this process can be regulated at various levels, including epigenetic mechanisms. The bromodomain and extraterminal domain (BET) family of proteins consists of four conserved mammalian members (BRD2, BRD3, BRD4, and BRDT) that regulate the expression of many immunity-associated genes and pathways. In particular, in response to infection and sterile inflammation, abnormally expressed or dysfunctional BETs are involved in the activation of pattern recognition receptor (e.g., TLR, NLR, and CGAS) pathways, thereby linking chromatin machinery to innate immunity under disease or pathological conditions. Mechanistically, the BET family controls the transcription of a wide range of proinflammatory and immunoregulatory genes by recognizing acetylated histones (mainly H3 and H4) and recruiting transcription factors (e.g., RELA) and transcription elongation complex (e.g., P-TEFb) to the chromatin, thereby promoting the phosphorylation of RNA polymerase II and subsequent transcription initiation and elongation. This review covers the accumulating data about the roles of the BET family in innate immunity, and discusses the attractive prospect of manipulating the BET family as a new treatment for disease.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
30
|
Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Front Pharmacol 2020; 11:607689. [PMID: 33384604 PMCID: PMC7770469 DOI: 10.3389/fphar.2020.607689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2-3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF.
Collapse
Affiliation(s)
- Melissa Skibba
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Adam Drelich
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Poellmann
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Seungpyo Hong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, South Korea
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
31
|
Wellaway CR, Bamborough P, Bernard SG, Chung CW, Craggs PD, Cutler L, Demont EH, Evans JP, Gordon L, Karamshi B, Lewis AJ, Lindon MJ, Mitchell DJ, Rioja I, Soden PE, Taylor S, Watson RJ, Willis R, Woolven JM, Wyspiańska BS, Kerr WJ, Prinjha RK. Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. J Med Chem 2020; 63:9020-9044. [DOI: 10.1021/acs.jmedchem.0c00566] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher R. Wellaway
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Paul Bamborough
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Sharon G. Bernard
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Leanne Cutler
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Emmanuel H. Demont
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - John P. Evans
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Laurie Gordon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Bhumika Karamshi
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Antonia J. Lewis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Matthew J. Lindon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Darren J. Mitchell
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Inmaculada Rioja
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter E. Soden
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Simon Taylor
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Robert J. Watson
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Rob Willis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - James M. Woolven
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Beata S. Wyspiańska
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
32
|
Zhou Z, Li X, Liu Z, Huang L, Yao Y, Li L, Chen J, Zhang R, Zhou J, Wang L, Zhang QQ. A Bromodomain-Containing Protein 4 (BRD4) Inhibitor Suppresses Angiogenesis by Regulating AP-1 Expression. Front Pharmacol 2020; 11:1043. [PMID: 32765266 PMCID: PMC7381267 DOI: 10.3389/fphar.2020.01043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis dysregulation contributes to inflammation, infections, immune disorders, and carcinogenesis. Bromodomain-containing protein 4 (BRD4) is an epigenetic reader that recognizes histone proteins and acts as a transcriptional regulator to trigger tumor growth and the inflammatory response. The pan-bromodomain and extra-terminal domain (BET) inhibitor, (+)-JQ1 (1), was reported to inhibit angiogenesis. However, owing to the non-selectivity action of (+)-JQ1 towards all BET family members, the role of BRD4 and that of its bromodomains (BD1 and BD2) in angiogenesis remains elusive. Herein, we identified a potent BRD4 inhibitor, ZL0513 (7), which exhibited significant anti-angiogenic effects in chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. This inhibitor also directly suppressed the viability and tube formation of human umbilical vascular endothelial cells (HUVECs). Moreover, ZL0513 (7) was found to inhibit the phosphorylation of c-jun and c-fos, important members of activating protein-1 (AP-1) transcription factor complexes that enhance angiogenesis. The findings on this novel BRD4 inhibitor indicate that, in addition to being a powerful pharmacological tool for further elucidating the roles and functions of BRD4 and its BD domains in angiogenesis, it may serve as a potential therapeutic strategy for targeting the vasculature in various angiogenesis-dysregulated human diseases.
Collapse
Affiliation(s)
- Zijun Zhou
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoming Li
- Department of Pathology, People’s Hospital of Baoan District, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lixun Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuying Yao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liuyou Li
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
33
|
Abstract
Epigenetic mechanisms involve the placing (writing) or removal (erasing) of histone modifications that allow heterochromatin to transition to the open, activated euchromatin state necessary for transcription. A third, less studied epigenetic pathway involves the reading of these specific histone marks once placed. The BETs (bromodomain and extraterminal-containing protein family), which includes BRD2, BRD3, and BRD4 and the testis-restricted BRDT, are epigenetic reader proteins that bind to specific acetylated lysine residues on histone tails where they facilitate the assembly of transcription complexes including transcription factors and transcriptional machinery like RNA Polymerase II. As reviewed here, considerable recent data establishes BETs as novel determinants of induced transcriptional programs in vascular cells, like endothelial cells and vascular smooth muscle cells, cardiac myocytes and inflammatory cells, like monocyte/macrophages, cellular settings where these epigenetic reader proteins couple proximal stimuli to chromatin, acting at super-enhancer regulatory regions to direct gene expression. BET inhibition, including the use of specific chemical BET inhibitors like JQ-1, has many reported effects in vivo in the cardiovascular setting, like decreasing atherosclerosis, angiogenesis, intimal hyperplasia, pulmonary arterial hypertension, and cardiac hypertrophy. At the same time, data in endothelial cells, adipocytes, and elsewhere suggest BETs also help regulate gene expression under basal conditions. Studies in the cardiovascular setting have highlighted BET action as a means of controlling gene expression in differentiation, cell identity, and cell state transitions, whether physiological or pathological, adaptive, or maladaptive. While distinct BET inhibitors are being pursued as therapies in oncology, a large prospective clinical cardiovascular outcome study investigating the BET inhibitor RVX-208 (now called apabetalone) has already been completed. Independent of this specific agent and this one trial or the numerous unanswered questions that remain, BETs have emerged as novel epigenetic players involved in the execution of coordinated transcriptional programs in cardiovascular health and disease.
Collapse
Affiliation(s)
- Patricia Cristine Borck
- From the Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.C.B., J.P.)
| | - Lian-Wang Guo
- Davis Heart and Lung Institute, Wexner Medical Center, Ohio State University, Columbus (L.-W.G.)
| | - Jorge Plutzky
- From the Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.C.B., J.P.)
| |
Collapse
|
34
|
Brasier AR. RSV Reprograms the CDK9•BRD4 Chromatin Remodeling Complex to Couple Innate Inflammation to Airway Remodeling. Viruses 2020; 12:v12040472. [PMID: 32331282 PMCID: PMC7232410 DOI: 10.3390/v12040472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus infection is responsible for seasonal upper and lower respiratory tract infections worldwide, causing substantial morbidity. Self-inoculation of the virus into the nasopharynx results in epithelial replication and distal spread into the lower respiratory tract. Here, respiratory syncytial virus (RSV) activates sentinel cells important in the host inflammatory response, resulting in epithelial-derived cytokine and interferon (IFN) expression resulting in neutrophilia, whose intensity is associated with disease severity. I will synthesize key findings describing how RSV replication activates intracellular NFκB and IRF signaling cascades controlling the innate immune response (IIR). Recent studies have implicated a central role for Scg1a1+ expressing progenitor cells in IIR, a cell type uniquely primed to induce neutrophilic-, T helper 2 (Th2)-polarizing-, and fibrogenic cytokines that play distinct roles in disease pathogenesis. Molecular studies have linked the positive transcriptional elongation factor-b (P-TEFb), a pleiotrophic chromatin remodeling complex in immediate-early IIR gene expression. Through intrinsic kinase activity of cyclin dependent kinase (CDK) 9 and atypical histone acetyl transferase activity of bromodomain containing protein 4 (BRD4), P-TEFb mediates transcriptional elongation of IIR genes. Unbiased proteomic studies show that the CDK9•BRD4 complex is dynamically reconfigured by the innate response and targets TGFβ-dependent fibrogenic gene networks. Chronic activation of CDK9•BRD4 mediates chromatin remodeling fibrogenic gene networks that cause epithelial mesenchymal transition (EMT). Mesenchymal transitioned epithelial cells elaborate TGFβ and IL6 that function in a paracrine manner to expand the population of subepithelial myofibroblasts. These findings may account for the long-term reduction in pulmonary function in children with severe lower respiratory tract infection (LRTI). Modifying chromatin remodeling properties of the CDK9•BRD4 coactivators may provide a mechanism for reducing post-infectious airway remodeling that are a consequence of severe RSV LRTIs.
Collapse
Affiliation(s)
- Allan R Brasier
- Institute for Clinical and Translational Research; University of Wisconsin-Madison School of Medicine and Public Health; Madison, WI 53705, USA
| |
Collapse
|
35
|
Liu Z, Chen H, Wang P, Li Y, Wold EA, Leonard PG, Joseph S, Brasier AR, Tian B, Zhou J. Discovery of Orally Bioavailable Chromone Derivatives as Potent and Selective BRD4 Inhibitors: Scaffold Hopping, Optimization, and Pharmacological Evaluation. J Med Chem 2020; 63:5242-5256. [PMID: 32255647 DOI: 10.1021/acs.jmedchem.0c00035] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) represents a promising drug target for anti-inflammatory therapeutics. Herein, we report the design, synthesis, and pharmacological evaluation of novel chromone derivatives via scaffold hopping to discover a new class of orally bioavailable BRD4-selective inhibitors. Two potent BRD4 bromodomain 1 (BD1)-selective inhibitors 44 (ZL0513) and 45 (ZL0516) have been discovered with high binding affinity (IC50 values of 67-84 nM) and good selectivity over other BRD family proteins and distant BD-containing proteins. Both compounds significantly inhibited the expression of Toll-like receptor-induced inflammatory genes in vitro and airway inflammation in murine models. The cocrystal structure of 45 in complex with human BRD4 BD1 at a high resolution of 2.0 Å has been solved, offering a solid structural basis for its binding validation and further structure-based optimization. These BRD4 BD1 inhibitors demonstrated impressive in vivo efficacy and overall promising pharmacokinetic properties, indicating their therapeutic potential for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yi Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Eric A Wold
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Paul G Leonard
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Sarah Joseph
- Core for Biomolecular Structure and Function, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Allan R Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison School of Medicine and Public Health, 4248 Health Sciences Learning Center, Madison, Wisconsin 53705, United States
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
36
|
Hong J, Li S, Markova DZ, Liang A, Kepler CK, Huang Y, Zhou J, Yan J, Chen W, Huang D, Xu K, Ye W. Bromodomain-containing protein 4 inhibition alleviates matrix degradation by enhancing autophagy and suppressing NLRP3 inflammasome activity in NP cells. J Cell Physiol 2020; 235:5736-5749. [PMID: 31975410 DOI: 10.1002/jcp.29508] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
An imbalance between matrix synthesis and degradation is the hallmark of intervertebral disc degeneration while inflammatory cytokines contribute to the imbalance. Bromodomain and extra-terminal domain (BET) family is associated with the pathogenesis of inflammation, and inhibition of BRD4, a vital member of BET family, plays an anti-inflammatory role in many diseases. However, it remains elusive whether BRD4 plays a similar role in nucleus pulposus (NP) cells and participates in the pathogenesis of intervertebral disc degeneration. The present study aims to observe whether BRD4 inhibition regulates matrix metabolism by controlling autophagy and NLRP3 inflammasome activity. Besides, the relationship was investigated among nuclear factor κB (NF-κB) signaling, autophagy and NLRP3 inflammasome in NP cells. Here, real-time polymerase chain reaction, western blot analysis and adenoviral GFP-LC3 vector transduction in vitro were used, and it was revealed that BRD4 inhibition alleviated the matrix degradation and increased autophagy in the presence or absence of tumor necrosis factor α. Moreover, p65 knockdown or treatment with JQ1 and Bay11-7082 demonstrated that BRD4 inhibition attenuated NLRP3 inflammasome activity through NF-κB signaling, while autophagy inhibition by bafilomycin A1 promoted matrix degradation and NLRP3 inflammasome activity in NP cells. In addition, analysis of BRD4 messenger RNA expression in human NP tissues further verified the destructive function of BRD4. Simply, BRD4 inhibition alleviates matrix degradation by enhancing autophagy and suppressing NLRP3 inflammasome activity through NF-κB signaling in NP cells.
Collapse
Affiliation(s)
- Junmin Hong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangxing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dessislava Z Markova
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anjing Liang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Christopher K Kepler
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yingjie Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Orthopedics, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Department of Breast Cancer Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiansen Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijian Chen
- Department of Orthopedics, The fifth affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongsheng Huang
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kang Xu
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Experimental Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Nuclear Factor κB Signaling and Its Related Non-coding RNAs in Cancer Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:208-217. [PMID: 31841993 PMCID: PMC6920321 DOI: 10.1016/j.omtn.2019.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
Nuclear factor κB (NF-κB) acts as a nuclear factor that is composed of five main subunits. It is a pluripotent and crucial dimer transcription factor that has a close relationship with many serious illnesses, especially its influences on cell proliferation, inflammation, and cancer initiation and progression. NF-κB acts as part of the signaling pathway and determines its effect on the expression of several other genes, such as epidermal growth factor receptor (EGFR), p53, signal transducer and activator of transcription 3 (STAT3), and non-coding RNA (ncRNA). Continuous activation of the NF-κB signaling pathway has been seen in many cancer types. While the NF-κB signaling pathway is tightly regulated in physiological settings, quite frequently it is constitutively activated in cancer, and the molecular biology mechanism underlying the deregulated activation of NF-κB signaling remains unclear. In this review, we discuss the regulatory role and possible clinical significance of ncRNA (microRNA [miRNA] and long non-coding RNA [lncRNA]) in NF-κB signaling in cancer, including in the conversion of inflammation to carcinogenesis. Non-coding RNA plays an essential and complex role in the NF-κB signaling pathway. NF-κB activation can also induce the ncRNA status. Targeting NF-κB signaling by ncRNA is becoming a promising strategy of drug development and cancer treatment.
Collapse
|
38
|
Validation of the epigenetic reader bromodomain-containing protein 4 (BRD4) as a therapeutic target for treatment of airway remodeling. Drug Discov Today 2019; 25:126-132. [PMID: 31733396 DOI: 10.1016/j.drudis.2019.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
Structural remodeling is central to the initiation and progression of many chronic lung diseases, representing an important unmet need. We examine the evidence supporting bromodomain-containing protein 4 (BRD4) as a validated biological target for treatment of airway remodeling. In epithelial cells and fibroblasts, BRD4 serves as a scaffold for chromatin remodeling complexes in active super-enhancers. In response to inflammatory stimuli, BRD4 is repositioned to innate and mesenchymal genes activating their production. Proof-of-concept studies show promising benefit of selective BRD4 inhibitors in disrupting epithelial mesenchymal transition and myofibroblast transition in diverse models of lung injury. Recent identification of biomarkers of BRD4 provides a basis for further drug development for application in viral-induced airway inflammation, COPD and interstitial lung diseases.
Collapse
|
39
|
Brasier AR, Boldogh I. Targeting inducible epigenetic reprogramming pathways in chronic airway remodeling. Drugs Context 2019; 8:dic-2019-8-3. [PMID: 31692901 PMCID: PMC6821469 DOI: 10.7573/dic.2019-8-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Allergic asthma is a chronic inflammatory airway disease whose clinical course is punctuated by acute exacerbations from aeroallergen exposure or respiratory virus infections. Aeroallergens and respiratory viruses stimulate toll-like receptor (TLR) signaling, producing oxidative injury and inflammation. Repetitive exacerbations produce complex mucosal adaptations, cell-state changes, and structural remodeling. These structural changes produce substantial morbidity, decrease lung capacity, and impair quality of life. We will review recent systems-level studies that provide fundamental new insights into how repetitive activation of innate signaling pathways produce epigenetic ‘training’ to induce adaptive epithelial responses. Oxidative stress produced downstream of TLR signaling induces transient oxidation of guanine bases in the regulatory regions of inflammatory genes. The epigenetic mark 8-oxoG is bound by a pleiotropic DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), which induces conformational changes in adjacent DNA to recruit the NFκB·bromodomain-containing protein 4 (BRD4) complex. The NFκB·BRD4 complex not only plays a central role in inflammation, but also triggers mesenchymal transition and extracellular matrix remodeling. Small molecule inhibitors of OGG1-8-oxoG binding and BRD4–acetylated histone interaction have been developed. We present studies demonstrating efficacy of these in reducing airway inflammation in preclinical models. Targeting inducible epigenetic reprogramming pathway shows promise for therapeutics in reversing airway remodeling in a variety of chronic airway diseases.
Collapse
Affiliation(s)
- Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, 4246 Health Sciences Learning Center, 750 Highland Ave, Madison, WI 53705, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
40
|
Zhao Y, Tian B, Sun H, Zhang J, Zhang Y, Ivannikov M, Motamedi M, Liu Z, Zhou J, Kaphalia L, Calhoun WJ, Maroto R, Brasier AR. Pharmacoproteomics reveal novel protective activity of bromodomain containing 4 inhibitors on vascular homeostasis in TLR3-mediated airway remodeling. J Proteomics 2019; 205:103415. [PMID: 31195152 DOI: 10.1016/j.jprot.2019.103415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/23/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022]
Abstract
Small molecule inhibitors of the epigenetic regulator bromodomain-containing protein 4 (BRD4) are potential therapeutics for viral and allergen-induced airway remodeling. A limitation of their preclinical advancement is the lack of detailed understanding of mechanisms of action and biomarkers of effect. We report a systems-level pharmacoproteomics in a standardized murine model of toll-like receptor TLR3-NFκB/RelA innate inflammation in the absence or presence of a highly selective BRD4 inhibitor (ZL0454) or nonselective bromodomain and extraterminal domain inhibitor (JQ1). Proteomics of bronchoalveolar lavage fluid (BALF) secretome and exosomal proteins from this murine model revealed increased, selective, capillary leak associated with pericyte-myofibroblast transition, a phenomenon blocked by BRD4 inhibitors. BALF proteomics also suggested that ZL0454 better reduced the vascular leakage and extracellular matrix deposition than JQ1. A significant subset of inflammation-mediated remodeling factors was also identified in a mouse model of idiopathic pulmonary fibrosis produced by bleomycin. BALF exosome analysis indicated that BRD4 inhibitors reduced the induction of exosomes enriched in coagulation factors whose presence correlated with interstitial fibrin deposition. Finally, BALF samples from humans with severe asthma demonstrated similar upregulations of ORM2, APCS, SPARCL1, FGA, and FN1, suggesting their potential as biomarkers for early detection of airway remodeling and/or monitoring of therapy response. SIGNIFICANCE: Repetitive and chronic viral upper respiratory tract infections trigger toll-like receptor (TLR)3-NFκB/RelA mediated airway remodeling which is linked to a progressive decline in pulmonary function in patients with asthma and chronic obstructive pulmonary disease. Small molecule inhibitors of the epigenetic regulator bromodomain-containing protein 4 (BRD4) are potential therapeutics for viral and allergen-induced airway remodeling. A limitation of their preclinical advancement is the lack of detailed understanding of mechanisms of action and biomarkers of effect. Our study revealed that the activation of (TLR)3-NFκB/RelA pathway in the lung induced an elevation in coagulation, complement, and platelet factors, indicating the increased vascular leak during airway remodeling. The mechanism of vascular leakage was chronic inflammation-induced pericyte-myofibroblast transition, which was blocked by BRD4 inhibitors. Finally, proteomics analysis of the bronchoalveolar lavage fluid samples from humans with severe asthma demonstrated similar findings that we observed in the animal model.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA; Institute for Translational Sciences, UTMB, Galveston, TX, USA; Sealy Center for Molecular Medicine, UTMB, Galveston, TX, USA.
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA; Sealy Center for Molecular Medicine, UTMB, Galveston, TX, USA
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Jing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | - Zhiqing Liu
- Department of Pharmacology and Toxicology, UTMB, Galveston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, UTMB, Galveston, TX, USA
| | - Lata Kaphalia
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA; Institute for Translational Sciences, UTMB, Galveston, TX, USA; Sealy Center for Molecular Medicine, UTMB, Galveston, TX, USA
| | - Rosario Maroto
- Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
41
|
Brasier AR. Mechanisms how mucosal innate immunity affects progression of allergic airway disease. Expert Rev Respir Med 2019; 13:349-356. [PMID: 30712413 DOI: 10.1080/17476348.2019.1578211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Activation of antigen-independent inflammation (a.k.a. the 'innate' immune response (IIR)) plays a complex role in allergic asthma (AA). Although activation of the pulmonary IIR by aerosolized bacterial lipopolysaccharide early in life may be protective of AA, respiratory viral infections promote AA. The mechanisms how the mucosal IIR promotes allergic sensitization, remodeling, and altered epithelial signaling are not understood. Areas covered: This manuscript overviews: 1. Mechanistic studies identifying how allergens and viral patterns activate the mucosal IIR; 2. Research that reveals a major role played by specialized epithelial cells in the bronchiolar-alveolar junction in triggering inflammation and remodeling; 3. Reports linking the mucosal IIR with epithelial cell-state change and barrier disruption; and, 4. Observations relating mesenchymal transition with the expansion of the myofibroblast population. Expert commentary: Luminal allergens and viruses activate TLR signaling in key sentinel cells producing epithelial cell state transition, disrupting epithelial barrier function, and expanding the pulmonary myofibroblast population. These signals are transduced through a common NFκB/RelA -bromodomain containing four (BRD4) pathway, an epigenetic remodeling complex reprogramming the genome. Through this pathway, the mucosal IIR is a major modifier of adaptive immunity, AA and acute exacerbation-induced remodeling.
Collapse
Affiliation(s)
- Allan R Brasier
- a Institute for Clinical and Translational Research , University of Wisconsin-Madison School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
42
|
Tian B, Liu Z, Litvinov J, Maroto R, Jamaluddin M, Rytting E, Patrikeev I, Ochoa L, Vargas G, Motamedi M, Ameredes BT, Zhou J, Brasier AR. Efficacy of Novel Highly Specific Bromodomain-Containing Protein 4 Inhibitors in Innate Inflammation-Driven Airway Remodeling. Am J Respir Cell Mol Biol 2019; 60:68-83. [PMID: 30153047 PMCID: PMC6348724 DOI: 10.1165/rcmb.2017-0445oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NF-κB/RelA triggers innate inflammation by binding to bromodomain-containing protein 4 (BRD4), an atypical histone acetyltransferase (HAT). Although RelA·BRD4 HAT mediates acute neutrophilic inflammation, its role in chronic and functional airway remodeling is not known. We observed that BRD4 is required for Toll-like receptor 3 (TLR3)-mediated mesenchymal transition, a cell-state change that is characteristic of remodeling. We therefore tested two novel highly selective BRD4 inhibitors, ZL0420 and ZL0454, for their effects on chronic airway remodeling produced by repetitive TLR3 agonist challenges, and compared their efficacy with that of two nonselective bromodomain and extraterminal (BET) protein inhibitors, JQ1 and RVX208. We observed that ZL0420 and ZL0454 more potently reduced polyinosinic:polycytidylic acid-induced weight loss and fibrosis as assessed by microcomputed tomography and second harmonic generation microscopy. These measures correlated with the collagen deposition observed in histopathology. Importantly, the ZL inhibitors were more effective than the nonselective BET inhibitors at equivalent doses. The ZL inhibitors had significant effects on lung physiology, reversing TLR3-associated airway hyperresponsiveness and increasing lung compliance in vivo. At the molecular level, ZL inhibitors reduced elaboration of the transforming growth factor-β-induced growth program, thereby preventing mucosal mesenchymal transition and disrupting BRD4 HAT activity and complex formation with RelA. We also observed that ZL0454 treatment blocked polyinosinic:polycytidylic acid-associated expansion of the α-SMA1+/COL1A+ myofibroblast population and prevented myofibroblast transition in a coculture system. We conclude that 1) BRD4 is a central effector of the mesenchymal transition that results in paracrine activation of myofibroblasts, mechanistically linking innate inflammation to airway hyperresponsiveness and fibrosis, and 2) highly selective BRD4 inhibitors may be effective in reversing the effects of repetitive airway viral infections on innate inflammation-mediated remodeling.
Collapse
Affiliation(s)
- Bing Tian
- Department of Internal Medicine
- Sealy Center for Molecular Medicine
| | | | | | | | | | | | | | | | | | | | - Bill T. Ameredes
- Department of Internal Medicine
- Sealy Center for Molecular Medicine
- Department of Pharmacology and Toxicology
- Institute for Translational Sciences
- Sealy Center for Environmental Health and Medicine, University of Texas Medical Branch, Galveston, Texas; and
| | - Jia Zhou
- Sealy Center for Molecular Medicine
- Department of Pharmacology and Toxicology
| | - Allan R. Brasier
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
43
|
Brasier AR. Therapeutic targets for inflammation-mediated airway remodeling in chronic lung disease. Expert Rev Respir Med 2018; 12:931-939. [PMID: 30241450 PMCID: PMC6485244 DOI: 10.1080/17476348.2018.1526677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Acute exacerbations of chronic lung disease account for substantial morbidity and health costs. Repeated inflammatory episodes and attendant bronchoconstriction cause structural remodeling of the airway. Remodeling is a multicellular response to mucosal injury that results in epithelial cell-state changes, enhanced extracellular deposition, and expansion of pro-fibrotic myofibroblast populations. Areas covered: This manuscript overviews mechanistic studies identifying key sentinel cell populations in the airway and how pattern recognition signaling induces maladaptive mucosal changes and airway remodeling. Studies elucidating how NFκB couples with an atypical histone acetyltransferase, bromodomain-containing protein 4 (BRD4) that reprograms mucosal fibrogenic responses, are described. The approaches to development and characterization of selective inhibitors of epigenetic reprogramming on innate inflammation and structural remodeling in preclinical models are detailed. Expert commentary: Bronchiolar cells derived from Scgb1a1-expressing progenitors function as major sentinel cells of the airway, responsible for initiating antiviral and aeroallergen responses. In these sentinel cells, activation of innate inflammation is coupled to neutrophilic recruitment, mesenchymal transition and myofibroblast expansion. Therapeutics targeting the NFkB-BRD4 may be efficacious in reducing pathological effects of acute exacerbations in chronic lung disease.
Collapse
Affiliation(s)
- Allan R Brasier
- a Department of Internal Medicine , Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
44
|
Tian B, Hosoki K, Liu Z, Yang J, Zhao Y, Sun H, Zhou J, Rytting E, Kaphalia L, Calhoun WJ, Sur S, Brasier AR. Mucosal bromodomain-containing protein 4 mediates aeroallergen-induced inflammation and remodeling. J Allergy Clin Immunol 2018; 143:1380-1394.e9. [PMID: 30321559 DOI: 10.1016/j.jaci.2018.09.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Frequent exacerbations of allergic asthma lead to airway remodeling and a decrease in pulmonary function, producing morbidity. Cat dander is an aeroallergen associated with asthma risk. OBJECTIVE We sought to elucidate the mechanism of cat dander-induced inflammation-remodeling. METHODS We identified remodeling in mucosal samples from allergic asthma by using quantitative RT-PCR. We developed a model of aeroallergen-induced experimental asthma using repetitive cat dander extract exposure. We measured airway inflammation using immunofluorescence, leukocyte recruitment, and quantitative RT-PCR. Airway remodeling was measured by using histology, collagen content, myofibroblast numbers, and selected reaction monitoring. Inducible nuclear factor κB (NF-κB)-BRD4 interaction was measured by using a proximity ligation assay in situ. RESULTS Enhanced mesenchymal signatures are observed in bronchial biopsy specimens from patients with allergic asthma. Cat dander induces innate inflammation through NF-κB signaling, followed by production of a profibrogenic mesenchymal transition in primary human small airway epithelial cells. The IκB kinase-NF-κB signaling pathway is required for mucosal inflammation-coupled airway remodeling and myofibroblast expansion in the mouse model of aeroallergen exposure. Cat dander induces NF-κB/RelA to complex with and activate BRD4, resulting in modifying the chromatin environment of inflammatory and fibrogenic genes through its atypical histone acetyltransferase activity. A novel small-molecule BRD4 inhibitor (ZL0454) disrupts BRD4 binding to the NF-κB-RNA polymerase II complex and inhibits its histone acetyltransferase activity. ZL0454 prevents epithelial mesenchymal transition, myofibroblast expansion, IgE sensitization, and fibrosis in airways of naive mice exposed to cat dander. CONCLUSIONS NF-κB-inducible BRD4 activity mediates cat dander-induced inflammation and remodeling. Therapeutic modulation of the NF-κB-BRD4 pathway affects allergen-induced inflammation, epithelial cell-state changes, extracellular matrix production, and expansion of the subepithelial myofibroblast population.
Collapse
Affiliation(s)
- Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Koa Hosoki
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Tex
| | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Jia Zhou
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Tex
| | - Lata Kaphalia
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis.
| |
Collapse
|
45
|
Tian B, Widen SG, Yang J, Wood TG, Kudlicki A, Zhao Y, Brasier AR. The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells. J Biol Chem 2018; 293:16528-16545. [PMID: 30166344 DOI: 10.1074/jbc.ra118.003662] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NF-κB in EMT of primary human small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor β (TGFβ) activated NF-κB/RELA proto-oncogene, NF-κB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFβ-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFβ stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified WNT, cadherin, and NF-κB signaling as the most prominent TGFβ-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to WNT, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: 1) the WNT/β-catenin morphogen pathway, 2) the JUN transcription factor, and 3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating WNT dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFβ-induced WNT5B expression and downstream activation of the WNT target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of WNT morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops.
Collapse
Affiliation(s)
- Bing Tian
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Steven G Widen
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Jun Yang
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and
| | - Thomas G Wood
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology
| | - Andrzej Kudlicki
- Sealy Center for Molecular Medicine, and.,Biochemistry and Molecular Biology.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Yingxin Zhao
- From the Departments of Internal Medicine and.,Sealy Center for Molecular Medicine, and.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705
| |
Collapse
|
46
|
Liu Z, Tian B, Chen H, Wang P, Brasier AR, Zhou J. Discovery of potent and selective BRD4 inhibitors capable of blocking TLR3-induced acute airway inflammation. Eur J Med Chem 2018; 151:450-461. [PMID: 29649741 PMCID: PMC5924617 DOI: 10.1016/j.ejmech.2018.04.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
A series of diverse small molecules have been designed and synthesized through structure-based drug design by taking advantage of fragment merging and elaboration approaches. Compounds ZL0420 (28) and ZL0454 (35) were identified as potent and selective BRD4 inhibitors with nanomolar binding affinities to bromodomains (BDs) of BRD4. Both of them can be well docked into the acetyl-lysine (KAc) binding pocket of BRD4, forming key interactions including the critical hydrogen bonds with Asn140 directly and Tyr97 indirectly via a H2O molecule. Both compounds 28 and 35 exhibited submicromolar potency of inhibiting the TLR3-dependent innate immune gene program, including ISG54, ISG56, IL-8, and Groβ genes in cultured human small airway epithelial cells (hSAECs). More importantly, they also demonstrated potent efficacy reducing airway inflammation in a mouse model with low toxicity, indicating a proof of concept that BRD4 inhibitors may offer the therapeutic potential to block the viral-induced airway inflammation.
Collapse
Affiliation(s)
- Zhiqing Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, Galveston, TX, 77555, USA
| | - Bing Tian
- Department of Internal Medicine, Galveston, TX, 77555, USA; Sealy Center for Molecular Medicine, Galveston, TX, 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, Galveston, TX, 77555, USA
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, Galveston, TX, 77555, USA
| | - Allan R Brasier
- Department of Internal Medicine, Galveston, TX, 77555, USA; Sealy Center for Molecular Medicine, Galveston, TX, 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, Galveston, TX, 77555, USA; Sealy Center for Molecular Medicine, Galveston, TX, 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|