1
|
Bejarano L, Lourenco J, Kauzlaric A, Lamprou E, Costa CF, Galland S, Maas RR, Guerrero Aruffo P, Fournier N, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Single-cell atlas of endothelial and mural cells across primary and metastatic brain tumors. Immunity 2025; 58:1015-1032.e6. [PMID: 40107274 DOI: 10.1016/j.immuni.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Central nervous system (CNS) malignancies include primary tumors, such as gliomas, and brain metastases (BrMs) originating from diverse extracranial cancers. The blood-brain barrier (BBB) is a key structural component of both primary and metastatic brain cancers. Here, we comprehensively analyzed the two major BBB cell types, endothelial and mural cells, across non-tumor brain tissue, isocitrate dehydrogenase (IDH) mutant (IDH mut) low-grade gliomas, IDH wild-type (IDH WT) high-grade glioblastomas (GBMs), and BrMs from various primary tumors. Bulk and single-cell RNA sequencing, integrated with spatial analyses, revealed that GBMs, but not low-grade gliomas, exhibit significant alterations in the tumor vasculature, including the emergence of diverse pathological vascular cell subtypes. However, these alterations are less pronounced in GBMs than in BrMs. Notably, the BrM vasculature shows higher permeability and more extensive interactions with distinct immune cell populations. This vascular atlas presents a resource toward understanding of tumor-specific vascular features in the brain, providing a foundation for developing vascular- and immune-targeting therapies.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Joao Lourenco
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Catia F Costa
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
2
|
Schwartz AV, Chao G, Robinson M, Conley BM, Ahmed Adam MA, Wells GA, Hoang A, Albekioni E, Gallo C, Weeks J, Yunker K, Quichocho G, George UZ, Niesman I, House CD, Turcan Ş, Sohl CD. Catalytically distinct metabolic enzyme isocitrate dehydrogenase 1 mutants tune phenotype severity in tumor models. J Biol Chem 2025; 301:108477. [PMID: 40188944 DOI: 10.1016/j.jbc.2025.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of IDH1 R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to IDH1 R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis and are associated with distinct epigenetic and transcriptomic consequences, with higher D2HG levels appearing to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Ashley V Schwartz
- Computational Science Research Center, San Diego State University, San Diego, California, USA
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Brittany M Conley
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Grace A Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Katelyn Yunker
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Uduak Z George
- Computational Science Research Center, San Diego State University, San Diego, California, USA; Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Ingrid Niesman
- Electron Microscope Facility, San Diego State University, San Diego, California, USA
| | - Carrie D House
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany.
| | - Christal D Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA.
| |
Collapse
|
3
|
Choate KA, Konickson WWL, Moreno ZL, Brill OS, Cromell BC, Detienne BM, Jennings MJ, Mann PB, Winn RJ, Kamson DO, Pratt EPS. A genetically encoded fluorescent sensor enables sensitive and specific detection of IDH mutant associated oncometabolite D-2-hydroxyglutarate. BMC Cancer 2025; 25:473. [PMID: 40087637 PMCID: PMC11909988 DOI: 10.1186/s12885-025-13877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
D-2-hydroxyglutarate (D-2-HG) is an oncometabolite that accumulates due to mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2). D-2-HG may be used as a surrogate marker for IDH1/2 mutant cancers, yet simple and specific methods for D-2-HG detection are limited. Here, we present the development and characterization of a genetically encoded fluorescent sensor of D-2-HG (D2HGlo). D2HGlo responds to clinically relevant concentrations of D-2-HG, demonstrates exceptional selectivity and can quantify D-2-HG in various body fluids and glioma tumor supernatants. Additionally, analysis of tumor lysates using D2HGlo accurately predicted the IDH mutational status of gliomas. The successful quantification of D-2-HG within contrived samples suggests that D2HGlo may facilitate the detection and monitoring of IDH mutant cancers through liquid biopsies following further validation. In addition to D2HGlo's potential clinical utility, we also present findings for its adaptation to the cellular environment. To assess D-2-HG production in living immortalized glioma cells, we engineered D2HGlo sensors that localize to subcellular compartments, which yielded findings of elevated D-2-HG in the cytosol, mitochondria, and nucleus of IDH1 mutant cells. D2HGlo was used to perform a side-by-side comparison of cytosolic and secreted D-2-HG to reveal that glycolysis, but not glutamine catabolism, drives D-2-HG production in IDH1 mutant cells.
Collapse
Affiliation(s)
- Kristian A Choate
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - Wren W L Konickson
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA
| | - Zoe L Moreno
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - Olivia S Brill
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA
| | - Brett C Cromell
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA
| | - Bella M Detienne
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - Matthew J Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- School of Clinical Sciences, Northern Michigan University, Marquette, MI, USA
| | - Paul B Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
- School of Clinical Sciences, Northern Michigan University, Marquette, MI, USA
| | - Robert J Winn
- Department of Biology, Northern Michigan University, Marquette, MI, USA
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA
| | - David O Kamson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan P S Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI, USA.
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA.
| |
Collapse
|
4
|
Curry RN, McDonald MF, He P, Lozzi B, Ko Y, O’Reilly I, Rosenbaum A, Kwon W, Fahim L, Marcus J, Powell N, Wang S, Ma J, Multani A, Choi DJ, Sardar D, Mohila C, Lee J, Gallo M, Harmanci A, Harmanci AS, Deneen B, Rao G. Mutant IDH impairs chromatin binding by PDGFB to promote chromosome instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639365. [PMID: 40060572 PMCID: PMC11888161 DOI: 10.1101/2025.02.20.639365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Non-canonical roles for growth factors in the nucleus have been previously described, but their mechanism of action and biological roles remain enigmatic. Platelet-derived growth factor B (PDGFB) can drive formation of low-grade glioma and here we show that it localizes to the nucleus of human glioma cells where it binds chromatin to preserve genome stability and cell lineage. Failure of PDGFB to localize to the nucleus leads to chromosomal abnormalities, aberrant heterochromatin architecture and accelerated tumorigenesis. Furthermore, nuclear localization of PDGFB is reliant upon the expression levels and mutation status of isocitrate dehydrogenase (IDH). Unexpectedly, we identified macrophages as the predominant source of PDGFB in human, finding that immune-derived PDGFB can localize to the nucleus of glioma cells. Collectively, these studies show that immune derived PDGFB enters the nucleus of glioma cells to maintain genomic stability, while identifying a new mechanism by which IDH mutations promote gliomagenesis.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Malcolm F. McDonald
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX
| | - Peihao He
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
| | - Yeunjung Ko
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Isabella O’Reilly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Anna Rosenbaum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Leyla Fahim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Joshua Marcus
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Noah Powell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Su Wang
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Jin Ma
- Cytogenetics and Cell Authentication Core, MD Anderson Cancer Center, Houston, TX
| | - Asha Multani
- Cytogenetics and Cell Authentication Core, MD Anderson Cancer Center, Houston, TX
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Debo Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| | - Carrie Mohila
- Department of Neuropatholgy, Texas Children’s Hospital, Houston, TX
| | - Jason Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Marco Gallo
- Pediatric Neuro-Oncology Research Program, Texas Children’s Hospital, Houston, TX
| | - Arif Harmanci
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX
| | - Akdes Serin Harmanci
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, TX
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
5
|
Crissey MAS, Versace A, Bhardwaj M, Jain V, Liu S, Singh A, Beer LA, Tang HY, Villanueva J, Gimotty PA, Xu X, Amaravadi RK. Divergent effects of acute and chronic PPT1 inhibition in melanoma. Autophagy 2025; 21:394-406. [PMID: 39265628 PMCID: PMC11760279 DOI: 10.1080/15548627.2024.2403152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024] Open
Abstract
Macroautophagy/autophagy-lysosome function promotes growth and survival of cancer cells, making them attractive targets for cancer therapy. One intriguing lysosomal target is PPT1 (palmitoyl-protein thioesterase 1). PPT1 inhibitors derived from chloroquine block autophagy, have significant antitumor activity in preclinical models and are being developed for clinical trials. However, the role of PPT1 in tumorigenesis remains poorly understood. Here we report that in melanoma cells, acute siRNA or pharmacological PPT1 inhibition led to increased ferroptosis sensitivity and significant loss of viability, whereas chronic PPT1 knockout using CRISPR-Cas9 produced blunted ferroptosis that led to sustained viability and growth. Each mode of PPT1 inhibition produced lysosome-autophagy inhibition but distinct proteomic changes, demonstrating the complexity of cellular adaptation mechanisms. To determine whether total genetic loss of Ppt1 would affect tumorigenesis in vivo, we developed a Ppt1 conditional knockout mouse model. We then crossed it into the BrafCA, PtenloxP, Tyr:CreERT2 melanoma mouse model to investigate the impact of Ppt1 loss on tumorigenesis. Loss of Ppt1 had no impact on melanoma histology, time to tumor initiation, or survival of tumor-bearing mice. These results suggest that chemical PPT1 inhibitors produce different adaptations than genetic PPT1 inhibition, and additional studies are warranted to fully understand the mechanism of chloroquine derivatives that target PPT1 in cancer.Abbreviations: 4-HT: 4-hydroxytamoxifen; BRAF: B-Raf proto-oncogene, serine/threonine kinase; cKO: conditional knockout; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9; DC661: A specific PPT1 inhibitor; DMSO: dimethyl sulfoxide; Dox; doxycycline hyclate; Easi-CRISPR: efficient additions with ssDNA inserts-CRISPR; GNS561/ezurpimtrostat: A PPT1 inhibitor; Hug: human guide; iCas: inducible CRISPR-Cas9; KO: knockout; LC-MS/MS: Liquid chromatography-tandem mass spectrometry; LDLR: low density lipoprotein receptor; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; NT: non-target; PTEN: phosphatase and tensin homolog; PPT1: palmitoyl-protein thioesterase 1; RSL3: RAS-selective lethal small molecule 3; SCRIB/SCRB1: scribble planar cell polarity protein; Tyr:CreERT2: tyrosinase-driven Cre recombinase fused with the tamoxifen-inducible mutant ligand binding domain of the human estrogen receptor; UGCG: UDP-glucose ceramide glucosyltransferase; WT: wild-type.
Collapse
Affiliation(s)
- Mary Ann S. Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shujing Liu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arpana Singh
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn A. Beer
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024; 18:2842-2870. [PMID: 39324445 PMCID: PMC11619804 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation TrustLondonUK
| |
Collapse
|
7
|
Ahmed Adam MA, Robinson M, Schwartz AV, Wells G, Hoang A, Albekioni E, Gallo C, Chao G, Weeks J, Quichocho G, George UZ, House CD, Turcan Ş, Sohl CD. Catalytically distinct IDH1 mutants tune phenotype severity in tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590655. [PMID: 38712107 PMCID: PMC11071412 DOI: 10.1101/2024.04.22.590655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces D-2-hydroxyglutarate (D2HG), which can inhibit DNA demethylases to drive tumorigenesis. Mutations affect residue R132 and display distinct catalytic profiles for D2HG production. We show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of R132Q in cellular and xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H. Though expression of IDH1 R132Q leads to hypermethylation in DNA damage pathways, DNA hypomethylation is more notable when compared to R132H expression. Transcriptome analysis shows increased expression of many pro-tumor pathways upon expression of IDH1 R132Q versus R132H, including transcripts of EGFR and PI3K signaling pathways. Thus, IDH1 mutants appear to modulate D2HG levels via altered catalysis, resulting in distinct epigenetic and transcriptomic consequences where higher D2HG levels appear to be associated with more aggressive tumors.
Collapse
Affiliation(s)
- Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Mikella Robinson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Ashley V. Schwartz
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - Grace Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
- These authors contributed equally: Mowaffaq Adam Ahmed Adam, Mikella Robinson, Ashley Schwartz, Grace Wells
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Elene Albekioni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Cecilia Gallo
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Grace Chao
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Giovanni Quichocho
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Uduak Z. George
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Carrie D. House
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, 69120 Heidelberg, Germany
| | - Christal D. Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
8
|
Zhang Z, Xiao Y, Zhao S, Liu J, Zeng J, Xiao F, Liao B, Shan X, Zhu H, Guo H. FAM109B plays a tumorigenic role in low-grade gliomas and is associated with tumor-associated macrophages (TAMs). J Transl Med 2024; 22:833. [PMID: 39256832 PMCID: PMC11389277 DOI: 10.1186/s12967-024-05641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Family with sequence similarity 109, member B (FAM109B) is involved in endocytic transport and affects genetic variation in brain methylation. It is one of the important genes related to immune cell-associated diseases. In the tumor immune system, methylation can regulate tumor immunity and influence the maturation and functional response of immune cells. Whether FAM109B is involved in tumor progression and its correlation with the tumor immune microenvironment has not yet been disclosed. METHODS A comprehensive pan-cancer analysis of FAM109B expression, prognosis, immunity, and TMB was conducted. The expression, clinical features, and prognostic value of FAM109B in low-grade gliomas (LGG) were evaluated using TCGA, CGGA, and Gravendeel databases. The expression of FAM109B was validated by qRT-PCR, immunohistochemistry (IHC), and Western blotting (WB). The relationship between FAM109B and methylation, Copy Number Variation (CNV), prognosis, immune checkpoints (ICs), and common chemotherapy drug sensitivity in LGG was explored through Cox regression, Kaplan-Meier curves, and Spearman correlation analysis. FAM109B levels and their distribution were studied using the TIMER database and single-cell analysis. The potential role of FAM109B in gliomas was further investigated through in vitro and in vivo experiments. RESULTS FAM109B was significantly elevated in various tumor types and was associated with poor prognosis. Its expression was related to aggressive progression and poor prognosis in low-grade glioma patients, serving as an independent prognostic marker for LGG. Glioma grade was negatively correlated with FAM109B DNA promoter methylation. Immune infiltration and single-cell analysis showed significant expression of FAM109B in tumor-associated macrophages (TAMs). The expression of FAM109B was closely related to gene mutations, immune checkpoints (ICs), and chemotherapy drugs in LGG. In vitro studies showed increased FAM109B expression in LGG, closely related to cell proliferation. In vivo studies showed that mice in the sh-FAM109B group had slower tumor growth, slower weight loss, and longer survival times. CONCLUSIONS FAM109B, as a novel prognostic biomarker for low-grade gliomas, exhibits specific overexpression in TAMs and may be a potential therapeutic target for LGG patients.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Siyi Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jun Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Bin Liao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China.
| |
Collapse
|
9
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
10
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
11
|
Zhang K, Qu C, Zhou P, Yang Z, Wu X. Integrative analysis of the cuproptosis-related gene ATP7B in the prognosis and immune infiltration of IDH1 wild-type glioma. Gene 2024; 905:148220. [PMID: 38286269 DOI: 10.1016/j.gene.2024.148220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Glioma is the most common malignant tumor in the brain and the central nervous system with a poor prognosis, and wild-type isocitrate dehydrogenase (IDH) glioma indicates a worse prognosis. Cuproptosis is a recently discovered form of cell death regulated by copper-dependent mitochondrial respiration. However, the effect of cuproptosis on tumor prognosis and immune infiltration is not clear. In this research, we analyzed of public databases to show the correlation between cuproptosis-related genes and the prognosis of IDH1 wild-type glioma. Nine out of 12 genes were upregulated in IDH1 wild-type glioma patients, and 6 genes were significantly associated with overall survival (OS), while 5 genes were associated with progression-free survival (PFS). Then, we constructed a prognostic cuproptosis-related gene signature for IDH1 wild-type glioma patients. ATP7B was considered an independent prognostic indicator, and a low expression level of ATP7B was related to a shorter period of OS and PFS. Moreover, downregulation of ATP7B was correlated not only with the infiltration of activated NK cells, CD8 + T cells and M2 macrophages; but also with high expression of immune checkpoint genes and tumor mutation burden (TMB). In the IDH1 wild-type glioma tissues we collected, our data also confirmed that high tumor grade was accompanied by low expression of ATP7B and high expression of PD-L1, which was associated with increasing infiltration of CD8 + immune cells. In conclusion, our research constructed a prognostic cuproptosis-related gene signature model to predict the prognosis of IDH1 wild-type glioma. ATP7B is deemed to be a potential prognostic indicator and novel immunotherapy biomarker for IDH1 wild-type glioma patients.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunhui Qu
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Peijun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Zezi Yang
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Human Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, 410011, China.
| |
Collapse
|
12
|
Tateishi K, Miyake Y, Nakamura T, Iwashita H, Hayashi T, Oshima A, Honma H, Hayashi H, Sugino K, Kato M, Satomi K, Fujii S, Komori T, Yamamoto T, Cahill DP, Wakimoto H. Genetic alterations that deregulate RB and PDGFRA signaling pathways drive tumor progression in IDH2-mutant astrocytoma. Acta Neuropathol Commun 2023; 11:186. [PMID: 38012788 PMCID: PMC10680361 DOI: 10.1186/s40478-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan.
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Gruber E, Kats LM. The curious case of IDH mutant acute myeloid leukaemia: biochemistry and therapeutic approaches. Biochem Soc Trans 2023; 51:1675-1686. [PMID: 37526143 PMCID: PMC10586776 DOI: 10.1042/bst20230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Of the many genetic alterations that occur in cancer, relatively few have proven to be suitable for the development of targeted therapies. Mutations in isocitrate dehydrogenase (IDH) 1 and -2 increase the capacity of cancer cells to produce a normally scarce metabolite, D-2-hydroxyglutarate (2-HG), by several orders of magnitude. The discovery of the unusual biochemistry of IDH mutations spurred a flurry of activity that revealed 2-HG as an 'oncometabolite' with pleiotropic effects in malignant cells and consequences for anti-tumour immunity. Over the next decade, we learned that 2-HG dysregulates a wide array of molecular pathways, among them a large family of dioxygenases that utilise the closely related metabolite α-ketoglutarate (α-KG) as an essential co-substrate. 2-HG not only contributes to malignant transformation, but some cancer cells become addicted to it and sensitive to inhibitors that block its synthesis. Moreover, high 2-HG levels and loss of wild-type IDH1 or IDH2 activity gives rise to synthetic lethal vulnerabilities. Herein, we review the biology of IDH mutations with a particular focus on acute myeloid leukaemia (AML), an aggressive disease where selective targeting of IDH-mutant cells is showing significant promise.
Collapse
Affiliation(s)
- Emily Gruber
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lev M. Kats
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
14
|
Wang H, Wang X, Xu L, Zhang J. RARRES2 is Downregulated in Isocitrate Dehydrogenase 1 Mutant Glioma Patients and Served as an Unfavorable Prognostic Factor of Glioma. World Neurosurg 2023; 176:e610-e622. [PMID: 37271257 DOI: 10.1016/j.wneu.2023.05.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Mutations in isocitrate dehydrogenase 1 (IDH1) induce extensive transcriptional alterations to promote glioma development. However, IDH1 mutation contributes the better clinical outcomes of glioma. Further understanding the transcriptional and DNA methylation changes mediated by IDH1 mutation will provide new therapeutic targets for glioma. METHODS Public glioma cohorts were collected and processed using R software. The transcriptional changes mediated by IDH1 mutation were determined and presented using heatmap. The differentially expressed genes in IDH1 mutant glioma were overlapped using TBtools. The prognostic effects of IDH1 regulated genes were determined by Kaplan-Meier survival analysis. RESULTS Retinoic acid receptor responder 2 (RARRES2) was upregulated in IDH1 wild type lower-grade glioma (LGG) patients, and higher expression levels of RARRES2 were associated with worse clinical outcomes of LGG. Moreover, IDH1 wild type LGG patients with higher expression levels of RARRES2 had even worse overall survival. Compared with LGG, RARRES2 was upregulated in grade IV glioma (glioblastoma multiforme, GBM). Also, RARRES2 represented an unfavorable prognostic factor of glioma. In GBM, RARRES2 was also associated with IDH1 mutation. In both LGG and GBM, IDH1 mutation induced extensive DNA hypermethylation, and more than half genes that were downregulated in IDH1 mutant glioma were contributed by DNA hypermethylation. RARRES2 was also hypermethylated in IDH1 mutant LGG or GBM patients. Furthermore, RARRES2 hypomethylation was an unfavorable prognostic factor in patients with LGG. CONCLUSIONS RARRES2 was downregulated by IDH1 mutation and served as an unfavorable prognostic factor in glioma.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Zheng J, Dong H, Li M, Lin X, Wang C. Prediction of IDH1 gene mutation by a nomogram based on multiparametric and multiregional MR images. Clinics (Sao Paulo) 2023; 78:100238. [PMID: 37354775 DOI: 10.1016/j.clinsp.2023.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE To investigate the value of a nomogram based on multiparametric and multiregional MR images to predict Isocitrate Dehydrogenase-1 (IDH1) gene mutations in glioma. DATA AND METHODS The authors performed a retrospective analysis of 110 MR images of surgically confirmed pathological gliomas; 33 patients with IDH1 gene Mutation (IDH1-M) and 77 patients with Wild-type IDH1 (IDH1-W) were divided into training and validation sets in a 7:3 ratio. The clinical features were statistically analyzed using SPSS and R software. Three glioma regions (rCET, rE, rNEC) were outlined using ITK-SNAP software and projected to four conventional sequences (T1, T2, Flair, T1C) for feature extraction using AI-Kit software. The extracted features were screened using R software. A logistic regression model was established, and a nomogram was generated using the selected clinical features. Eight models were developed based on different sequences and ROIs, and Receiver Operating Characteristic (ROC) curves were used to evaluate the predictive efficacy. Decision curve analysis was performed to assess the clinical usefulness. RESULTS Age was selected with Radscore to construct the nomogram. The Model 1 AUC values based on four sequences and three ROIs were the highest in these models, at 0.93 and 0.89, respectively. Decision curve analysis indicated that the net benefit of model 1 was higher than that of the other models for most Pt-values. CONCLUSION A nomogram based on multiparametric and multiregional MR images can predict the mutation status of the IDH1 gene accurately.
Collapse
Affiliation(s)
- Jinjing Zheng
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| | - Haibo Dong
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China.
| | - Ming Li
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| | - Xueyao Lin
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| | - Chaochao Wang
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China
| |
Collapse
|
16
|
Foss A, Pathania M. Pediatric Glioma Models Provide Insights into Tumor Development and Future Therapeutic Strategies. Dev Neurosci 2023; 46:22-43. [PMID: 37231843 DOI: 10.1159/000531040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.
Collapse
Affiliation(s)
- Amelia Foss
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manav Pathania
- Department of Oncology and the Milner Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- CRUK Children's Brain Tumour Centre of Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Park JW. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int J Mol Sci 2023; 24:ijms24087348. [PMID: 37108511 PMCID: PMC10138713 DOI: 10.3390/ijms24087348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
18
|
Wei Y, Li G, Feng J, Wu F, Zhao Z, Bao Z, Zhang W, Su X, Li J, Qi X, Duan Z, Zhang Y, Vega SF, Jakola AS, Sun Y, Carén H, Jiang T, Fan X. Stalled oligodendrocyte differentiation in IDH-mutant gliomas. Genome Med 2023; 15:24. [PMID: 37055795 PMCID: PMC10103394 DOI: 10.1186/s13073-023-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. METHODS Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. RESULTS Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. CONCLUSIONS Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jing Feng
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhaoshi Bao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Zhang
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiuyi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Xueling Qi
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yunqiu Zhang
- Center of Growth Metabolism & Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, 41390, Sweden
| | - Yingyu Sun
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| | - Xiaolong Fan
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| |
Collapse
|
19
|
Liu Y, Xu W, Li M, Yang Y, Sun D, Chen L, Li H, Chen L. The regulatory mechanisms and inhibitors of isocitrate dehydrogenase 1 in cancer. Acta Pharm Sin B 2023; 13:1438-1466. [PMID: 37139412 PMCID: PMC10149907 DOI: 10.1016/j.apsb.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Reprogramming of energy metabolism is one of the basic characteristics of cancer and has been proved to be an important cancer treatment strategy. Isocitrate dehydrogenases (IDHs) are a class of key proteins in energy metabolism, including IDH1, IDH2, and IDH3, which are involved in the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG). Mutants of IDH1 or IDH2 can produce d-2-hydroxyglutarate (D-2HG) with α-KG as the substrate, and then mediate the occurrence and development of cancer. At present, no IDH3 mutation has been reported. The results of pan-cancer research showed that IDH1 has a higher mutation frequency and involves more cancer types than IDH2, implying IDH1 as a promising anti-cancer target. Therefore, in this review, we summarized the regulatory mechanisms of IDH1 on cancer from four aspects: metabolic reprogramming, epigenetics, immune microenvironment, and phenotypic changes, which will provide guidance for the understanding of IDH1 and exploring leading-edge targeted treatment strategies. In addition, we also reviewed available IDH1 inhibitors so far. The detailed clinical trial results and diverse structures of preclinical candidates illustrated here will provide a deep insight into the research for the treatment of IDH1-related cancers.
Collapse
|
20
|
Dasgupta P, Balasubramanyian V, de Groot JF, Majd NK. Preclinical Models of Low-Grade Gliomas. Cancers (Basel) 2023; 15:cancers15030596. [PMID: 36765553 PMCID: PMC9913857 DOI: 10.3390/cancers15030596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Diffuse infiltrating low-grade glioma (LGG) is classified as WHO grade 2 astrocytoma with isocitrate dehydrogenase (IDH) mutation and oligodendroglioma with IDH1 mutation and 1p/19q codeletion. Despite their better prognosis compared with glioblastoma, LGGs invariably recur, leading to disability and premature death. There is an unmet need to discover new therapeutics for LGG, which necessitates preclinical models that closely resemble the human disease. Basic scientific efforts in the field of neuro-oncology are mostly focused on high-grade glioma, due to the ease of maintaining rapidly growing cell cultures and highly reproducible murine tumors. Development of preclinical models of LGG, on the other hand, has been difficult due to the slow-growing nature of these tumors as well as challenges involved in recapitulating the widespread genomic and epigenomic effects of IDH mutation. The most recent WHO classification of CNS tumors emphasizes the importance of the role of IDH mutation in the classification of gliomas, yet there are relatively few IDH-mutant preclinical models available. Here, we review the in vitro and in vivo preclinical models of LGG and discuss the mechanistic challenges involved in generating such models and potential strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Pushan Dasgupta
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | | | - John F. de Groot
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.F.d.G.); (N.K.M.)
| |
Collapse
|
21
|
de la Fuente MI, Colman H, Rosenthal M, Van Tine BA, Levacic D, Walbert T, Gan HK, Vieito M, Milhem MM, Lipford K, Forsyth S, Guichard SM, Mikhailov Y, Sedkov A, Brevard J, Kelly PF, Mohamed H, Monga V. Olutasidenib (FT-2102) in patients with relapsed or refractory IDH1-mutant glioma: A multicenter, open-label, phase Ib/II trial. Neuro Oncol 2023; 25:146-156. [PMID: 35639513 PMCID: PMC9825299 DOI: 10.1093/neuonc/noac139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Olutasidenib (FT-2102) is a highly potent, orally bioavailable, brain-penetrant and selective inhibitor of mutant isocitrate dehydrogenase 1 (IDH1). The aim of the study was to determine the safety and clinical activity of olutasidenib in patients with relapsed/refractory gliomas harboring an IDH1R132X mutation. METHODS This was an open-label, multicenter, nonrandomized, phase Ib/II clinical trial. Eligible patients (≥18 years) had histologically confirmed IDH1R132X-mutated glioma that relapsed or progressed on or following standard therapy and had measurable disease. Patients received olutasidenib, 150 mg orally twice daily (BID) in continuous 28-day cycles. The primary endpoints were dose-limiting toxicities (DLTs) (cycle 1) and safety in phase I and objective response rate using the Modified Response Assessment in Neuro-Oncology criteria in phase II. RESULTS Twenty-six patients were enrolled and followed for a median 15.1 months (7.3‒19.4). No DLTs were observed in the single-agent glioma cohort and the pharmacokinetic relationship supported olutasidenib 150 mg BID as the recommended phase II dose. In the response-evaluable population, disease control rate (objective response plus stable disease) was 48%. Two (8%) patients demonstrated a best response of partial response and eight (32%) had stable disease for at least 4 months. Grade 3‒4 adverse events (≥10%) included alanine aminotransferase increased and aspartate aminotransferase increased (three [12%], each). CONCLUSIONS Olutasidenib 150 mg BID was well tolerated in patients with relapsed/refractory gliomas harboring an IDH1R132X mutation and demonstrated preliminary evidence of clinical activity in this heavily pretreated population.
Collapse
Affiliation(s)
- Macarena I de la Fuente
- Sylvester Comprehensive Cancer Center and Department of Neurology, University of Miami, Miami, Florida, USA
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Mark Rosenthal
- Peter MacCallum Cancer Centre Melbourne, Victoria, Australia
| | - Brian A Van Tine
- Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Danijela Levacic
- Baylor and Scott White Vasicek Cancer Center, Baylor University Temple, Temple, Texas, USA
| | - Tobias Walbert
- Henry Ford Cancer Institute, Henry Ford Health System and Wayne State University, Detroit, Michigan, USA
| | - Hui K Gan
- Olivia Newton-John Cancer Wellness and Research Centre Austin Hospital, Heidelberg, Victoria, Australia
| | - Maria Vieito
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Mohammed M Milhem
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | - Julie Brevard
- Forma Therapeutics, Inc., Watertown, Massachusetts, USA
| | | | | | - Varun Monga
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Vij M, Yokoda RT, Rashidipour O, Tran I, Vasudevaraja V, Snuderl M, Yong RL, Cobb WS, Umphlett M, Walker JM, Tsankova NM, Richardson TE. The prognostic impact of subclonal IDH1 mutation in grade 2-4 astrocytomas. Neurooncol Adv 2023; 5:vdad069. [PMID: 37324217 PMCID: PMC10263115 DOI: 10.1093/noajnl/vdad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Background Isocitrate dehydrogenase (IDH) mutations are thought to represent an early oncogenic event in glioma evolution, found with high penetrance across tumor cells; however, in rare cases, IDH mutation may exist only in a small subset of the total tumor cells (subclonal IDH mutation). Methods We present 2 institutional cases with subclonal IDH1 R132H mutation. In addition, 2 large publicly available cohorts of IDH-mutant astrocytomas were mined for cases harboring subclonal IDH mutations (defined as tumor cell fraction with IDH mutation ≤0.67) and the clinical and molecular features of these subclonal cases were compared to clonal IDH-mutant astrocytomas. Results Immunohistochemistry (IHC) performed on 2 institutional World Health Organization grade 4 IDH-mutant astrocytomas revealed only a minority of tumor cells in each case with IDH1 R132H mutant protein, and next-generation sequencing (NGS) revealed remarkably low IDH1 variant allele frequencies compared to other pathogenic mutations, including TP53 and/or ATRX. DNA methylation classified the first tumor as high-grade IDH-mutant astrocytoma with high confidence (0.98 scores). In the publicly available datasets, subclonal IDH mutation was present in 3.9% of IDH-mutant astrocytomas (18/466 tumors). Compared to clonal IDH-mutant astrocytomas (n = 156), subclonal cases demonstrated worse overall survival in grades 3 (P = .0106) and 4 (P = .0184). Conclusions While rare, subclonal IDH1 mutations are present in a subset of IDH-mutant astrocytomas of all grades, which may lead to a mismatch between IHC results and genetic/epigenetic classification. These findings suggest a possible prognostic role of IDH mutation subclonality, and highlight the potential clinical utility of quantitative IDH1 mutation evaluation by IHC and NGS.
Collapse
Affiliation(s)
- Meenakshi Vij
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omid Rashidipour
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivy Tran
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Raymund L Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Hareedy AA, Rohim EZA, Al Sheikh SAM, Al Shereef ZAEA. Immunohistochemical Expression of PD-L1 and IDH1 with Detection of MGMT Promoter Methylation in Astrocytoma. Asian Pac J Cancer Prev 2022; 23:4333-4338. [PMID: 36580017 PMCID: PMC9971485 DOI: 10.31557/apjcp.2022.23.12.4333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Programmed death ligand 1 (PD-L1) expression was suggested as a poor prognostic predictor for glioblastoma. While isocitrate dehydrogenase (IDH) has been linked to enhanced overall survival in glioma cells. In glioblastoma patients receiving treatment with alkylating drugs, the methylguanine-DNA methyltransferase (MGMT) promoter's methylation status has been discovered as a potent and distinct predictor of good survival. In this study, we aimed to investigate the expression rate of PD-L1, IDH1, and MGMT methylation in patients with different grades of astrocytoma. METHODS The present retrospective study retrieved the data and archived paraffin blocks of 60 cases of astrocytoma. Immunohistochemical evaluation was done to assess the expressions of PD-L1 and IDH1, Methylation-specific-PCR was used to investigate the MGMT promoter. RESULTS This study included astrocytoma grade II 18% (11/60), grade III 22% (13/60), grade IV 60% (36 cases). PD-L1 expression was detected in 82% of all studied cases (49/60) while IDH1 mutant astrocytoma were 73% (44/60) & methylation was reported in 58.3% (35 cases). High grade astrocytoma showed highrer expression of PD-L1 & IDH1 but with insignificant correlation (p=0.989). CONCLUSION There is a relatively high expression of PD-L1 and IDH1 in patients with astrocytoma. More than half of the patients presented with MGMT promoter methylation. Further studies with larger sample size are required to investigate the association between these biomarkers and characteristics of patients with astrocytoma.
Collapse
Affiliation(s)
- Amal Ahmed Hareedy
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | | | | |
Collapse
|
24
|
von Knebel Doeberitz N, Paech D, Sturm D, Pusch S, Turcan S, Saunthararajah Y. Changing paradigms in oncology: Toward noncytotoxic treatments for advanced gliomas. Int J Cancer 2022; 151:1431-1446. [PMID: 35603902 PMCID: PMC9474618 DOI: 10.1002/ijc.34131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Glial-lineage malignancies (gliomas) recurrently mutate and/or delete the master regulators of apoptosis p53 and/or p16/CDKN2A, undermining apoptosis-intending (cytotoxic) treatments. By contrast to disrupted p53/p16, glioma cells are live-wired with the master transcription factor circuits that specify and drive glial lineage fates: these transcription factors activate early-glial and replication programs as expected, but fail in their other usual function of forcing onward glial lineage-maturation-late-glial genes have constitutively "closed" chromatin requiring chromatin-remodeling for activation-glioma-genesis disrupts several epigenetic components needed to perform this work, and simultaneously amplifies repressing epigenetic machinery instead. Pharmacologic inhibition of repressing epigenetic enzymes thus allows activation of late-glial genes and terminates glioma self-replication (self-replication = replication without lineage-maturation), independent of p53/p16/apoptosis. Lineage-specifying master transcription factors therefore contrast with p53/p16 in being enriched in self-replicating glioma cells, reveal a cause-effect relationship between aberrant epigenetic repression of late-lineage programs and malignant self-replication, and point to specific epigenetic targets for noncytotoxic glioma-therapy.
Collapse
Affiliation(s)
| | - Daniel Paech
- Division of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of NeuroradiologyBonn University HospitalBonnGermany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) HeidelbergHeidelbergGermany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Oncology, Hematology & ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Stefan Pusch
- Department of NeuropathologyInstitute of Pathology, Ruprecht‐Karls‐University HeidelbergHeidelbergGermany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sevin Turcan
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology ResearchTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
25
|
Zhuang Q, Yang H, Mao Y. The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities. Neurosci Bull 2022; 39:393-408. [PMID: 36229714 PMCID: PMC10043159 DOI: 10.1007/s12264-022-00953-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Collapse
Affiliation(s)
- Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Shi DD, Savani MR, Levitt MM, Wang AC, Endress JE, Bird CE, Buehler J, Stopka SA, Regan MS, Lin YF, Puliyappadamba VT, Gao W, Khanal J, Evans L, Lee JH, Guo L, Xiao Y, Xu M, Huang B, Jennings RB, Bonal DM, Martin-Sandoval MS, Dang T, Gattie LC, Cameron AB, Lee S, Asara JM, Kornblum HI, Mak TW, Looper RE, Nguyen QD, Signoretti S, Gradl S, Sutter A, Jeffers M, Janzer A, Lehrman MA, Zacharias LG, Mathews TP, Losman JA, Richardson TE, Cahill DP, DeBerardinis RJ, Ligon KL, Xu L, Ly P, Agar NYR, Abdullah KG, Harris IS, Kaelin WG, McBrayer SK. De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell 2022; 40:939-956.e16. [PMID: 35985343 PMCID: PMC9515386 DOI: 10.1016/j.ccell.2022.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA 02215, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan R Savani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael M Levitt
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam C Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer E Endress
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Cylaina E Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Joseph Buehler
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Fen Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vinesh T Puliyappadamba
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenhua Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Januka Khanal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Laura Evans
- Bayer HealthCare Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Joyce H Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Xiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bofu Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca B Jennings
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tammie Dang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren C Gattie
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Amy B Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Sungwoo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Behavioral Sciences, and Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON M5G 2M9, Canada; The Princess Margaret Cancer Centre and Ontario Cancer Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ryan E Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Gradl
- Bayer AG, Muellerstrasse 178, 13353 Berlin, Germany
| | | | - Michael Jeffers
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ 07981, USA
| | | | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Timothy E Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Children's Hospital Boston, Boston, MA 02115, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
27
|
The epigenetic dysfunction underlying malignant glioma pathogenesis. J Transl Med 2022; 102:682-690. [PMID: 35152274 DOI: 10.1038/s41374-022-00741-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Comprehensive molecular profiling has dramatically transformed the diagnostic neuropathology of brain tumors. Diffuse gliomas, the most common and deadly brain tumor variants, are now classified by highly recurrent biomarkers instead of histomorphological characteristics. Several of the key molecular alterations driving glioma classification involve epigenetic dysregulation at a fundamental level, implicating fields of biology not previously thought to play major roles glioma pathogenesis. This article will review the major epigenetic alterations underlying malignant gliomas, their likely mechanisms of action, and potential strategies for their therapeutic targeting.
Collapse
|
28
|
Fan S, Wu N, Chang S, Chen L, Sun X. The immune regulation of BCL3 in glioblastoma with mutated IDH1. Aging (Albany NY) 2022; 14:3856-3873. [PMID: 35488886 PMCID: PMC9134951 DOI: 10.18632/aging.204048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Background: Glioblastoma in the brain is the most malignant solid tumor with a poor prognosis. Screening critical targets and exploring underlying mechanisms will be a benefit for diagnoses and treatment. IDH1 mutation (R132) was used to distinguish glioblastoma grade and predict prognosis as a significant marker. However, the manner of IDH1 mutation regulating glioblastoma development was still unclear. Methods: To study the function of IDH1 mutation, multi-type sequencing data (transcriptome, methylation and copy number variation) from the GEO and TCGA database were analyzed using bioinformatics techniques. The biological functions of IDH1 mutation (R132) would be comprehensively evaluated from the regulatory networks, tumor immune microenvironment and clinical relevance. Then the analysis result would be validated by experimental techniques. Results: Compared with adjacent tissues, IDH1 was up-regulated in glioblastoma, which also positively correlated with the malignant degree and a poor prognosis. To further study the mechanism of mutated IDH1 (R132) function, 5 correlated genes (FABP5, C1RL, MIR155HG, CSTA and BCL3) were identified by different expression gene screening, enrichment analysis and network construction successively. Among them, the BCL3 was a transcription factor that may induce IDH1expression. Through calculating the correlation coefficient, it was found that in IDH1mut glioblastoma, the dendritic cell infiltration was reduced which may result in a better prognosis. In addition, the level of IDH1, FABP5, C1RL, MIR155HG, CSTA and BCL3 might also influence lymphocytes infiltration (eg. CD4+ T cell) and chemokine expression (CXCL family). Conclusions: IDH1 may participate in pathological mechanisms of glioblastoma via expression alteration or gene mutation. Furthermore, IDH1 mutation might improve prognosis via suppressing the expression of FABP5, C1RL, MIR155HG, CSTA and BCL3. Meanwhile, it was identified that BCL3 might perform similar immunomodulatory functions with IDH1 as an upstream transcript factor.
Collapse
Affiliation(s)
- Shibing Fan
- Department of Neurosurgery, Chongqing Medical University, Chongqing, China.,Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Na Wu
- Department of Neurosurgery, Chongqing Medical University, Chongqing, China.,Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Shichuan Chang
- Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Long Chen
- Chongqing University, Shapingba, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Abdullah KG, Bird CE, Buehler JD, Gattie LC, Savani MR, Sternisha AC, Xiao Y, Levitt MM, Hicks WH, Li W, Ramirez DMO, Patel T, Garzon-Muvdi T, Barnett S, Zhang G, Ashley DM, Hatanpaa KJ, Richardson TE, McBrayer SK. Establishment of patient-derived organoid models of lower-grade glioma. Neuro Oncol 2022; 24:612-623. [PMID: 34850183 PMCID: PMC8972292 DOI: 10.1093/neuonc/noab273] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Historically, creating patient-derived models of lower-grade glioma (LGG) has been challenging, contributing to few experimental platforms that support laboratory-based investigations of this disease. Although organoid modeling approaches have recently been employed to create in vitro models of high-grade glioma (HGG), it is unknown whether this approach can be successfully applied to LGG. METHODS In this study, we developed an optimized protocol for the establishment of organoids from LGG primary tissue samples by utilizing physiologic (5%) oxygenation conditions and employed it to produce the first known suite of these models. To assess their fidelity, we surveyed key biological features of patient-derived organoids using metabolic, genomic, histologic, and lineage marker gene expression assays. RESULTS Organoid models were created with a success rate of 91% (n = 20/22) from primary tumor samples across glioma histological subtypes and tumor grades (WHO Grades 1-4), and a success rate of 87% (13/15) for WHO Grade 1-3 tumors. Patient-derived organoids recapitulated stemness, proliferative, and tumor-stromal composition profiles of their respective parental tumor specimens. Cytoarchitectural, mutational, and metabolic traits of parental tumors were also conserved. Importantly, LGG organoids were maintained in vitro for weeks to months and reanimated after biobanking without loss of integrity. CONCLUSIONS We report an efficient method for producing faithful in vitro models of LGG. New experimental platforms generated through this approach are well positioned to support preclinical studies of this disease, particularly those related to tumor immunology, tumor-stroma interactions, identification of novel drug targets, and personalized assessments of treatment response profiles.
Collapse
Affiliation(s)
- Kalil G Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Cylaina E Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph D Buehler
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lauren C Gattie
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Milan R Savani
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Alex C Sternisha
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Yi Xiao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Michael M Levitt
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - William H Hicks
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenhao Li
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Denise M O Ramirez
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Toral Patel
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Tomas Garzon-Muvdi
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Samuel Barnett
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Gao Zhang
- Duke University School of Medicine, Duke University, Durham, North Carolina,USA
| | - David M Ashley
- Duke University School of Medicine, Duke University, Durham, North Carolina,USA
| | - Kimmo J Hatanpaa
- Department of Pathology, Division of Neuropathology, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine and The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas,USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas,USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas,USA
| |
Collapse
|
30
|
Gbyli R, Song Y, Liu W, Gao Y, Biancon G, Chandhok NS, Wang X, Fu X, Patel A, Sundaram R, Tebaldi T, Mamillapalli P, Zeidan AM, Flavell RA, Prebet T, Bindra RS, Halene S. In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2. Leukemia 2022; 36:1313-1323. [PMID: 35273342 PMCID: PMC9103411 DOI: 10.1038/s41375-022-01536-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Treatment options for patients with relapsed/ refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and −2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Collapse
Affiliation(s)
- Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510062, China.
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Namrata S Chandhok
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Section of Hematology, Department of Internal Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Xiaman Wang
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Hematology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. of China
| | - Xiaoying Fu
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, P. R. of China
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ranjini Sundaram
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, 38121, Italy
| | - Padmavathi Mamillapalli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA.,Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA. .,Department of Pathology, Yale University, New Haven, CT, 06520, USA. .,Yale Stem Cell Center and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
31
|
Armstrong N, Storey CM, Noll SE, Margulis K, Soe MH, Xu H, Yeh B, Fishbein L, Kebebew E, Howitt BE, Zare RN, Sage J, Annes JP. SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Rep 2022; 38:110453. [PMID: 35235785 PMCID: PMC8939053 DOI: 10.1016/j.celrep.2022.110453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Inherited pathogenic succinate dehydrogenase (SDHx) gene mutations cause the hereditary pheochromocytoma and paraganglioma tumor syndrome. Syndromic tumors exhibit elevated succinate, an oncometabolite that is proposed to drive tumorigenesis via DNA and histone hypermethylation, mitochondrial expansion, and pseudohypoxia-related gene expression. To interrogate this prevailing model, we disrupt mouse adrenal medulla SDHB expression, which recapitulates several key molecular features of human SDHx tumors, including succinate accumulation but not 5hmC loss, HIF accumulation, or tumorigenesis. By contrast, concomitant SDHB and the neurofibromin 1 tumor suppressor disruption yields SDHx-like pheochromocytomas. Unexpectedly, in vivo depletion of the 2-oxoglutarate (2-OG) dioxygenase cofactor ascorbate reduces SDHB-deficient cell survival, indicating that SDHx loss may be better tolerated by tissues with high antioxidant capacity. Contrary to the prevailing oncometabolite model, succinate accumulation and 2-OG-dependent dioxygenase inhibition are insufficient for mouse pheochromocytoma tumorigenesis, which requires additional growth-regulatory pathway activation.
Collapse
Affiliation(s)
- Neali Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Claire M Storey
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Myat Han Soe
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | | | - Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA; Endocrine Oncology Program, Stanford University, Stanford, CA, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Caulfield JI, Kluger HM. Emerging Studies of Melanoma Brain Metastasis. Curr Oncol Rep 2022; 24:585-594. [PMID: 35212922 DOI: 10.1007/s11912-022-01237-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Among solid tumors, melanoma has the highest propensity for brain dissemination. Although newer treatment approaches have resulted in excellent control or elimination of brain metastasis in many patients, they remain the cause of significant morbidity and mortality. Here, we review recent preclinical and clinical studies to detail current understanding of the incidence, prognosis, biological characteristics, and treatments for melanoma brain metastases. RECENT FINDINGS Clinical trials tailored to this patient population have demonstrated prolonged disease control with immune checkpoint inhibitors. Emerging clinical challenges include radiation necrosis and perilesional edema, phenomena that are rarely seen in other organs. Recent preclinical studies have resulted in improved understanding of the tumor microenvironment in the brain, providing insights into additional treatment approaches. The biological basis of brain tumor homing and survival within the central nervous system remain understudied. Additional preclinical and clinical studies will enhance our ability to prevent and treat brain metastases.
Collapse
Affiliation(s)
- Jasmine I Caulfield
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Harriet M Kluger
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
33
|
Gai QJ, Fu Z, He J, Mao M, Yao XX, Qin Y, Lan X, Zhang L, Miao JY, Wang YX, Zhu J, Yang FC, Lu HM, Yan ZX, Chen FL, Shi Y, Ping YF, Cui YH, Zhang X, Liu X, Yao XH, Lv SQ, Bian XW, Wang Y. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther 2022; 7:33. [PMID: 35105853 PMCID: PMC8807725 DOI: 10.1038/s41392-021-00855-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Platelet-derived growth subunit A (PDGFA) plays critical roles in development of glioblastoma (GBM) with substantial evidence from TCGA database analyses and in vivo mouse models. So far, only platelet-derived growth receptor α (PDGFRA) has been identified as receptor for PDGFA. However, PDGFA and PDGFRA are categorized into different molecular subtypes of GBM in TCGA_GBM database. Our data herein further showed that activity or expression deficiency of PDGFRA did not effectively block PDGFA activity. Therefore, PDGFRA might be not necessary for PDGFA function.To profile proteins involved in PDGFA function, we performed co-immunoprecipitation (Co-IP) and Mass Spectrum (MS) and delineated the network of PDGFA-associated proteins for the first time. Unexpectedly, the data showed that EPHA2 could be temporally activated by PDGFA even without activation of PDGFRA and AKT. Furthermore, MS, Co-IP, in vitro binding thermodynamics, and proximity ligation assay consistently proved the interaction of EPHA2 and PDGFA. In addition, we observed that high expression of EPHA2 leaded to upregulation of PDGF signaling targets in TCGA_GBM database and clinical GBM samples. Co-upregulation of PDGFRA and EPHA2 leaded to worse patient prognosis and poorer therapeutic effects than other contexts, which might arise from expression elevation of genes related with malignant molecular subtypes and invasive growth. Due to PDGFA-induced EPHA2 activation, blocking PDGFRA by inhibitor could not effectively suppress proliferation of GBM cells, but simultaneous inhibition of both EPHA2 and PDGFRA showed synergetic inhibitory effects on GBM cells in vitro and in vivo. Taken together, our study provided new insights on PDGFA function and revealed EPHA2 as a potential receptor of PDGFA. EPHA2 might contribute to PDGFA signaling transduction in combination with PDGFRA and mediate the resistance of GBM cells to PDGFRA inhibitor. Therefore, combination of inhibitors targeting PDGFRA and EHA2 represented a promising therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Qu-Jing Gai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Xue Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Qin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei-Cheng Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui-Min Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Biobank of Institute of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fang-Lin Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
34
|
Yao K, Liu H, Yu S, Zhu H, Pan J. Resistance to mutant IDH inhibitors in acute myeloid leukemia: Molecular mechanisms and therapeutic strategies. Cancer Lett 2022; 533:215603. [DOI: 10.1016/j.canlet.2022.215603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/02/2022]
|
35
|
Huang LE. Impact of CDKN2A/B Homozygous Deletion on the Prognosis and Biology of IDH-Mutant Glioma. Biomedicines 2022; 10:biomedicines10020246. [PMID: 35203456 PMCID: PMC8869746 DOI: 10.3390/biomedicines10020246] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Although hotspot mutations in isocitrate dehydrogenase (IDH) genes are associated with favorable clinical outcomes in glioma, CDKN2A/B homozygous deletion has been identified as an independent predicator of poor prognosis. Accordingly, the 2021 edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) has adopted this molecular feature by upgrading IDH-mutant astrocytoma to CNS WHO grade IV, even in the absence of glioblastoma-specific histological features—necrosis and microvascular proliferation. This new entity of IDH-mutant astrocytoma not only signifies an exception to the generally favorable outcome of IDH-mutant glioma, but also brings into question whether, and, if so, how, CDKN2A/B homozygous deletion overrides the anti-tumor activity of IDH mutation by promoting the proliferation of stem/neural progenitor-like cells. Understanding the mechanism by which IDH mutation requires intact tumor-suppressor genes for conferring favorable outcome may improve therapeutics.
Collapse
Affiliation(s)
- L. Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
36
|
Kankeu Fonkoua LA, Serrano Uson Junior PL, Mody K, Mahipal A, Borad MJ, Roberts LR. Novel and emerging targets for cholangiocarcinoma progression: therapeutic implications. Expert Opin Ther Targets 2022; 26:79-92. [PMID: 35034558 DOI: 10.1080/14728222.2022.2029412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) is a heterogeneous group of aggressive biliary malignancies. While surgery and liver transplantation are the only potentially curative modalities for early-stage disease, limited options are available for most patients with incurable-stage disease. Survival outcomes remain dismal. Recent molecular profiling efforts have led to improved understanding of the genomic landscape of CCA and to the identification of subgroups with distinct diagnostic, prognostic, and therapeutic implications. AREAS COVERED : We provide an updated review and future perspectives on features of cholangiocarcinogenesis that can be translated into therapeutic biomarkers and targets. We highlight the critical studies that have established current systemic chemotherapy and targeted therapeutics, while elaborating on novel targeted and immunotherapeutic approaches in development. Relevant literature and clinical studies were identified by searching PubMed and www.ClinicalTrials.gov. EXPERT OPINION : While therapies targeting the various molecular subgroups of CCA are rapidly emerging and changing treatment paradigms, their success has been limited by the genetic heterogeneity of CCA and the plasticity of the targets. Novel strategies aiming to combine immunotherapy, chemotherapy, and molecularly-targeted therapeutics will be required to offer durable clinical benefit and maximize survival.
Collapse
Affiliation(s)
| | | | - Kabir Mody
- Rochester, MN, and Oncology in Jacksonville, FL, Mayo Clinic, USA
| | | | | | | |
Collapse
|
37
|
Nguyen TTT, Shang E, Westhoff MA, Karpel-Massler G, Siegelin MD. Methodological Approaches for Assessing Metabolomic Changes in Glioblastomas. Methods Mol Biol 2022; 2445:305-328. [PMID: 34973000 DOI: 10.1007/978-1-0716-2071-7_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioblastoma (GBM), a highly malignant primary brain tumor, inevitably leads to death. In the last decade, a variety of novel molecular characteristics of GBMs were unraveled. The identification of the mutation in the IDH1 and less commonly IDH2 gene was surprising and ever since has nurtured research in the field of GBM metabolism. While initially thought that mutated IDH1 were to act as a loss of function mutation it became clear that it conferred the production of an oncometabolite that in turn substantially reprograms GBM metabolism. While mutated IDH1 represents truly the tip of the iceberg, there are numerous other related observations in GBM that are of significant interest to the field, including the notion that oxidative metabolism appears to play a more critical role than believed earlier. Metabolic zoning is another important hallmark of GBM since it was found that the infiltrative margin that drives GBM progression reveals enrichment of fatty acid derivatives. Consistently, fatty acid metabolism appears to be a novel therapeutic target for GBM. How metabolism in GBM intersects is another pivotal issue that appears to be important for its progression and response and resistance to therapies. In this review, we will summarize some of the most relevant findings related to GBM metabolism and cell death and how these observations are influencing the field. We will provide current approaches that are applied in the field to measure metabolomic changes in GBM models, including the detection of unlabeled and labeled metabolites as well as extracellular flux analysis.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, NY, USA
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
38
|
Xiao G, Gao X, Li L, Liu C, Liu Z, Peng H, Xia X, Yi X, Zhou R. An Immune-Related Prognostic Signature for Predicting Clinical Outcomes and Immune Landscape in IDH-Mutant Lower-Grade Gliomas. JOURNAL OF ONCOLOGY 2021; 2021:3766685. [PMID: 34961815 PMCID: PMC8710162 DOI: 10.1155/2021/3766685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND IDH mutation is the most common in diffuse LGGs, correlated with a favorable prognosis. However, the IDH-mutant LGGs patients with poor prognoses need to be identified, and the potential mechanism leading to a worse outcome and treatment options needs to be investigated. METHODS A six-gene immune-related prognostic signature in IDH-mutant LGGs was constructed based on two public datasets and univariate, multivariate, and LASSO Cox regression analysis. Patients were divided into low- and high-risk groups based on the median risk score in the training and validation sets. We analyzed enriched pathways and immune cell infiltration, applying the GSEA and the immune evaluation algorithms. RESULTS Stratification and multivariate Cox analysis unveiled that the six-gene signature was an independent prognostic factor. The signature (0.806/0.795/0.822) showed a remarkable prognostic performance, with 1-, 3-, and 5-year time-dependent AUC, higher than for grade (0.612/0.638/0.649) and 1p19q codeletion status (0.606/0.658/0.676). High-risk patients had higher infiltrating immune cells. However, the specific immune escape was observed in the high-risk group after immune activation, owing to increasing immunosuppressive cells, inhibitory cytokines, and immune checkpoint molecules. Moreover, a novel nomogram model was developed to evaluate the survival in IDH-mutant LGGs patients. CONCLUSION The six-gene signature could be a promising prognostic biomarker, which is promising to promote individual therapy and improve the clinical outcomes of IDH-mutant gliomas. The study also refined the current classification system of IDH-mutant gliomas, classifying patients into two subtypes with distinct immunophenotypes and overall survival.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen 518122, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102205, China
| | - Chao Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhiyuan Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiqin Peng
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102205, China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
39
|
Kayabolen A, Yilmaz E, Bagci-Onder T. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Biomedicines 2021; 9:799. [PMID: 34356864 PMCID: PMC8301439 DOI: 10.3390/biomedicines9070799] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery of point mutations in the genes encoding isocitrate dehydrogenases (IDH) in gliomas about a decade ago has challenged our view of the role of metabolism in tumor progression and provided a new stratification strategy for malignant gliomas. IDH enzymes catalyze the conversion of isocitrate to alpha-ketoglutarate (α-KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and result in the inhibition of α-KG-dependent enzymes such as histone and DNA demethylases. Thus, chromatin structure and gene expression profiles in IDH-mutant gliomas appear to be different from those in IDH-wildtype gliomas. IDH mutations are highly common in lower grade gliomas (LGG) and secondary glioblastomas, and they are among the earliest genetic events driving tumorigenesis. Therefore, inhibition of mutant IDH enzymes in LGGs is widely accepted as an attractive therapeutic strategy. On the other hand, the metabolic consequences derived from IDH mutations lead to selective vulnerabilities within tumor cells, making them more sensitive to several therapeutic interventions. Therefore, instead of shutting down mutant IDH enzymes, exploiting the selective vulnerabilities caused by them might be another attractive and promising strategy. Here, we review therapeutic options and summarize current preclinical and clinical studies on IDH-mutant gliomas.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Ebru Yilmaz
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
40
|
Liu S, Liu J, Xie Y, Zhai T, Hinderer EW, Stromberg AJ, Vanderford NL, Kolesar JM, Moseley HNB, Chen L, Liu C, Wang C. MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations. Bioinformatics 2021; 37:1189-1197. [PMID: 33165532 PMCID: PMC8189684 DOI: 10.1093/bioinformatics/btaa957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
MOTIVATION Cancer somatic driver mutations associated with genes within a pathway often show a mutually exclusive pattern across a cohort of patients. This mutually exclusive mutational signal has been frequently used to distinguish driver from passenger mutations and to investigate relationships among driver mutations. Current methods for de novo discovery of mutually exclusive mutational patterns are limited because the heterogeneity in background mutation rate can confound mutational patterns, and the presence of highly mutated genes can lead to spurious patterns. In addition, most methods only focus on a limited number of pre-selected genes and are unable to perform genome-wide analysis due to computational inefficiency. RESULTS We introduce a statistical framework, MEScan, for accurate and efficient mutual exclusivity analysis at the genomic scale. Our framework contains a fast and powerful statistical test for mutual exclusivity with adjustment of the background mutation rate and impact of highly mutated genes, and a multi-step procedure for genome-wide screening with the control of false discovery rate. We demonstrate that MEScan more accurately identifies mutually exclusive gene sets than existing methods and is at least two orders of magnitude faster than most methods. By applying MEScan to data from four different cancer types and pan-cancer, we have identified several biologically meaningful mutually exclusive gene sets. AVAILABILITY AND IMPLEMENTATION MEScan is available as an R package at https://github.com/MarkeyBBSRF/MEScan. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yanqi Xie
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Tingting Zhai
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA
| | - Eugene W Hinderer
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Arnold J Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY 40536, USA
| | - Nathan L Vanderford
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jill M Kolesar
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.,Department of Pharmacy Practice and Science, University of Kentucky, Lexington, KY 40536, USA
| | - Hunter N B Moseley
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.,Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Li Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.,Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.,Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.,Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
41
|
Wang H, Wang X, Xu L, Zhang J, Cao H. RUNX1 and REXO2 are associated with the heterogeneity and prognosis of IDH wild type lower grade glioma. Sci Rep 2021; 11:11836. [PMID: 34088969 PMCID: PMC8178394 DOI: 10.1038/s41598-021-91382-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Based on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. .,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Liangpu Xu
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Cao
- Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. .,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| |
Collapse
|
42
|
Wang Y, Zhang C, Lu W, Chen R, Yu M. Establishment of a prognostic-related microRNAs risk model for glioma by bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1022. [PMID: 34277822 PMCID: PMC8267265 DOI: 10.21037/atm-21-2402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Background To explore the specific prognosis related microRNAs (miRNAs) of glioma. Methods The miRNA-Seq data and clinical information of glioma patients were downloaded from the TCGA (510 cases) and GEO (GSE112009, 25 cases) database. LASSO & COX regression was used to develop a miRNA-based model for predicting patient survival in the training set (n=255), to carry out glioma prognostic related miRNAs screening, and to construct a linear risk model based on the expression profiles of seven miRNAs. COX regression analysis was used to determine whether the miRNAs risk model was an independent prognostic factor. Results Seven survival-related miRNAs (miR-140-5p, miR-145-5p, miR-148a-3p, miR-183-5p, miR-222-3p, miR-223-3p, and miR-374a-5p) were identified in the training set. This showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group in the training set, prediction set, and validation set (P<0.05). Further analysis revealed that age and Karnofsky score both affected the risk of glioma. By crossing seven potential target genes of microRNAs, 620 effective target genes were obtained and GO analysis showed that these were related to the positive regulation of cell migration, neuron migration, and the response of transforming growth factor, and KEGG analysis showed they were related to the TGF-beta signaling pathway, MAPK signaling, and AGE-RAGE signaling pathway in diabetic complications. Conclusions Seven miRNAs which regulate target genes to participate in related signaling pathways and lead to a poor prognosis were identified as biomarkers of glioma.
Collapse
Affiliation(s)
- Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Chenran Zhang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Weiwei Lu
- Department of General Medicine, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Ruoping Chen
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Mingkun Yu
- Department of Neurosurgery, Shanghai Changzheng Hospital Affiliated to Shanghai Second Military Medical University, Shanghai, China
| |
Collapse
|
43
|
Guo X, Wang T, Huang G, Li R, Da Costa C, Li H, Lv S, Li N. Rediscovering potential molecular targets for glioma therapy through the analysis of the cell of origin, microenvironment, and metabolism. Curr Cancer Drug Targets 2021; 21:558-574. [PMID: 33949933 DOI: 10.2174/1568009621666210504091722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
Gliomas are the most common type of malignant brain tumors. Despite significant medical advances, gliomas remain incurable and are associated with high mortality. Although numerous biomarkers of diagnostic value have been identified and significant progress in the prognosis of the outcome has been made, the treatment has not been parallelly improved during the last three decades. This review summarizes and discusses three aspects of recent discoveries related to glioma, with the objective to highlight the advantages of glioma-specific drugs targeting the cell of origin, microenvironment, and metabolism. Given the heterogeneous nature of gliomas, various cell populations have been implicated as likely sources of the tumor. Depending on the mutation(s) acquired by the cells, it is believed that neuronal stem/progenitor cells, oligodendrocyte progenitor cells, mature neurons, and glial cells can initiate cell transformation into a malignant phenotype. The level of tumorigenicity appears to be inversely correlated with the maturation of a given cell population. The microenvironment of gliomas includes non-cancer cells such as immune cells, fibroblasts, and cells of blood vessels, as well as secreted molecules and the extracellular matrix, and all these components play a vital role during tumor initiation and progression. We will discuss in detail how the tumor microenvironment can stimulate and drive the transformation of non-tumor cell populations into tumor-supporting cells or glioma cells. Metabolic reprogramming is a key feature of gliomas and is thought to reflect the adaptation to the increased nutritional requirements of tumor cell proliferation, growth, and survival. Mutations in the IDH gene can shape metabolic reprogramming and may generate some vulnerabilities in glioma cells, such as abnormal lipid metabolism and sensitivity to endoplasmic reticulum stress (ERS). We will analyze the prominent metabolic features of malignant gliomas and the key pathways regulating glioma metabolism. This review is intended to provide a conceptual background for the development of glioma therapies based on the properties of tumor cell populations, microenvironment, and metabolism.
Collapse
Affiliation(s)
- Xiaoran Guo
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Tao Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Guohao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, No. 183 Xinqiao Street, Shapingba District, Chongqing City 400037. China
| | - Ruohan Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Clive Da Costa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT. United Kingdom
| | - Huafu Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Shengqing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, No. 183 Xinqiao Street, Shapingba District, Chongqing City 400037. China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| |
Collapse
|
44
|
Huang Z, Li G, Li Z, Sun S, Zhang Y, Hou Z, Xie J. Contralesional Structural Plasticity in Different Molecular Pathologic Subtypes of Insular Glioma. Front Neurol 2021; 12:636573. [PMID: 33935941 PMCID: PMC8079625 DOI: 10.3389/fneur.2021.636573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity may preserve neurologic function in insular glioma, thereby improving prognosis following resection. However, the anatomic and molecular bases of this phenomenon are not known. To address this gap in knowledge, the present study investigated contralesional compensation in different molecular pathologic subtypes of insular glioma by high-resolution three-dimensional T1-weighted structural magnetic resonance imaging. A total of 52 patients with insular glioma were examined. We compared the gray matter volume (GMV) of the contralesional insula according to histological grade [low-grade glioma (LGG) and high-grade glioma (HGG)] and molecular pathology status [isocitrate dehydrogenase (IDH) mutation, telomerase reverse-transcriptase (TERT) promoter mutation, and 1p19q codeletion] by voxel-based morphometry (VBM). A cluster of 320 voxels in contralesional insula with higher GMV was observed in glioma with IDH mutation as compared to IDH wild-type tumors by region of interest-based VBM analysis (family-wise error-corrected at p < 0.05). The GMV of the entire contralesional insula was also larger in insular glioma patients with IDH mutation than in patients with wild-type IDH. However, there was no association between histological grade, TERT promoter mutation, or 1p19q codeletion and GMV in the contralesional insula. Thus, IDH mutation is associated with greater structural compensation in insular glioma. These findings may be useful for predicting neurocognitive and functional outcomes in patients undergoing resection surgery.
Collapse
Affiliation(s)
- Zhenxing Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Shengjun Sun
- China National Clinical Research Centre for Neurological Diseases, Beijing, China.,Neuroimaging Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- China National Clinical Research Centre for Neurological Diseases, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Centre for Neurological Diseases, Beijing, China
| |
Collapse
|
45
|
Abstract
2-Hydroxyglutarate (2-HG) is structurally similar to α-ketoglutarate (α-KG), which is an intermediate product of the tricarboxylic acid (TCA) cycle; it can be generated by reducing the ketone group of α-KG to a hydroxyl group. The significant role that 2-HG plays has been certified in the pathophysiology of 2-hydroxyglutaric aciduria (2HGA), tumors harboring mutant isocitrate dehydrogenase 1/2 (IDH1/2mt), and in clear cell renal cell carcinoma (ccRCC). It is taken as an oncometabolite, raising much attention on its oncogenic mechanism. In recent years, 2-HG has been verified to accumulate in the context of hypoxia or acidic pH, and there are also researches confirming the vital role that 2-HG plays in the fate decision of immune cells. Therefore, 2-HG not only participates in tumorigenesis. This text will also summarize 2-HG’s identities besides being an oncometabolite and will discuss their enlightenment for future research and clinical treatment.
Collapse
Affiliation(s)
- Xin Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Hicks WH, Bird CE, Traylor JI, Shi DD, El Ahmadieh TY, Richardson TE, McBrayer SK, Abdullah KG. Contemporary Mouse Models in Glioma Research. Cells 2021; 10:cells10030712. [PMID: 33806933 PMCID: PMC8004772 DOI: 10.3390/cells10030712] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding of the molecular pathogenesis of glioma, outcomes remain dismal. Developing successful treatments for glioma requires faithful in vivo disease modeling and rigorous preclinical testing. Murine models, including xenograft, syngeneic, and genetically engineered models, are used to study glioma-genesis, identify methods of tumor progression, and test novel treatment strategies. Since the discovery of highly recurrent isocitrate dehydrogenase (IDH) mutations in lower-grade gliomas, there is increasing emphasis on effective modeling of IDH mutant brain tumors. Improvements in preclinical models that capture the phenotypic and molecular heterogeneity of gliomas are critical for the development of effective new therapies. Herein, we explore the current status, advancements, and challenges with contemporary murine glioma models.
Collapse
Affiliation(s)
- William H. Hicks
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Cylaina E. Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Jeffrey I. Traylor
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Diana D. Shi
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Tarek Y. El Ahmadieh
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
| | - Timothy E. Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 75229, USA;
| | - Samuel K. McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| | - Kalil G. Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (W.H.H.); (C.E.B.); (J.I.T.); (T.Y.E.A.)
- Harrold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence: (S.K.M.); (K.G.A.)
| |
Collapse
|
47
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Gargini R, Segura-Collar B, Herránz B, García-Escudero V, Romero-Bravo A, Núñez FJ, García-Pérez D, Gutiérrez-Guamán J, Ayuso-Sacido A, Seoane J, Pérez-Núñez A, Sepúlveda-Sánchez JM, Hernández-Laín A, Castro MG, García-Escudero R, Ávila J, Sánchez-Gómez P. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Sci Transl Med 2021; 12:12/527/eaax1501. [PMID: 31969485 DOI: 10.1126/scitranslmed.aax1501] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/06/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Gliomas that express the mutated isoforms of isocitrate dehydrogenase 1/2 (IDH1/2) have better prognosis than wild-type (wt) IDH1/2 gliomas. However, how these mutant (mut) proteins affect the tumor microenvironment is still a pending question. Here, we describe that the transcription of microtubule-associated protein TAU (MAPT), a gene that has been classically associated with neurodegenerative diseases, is epigenetically controlled by the balance between wt and mut IDH1/2 in mouse and human gliomas. In IDH1/2 mut tumors, we found high expression of TAU that decreased with tumor progression. Furthermore, MAPT was almost absent from tumors with epidermal growth factor receptor (EGFR) mutations, whereas its trancription negatively correlated with overall survival in gliomas carrying wt or amplified (amp) EGFR We demonstrated that the overexpression of TAU, through the stabilization of microtubules, impaired the mesenchymal/pericyte-like transformation of glioma cells by blocking EGFR, nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and the transcriptional coactivator with PDZ-binding motif (TAZ). Our data also showed that mut EGFR induced a constitutive activation of this pathway, which was no longer sensitive to TAU. By inhibiting the transdifferentiation capacity of EGFRamp/wt tumor cells, TAU protein inhibited angiogenesis and favored vascular normalization, decreasing glioma aggressiveness and increasing their sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Ricardo Gargini
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid 28049, Spain.,Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid 28220, Spain
| | - Berta Segura-Collar
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid 28220, Spain
| | - Beatriz Herránz
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid 28220, Spain.,Facultad de Medicina de la Universidad Francisco de Vitoria, Madrid 28223, Spain
| | - Vega García-Escudero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid 28049, Spain.,Dto. de Anatomía, Histología y Neurociencia, Facultad de Medicina de la Universidad Autónoma, Madrid 28029, Spain
| | - Andrés Romero-Bravo
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid 28220, Spain
| | - Felipe J Núñez
- Department of Neurosurgery/Department of Cell & Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Daniel García-Pérez
- Dto. Neurocirugía, Hospital 12 de Octubre, Univ. Complutense, Madrid 28041, Spain
| | | | - Angel Ayuso-Sacido
- Fundación de Investigación HM Hospitales, HM Hospitales, Madrid 28015, Spain.,Facultad de Medicina (IMMA), Universidad San Pablo-CEU, Madrid 28925, Spain.,IMDEA Nanoscience, Madrid 28049, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Madrid 28029, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Angel Pérez-Núñez
- Dto. Neurocirugía, Hospital 12 de Octubre, Univ. Complutense, Madrid 28041, Spain
| | | | | | - María G Castro
- Department of Neurosurgery/Department of Cell & Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ramón García-Escudero
- Instituto de Investigaciones Biomédicas I+12, Hosp. 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Madrid 28029, Spain.,Unidad de Oncología Molecular, CIEMAT, Madrid 28040, Spain
| | - Jesús Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid 28049, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid 28029, Spain
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid 28220, Spain.
| |
Collapse
|
49
|
Richards LM, Whitley OKN, MacLeod G, Cavalli FMG, Coutinho FJ, Jaramillo JE, Svergun N, Riverin M, Croucher DC, Kushida M, Yu K, Guilhamon P, Rastegar N, Ahmadi M, Bhatti JK, Bozek DA, Li N, Lee L, Che C, Luis E, Park NI, Xu Z, Ketela T, Moore RA, Marra MA, Spears J, Cusimano MD, Das S, Bernstein M, Haibe-Kains B, Lupien M, Luchman HA, Weiss S, Angers S, Dirks PB, Bader GD, Pugh TJ. Gradient of Developmental and Injury Response transcriptional states defines functional vulnerabilities underpinning glioblastoma heterogeneity. NATURE CANCER 2021; 2:157-173. [PMID: 35122077 DOI: 10.1038/s43018-020-00154-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Glioblastomas harbor diverse cell populations, including rare glioblastoma stem cells (GSCs) that drive tumorigenesis. To characterize functional diversity within this population, we performed single-cell RNA sequencing on >69,000 GSCs cultured from the tumors of 26 patients. We observed a high degree of inter- and intra-GSC transcriptional heterogeneity that could not be fully explained by DNA somatic alterations. Instead, we found that GSCs mapped along a transcriptional gradient spanning two cellular states reminiscent of normal neural development and inflammatory wound response. Genome-wide CRISPR-Cas9 dropout screens independently recapitulated this observation, with each state characterized by unique essential genes. Further single-cell RNA sequencing of >56,000 malignant cells from primary tumors found that the majority organize along an orthogonal astrocyte maturation gradient yet retain expression of founder GSC transcriptional programs. We propose that glioblastomas grow out of a fundamental GSC-based neural wound response transcriptional program, which is a promising target for new therapy development.
Collapse
Affiliation(s)
- Laura M Richards
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Owen K N Whitley
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Florence M G Cavalli
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fiona J Coutinho
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julia E Jaramillo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nataliia Svergun
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mazdak Riverin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Danielle C Croucher
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kenny Yu
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Naghmeh Rastegar
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jasmine K Bhatti
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Danielle A Bozek
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naijin Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Clare Che
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Erika Luis
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicole I Park
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zhiyu Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Spears
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - H Artee Luchman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Kim HJ, Park JW, Lee JH. Genetic Architectures and Cell-of-Origin in Glioblastoma. Front Oncol 2021; 10:615400. [PMID: 33552990 PMCID: PMC7859479 DOI: 10.3389/fonc.2020.615400] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
An aggressive primary brain cancer, glioblastoma (GBM) is the most common cancer of the central nervous system in adults. However, an inability to identify its cell-of-origin has been a fundamental issue hindering further understanding of the nature and pathogenesis of GBM, as well as the development of novel therapeutic targets. Researchers have hypothesized that GBM arises from an accumulation of somatic mutations in neural stem cells (NSCs) and glial precursor cells that confer selective growth advantages, resulting in uncontrolled proliferation. In this review, we outline genomic perspectives on IDH-wildtype and IDH-mutant GBMs pathogenesis and the cell-of-origin harboring GBM driver mutations proposed by various GBM animal models. Additionally, we discuss the distinct neurodevelopmental programs observed in either IDH-wildtype or IDH-mutant GBMs. Further research into the cellular origin and lineage hierarchy of GBM will help with understanding the evolution of GBMs and with developing effective targets for treating GBM cancer cells.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jung Won Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,SoVarGen, Inc., Daejeon, South Korea
| |
Collapse
|