1
|
Oesterle J, Ran Y, Stahr P, Kerr JND, Schubert T, Berens P, Euler T. Task-specific regional circuit adaptations in distinct mouse retinal ganglion cells. SCIENCE ADVANCES 2025; 11:eadp7075. [PMID: 40267203 PMCID: PMC12017306 DOI: 10.1126/sciadv.adp7075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
In the mouse retina, sustained ON alpha (sONα) retinal ganglion cells (RGCs) have different dendritic and receptive field sizes along the nasotemporal axis, with temporal sONα RGCs likely playing a role in visually guided hunting. Thus, we hypothesized that this cell type also exhibits regional adaptations in dendritic signal processing and that these adaptations are advantageous for prey capture. Here, we measured dendritic signals from individual sONα RGCs at different retinal locations. We measured both postsynaptic Ca2+ signals at dendrites and presynaptic glutamate signals from bipolar cells (BCs). We found that temporal sONα RGCs exhibit, in addition to sustained-ON signals with only weak surrounds, signals with strong surround suppression, which were not present in nasal sONα RGCs. This difference was also present in the presynaptic inputs from BCs. Last, using population models in an encoder-decoder paradigm, we showed that these adaptations might be beneficial for detecting crickets in hunting behavior.
Collapse
Affiliation(s)
- Jonathan Oesterle
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Paul Stahr
- Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Jason N. D. Kerr
- Max Planck Institute for Neurobiology of Behavior, Bonn, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Soto F, Lin CI, Jo A, Chou SY, Harding EG, Ruzycki PA, Seabold GK, Petralia RS, Kerschensteiner D. Molecular mechanism establishing the OFF pathway in vision. Nat Commun 2025; 16:3708. [PMID: 40251167 PMCID: PMC12008213 DOI: 10.1038/s41467-025-59046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Parallel ON and OFF (positive- and negative-contrast) pathways fundamental to vision arise at the complex synapse of cone photoreceptors. Cone pedicles form spatially segregated functionally opposite connections with ON and OFF bipolar cells. Here, we discover that mammalian cones express LRFN2, a cell-adhesion molecule, which localizes to the pedicle base. LRFN2 stabilizes basal contacts between cone pedicles and OFF bipolar cell dendrites to guide pathway-specific partner choices, encompassing multiple cell types. In addition, LRFN2 trans-synaptically organizes glutamate receptor clusters, determining the contrast preferences of the OFF pathway. ON and OFF pathways converge in the inner retina to regulate bipolar cell outputs. We analyze LRFN2's contributions to ON-OFF interactions, pathway asymmetries, and neural and behavioral responses to approaching predators. Our results reveal that LRFN2 controls the formation of the OFF pathway in vision, supports parallel processing in a single synapse, and shapes contrast coding and the detection of visual threats.
Collapse
Affiliation(s)
- Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Chin-I Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Graduate Program in Neuroscience, Division of Biological & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Jo
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ssu-Yu Chou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gail K Seabold
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ronald S Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Bright Center for Human Vision, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Di Berardino C, Estay SF, Alcaino A, Chávez AE. Serotonin regulates in a cell-type specific manner light-evoked response and synaptic activity in mouse retinal ganglion cells. Biol Res 2025; 58:11. [PMID: 40033464 PMCID: PMC11877958 DOI: 10.1186/s40659-025-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Serotonin (5-HT) is known to be synthesized and accumulated in the vertebrate retina through the 5-HT transporter, SERT. While manipulation of the serotonergic system has been shown to impact visual processing, the role of 5-HT and SERT as modulators of retinal synaptic function remains poorly understood. RESULTS Using mouse retinal slices, we show that acute application of 5-HT produces a cell-type specific reduction in light-evoked excitatory responses (L-EPSC) in ON-OFF retinal ganglion cells (RGCs), but not in ON RGCs. Similarly, increasing 5-HT tone by acute application of citalopram, a selective 5-HT reuptake inhibitor, also reduces L-EPSC in ON-OFF RGCs while not affecting ON RGCs. Importantly, citalopram-mediated reduction of L-EPSC was absent in ON-OFF RGCs recorded from SERT null retina, highlighting the role of SERT in regulating light-evoked responses in RGCs. The effects of both exogenous and endogenous 5-HT on L-EPSC in ON-OFF RGCs are likely due to a presynaptic reduction in excitatory synaptic strength as 5-HT and citalopram reduced the frequency but not the amplitude of spontaneous excitatory currents (sEPSCs) in ON-OFF RGCs. Moreover, 5-HT and citalopram had no effect on currents elicited by the direct activation of postsynaptic receptors in RGCs by brief application of glutamate in the inner retina. CONCLUSIONS Altogether these findings indicate that 5-HT modulates excitatory inputs onto RGCs in a cell-type specific manner and highlight that in the adult mouse retina, 5-HT-mediated effects onto RGCs are tightly controlled by the 5-HT transporter SERT.
Collapse
Affiliation(s)
- Claudia Di Berardino
- Programa de Doctorado en Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Sebastián F Estay
- Programa de Doctorado en Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
| | - Alejandro Alcaino
- Programa de Doctorado en Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile
| | - Andrés E Chávez
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, 2340000, Valparaíso, Chile.
| |
Collapse
|
4
|
Altas B, Tuffy LP, Patrizi A, Dimova K, Soykan T, Brandenburg C, Romanowski AJ, Whitten JR, Robertson CD, Khim SN, Crutcher GW, Ambrozkiewicz MC, Yagensky O, Krueger-Burg D, Hammer M, Hsiao HH, Laskowski PR, Dyck L, Puche AC, Sassoè-Pognetto M, Chua JJE, Urlaub H, Jahn O, Brose N, Poulopoulos A. Region-Specific Phosphorylation Determines Neuroligin-3 Localization to Excitatory Versus Inhibitory Synapses. Biol Psychiatry 2024; 96:815-828. [PMID: 38154503 PMCID: PMC11209832 DOI: 10.1016/j.biopsych.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liam P Tuffy
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Annarita Patrizi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Kalina Dimova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Cheryl Brandenburg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea J Romanowski
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julia R Whitten
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Colin D Robertson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Saovleak N Khim
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Garrett W Crutcher
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Matthieu Hammer
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - He-Hsuan Hsiao
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Pawel R Laskowski
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lydia Dyck
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - John J E Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
5
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Hahn J, Monavarfeshani A, Qiao M, Kao AH, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Wekselblatt JB, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 2023; 624:415-424. [PMID: 38092908 PMCID: PMC10719112 DOI: 10.1038/s41586-023-06638-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 12/17/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- LinkedIn, Mountain View, CA, USA
| | - Allison H Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Joseph B Wekselblatt
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Robert J Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joshua T Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute,Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Center for Computational Biology, Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M. Neuronal wiring diagram of an adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546656. [PMID: 37425937 PMCID: PMC10327113 DOI: 10.1101/2023.06.27.546656] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×107 chemical synapses between ~130,000 neurons reconstructed from a female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Eyewire, Boston, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Will Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Chris S. Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Kai Kuehner
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | - Ryan Morey
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | | | | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Eyewire, Boston, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, USA
| | - J. Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
- Harvard Medical School, Boston, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, USA
| | | | - Davi D. Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, USA
| | - Gregory S.X.E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H. Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
- Computer Science Department, Princeton University, Princeton, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, USA
| | | |
Collapse
|
8
|
Hahn J, Monavarfeshani A, Qiao M, Kao A, Kölsch Y, Kumar A, Kunze VP, Rasys AM, Richardson R, Baier H, Lucas RJ, Li W, Meister M, Trachtenberg JT, Yan W, Peng YR, Sanes JR, Shekhar K. Evolution of neuronal cell classes and types in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536039. [PMID: 37066415 PMCID: PMC10104162 DOI: 10.1101/2023.04.07.536039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs (Baden et al., 2020). One might expect that retinal cell types evolved to accommodate these varied needs, but this has not been systematically studied. Here, we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a teleost fish, a bird, a reptile and a lamprey. Molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells [RGCs] and Muller glia) is striking, with transcriptomic differences across species correlated with evolutionary distance. Major subclasses are also conserved, whereas variation among types within classes or subclasses is more pronounced. However, an integrative analysis revealed that numerous types are shared across species based on conserved gene expression programs that likely trace back to the common ancestor of jawed vertebrates. The degree of variation among types increases from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified mammalian orthologs of midget RGCs, which comprise >80% of RGCs in the human retina, subserve high-acuity vision, and were believed to be primate-specific (Berson, 2008); in contrast, the mouse orthologs comprise <2% of mouse RGCs. Projections both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.
Collapse
Affiliation(s)
- Joshua Hahn
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Mu Qiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allison Kao
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yvonne Kölsch
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ayush Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vincent P Kunze
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley M. Rasys
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rose Richardson
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Robert J. Lucas
- Division of Neuroscience and Centre for Biological Timing, Faculty of Biology Medicine & Health, University of Manchester, Upper Brook Street, Manchester M13 9PT, UK
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus Meister
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joshua T. Trachtenberg
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095 United States
| | - Joshua R. Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA 02138, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Vision Science Graduate Group, Center for Computational Biology, Biophysics Graduate Group, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Solomon SG, Janbon H, Bimson A, Wheatcroft T. Visual spatial location influences selection of instinctive behaviours in mouse. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230034. [PMID: 37122945 PMCID: PMC10130721 DOI: 10.1098/rsos.230034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Visual stimuli can elicit instinctive approach and avoidance behaviours. In mouse, vision is known to be important for both avoidance of an overhead threat and approach toward a potential terrestrial prey. The stimuli used to characterize these behaviours, however, vary in both spatial location (overhead or near the ground plane) and visual feature (rapidly expanding disc or slowly moving disc). We therefore asked how mice responded to the same visual features presented in each location. We found that a looming black disc induced escape behaviour when presented overhead or to the side of the animal, but the escapes produced by side-looms were less vigorous and often preceded by freezing behaviour. Similarly, small moving discs induced freezing behaviour when presented overhead or to the side of the animal, but side sweeps also elicited approach behaviours, such that mice explored the area of the arena near where the stimulus had been presented. Our observations therefore show that mice combine cues to the location and features of visual stimuli when selecting among potential behaviours.
Collapse
Affiliation(s)
- Samuel G. Solomon
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Hadrien Janbon
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Adam Bimson
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Thomas Wheatcroft
- Institute of Behavioural Neuroscience and Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
10
|
Szarka G, Hoffmann G, Kovács-Öller T, Völgyi B. Serotonin is a gap junction-permeable neuronal tracer in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1151024. [PMID: 38983061 PMCID: PMC11182087 DOI: 10.3389/fopht.2023.1151024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 07/11/2024]
Abstract
Introduction Gap junctions are dynamically modulated bridges allowing the transcellular passage of ions and small molecules with a molecular mass of up to 1 kDa, a mechanism utilized for molecular communication purposes by living cells. This same mechanism is also exploited by scientists to reveal the existence of gap junction contacts by the cell-to-cell movement of tracers. However, multiple labeling experiments require the availability of multiple gap junction-permeable tracers. Methods To this end, we utilized the well-known transient OFF alpha retinal ganglion cell (RGC)-coupled array as a model system to study and compare the transjunctional movement of neurobiotin (NB), a commonly used tracer, and serotonin, a recently identified tracer. Results Although the transjunctional movement of serotonin has been established in cell cultures, here we show, for the first time, that serotonin is also a potent tracer in in vitro tissue. In addition, serotonin is lighter than the classical gap junction-permeable NB, and thus, we expected that tracer movement would be comparable to or better than that of serotonin. We found that intracellular serotonin injections result in the labeling of the coupled transient OFF alpha RGC array very similar to those of the classical NB-labeled arrays. Both serotonin and NB-injected transient OFF alpha RGCs displayed the well-known pattern with coupled RGCs and a cohort of coupled wide-field amacrine cells (ACs). Discussion By using morphological characteristics, we confirm that the serotonin and the NB-coupled AC arrays are identical, and thereby confirm that serotonin is a potent gap junction-permeable tracer and can be readily used as an alternative to NB in in vitro tissue. Moreover, serotonin can be utilized in parallel with other dyes or tracers, enabling the use of multiple labels in the same material.
Collapse
Affiliation(s)
- Gergely Szarka
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Comparative Anatomy and Developmental Biology, University of Pécs, Pécs, Hungary
- Center for Neuroscience, University of Pécs, Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, Pécs, Hungary
| |
Collapse
|
11
|
Sladek AL, Thoreson WB. Using optogenetics to dissect rod inputs to OFF ganglion cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1146785. [PMID: 37426783 PMCID: PMC10327572 DOI: 10.3389/fopht.2023.1146785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Light responses of rod photoreceptor cells traverse the retina through three pathways. The primary pathway involves synapses from rods to ON-type rod bipolar cells with OFF signals reaching retinal ganglion cells (RGCs) via sign-inverting glycinergic synapses. Secondly, rod signals can enter cones through gap junctions. Finally, rods can synapse directly onto cone OFF bipolar cells. Methods To analyze these pathways, we obtained whole cell recordings from OFF-type α RGCs in mouse retinas while expressing channelrhodopsin-2 in rods and/or cones. Results Optogenetic stimulation of rods or cones evoked large fast currents in OFF RGCs. Blocking the primary rod pathway with L-AP4 and/or strychnine reduced rod-driven optogenetic currents in OFF RGCs by ~1/3. Blocking kainate receptors of OFF cone bipolar cells suppressed both rod- and cone-driven optogenetic currents in OFF RGCs. Inhibiting gap junctions between rods and cones with mecloflenamic acid or quinpirole reduced rod-driven responses in OFF RGCs. Eliminating the exocytotic Ca2+ sensor, synaptotagmin 1 (Syt1), from cones abolished cone-driven optogenetic responses in RGCs. Rod-driven currents were not significantly reduced after isolating the secondary pathway by eliminating Syt1 and synaptotagmin 7 (Syt7) to block synaptic release from rods. Eliminating Syt1 from both rods and cones abolished responses to optogenetic stimulation. In Cx36 KO retinas lacking rod-cone gap junctions, optogenetic activation of rods evoked small and slow responses in most OFF RGCs suggesting rod signals reached them through an indirect pathway. Two OFF cells showed faster responses consistent with more direct input from cone OFF bipolar cells. Discussion These data show that the secondary rod pathway supports robust inputs into OFF α RGCs and suggests the tertiary pathway recruits both direct and indirect inputs.
Collapse
Affiliation(s)
- Asia L. Sladek
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
12
|
Yu WQ, Swanstrom R, Sigulinsky CL, Ahlquist RM, Knecht S, Jones BW, Berson DM, Wong RO. Distinctive synaptic structural motifs link excitatory retinal interneurons to diverse postsynaptic partner types. Cell Rep 2023; 42:112006. [PMID: 36680773 PMCID: PMC9946794 DOI: 10.1016/j.celrep.2023.112006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Neurons make converging and diverging synaptic connections with distinct partner types. Whether synapses involving separate partners demonstrate similar or distinct structural motifs is not yet well understood. We thus used serial electron microscopy in mouse retina to map output synapses of cone bipolar cells (CBCs) and compare their structural arrangements across bipolar types and postsynaptic partners. Three presynaptic configurations emerge-single-ribbon, ribbonless, and multiribbon synapses. Each CBC type exploits these arrangements in a unique combination, a feature also found among rabbit ON CBCs. Though most synapses are dyads, monads and triads are also seen. Altogether, mouse CBCs exhibit at least six motifs, and each CBC type uses these in a stereotypic pattern. Moreover, synapses between CBCs and particular partner types appear biased toward certain motifs. Our observations reveal synaptic strategies that diversify the output within and across CBC types, potentially shaping the distinct functions of retinal microcircuits.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rachael Swanstrom
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,The authors contributed equally
| | - Crystal L. Sigulinsky
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA,The authors contributed equally
| | - Richard M. Ahlquist
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195 WA, USA,The authors contributed equally
| | - Sharm Knecht
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Bryan W. Jones
- Department of Ophthalmology, John A. Moran Vision Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Rachel O. Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA,Lead contact,Correspondence:
| |
Collapse
|
13
|
Huang X, Kim AJ, Acarón Ledesma H, Ding J, Smith RG, Wei W. Visual Stimulation Induces Distinct Forms of Sensitization of On-Off Direction-Selective Ganglion Cell Responses in the Dorsal and Ventral Retina. J Neurosci 2022; 42:4449-4469. [PMID: 35474276 PMCID: PMC9172291 DOI: 10.1523/jneurosci.1391-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Experience-dependent modulation of neuronal responses is a key attribute in sensory processing. In the mammalian retina, the On-Off direction-selective ganglion cell (DSGC) is well known for its robust direction selectivity. However, how the On-Off DSGC light responsiveness dynamically adjusts to the changing visual environment is underexplored. Here, we report that On-Off DSGCs tuned to posterior motion direction [i.e. posterior DSGCs (pDSGCs)] in mice of both sexes can be transiently sensitized by prior stimuli. Notably, distinct sensitization patterns are found in dorsal and ventral pDSGCs. Although responses of both dorsal and ventral pDSGCs to dark stimuli (Off responses) are sensitized, only dorsal cells show the sensitization of responses to bright stimuli (On responses). Visual stimulation to the dorsal retina potentiates a sustained excitatory input from Off bipolar cells, leading to tonic depolarization of pDSGCs. Such tonic depolarization propagates from the Off to the On dendritic arbor of the pDSGC to sensitize its On response. We also identified a previously overlooked feature of DSGC dendritic architecture that can support dendritic integration between On and Off dendritic layers bypassing the soma. By contrast, ventral pDSGCs lack a sensitized tonic depolarization and thus do not exhibit sensitization of their On responses. Our results highlight a topographic difference in Off bipolar cell inputs underlying divergent sensitization patterns of dorsal and ventral pDSGCs. Moreover, substantial crossovers between dendritic layers of On-Off DSGCs suggest an interactive dendritic algorithm for processing On and Off signals before they reach the soma.SIGNIFICANCE STATEMENT Visual neuronal responses are dynamically influenced by the prior visual experience. This form of plasticity reflects the efficient coding of the naturalistic environment by the visual system. We found that a class of retinal output neurons, On-Off direction-selective ganglion cells, transiently increase their responsiveness after visual stimulation. Cells located in dorsal and ventral retinas exhibit distinct sensitization patterns because of different adaptive properties of Off bipolar cell signaling. A previously overlooked dendritic morphologic feature of the On-Off direction-selective ganglion cell is implicated in the cross talk between On and Off pathways during sensitization. Together, these findings uncover a topographic difference in the adaptive encoding of upper and lower visual fields and the underlying neural mechanism in the dorsal and ventral retinas.
Collapse
Affiliation(s)
- Xiaolin Huang
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, Illinois 60637
| | - Alan Jaehyun Kim
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
| | - Héctor Acarón Ledesma
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637
| | - Jennifer Ding
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, Illinois 60637
| | - Robert G Smith
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
14
|
Zapp SJ, Nitsche S, Gollisch T. Retinal receptive-field substructure: scaffolding for coding and computation. Trends Neurosci 2022; 45:430-445. [DOI: 10.1016/j.tins.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
|
15
|
Ganczer A, Szarka G, Balogh M, Hoffmann G, Tengölics ÁJ, Kenyon G, Kovács-Öller T, Völgyi B. Transience of the Retinal Output Is Determined by a Great Variety of Circuit Elements. Cells 2022; 11:cells11050810. [PMID: 35269432 PMCID: PMC8909309 DOI: 10.3390/cells11050810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Retinal ganglion cells (RGCs) encrypt stimulus features of the visual scene in action potentials and convey them toward higher visual centers in the brain. Although there are many visual features to encode, our recent understanding is that the ~46 different functional subtypes of RGCs in the retina share this task. In this scheme, each RGC subtype establishes a separate, parallel signaling route for a specific visual feature (e.g., contrast, the direction of motion, luminosity), through which information is conveyed. The efficiency of encoding depends on several factors, including signal strength, adaptational levels, and the actual efficacy of the underlying retinal microcircuits. Upon collecting inputs across their respective receptive field, RGCs perform further analysis (e.g., summation, subtraction, weighting) before they generate the final output spike train, which itself is characterized by multiple different features, such as the number of spikes, the inter-spike intervals, response delay, and the rundown time (transience) of the response. These specific kinetic features are essential for target postsynaptic neurons in the brain in order to effectively decode and interpret signals, thereby forming visual perception. We review recent knowledge regarding circuit elements of the mammalian retina that participate in shaping RGC response transience for optimal visual signaling.
Collapse
Affiliation(s)
- Alma Ganczer
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Márton Balogh
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Jonatán Tengölics
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Garrett Kenyon
- Los Alamos National Laboratory, Computer & Computational Science Division, Los Alamos, NM 87545, USA;
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (A.G.); (G.S.); (M.B.); (G.H.); (Á.J.T.); (T.K.-Ö.)
- Department of Experimental Zoology and Neurobiology, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP 2 Retinal Electrical Synapses Research Group, H-7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
16
|
Camerino MJ, Engerbretson IJ, Fife PA, Reynolds NB, Berria MH, Doyle JR, Clemons MR, Gencarella MD, Borghuis BG, Fuerst PG. OFF bipolar cell density varies by subtype, eccentricity, and along the dorsal ventral axis in the mouse retina. J Comp Neurol 2021; 529:1911-1925. [PMID: 33135176 PMCID: PMC8009814 DOI: 10.1002/cne.25064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
The neural retina is organized along central-peripheral, dorsal-ventral, and laminar planes. Cellular density and distributions vary along the central-peripheral and dorsal-ventral axis in species including primates, mice, fish, and birds. Differential distribution of cell types within the retina is associated with sensitivity to different types of damage that underpin major retinal diseases, including macular degeneration and glaucoma. Normal variation in retinal distribution remains unreported for multiple cell types in widely used research models, including mouse. Here we map the distribution of all known OFF bipolar cell (BC) populations and horizontal cells. We report significant variation in the distribution of OFF BC populations and horizontal cells along the dorsal-ventral and central-peripheral axes of the retina. Distribution patterns are much more pronounced for some populations of OFF BC cells than others and may correspond to the cell type's specialized functions.
Collapse
Affiliation(s)
- Michael J Camerino
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Ian J Engerbretson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Parker A Fife
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Nathan B Reynolds
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mikel H Berria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jamie R Doyle
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Mellisa R Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Michael D Gencarella
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisille, Kentuky, USA
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho, USA
| |
Collapse
|
17
|
Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 2021; 109:1692-1706.e8. [PMID: 33798407 PMCID: PMC8153253 DOI: 10.1016/j.neuron.2021.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
The retina dissects the visual scene into parallel information channels, which extract specific visual features through nonlinear processing. The first nonlinear stage is typically considered to occur at the output of bipolar cells, resulting from nonlinear transmitter release from synaptic terminals. In contrast, we show here that bipolar cells themselves can act as nonlinear processing elements at the level of their somatic membrane potential. Intracellular recordings from bipolar cells in the salamander retina revealed frequent nonlinear integration of visual signals within bipolar cell receptive field centers, affecting the encoding of artificial and natural stimuli. These nonlinearities provide sensitivity to spatial structure below the scale of bipolar cell receptive fields in both bipolar and downstream ganglion cells and appear to arise at the excitatory input into bipolar cells. Thus, our data suggest that nonlinear signal pooling starts earlier than previously thought: that is, at the input stage of bipolar cells. Some retinal bipolar cells represent visual contrast in a nonlinear fashion These bipolar cells also nonlinearly integrate visual signals over space The spatial nonlinearity affects the encoding of natural stimuli by bipolar cells The nonlinearity results from feedforward input, not from feedback inhibition
Collapse
|
18
|
Abstract
A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina-originally viewed as homogenous-in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond.
Collapse
Affiliation(s)
- Alina Sophie Heukamp
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Rebekah Anne Warwick
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| | - Michal Rivlin-Etzion
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel; , ,
| |
Collapse
|
19
|
Sladek AL, Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front Synaptic Neurosci 2020; 12:30. [PMID: 32792936 PMCID: PMC7393603 DOI: 10.3389/fnsyn.2020.00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
AMPA-type glutamate receptors in the CNS are normally impermeable to Ca2+, but the aberrant expression of Ca2+-permeable AMPA receptors (CP-AMPARs) occurs in pathological conditions such as ischemia or epilepsy, or degenerative diseases such as ALS. Here, we show that select populations of retinal ganglion cells (RGCs) similarly express high levels of CP-AMPARs in a mouse model of glaucoma. CP-AMPAR expression increased dramatically in both On sustained alpha and Off transient alpha RGCs, and this increase was prevented by genomic editing of the GluA2 subunit. On sustained alpha RGCs with elevated CP-AMPAR levels displayed profound synaptic depression, which was reduced by selectively blocking CP-AMPARs, buffering Ca2+ with BAPTA, or with the CB1 antagonist AM251, suggesting that depression was mediated by a retrograde transmitter which might be triggered by the influx of Ca2+ through CP-AMPARs. Thus, glaucoma may alter the composition of AMPARs and depress excitatory synaptic input in select populations of RGCs.
Collapse
Affiliation(s)
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
20
|
Ran Y, Huang Z, Baden T, Schubert T, Baayen H, Berens P, Franke K, Euler T. Type-specific dendritic integration in mouse retinal ganglion cells. Nat Commun 2020; 11:2101. [PMID: 32355170 PMCID: PMC7193577 DOI: 10.1038/s41467-020-15867-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Neural computation relies on the integration of synaptic inputs across a neuron’s dendritic arbour. However, it is far from understood how different cell types tune this process to establish cell-type specific computations. Here, using two-photon imaging of dendritic Ca2+ signals, electrical recordings of somatic voltage and biophysical modelling, we demonstrate that four morphologically distinct types of mouse retinal ganglion cells with overlapping excitatory synaptic input (transient Off alpha, transient Off mini, sustained Off, and F-mini Off) exhibit type-specific dendritic integration profiles: in contrast to the other types, dendrites of transient Off alpha cells were spatially independent, with little receptive field overlap. The temporal correlation of dendritic signals varied also extensively, with the highest and lowest correlation in transient Off mini and transient Off alpha cells, respectively. We show that differences between cell types can likely be explained by differences in backpropagation efficiency, arising from the specific combinations of dendritic morphology and ion channel densities. Neurons compute by integrating synaptic inputs across their dendritic arbor. Here, the authors show that distinct cell-types of mouse retinal ganglion cells that receive similar excitatory inputs have different biophysical mechanisms of input integration to generate their unique response tuning.
Collapse
Affiliation(s)
- Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ziwei Huang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Harald Baayen
- Department of Linguistics, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute of Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany. .,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Baden T, Euler T, Berens P. Understanding the retinal basis of vision across species. Nat Rev Neurosci 2019; 21:5-20. [PMID: 31780820 DOI: 10.1038/s41583-019-0242-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision.
Collapse
Affiliation(s)
- Tom Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK. .,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Simmons AB, Camerino MJ, Clemons MR, Sukeena JM, Bloomsburg S, Borghuis BG, Fuerst PG. Increased density and age-related sharing of synapses at the cone to OFF bipolar cell synapse in the mouse retina. J Comp Neurol 2019; 528:1140-1156. [PMID: 31721194 DOI: 10.1002/cne.24810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 11/09/2022]
Abstract
Neural circuits in the adult nervous system are characterized by stable, cell type-specific patterns of synaptic connectivity. In many parts of the nervous system these patterns are established during development through initial over-innervation by multiple pre- or postsynaptic targets, followed by a process of refinement that takes place during development and is in many instances activity dependent. Here we report on an identified synapse in the mouse retina, the cone photoreceptor➔type 4 bipolar cell (BC4) synapse, and show that its development is distinctly different from the common motif of over-innervation followed by refinement. Indeed, the majority of cones are contacted by single BC4 throughout development, but are contacted by multiple BC4s through ongoing dendritic elaboration between 1 and 6 months of age-well into maturity. We demonstrate that cell density drives contact patterns downstream of single cones in Bax null mice and may serve to maintain constancy in both the dendritic and axonal projective field.
Collapse
Affiliation(s)
- Aaron B Simmons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | | | - Mellisa R Clemons
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Joshua M Sukeena
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Samuel Bloomsburg
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville
| | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho
| |
Collapse
|
23
|
Okawa H, Yu WQ, Matti U, Schwarz K, Odermatt B, Zhong H, Tsukamoto Y, Lagnado L, Rieke F, Schmitz F, Wong ROL. Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system. Nat Commun 2019; 10:2167. [PMID: 31092821 PMCID: PMC6520400 DOI: 10.1038/s41467-019-10123-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/10/2019] [Indexed: 11/11/2022] Open
Abstract
Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses. However, synapse density on ON-alpha RGCs was unchanged in mice lacking ribbons (ribeye knockout). Wildtype BCs make both ribbon-containing and ribbon-free synapses with these GCs even at maturity. Ribbon assembly and cone BC-RGC synapse maintenance are thus regulated independently. Despite the absence of synaptic ribbons, RGCs continued to respond robustly to light stimuli, although quantitative examination of the responses revealed reduced frequency and contrast sensitivity.
Collapse
Affiliation(s)
- Haruhisa Okawa
- Department of Biological Structure, University of Washington, Seattle, 98195, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, 98195, WA, USA
| | - Ulf Matti
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, 66421, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, 66421, Germany
| | | | - Haining Zhong
- Vollum institute, Oregon Health and Science University, Portland, 97239, OR, USA
| | - Yoshihiko Tsukamoto
- Department of Biology, Hyogo College of Medicine, Nishinomiya, 663-8501, Hyogo, Japan
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195, WA, USA
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, 66421, Germany
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|