1
|
González JT, Scharfman OH, Zhu W, Kasamoto J, Gould V, Perry RJ, Higgins-Chen AT. Transcriptomic and epigenomic signatures of liver metabolism and insulin sensitivity in aging mice. Mech Ageing Dev 2025; 225:112068. [PMID: 40324540 DOI: 10.1016/j.mad.2025.112068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Age-related declines in insulin sensitivity and glucose metabolism contribute to metabolic disease. Despite the liver's central role in glucose homeostasis, a comprehensive phenotypic characterization and concurrent molecular analysis of insulin resistance and metabolic dysfunction in the aging liver is lacking. We characterized hepatic insulin resistance and mitochondrial metabolic defects through metabolic cage, hyperinsulinemic-euglycemic clamp, and tracer studies paired with transcriptomic and DNA methylation analyses in young and aged male mice. Aged mice exhibited benchmark measures of whole body and liver insulin resistance. Aged mice showed lower pyruvate dehydrogenase flux, decreased fatty acid oxidation and citrate synthase fluxes, and increased pyruvate carboxylase flux under insulin-stimulated conditions. Molecular analysis revealed age-related changes in metabolic genes Pck1, Socs3, Tbc1d4, and Enpp1. Unsupervised network analysis identified an intercorrelated phenotype module (ME-Glucose), RNA module, and DNA methylation module. The DNA methylation module was enriched for lipid metabolism pathways and TCF-1 binding, while the RNA module was enriched for MZF-1 binding and regulation by miR-155-5p. Protein-protein interaction network analysis revealed interactions between module genes and canonical metabolic pathways, highlighting genes including Ets1, Ppp1r3b, and Enpp3. This study reveals novel genes underlying age-related hepatic insulin resistance as potential targets for metabolic interventions to promote healthy aging.
Collapse
Affiliation(s)
- John T González
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Olivia H Scharfman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wanling Zhu
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Department of Endocrinology & Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Victoria Gould
- Altos Labs, Institute of Computation, San Diego, CA 92114, USA
| | - Rachel J Perry
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Department of Endocrinology & Metabolism, Yale School of Medicine, New Haven, CT, USA.
| | - Albert T Higgins-Chen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Huang Z, Liu C, Zhao X, Guo Y. The effect of elevated levels of the gut metabolite TMAO on glucose metabolism after sleeve gastrectomy. Arch Physiol Biochem 2025:1-10. [PMID: 40202719 DOI: 10.1080/13813455.2025.2489721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/04/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Purpose:Bariatric surgery can effectively alleviate obesity and diabetes by regulation of the gut microbiota. This study aimed to investigate the change in the gut microbiota metabolite TMAO and to explore its effect on glucose metabolism after sleeve gastrectomy (SG). Materials and methods:Diet-induced obesity mouse models were established, and the mice were randomly divided into four groups: an SG group, a sham-operated group pair-fed with the SG group (PF), a sham-operated group fed ad libitum (AL), and a lean control group (C). At 10 weeks post-surgery, the changes in glycogen content of liver, gut microbiota and the level of FMO3 in the liver were evaluated, and their correlation with TMAO production was analysed. The expression levels of the TMAO/PERK/FOXO1 pathway and the gluconeogenic genes G6PC and PCK1 were measured. Results:At 10 weeks post-surgery, hepatocyte glycogen levels were restored, and serum TMA and TMAO levels were significantly increased. Faecal metagenomic sequencing results showed that the abundances of Ruminococcaceae and Lachnospiraceae, which were positively correlated with TMAO production, were significantly increased after surgery. While the changes in FMO3, the key enzyme producing TMAO in the liver was found decreased significantly after SG. The expression levels of the TMAO/PERK/FOXO1 pathway and the gluconeogenic genes G6PC and PCK1 were measured. Inconsistent with the changing trend of TMAO, the expression of PERK, FOXO1, PCK, and G6PC significantly decreased after SG. Conclusions:SG can significantly reduce obesity and restore glucose metabolism. After surgery, TMAO metabolites increased in a microbiota-dependent manner.
Collapse
Affiliation(s)
- Zhiping Huang
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Chaoqian Liu
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiang Zhao
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Guo
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Gupta S, Afzal M, Agrawal N, Almalki WH, Rana M, Gangola S, Chinni SV, Kumar K B, Ali H, Singh SK, Jha SK, Gupta G. Harnessing the FOXO-SIRT1 axis: insights into cellular stress, metabolism, and aging. Biogerontology 2025; 26:65. [PMID: 40011269 DOI: 10.1007/s10522-025-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Aging and metabolic disorders share intricate molecular pathways, with the Forkhead box O (FOXO)- Sirtuin 1 (SIRT1) axis emerging as a pivotal regulator of cellular stress adaptation, metabolic homeostasis, and longevity. This axis integrates nutrient signaling with oxidative stress defence, modulating glucose and lipid metabolism, mitochondrial function, and autophagy to maintain cellular stability. FOXO transcription factors, regulated by SIRT1 deacetylation, enhance antioxidant defence mechanisms, activating genes such as superoxide dismutase (SOD) and catalase, thereby counteracting oxidative stress and metabolic dysregulation. Recent evidence highlights the dynamic role of reactive oxygen species (ROS) as secondary messengers in redox signaling, influencing FOXO-SIRT1 activity in metabolic adaptation. Additionally, key redox-sensitive regulators such as nuclear factor erythroid 2-related factor 2 (Nrf2) and Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) interact with this pathway, orchestrating mitochondrial biogenesis and adaptive stress responses. Pharmacological interventions, including alpha-lipoic acid (ALA), resveratrol, curcumin and NAD+ precursors, exhibit therapeutic potential by enhancing insulin sensitivity, reducing oxidative burden, and restoring metabolic balance. This review synthesizes current advancements in FOXO-SIRT1 regulation, its emerging role in redox homeostasis, and its therapeutic relevance, offering insights into future strategies for combating metabolic dysfunction and aging-related diseases.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Khandwa Road, Village Umrikheda, Near Tollbooth, Indore, Madhya Pradesh, 452020, India
| | - Muhammad Afzal
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gangola
- Department of Microbiology, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, 42610, Jenjarom, Selangor, Malaysia
| | - Benod Kumar K
- Department of General Surgery, Consultant Head and Neck Surgical Oncology, Dr.D.Y.Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, New Delhi, India
- Centre for Himalayan Studies, University of Delhi, Delhi, 110007, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
4
|
Ren X, Teng Y, Xie K, He X, Chen G, Zhang K, Liao Q, Zhang J, Zhou X, Zhu Y, Song W, Lin Y, Zhang Y, Xu Z, Maeshige N, Liang X, Su D, Sun P, Ding Y. REG3A secreted by peritumoral acinar cells enhances pancreatic ductal adenocarcinoma progression via activation of EGFR signaling. Cell Commun Signal 2025; 23:96. [PMID: 39966859 PMCID: PMC11837727 DOI: 10.1186/s12964-025-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Regenerating family member 3A (REG3A) is involved in the development of multiple malignant tumors, including pancreatic ductal adenocarcinoma (PDAC). However, any role of REG3A in PDAC remains controversial due to its unclear tissue localization or direct receptors, and complex downstream signal transductions. METHODS Morphological analysis and public multi-omics data retrieval were was utilized to elucidate the tissue localization of REG3A in PDAC. To ascertain the pro-oncogenic role of secreted REG3A, experiments were conducted using in vitro PDAC cell lines and in vivo tumor formation assays in nude mice. A battery of investigative techniques, including RNA sequencing, phospho-kinase arrays, western blot analyses, in silico docking simulations, gene truncation strategies, and co-immunoprecipitation, were employed to delve into the downstream signaling transduction pathways induced by REG3A. RESULTS In this study, we confirmed an association between increased serum levels of REG3A and poor prognosis in patients with PDAC. Morphological staining and bioinformatic analysis showed that REG3A was mainly expressed in peritumoral acinar cells that were spatially close to tumor region, while it was almost negative in PDAC tumor cells. Peritumoral REG3A expression levels, but not tumoral REG3A, were highly correlated with PDAC progression. Further in vitro experiments including RNA sequencing and molecular biological assays revealed that secreted REG3A could directly bind to the epidermal growth factor receptor (EGFR), an important pro-oncogene involved in cellular proliferation, and subsequently activate the downstream mitogen-activated protein kinase (MAPK) signals to promote PDAC tumor cell growth. CONCLUSION Taken together, our data indicated that increased expression of REG3A in peritumoral acinar cells acts as a specific event to indicate PDAC progression, and verified EGFR as a possible target of REG3A, providing mechanistic insights into the role of REG3A, the diagnostic method and therapeutic strategy of PDAC.
Collapse
Affiliation(s)
- Xiaojing Ren
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Teng
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao He
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gang Chen
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kaini Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qingyi Liao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaohang Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yating Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenyu Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yuege Lin
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Zhang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, 211166, China.
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Ding
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Lim EB, Cho YS. Identification of genetic loci enriched in obese or lean T2D cases in the Korean population. Genes Genomics 2025; 47:235-243. [PMID: 39693004 DOI: 10.1007/s13258-024-01602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Obesity causes many complex diseases including type 2 diabetes (T2D). Obesity increases the risk of T2D in Europeans, but there are many non-obese (lean) T2D patients in East Asia. OBJECTIVE To discover genetic factors enriched in obese or lean T2D patients, we conducted a genome-wide association (GWA) analysis for T2D stratified by BMI in the Korean population. METHODS In the discovery stage, 654 and 247 individuals classified as obese (BMI > 25) and lean (BMI < 23) T2D patients, respectively, were compared with 3,842 control subjects for GWA analysis. Several BMI-stratified T2D variants detected in the discovery stage were further tested in the replication stage, which included 402 obese and 220 lean T2D cases, and 3,615 controls. RESULTS Meta-analysis combining the discovery and replication stages detected two variants with genome-wide significance: rs2356138 [P = 2.8 × 10-8, OR = 2.06 (1.59-2.65)] in obese T2D subjects and rs9295478 [P = 2.5 × 10-9, OR = 1.61 (1.38-1.88)] in lean ones. The SNP rs9295478 is located in CDKAL1, a well-known T2D gene previously identified in several GWA studies. Meanwhile, the SNP rs2356138 is a previously unknown variant located in PKP4. CONCLUSION We discovered genetic loci enriched in obese or lean T2D patients in the Korean population. Our findings should facilitate more effective control of T2D in Koreans.
Collapse
Affiliation(s)
- Eun Bi Lim
- Department of Biomedical Science, Hallym University, Chuncheon, Gangwon State, 24252, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Gangwon State, 24252, Republic of Korea.
- Department of Neuroscience, Hallym University College of Medicine, Chuncheon, Gangwon State, 24252, Republic of Korea.
- GenoMax Co., Ltd, Humanities Building 2, 4314-4, Hallymdaehakgil 1, Chuncheon, Gangwon State, Republic of Korea.
| |
Collapse
|
6
|
Hsieh J, Danis EP, Owens CR, Parrish JK, Nowling NL, Wolin AR, Purdy SC, Rosenbaum SR, Ivancevic AM, Chuong EB, Ford HL, Jedlicka P. Dependence of PAX3-FOXO1 chromatin occupancy on ETS1 at important disease-promoting genes exposes new targetable vulnerability in Fusion-Positive Rhabdomyosarcoma. Oncogene 2025; 44:19-29. [PMID: 39448867 DOI: 10.1038/s41388-024-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Rhabdomyosarcoma (RMS), a malignancy of impaired myogenic differentiation, is the most common soft tissue pediatric cancer. PAX3-FOXO1 oncofusions drive the majority of the clinically more aggressive fusion-positive rhabdomyosarcoma (FP-RMS). Recent studies have established an epigenetic basis for PAX3-FOXO1-driven oncogenic processes. However, details of PAX3-FOXO1 epigenetic mechanisms, including interactions with, and dependence on, other chromatin and transcription factors, are incompletely understood. We previously identified a novel disease-promoting epigenetic axis in RMS, involving the histone demethylase KDM3A and the ETS1 transcription factor, and demonstrated that this epigenetic axis interfaces with PAX3-FOXO1 both phenotypically and transcriptomically, including co-regulation of biological processes and genes important to FP-RMS progression. In this study, we demonstrate that KDM3A and ETS1 colocalize with PAX3-FOXO1 to enhancers of important disease-promoting genes in FP-RMS, including FGF8, IL4R, and MEST, as well as PODXL, which we define herein as a new FP-RMS-promoting gene. We show that ETS1, which is induced by both PAX3-FOXO1 and KDM3A, exists in complex with PAX3-FOXO1, and augments PAX3-FOXO1 chromatin occupancy. We further show that the PAX3-FOXO1/ETS1 complex can be disrupted by the clinically relevant small molecule inhibitor YK-4-279. YK-4-279 displaces PAX3-FOXO1 from chromatin and interferes with PAX3-FOXO1-dependent gene regulation, resulting in potent inhibition of growth and invasive properties in FP-RMS, along with downregulation of FGF8, IL4R, MEST and PODXL expression. We additionally show that, in some FP-RMS, KDM3A also increases PAX3-FOXO1 levels. Together, our studies illuminate mechanisms of action of the KDM3A/ETS1 regulatory module, and reveal novel targetable mechanisms of PAX3-FOXO1 chromatin complex regulation, in FP-RMS.
Collapse
Affiliation(s)
- Joseph Hsieh
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
- Department of Pathology, UC-AMC, Aurora, CO, USA
| | - Etienne P Danis
- Department of Biomedical Informatics, UC-AMC, Aurora, CO, USA
- University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | | | | | | | - Arthur R Wolin
- Department of Pharmacology, UC-AMC, Aurora, CO, USA
- Molecular Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
| | - Stephen Connor Purdy
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
- Department of Pharmacology, UC-AMC, Aurora, CO, USA
| | | | - Atma M Ivancevic
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
- University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
- Department of Pharmacology, UC-AMC, Aurora, CO, USA
- Molecular Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
| | - Paul Jedlicka
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA.
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA.
- Department of Pathology, UC-AMC, Aurora, CO, USA.
- University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| |
Collapse
|
7
|
Li G, Hu Y, Zhao H, Peng Z, Shang X, Zhang J, Xie K, Li M, Zhou X, Zhou Q, Li K, Zhou F, Wang H, Xu Z, Liu J, Sun P. Slow Metabolism-Driven Amplification of Hepatic PPARγ Agonism Mediates Benzbromarone-Induced Obesity-Specific Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409126. [PMID: 39611414 PMCID: PMC11744575 DOI: 10.1002/advs.202409126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) are established risk factors for drug-induced liver injury (DILI). The previous study demonstrates that benzbromarone (BBR), a commonly prescribed pharmaceutical agent for managing gout and hyperuricemia, exacerbates hepatic steatosis and liver injury specifically in obese individuals. However, the precise mechanism underpinning this adverse effect remains incompletely elucidated. Given the significance of BBR and its analogs in anti-gout/hyperuricemia drug discovery, elucidating the mechanism by which BBR exacerbates obesity-specific DILI warrants further investigation. In this study, through a combined multi-omics, pharmacological, and pharmacokinetic approaches, it is found that BBR-induced obesity-specific DILI is primarily through the potentiation of peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways. Further in vivo and in vitro pharmacokinetic analyses reveal that obese db/db mice exhibited a diminished capacity to metabolize BBR in their livers. This reduction leads to prolonged retention of BBR, subsequently resulting in chronic and sustained hepatic PPARγ agonism. This study demonstrates that a slow metabolism-driven amplification of hepatic PPARγ agonism mediates BBR-induced obesity-specific hepatic steatosis and subsequent DILI, which also emphasizes the importance of the reduced hepatic drug metabolism capacity in patients with obesity or pre-existing NAFLD in both clinical practice and drug discovery processes.
Collapse
Affiliation(s)
- Guanting Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Yourong Hu
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Han Zhao
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Ziyu Peng
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Xin Shang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Jia Zhang
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Kunxin Xie
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Meiwei Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Xiaohang Zhou
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Qinyao Zhou
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Kai Li
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Heyao Wang
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Zhijian Xu
- State Key Laboratory of Drug ResearchDrug Discovery and Design CenterShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Peng Sun
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterKey Laboratory of Human Functional Genomics of Jiangsu ProvinceDepartment of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjing211166China
| |
Collapse
|
8
|
Malladi N, Lahamge D, Somwanshi BS, Tiwari V, Deshmukh K, Balani JK, Chakraborty S, Alam MJ, Banerjee SK. Paricalcitol attenuates oxidative stress and inflammatory response in the liver of NAFLD rats by regulating FOXO3a and NFκB acetylation. Cell Signal 2024; 121:111299. [PMID: 39004324 DOI: 10.1016/j.cellsig.2024.111299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The lack of therapeutics along with complex pathophysiology made non-alcoholic fatty liver disease (NAFLD) a research hotspot. Studies showed that the deficiency of Vitamin D plays a vital role in NAFLD pathogenesis. While several research studies focused on vitamin D supplementation in NAFLD, there is still a need to understand the regulatory mechanism of direct vitamin D receptor activation in NAFLD. In the present study, we explored the role of direct Vitamin D receptor activation using paricalcitol in choline-deficient high-fat diet-induced NAFLD rat liver and its modulation on protein acetylation. Our results showed that paricalcitol administration significantly reduced the fat accumulation in HepG2 cells and the liver of NAFLD rats. Paricalcitol attenuated the elevated serum level of alanine transaminase, aspartate transaminase, insulin, low-density lipoprotein, triglyceride, and increased high-density lipoprotein in NAFLD rats. Paricalcitol significantly decreased the increased total protein acetylation by enhancing the SIRT1 and SIRT3 expression in NAFLD liver. Further, the study revealed that paricalcitol reduced the acetylation of NFκB and FOXO3a in NAFLD liver along with a decrease in the mRNA expression of IL1β, NFκB, TNFα, and increased catalase and MnSOD. Moreover, total antioxidant activity, glutathione, and catalase were also elevated, whereas lipid peroxidation, myeloperoxidase, and reactive oxygen species levels were significantly decreased in the liver of NAFLD after paricalcitol administration. The study concludes that the downregulation of SIRT1 and SIRT3 in NAFLD liver was associated with an increased acetylated NFκB and FOXO3a. Paricalcitol effectively reversed hepatic inflammation and oxidative stress in NAFLD rats through transcriptional regulation of NFκB and FOXO3a, respectively, by inhibiting their acetylation.
Collapse
Affiliation(s)
- Navya Malladi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Devidas Lahamge
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Balaji Sanjay Somwanshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Kajal Deshmukh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Jagdish Kumar Balani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Samhita Chakraborty
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
9
|
Zhang Y, Cong R, Lv T, Liu K, Chang X, Li Y, Han X, Zhu Y. Islet-resident macrophage-derived miR-155 promotes β cell decompensation via targeting PDX1. iScience 2024; 27:109540. [PMID: 38577099 PMCID: PMC10993184 DOI: 10.1016/j.isci.2024.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic inflammation is critical for the initiation and progression of type 2 diabetes mellitus via causing both insulin resistance and pancreatic β cell dysfunction. miR-155, highly expressed in macrophages, is a master regulator of chronic inflammation. Here we show that blocking a macrophage-derived exosomal miR-155 (MDE-miR-155) mitigates the insulin resistances and glucose intolerances in high-fat-diet (HFD) feeding and type-2 diabetic db/db mice. Lentivirus-based miR-155 sponge decreases the level of miR-155 in the pancreas and improves glucose-stimulated insulin secretion (GSIS) ability of β cells, thus leading to improvements of insulin sensitivities in the liver and adipose tissues. Mechanistically, miR-155 increases its expression in HFD and db/db islets and is released as exosomes by islet-resident macrophages under metabolic stressed conditions. MDE-miR-155 enters β cells and causes defects in GSIS function and insulin biosynthesis via the miR-155-PDX1 axis. Our findings offer a treatment strategy for inflammation-associated diabetes via targeting miR-155.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Rong Cong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Tingting Lv
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Kerong Liu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
Jiang C, Zhang J, Song Y, Song X, Wu H, Jiao R, Li L, Zhang G, Wei D. FOXO1 regulates bovine skeletal muscle cells differentiation by targeting MYH3. Int J Biol Macromol 2024; 260:129643. [PMID: 38253149 DOI: 10.1016/j.ijbiomac.2024.129643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
The growth and development of bovine skeletal muscle and beef yield is closely intertwined. Our previous research found that forkhead box O1 (FOXO1) plays an important role in the regulation of beef muscle formation, but its specific mechanism is still unknown. In this study, we aimed to clarify the regulatory mechanism of FOXO1 in proliferation and differentiation of bovine skeletal muscle cells (BSMCs). The results showed that interfering with FOXO1 can promote proliferation and the cell G1/S phase of BSMCs by up-regulating the expression of PCNA, CDK1, CDK2, CCNA2, CCNB1, CCND1 and CCNE2. Besides, interfering with FOXO1 inhibited the apoptosis of BSMCs by up-regulating the expression of anti-apoptosis gene BCL2, while simultaneously down-regulating the expression of the pro-apoptosis genes BAD and BAX. Inversely, interfering with FOXO1 can promote the differentiation of BSMCs by up-regulating the expression of myogenic differentiation marker genes MYOD, MYOG, MYF5, MYF6 and MYHC. Furthermore, RNA-seq combined with western bolt, immunofluorescence and chromatin immunoprecipitation analysis showed that FOXO1 could regulate BSMCs differentiation process by influencing PI3K-Akt, Relaxin and TGF-beta signaling pathways, and target MYH3 for transcriptional inhibition. In conclusion, this study provides a basis for studying the role and molecular mechanism of FOXO1 in BSMCs.
Collapse
Affiliation(s)
- Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China
| | - Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Ruopu Jiao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Lanlan Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Guijie Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
11
|
Wu S, Qiu C, Ni J, Guo W, Song J, Yang X, Sun Y, Chen Y, Zhu Y, Chang X, Sun P, Wang C, Li K, Han X. M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1. Nat Commun 2024; 15:1646. [PMID: 38388532 PMCID: PMC10883921 DOI: 10.1038/s41467-024-45899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.
Collapse
Affiliation(s)
- Suyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing, 211166, China
| | - Jiahao Ni
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenli Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiyuan Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xingyin Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yulin Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yanjun Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chunxia Wang
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
12
|
Luchtel RA. ETS1 Function in Leukemia and Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:359-378. [PMID: 39017852 DOI: 10.1007/978-3-031-62731-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ETS proto-oncogene 1 (ETS1) is a transcription factor (TF) critically involved in lymphoid cell development and function. ETS1 expression is tightly regulated throughout differentiation and activation in T-cells, natural killer (NK) cells, and B-cells. It has also been described as an oncogene in a range of solid and hematologic cancer types. Among hematologic malignancies, its role has been best studied in T-cell acute lymphoblastic leukemia (T-ALL), adult T-cell leukemia/lymphoma (ATLL), and diffuse large B-cell lymphoma (DLBCL). Aberrant expression of ETS1 in these malignancies is driven primarily by chromosomal amplification and enhancer-driven transcriptional regulation, promoting the ETS1 transcriptional program. ETS1 also facilitates aberrantly expressed or activated transcriptional complexes to drive oncogenic pathways. Collectively, ETS1 functions to regulate cell growth, differentiation, signaling, response to stimuli, and viral interactions in these malignancies. A tumor suppressor role has also been indicated for ETS1 in select lymphoma types, emphasizing the importance of cellular context in ETS1 function. Research is ongoing to further characterize the clinical implications of ETS1 dysregulation in hematologic malignancies, to further resolve binding complexes and transcriptional targets, and to identify effective therapeutic targeting approaches.
Collapse
Affiliation(s)
- Rebecca A Luchtel
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
13
|
Ferreira B, Heredia A, Serpa J. An integrative view on glucagon function and putative role in the progression of pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC). Mol Cell Endocrinol 2023; 578:112063. [PMID: 37678603 DOI: 10.1016/j.mce.2023.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.
Collapse
Affiliation(s)
- Bárbara Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Adrián Heredia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
14
|
Guo B, Zhang S, Wang S, Zhang H, Fang J, Kang N, Zhen X, Zhang Y, Zhou J, Yan G, Sun H, Ding L, Liu C. Decreased HAT1 expression in granulosa cells disturbs oocyte meiosis during mouse ovarian aging. Reprod Biol Endocrinol 2023; 21:103. [PMID: 37907924 PMCID: PMC10617186 DOI: 10.1186/s12958-023-01147-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND With advanced maternal age, abnormalities during oocyte meiosis increase significantly. Aneuploidy is an important reason for the reduction in the quality of aged oocytes. However, the molecular mechanism of aneuploidy in aged oocytes is far from understood. Histone acetyltransferase 1 (HAT1) has been reported to be essential for mammalian development and genome stability, and involved in multiple organ aging. Whether HAT1 is involved in ovarian aging and the detailed mechanisms remain to be elucidated. METHODS The level of HAT1 in aged mice ovaries was detected by immunohistochemical and immunoblotting. To explore the function of HAT1 in the process of mouse oocyte maturation, we used Anacardic Acid (AA) and small interfering RNAs (siRNA) to culture cumulus-oocyte complexes (COCs) from ICR female mice in vitro and gathered statistics of germinal vesicle breakdown (GVBD), the first polar body extrusion (PBE), meiotic defects, aneuploidy, 2-cell embryos formation, and blastocyst formation rate. Moreover, the human granulosa cell (GC)-like line KGN cells were used to investigate the mechanisms of HAT1 in this progress. RESULTS HAT1 was highly expressed in ovarian granulosa cells (GCs) from young mice and the expression of HAT1 was significantly decreased in aged GCs. AA and siRNAs mediated inhibition of HAT1 in GCs decreased the PBE rate, and increased meiotic defects and aneuploidy in oocytes. Further studies showed that HAT1 could acetylate Forkhead box transcription factor O1 (FoxO1), leading to the translocation of FoxO1 into the nucleus. Resultantly, the translocation of acetylated FoxO1 increased the expression of amphiregulin (AREG) in GCs, which plays a significant role in oocyte meiosis. CONCLUSION The present study suggests that decreased expression of HAT1 in GCs is a potential reason corresponding to oocyte age-related meiotic defects and provides a potential therapeutic target for clinical intervention to reduce aneuploid oocytes.
Collapse
Affiliation(s)
- Bichun Guo
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China
| | - Sainan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huidan Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Kang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
15
|
Liu T, Li R, Sun L, Xu Z, Wang S, Zhou J, Wu X, Shi K. Menin orchestrates hepatic glucose and fatty acid uptake via deploying the cellular translocation of SIRT1 and PPARγ. Cell Biosci 2023; 13:175. [PMID: 37740216 PMCID: PMC10517496 DOI: 10.1186/s13578-023-01119-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Menin is a scaffold protein encoded by the Men1 gene, which interacts with various transcriptional proteins to activate or repress cellular processes and is a key mediator in multiple organs. Both liver-specific and hepatocyte-specific Menin deficiency promotes high-fat diet-induced liver steatosis in mice, as well as insulin resistance and type 2 diabetic phenotype. The potential link between Menin and hepatic metabolism homeostasis may provide new insights into the mechanism of fatty liver disease. RESULTS Disturbance of hepatic Menin expression impacts metabolic pathways associated with non-alcoholic fatty liver disease (NAFLD), including the FoxO signaling pathway, which is similar to that observed in both oleic acid-induced fatty hepatocytes model and biopsied fatty liver tissues, but with elevated hepatic Menin expression and inhibited FABP1. Higher levels of Menin facilitate glucose uptake while restraining fatty acid uptake. Menin targets the expression of FABP3/4/5 and also CD36 or GK, PCK by binding to their promoter regions, while recruiting and deploying the cellular localization of PPARγ and SIRT1 in the nucleus and cytoplasm. Accordingly, Menin binds to PPARγ and/or FoxO1 in hepatocytes, and orchestrates hepatic glucose and fatty acid uptake by recruiting SIRT1. CONCLUSION Menin plays an orchestration role as a transcriptional activator and/or repressor to target downstream gene expression levels involved in hepatic energy uptake by interacting with the cellular energy sensor SIRT1, PPARγ, and/or FoxO1 and deploying their translocations between the cytoplasm and nucleus, thereby maintaining metabolic homeostasis. These findings provide more evidence suggesting Menin could be targeted for the treatment of hepatic steatosis, NAFLD or metabolic dysfunction-associated fatty liver disease (MAFLD), and even other hepatic diseases.
Collapse
Affiliation(s)
- Tingjun Liu
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China
| | - Ranran Li
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Lili Sun
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Zhongjin Xu
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Shengxuan Wang
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
| | - Jingxuan Zhou
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China
| | - Xuanning Wu
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China
| | - Kerong Shi
- Laboratory of Animal Stem Cell and Reprogramming, College of Animal Science and Technology, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, Shandong, People's Republic of China.
- Key Laboratory of Animal Bioengineering and Disease Prevention of Shandong Province, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Zhang J, Li K, Sun HR, Sun SK, Zhu YT, Ge YT, Wu YX, Zhou QY, Li GT, Chang XA, Sun P, Ding Y, Han X. The heparan sulfate mimetic Muparfostat aggravates steatohepatitis in obese mice due to its binding affinity to lipoprotein lipase. Br J Pharmacol 2023; 180:1803-1818. [PMID: 36735592 DOI: 10.1111/bph.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Heparanase is the only confirmed endoglycosidase that cleaves heparan sulfate (HS), a ubiquitous glycosaminoglycan with various essential roles in multiple pathological processes. Thus, the development of heparanase inhibitors has become an attractive strategy for drug discovery, especially in tumour therapy, in which HS mimetics are the most promising compounds. The various biological effects of heparanase also suggest a role for HS mimetics in many non-cancer indications, such as type 1 diabetes. However, the potential benefits of HS mimetics in obesity-related type 2 diabetes have not been elucidated. EXPERIMENTAL APPROACH In this study, we investigated muparfostat (PI-88), a developed HS mimetic currently enrolled in Phase III clinical trials, in obese mouse models and in vitro cultured murine hepatocytes. KEY RESULTS Daily administration of muparfostat for 4 weeks caused hyperlipidaemia and aggravated hepatic steatosis in obese mice models, but not in lean animals. In cultured hepatocytes, muparfostat did not alter lipid accumulation. Acute tests suggested that muparfostat binds to lipoprotein lipase in competition with HS on vascular endothelial cell surfaces, thereby reducing the degradation of circulating triglycerides by lipoprotein lipase and subsequent uptake of fatty acids into vascular endothelial cells and causing hyperlipidaemia. This hyperlipidaemia aggravates hepatic steatosis and causes liver injury in muparfostat-treated obese mice. CONCLUSIONS AND IMPLICATIONS The binding activity of HS mimetics to lipoprotein lipase should be investigated as an additional pharmacological effect during heparanase inhibitor drug discovery. This study also provides novel evidence for an increased risk of drug-induced liver injury in obese individuals.
Collapse
Affiliation(s)
- Jia Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Hao-Ran Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Shao-Kun Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ya-Ting Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yu-Ting Ge
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yu-Xuan Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Qin-Yao Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Guan-Ting Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiao-Ai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Ding
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Khan MS, Kim HS, Kim R, Yoon SH, Kim SG. Dysregulated Liver Metabolism and Polycystic Ovarian Syndrome. Int J Mol Sci 2023; 24:ijms24087454. [PMID: 37108615 PMCID: PMC10138914 DOI: 10.3390/ijms24087454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A significant fraction of couples around the world suffer from polycystic ovarian syndrome (PCOS), a disease defined by the characteristics of enhanced androgen synthesis in ovarian theca cells, hyperandrogenemia, and ovarian dysfunction in women. Most of the clinically observable symptoms and altered blood biomarker levels in the patients indicate metabolic dysregulation and adaptive changes as the key underlying mechanisms. Since the liver is the metabolic hub of the body and is involved in steroid-hormonal detoxification, pathological changes in the liver may contribute to female endocrine disruption, potentially through the liver-to-ovary axis. Of particular interest are hyperglycemic challenges and the consequent changes in liver-secretory protein(s) and insulin sensitivity affecting the maturation of ovarian follicles, potentially leading to female infertility. The purpose of this review is to provide insight into emerging metabolic mechanisms underlying PCOS as the primary culprit, which promote its incidence and aggravation. Additionally, this review aims to summarize medications and new potential therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Muhammad Sohaib Khan
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Hee-Sun Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Ranhee Kim
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
| | - Sang Ho Yoon
- Department of Obstetrics and Gynecology, Dongguk University Ilsan Medical Center, Goyang-si 10326, Republic of Korea
- Department of Obstetrics and Gynecology, Dongguk University Medical College, Goyang-si 10326, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
18
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
19
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
20
|
Kamoshita K, Tajima-Shirasaki N, Ishii KA, Shirasaki T, Takayama H, Abuduwaili H, Abuduyimiti T, Oo HK, Yao X, Li Q, Galicia-Medina CM, Kaneko S, Takamura T. Forkhead box protein O1 (FoxO1) knockdown accelerates the eicosapentaenoic acid (EPA)-mediated Selenop downregulation independently of sterol regulatory element-binding protein-1c (SREBP-1c) in H4IIEC3 hepatocytes. Endocr J 2022; 69:907-918. [PMID: 35321982 DOI: 10.1507/endocrj.ej21-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.
Collapse
Affiliation(s)
- Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Natsumi Tajima-Shirasaki
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
| | - Takayoshi Shirasaki
- Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa 920-8641, Japan
| | - Hiroaki Takayama
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
- Life Sciences Division, Engineering and Technology Department, Kanazawa University, Kanazawa 920-8641, Japan
| | - Halimulati Abuduwaili
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Tuerdiguli Abuduyimiti
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Xingyu Yao
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Qifang Li
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Cynthia M Galicia-Medina
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan
| |
Collapse
|
21
|
Rodgers RL. Glucagon, cyclic AMP, and hepatic glucose mobilization: A half‐century of uncertainty. Physiol Rep 2022; 10:e15263. [PMID: 35569125 PMCID: PMC9107925 DOI: 10.14814/phy2.15263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
For at least 50 years, the prevailing view has been that the adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A pathway is the predominant signal mediating the hepatic glucose‐mobilizing actions of glucagon. A wealth of evidence, however, supports the alternative, that the operative signal most of the time is the phospholipase C (PLC)/inositol‐phosphate (IP3)/calcium/calmodulin pathway. The evidence can be summarized as follows: (1) The consensus threshold glucagon concentration for activating AC ex vivo is 100 pM, but the statistical hepatic portal plasma glucagon concentration range, measured by RIA, is between 28 and 60 pM; (2) Within that physiological concentration range, glucagon stimulates the PLC/IP3 pathway and robustly increases glucose output without affecting the AC/cAMP pathway; (3) Activation of a latent, amplified AC/cAMP pathway at concentrations below 60 pM is very unlikely; and (4) Activation of the PLC/IP3 pathway at physiological concentrations produces intracellular effects that are similar to those produced by activation of the AC/cAMP pathway at concentrations above 100 pM, including elevated intracellular calcium and altered activities and expressions of key enzymes involved in glycogenolysis, gluconeogenesis, and glycogen synthesis. Under metabolically stressful conditions, as in the early neonate or exercising adult, plasma glucagon concentrations often exceed 100 pM, recruiting the AC/cAMP pathway and enhancing the activation of PLC/IP3 pathway to boost glucose output, adaptively meeting the elevated systemic glucose demand. Whether the AC/cAMP pathway is consistently activated in starvation or diabetes is not clear. Because the importance of glucagon in the pathogenesis of diabetes is becoming increasingly evident, it is even more urgent now to resolve lingering uncertainties and definitively establish glucagon’s true mechanism of glycemia regulation in health and disease.
Collapse
Affiliation(s)
- Robert L. Rodgers
- Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| |
Collapse
|
22
|
Zhou S, Zhao A, Wu Y, Mi Y, Zhang C. Protective Effect of Grape Seed Proanthocyanidins on Oxidative Damage of Chicken Follicular Granulosa Cells by Inhibiting FoxO1-Mediated Autophagy. Front Cell Dev Biol 2022; 10:762228. [PMID: 35242756 PMCID: PMC8886245 DOI: 10.3389/fcell.2022.762228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
A significant decrease in poultry egg production occurs due to ovarian aging and autophagy is one of the important factors of ovarian aging that is induced predominantly by oxidative stress. Increasing evidence showed potential roles of plant-derived grape seed proanthocyanidin (GSPs) in protecting ovarian granulosa cells (GCs) from oxidative damage, although the underlying mechanism is still unclear. Here we investigated the possible functions of autophagy involved in the preventive effect of GSPs on oxidative stress in the GCs of ovarian hierarchical follicles of laying chickens. The results showed that increased autophagy was observed in the aging hens (580-day-old, D580) compared with the peak-lay hens (D280). Treatment of GSPs significantly restored the elevated autophagy and decreased viability of cultured D280 chicken GCs that were elicited by hydrogen peroxide. GSPs also suppressed the increased autophagy in the natural aging hens. Similar to the effect of GSPs on GC viability, inhibition of autophagy also showed a protective effect on the decreased viability of GCs under oxidative damage. However, GSPs were not able to provide further protection in GCs that were pretreated with 3-methyladenine (an autophagy inhibitor). In addition to its promoting action on antioxidant capacity, treatment with GSPs increased survival of GCs from autophagy that was caused by oxidative stress through the FoxO1-related pathway. Inhibition of FoxO1 or activation of PI3K-Akt pathway by GSPs increased the confrontation of GCs to oxidative damage and decreased autophagy in GCs. In addition, activation of the SIRT1 signal inhibited the GCs autophagy that was caused by oxidative stress via GSPs-induced deacetylation of FoxO1. These results revealed a new mechanism of GSPs against oxidative stress of GCs via inhibiting FoxO1, which was probably a possible target for alleviating ovarian aging in laying poultry.
Collapse
Affiliation(s)
- Shuo Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - An Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yangyang Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Li J, Xia Y, Fan X, Wu X, Yang F, Hu S, Wang Z. HUWE1 Causes an Immune Imbalance in Immune Thrombocytopenic Purpura by Reducing the Number and Function of Treg Cells Through the Ubiquitination Degradation of Ets-1. Front Cell Dev Biol 2021; 9:708562. [PMID: 34900980 PMCID: PMC8660631 DOI: 10.3389/fcell.2021.708562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Immune thrombocytopenic purpura (ITP) is an autoimmune bleeding disorder and the decreased number and immunosuppressive dysfunction of Treg cells are key promoters of ITP. However, their mechanisms in ITP development have not been fully clarified. Methods: HUWE1 mRNA and protein levels in CD4+ T cells in peripheral blood from ITP patients were assessed by quantitative real-time PCR and Western blot. HUWE1 function in ITP was estimated using flow cytometry, enzyme-linked immunosorbent assay and immunosuppression assay. Besides, the HUWE1 mechanism in reducing the number and function of Treg cells in ITP was investigated by immunoprecipitation, cycloheximide-chase assay, ubiquitin experiment and immunofluorescence assay. Results: HUWE1 expression was elevated in CD4+ T cells in peripheral blood from ITP patients and HUWE1 mRNA level was negatively correlated with platelet counts and Treg cell percentage. Moreover, the interference with HUWE1 increased the number of Treg cells and enhanced its immunosuppressive function, and the HUWE1 overexpression produced the opposite results. For the exploration of mechanism, HUWE1 interacted with E26 transformation-specific-1 (Ets-1) and this binding was dependent on the negative regulation of the phosphorylation level of Ets-1 (Thr38) and HUWE1 facilitated the ubiquitin degradation of Ets-1 protein to restrain Treg cell differentiation and weaken their immunosuppressive functions. The in vivo assay confirmed that the HUWE1 inhibitor alleviated ITP in mice. Conclusion: HUWE1 induced the immune imbalance in ITP by decreasing the number and weakening the function of Treg cells through the ubiquitination degradation of Ets-1.
Collapse
Affiliation(s)
- Jianqin Li
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Yalin Xia
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Xiaoru Fan
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Xiaofang Wu
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Feiyun Yang
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology, The Children's Hospital of Soochow University, Suzhou, China
| | - Zhaoyue Wang
- Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Cui C, Li T, Xie Y, Yang J, Fu C, Qiu Y, Shen L, Ni Q, Wang Q, Nie A, Ning G, Wang W, Gu Y. Enhancing Acsl4 in absence of mTORC2/Rictor drove β-cell dedifferentiation via inhibiting FoxO1 and promoting ROS production. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166261. [PMID: 34455055 DOI: 10.1016/j.bbadis.2021.166261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Rapamycin insensitive companion of mechanistic target of Rapamycin (Rictor), the key component of mTOR complex 2 (mTORC2), controls both β-cell proliferation and function. We sought to study whether long chain acyl-CoA synthetase 4 (Acsl4) worked downstream of Rictor/mTORC2 to maintain β-cell functional mass. We found Acsl4 was positively regulated by Rictor at transcriptional and posttranslational levels in mouse β-cell. Infecting adenovirus expressing Acsl4 in β-cell-specific-Rictor-knockout (βRicKO) islets and Min6 cells knocking down Rictor with lentivirus-expressing siRNA-oligos targeting Rictor(siRic), recovered the β-cell dysplasia but not dysfunction. Cell bioenergetic experiment performed with Seahorse XF showed that Acsl4 could not rescue the dampened glucose oxidation in Rictor-lacking β-cell, but further promoted lipid oxidation. Transposase-Accessible Chromatin (ATAC) and H3K27Ac chromatin immunoprecipitation (ChIP) sequencing studies reflected the epigenetic elevated molecular signature for β-cell dedifferentiation and mitigated oxidative defense/response. These results were confirmed by the observations of elevated acetylation and ubiquitination of FoxO1, increased protein levels of Gpx1 and Hif1an, excessive reactive oxygen species (ROS) production and diminished MafA in Acsl4 overexpressed Rictor-lacking β-cells. In these cells, antioxidant treatment significantly recovered MafA level and insulin content. Inducing lipid oxidation alone could not mimic the effect of Acsl4 in Rictor lacking β-cell. Our study suggested that Acsl4 function in β-cell was context dependent and might facilitate β-cell dedifferentiation with attenuated Rictor/mTORC2 activity or insulin signaling via posttranslational inhibiting FoxO1 and epigenetically enhancing ROS induced MafA degradation.
Collapse
Affiliation(s)
- Canqi Cui
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Fu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Qiu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan Shen
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qicheng Ni
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyun Gu
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Liu X, Sun P, Yuan Q, Xie J, Xiao T, Zhang K, Chen X, Wang Y, Yuan L, Han X. Specific Deletion of CASK in Pancreatic β Cells Affects Glucose Homeostasis and Improves Insulin Sensitivity in Obese Mice by Reducing Hyperinsulinemia Running Title: β Cell CASK Deletion Reduces Hyperinsulinemia. Diabetes 2021; 71:db201208. [PMID: 34957476 DOI: 10.2337/db20-1208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new in vivo role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the Cask gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in βCASKKO mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the Cask gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.
Collapse
Affiliation(s)
- Xingjing Liu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Qingzhao Yuan
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Jinyang Xie
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Ting Xiao
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Kai Zhang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Xiu Chen
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Yao Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Li Yuan
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Han F, Pang S, Sun Z, Cui Y, Yan B. Genetic Variants and Functional Analyses of the ATG16L1 Gene Promoter in Acute Myocardial Infarction. Front Genet 2021; 12:591954. [PMID: 34220924 PMCID: PMC8248370 DOI: 10.3389/fgene.2021.591954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background Acute myocardial infarction (AMI), a common complex disease caused by an interaction between genetic and environmental factors, is a serious type of coronary artery disease and is also a leading cause of death worldwide. Autophagy-related 16-like 1 (ATG16L1) is a key regulatory factor of autophagy and plays an important role in induced autophagy. In the cardiovascular system, autophagy is essential to preserve the homeostasis and function of the heart and blood vessels. No studies have hitherto examined the association between AMI and ATG16L1 gene promoter. Methods We conducted a case-control study, using polymerase chain reaction and sequencing techniques, dual luciferase reporter assay, and electrophoretic mobility shift assay, to analyze genetic and functional variation in the ATG16L1 gene promoter between AMI and controls. A variety of statistical analyses were used to analyze the allele and genotype frequencies and the relationship between single-nucleotide polymorphisms (SNPs) and AMI. Results In all, 10 SNPs and two DNA-sequence variants (DSVs) were identified in 688 subjects, and three ATG16L1 gene promoter mutations [g.233250693 T > C (rs185213911), g.233250946 G > A (rs568956599), g.233251133 C > G (rs1301744254)] that were identified in AMI patients significantly altered the transcriptional activity of ATG16L1 gene promoter in HEH2, HEK-293, and H9c2 cells (P < 0.05). Further electrophoretic mobility shift assays indicated that the SNPs affected the binding of transcription factors (P < 0.01). Conclusion ATG16L1 gene promoter mutations in AMI patients may affect the binding of transcription factors and change the transcriptional activity of the ATG16L1 gene, changing the level of autophagy and contributing to the occurrence and development of AMI as rare and low-frequency risk factors.
Collapse
Affiliation(s)
- Falan Han
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhaoqing Sun
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yinghua Cui
- Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
27
|
Yin Y, Wu Y, Zhang X, Zhu Y, Sun Y, Yu J, Gong Y, Sun P, Lin H, Han X. PPA1 Regulates Systemic Insulin Sensitivity by Maintaining Adipocyte Mitochondria Function as a Novel PPARγ Target Gene. Diabetes 2021; 70:1278-1291. [PMID: 33722839 DOI: 10.2337/db20-0622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022]
Abstract
Downregulation of mitochondrial function in adipose tissue is considered as one important driver for the development of obesity-associated metabolic disorders. Inorganic pyrophosphatase 1 (PPA1) is an enzyme that catalyzes the hydrolysis of inorganic pyrophosphate to inorganic phosphate and is required for anabolism to take place in cells. Although alteration of PPA1 has been related to some diseases, the importance of PPA1 in metabolic syndromes has never been discussed. In this study, we found that global PPA1 knockout mice (PPA1+/-) showed impaired glucose tolerance and severe insulin resistance under high-fat-diet feeding. In addition, impaired adipose tissue development and ectopic lipid accumulation were observed. Conversely, overexpression of PPA1 in adipose tissue by adeno-associated virus injection can partly reverse the metabolic disorders in PPA1+/- mice, suggesting that impaired adipose tissue function is responsible for the metabolic disorders observed in PPA1+/- mice. Mechanistic studies revealed that PPA1 acted as a PPARγ target gene to maintain mitochondrial function in adipocytes. Furthermore, specific knockdown of PPA1 in fat body of Drosophila led to impaired mitochondria morphology, decreased lipid storage, and made Drosophila more sensitive to starvation. In conclusion, for the first time, our findings demonstrate the importance of PPA1 in maintaining adipose tissue function and whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yeting Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiani Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yufei Gong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Zeigerer A, Sekar R, Kleinert M, Nason S, Habegger KM, Müller TD. Glucagon's Metabolic Action in Health and Disease. Compr Physiol 2021; 11:1759-1783. [PMID: 33792899 PMCID: PMC8513137 DOI: 10.1002/cphy.c200013] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
Collapse
Affiliation(s)
- Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Revathi Sekar
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maximilian Kleinert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Shelly Nason
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kirk M. Habegger
- Comprehensive Diabetes Center, Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Timo D. Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
29
|
Li K, Zhang K, Wang H, Wu Y, Chen N, Chen J, Qiu C, Cai P, Li M, Liang X, Su D. Hrd1-mediated ACLY ubiquitination alleviate NAFLD in db/db mice. Metabolism 2021; 114:154349. [PMID: 32888949 DOI: 10.1016/j.metabol.2020.154349] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The functions of Acly in regulating nonalcoholic fatty liver disease (NAFLD) have been identified; however, the dynamic control of Acly expression under the pathological state of metabolic disorders has not been fully elucidated. Previous studies reported an ubiquitin-proteasome-mediated degradation of Acly, but the mechanism is still largely unknown. METHODS Co-IP-based mass spectrum (MS/MS) assays were performed in HepG2 and Hepa1-6 hepatocytes and mouse liver tissue. The protein-protein interaction and ubiquitin modification of Hrd1 on Acly were confirmed by co-IP based immuno-blotting. Acetyl-CoA levels and lipogenesis rates were determined. The roles of Hrd1 on NAFLD and insulin resistance were tested by adenovirus-mediated overexpression in db/db mice or in separated primary hepatocytes. RESULTS Hrd1, a subunit of the endoplasmic reticulum-associated degradation (ERAD) complex, interacted with and ubiquitinated Acly, thereby reducing its protein level. Hrd1 suppressed the acetyl-CoA level and inhibited lipogenesis through an Acly-dependent pathway. The expression of hepatic Hrd1 was negatively associated with NAFLD, whereas overexpression of Hrd1 ameliorated hepatic steatosis and enhanced insulin sensitivity, both in db/db mice and in separated mouse primary hepatocytes. CONCLUSIONS Our results suggest that Acly, a master enzyme that regulates lipogenesis, is degraded by Hrd1 through ubiquitin modification. The activation of Hrd1 in hepatocytes might therefore represent a strategic approach for NAFLD therapy.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Kaini Zhang
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Hai Wang
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Nuoqi Chen
- Department of Endocrinology, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, China
| | - Jinfeng Chen
- Department of Endocrinology, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| | - Pengpeng Cai
- Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Min Li
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing 211166, China; Department of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
30
|
Andrade S, Morais T, Sandovici I, Seabra AL, Constância M, Monteiro MP. Adipose Tissue Epigenetic Profile in Obesity-Related Dysglycemia - A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:681649. [PMID: 34290669 PMCID: PMC8288106 DOI: 10.3389/fendo.2021.681649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Obesity is a major risk factor for dysglycemic disorders, including type 2 diabetes (T2D). However, there is wide phenotypic variation in metabolic profiles. Tissue-specific epigenetic modifications could be partially accountable for the observed phenotypic variability. SCOPE The aim of this systematic review was to summarize the available data on epigenetic signatures in human adipose tissue (AT) that characterize overweight or obesity-related insulin resistance (IR) and dysglycemia states and to identify potential underlying mechanisms through the use of unbiased bioinformatics approaches. METHODS Original data published in the last decade concerning the comparison of epigenetic marks in human AT of individuals with metabolically unhealthy overweight/obesity (MUHO) versus normal weight individuals or individuals with metabolically healthy overweight/obesity (MHO) was assessed. Furthermore, association of these epigenetic marks with IR/dysglycemic traits, including T2D, was compiled. RESULTS We catalogued more than two thousand differentially methylated regions (DMRs; above the cut-off of 5%) in the AT of individuals with MUHO compared to individuals with MHO. These DNA methylation changes were less likely to occur around the promoter regions and were enriched at loci implicated in intracellular signaling (signal transduction mediated by small GTPases, ERK1/2 signaling and intracellular trafficking). We also identified a network of seven transcription factors that may play an important role in targeting DNA methylation changes to specific genes in the AT of subjects with MUHO, contributing to the pathogeny of obesity-related IR/T2D. Furthermore, we found differentially methylated CpG sites at 8 genes that were present in AT and whole blood, suggesting that DMRs in whole blood could be potentially used as accessible biomarkers of MUHO. CONCLUSIONS The overall evidence linking epigenetic alterations in key tissues such AT to metabolic complications in human obesity is still very limited, highlighting the need for further studies, particularly those focusing on epigenetic marks other than DNA methylation. Our initial analysis suggests that DNA methylation patterns can potentially discriminate between MUHO from MHO and provide new clues into why some people with obesity are less susceptible to dysglycemia. Identifying AT-specific epigenetic targets could also lead to novel approaches to modify the progression of individuals with obesity towards metabolic disease. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier CRD42021227237.
Collapse
Affiliation(s)
- Sara Andrade
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Tiago Morais
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre L. Seabra
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- National Institute of Health Research, Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Mariana P. Monteiro
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Mariana P. Monteiro,
| |
Collapse
|
31
|
Expression of miRNA-29 in Pancreatic β Cells Promotes Inflammation and Diabetes via TRAF3. Cell Rep 2021; 34:108576. [PMID: 33406428 DOI: 10.1016/j.celrep.2020.108576] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a chronic, low-grade inflammatory disease characterized by insulin resistance and pancreatic β cell dysfunction; however, the underlying molecular mechanism remains unclear. Here, we report a key β cell-macrophage crosstalk pathway mediated by the miRNA-29-TNF-receptor-associated factor 3 (TRAF3) axis. β cell-specific transgenic miR-29a/b/c mice are predisposed to develop glucose intolerance and insulin resistance when fed a high-fat diet (HFD). The metabolic effect of β cell miR-29 is largely mediated through macrophages because either depletion of macrophages or reconstitution with miR-29-signaling defective bone marrow improves metabolic parameters in the transgenic mice. Mechanistically, our data show that miR-29 promotes the recruitment and activation of circulating monocytes and macrophages and, hence, inflammation, via miR-29 exosomes in a TRAF3-dependent manner. Our results demonstrate the ability of β cells to modulate the systemic inflammatory tone and glucose homeostasis via miR-29 in response to nutrient overload.
Collapse
|
32
|
Zhang L, Zhang Z, Li C, Zhu T, Gao J, Zhou H, Zheng Y, Chang Q, Wang M, Wu J, Ran L, Wu Y, Miao H, Zou X, Liang B. S100A11 Promotes Liver Steatosis via FOXO1-Mediated Autophagy and Lipogenesis. Cell Mol Gastroenterol Hepatol 2020; 11:697-724. [PMID: 33075563 PMCID: PMC7841444 DOI: 10.1016/j.jcmgh.2020.10.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is becoming a severe liver disorder worldwide. Autophagy plays a critical role in liver steatosis. However, the role of autophagy in NAFLD remains exclusive and under debate. In this study, we investigated the role of S100 calcium binding protein A11 (S100A11) in the pathogenesis of hepatic steatosis. METHODS We performed liver proteomics in a well-established tree shrew model of NAFLD. The expression of S100A11 in different models of NAFLD was detected by Western blot and/or quantitative polymerase chain reaction. Liver S100A11 overexpression mice were generated by injecting a recombinant adenovirus gene transfer vector through the tail vein and then induced by a high-fat and high-cholesterol diet. Cell lines with S100a11 stable overexpression were established with a recombinant lentiviral vector. The lipid content was measured with either Bodipy staining, Oil Red O staining, gas chromatography, or a triglyceride kit. The autophagy and lipogenesis were detected in vitro and in vivo by Western blot and quantitative polymerase chain reaction. The functions of Sirtuin 1, histone deacetylase 6 (HDAC6), and FOXO1 were inhibited by specific inhibitors. The interactions between related proteins were analyzed by a co-immunoprecipitation assay and immunofluorescence analysis. RESULTS The expression of S100A11 was up-regulated significantly in a time-dependent manner in the tree shrew model of NAFLD. S100A11 expression was induced consistently in oleic acid-treated liver cells as well as the livers of mice fed a high-fat diet and NAFLD patients. Both in vitro and in vivo overexpression of S100A11 could induce hepatic lipid accumulation. Mechanistically, overexpression of S100A11 activated an autophagy and lipogenesis process through up-regulation and acetylation of the transcriptional factor FOXO1, consequently promoting lipogenesis and lipid accumulation in vitro and in vivo. Inhibition of HDAC6, a deacetylase of FOXO1, showed similar phenotypes to S100A11 overexpression in Hepa 1-6 cells. S100A11 interacted with HDAC6 to inhibit its activity, leading to the release and activation of FOXO1. Under S100A11 overexpression, the inhibition of FOXO1 and autophagy could alleviate the activated autophagy as well as up-regulated lipogenic genes. Both FOXO1 and autophagy inhibition and Dgat2 deletion could reduce liver cell lipid accumulation significantly. CONCLUSIONS A high-fat diet promotes liver S100A11 expression, which may interact with HDAC6 to block its binding to FOXO1, releasing or increasing the acetylation of FOXO1, thus activating autophagy and lipogenesis, and accelerating lipid accumulation and liver steatosis. These findings indicate a completely novel S100A11-HDAC6-FOXO1 axis in the regulation of autophagy and liver steatosis, providing potential possibilities for the treatment of NAFLD.
Collapse
Affiliation(s)
- Linqiang Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tingting Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yingzhuan Zheng
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Qing Chang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Mingshan Wang
- Howard Hughes Medical Institute, Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - Jieyu Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, China; Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Xiaoju Zou
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
33
|
Selective inhibition of CBP/p300 HAT by A-485 results in suppression of lipogenesis and hepatic gluconeogenesis. Cell Death Dis 2020; 11:745. [PMID: 32917859 PMCID: PMC7486386 DOI: 10.1038/s41419-020-02960-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The histone acetyltransferases CREB-binding protein (CBP) and its paralogue p300 are transcriptional coactivators which are essential for a multitude of signaling pathways and energy homeostasis. However, the role of CBP/p300 HAT domain in regulating energy balance is still unclear. Here, C57BL/6 mice fed with either normal chow diet (NCD) or high-fat diet (HFD) were administrated with A-485, a recently reported selective inhibitor of CBP/p300 HAT activity for 1 week and the metabolic change was analyzed. The white adipose tissue (WAT) weight and adipocyte size were reduced in A-485-administrated mice, with decreased expressions of lipogenic genes and transcriptional factors. In the liver of A-485-treated mice, the lipid content and lipogenic gene expressions were lowered while the binding of forkhead box O1 (FOXO1) to glucose-6-phosphatase (G6Pc) promoter was reduced, leading to decreased expression of G6Pc. In primary mouse hepatocytes, A-485 abolished cAMP-elicited mRNA expressions of key gluconeogenic enzymes and promoted FOXO1 protein degradation via increasing its ubiquitination. Thus, A-485 inhibits lipogenesis in WAT and liver as well as decreases hepatic glucose production via preventing FOXO1 acetylation, leading to its protein degradation through a proteasome-dependent pathway. The specific inhibition of CBP/p300 HAT will provide a novel therapeutic approach for metabolic diseases.
Collapse
|
34
|
Song WY, Jiang XH, Ding Y, Wang Y, Zhou MX, Xia Y, Zhang CY, Yin CC, Qiu C, Li K, Sun P, Han X. Inhibition of heparanase protects against pancreatic beta cell death in streptozotocin-induced diabetic mice via reducing intra-islet inflammatory cell infiltration. Br J Pharmacol 2020; 177:4433-4447. [PMID: 32608014 DOI: 10.1111/bph.15183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Intra-islet heparan sulfate (HS) plays an important role in the maintenance of pancreatic islet function. The aim of this study was to investigate the effect mechanism of HS loss on the functioning of islets in diabetic mice. EXPERIMENTAL APPROACH The hypoglycaemic effect of a heparanase inhibitor, OGT2115, was tested in a streptozotocin-induced diabetic mouse model. The islets in pancreatic sections were also stained to reveal their morphology. An insulinoma cell line (MIN6) and primary isolated murine islets were used to investigate the effect of OGT2115 in vitro. KEY RESULTS Intra-islet HS was clearly lost in streptozotocin-induced diabetic mice due to the increased heparanase expression in damaged islets. OGT2115 prevented intra-islet HS loss and improved the glucose profile and insulin secretion in streptozotocin-treated mice. The apoptosis of pancreatic beta cells and the infiltration of mononuclear macrophages, CD4- and CD8-positive T-cells in islets was reduced by OGT2115 in streptozotocin-treated mice, but OGT2115 did not alter the direct streptozotocin-induced damage in vitro. The expression of heparanase was increased in high glucose-treated isolated islets but not in response to direct streptozotocin stimulation. Further experiments showed that high glucose stimuli could decreased expression of PPARγ in cultured islets, thereby relieving the PPARγ-induced inhibition of heparanase gene expression. CONCLUSION AND IMPLICATIONS Hyperglycaemia could cause intra-islet HS loss by elevating the expression of heparanase, thereby aggravating inflammatory cell infiltration and islet damage. Inhibition of heparanase might provide benefit for pancreatic beta cell protection in Type 1 diabetes.
Collapse
Affiliation(s)
- Wen-Yu Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiao-Han Jiang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ying Ding
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Ming-Xuan Zhou
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yun Xia
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Chen-Yu Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Chong-Chong Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
de Lima AO, Koltes JE, Diniz WJS, de Oliveira PSN, Cesar ASM, Tizioto PC, Afonso J, de Souza MM, Petrini J, Rocha MIP, Cardoso TF, Neto AZ, Coutinho LL, Mourão GB, Regitano LCA. Potential Biomarkers for Feed Efficiency-Related Traits in Nelore Cattle Identified by Co-expression Network and Integrative Genomics Analyses. Front Genet 2020; 11:189. [PMID: 32194642 PMCID: PMC7064723 DOI: 10.3389/fgene.2020.00189] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Feed efficiency helps to reduce environmental impacts from livestock production, improving beef cattle profitability. We identified potential biomarkers (hub genes) for feed efficiency, by applying co-expression analysis in Longissimus thoracis RNA-Seq data from 180 Nelore steers. Six co-expression modules were associated with six feed efficiency-related traits (p-value ≤ 0.05). Within these modules, 391 hub genes were enriched for pathways as protein synthesis, muscle growth, and immune response. Trait-associated transcription factors (TFs) ELF1, ELK3, ETS1, FLI1, and TCF4, were identified with binding sites in at least one hub gene. Gene expression of CCDC80, FBLN5, SERPINF1, and OGN was associated with multiple feed efficiency-related traits (FDR ≤ 0.05) and were previously related to glucose homeostasis, oxidative stress, fat mass, and osteoblastogenesis, respectively. Potential regulatory elements were identified, integrating the hub genes with previous studies from our research group, such as the putative cis-regulatory elements (eQTLs) inferred as affecting the PCDH18 and SPARCL1 hub genes related to immune system and adipogenesis, respectively. Therefore, our analyses contribute to a better understanding of the biological mechanisms underlying feed efficiency in bovine and the hub genes disclosed can be used as biomarkers for feed efficiency-related traits in Nelore cattle.
Collapse
Affiliation(s)
- Andressa O de Lima
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Wellison J S Diniz
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | | | - Aline S M Cesar
- Department of Agroindustry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Juliana Afonso
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Marcela M de Souza
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Juliana Petrini
- Exact Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - Marina I P Rocha
- Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Tainã F Cardoso
- Embrapa Pecuária Sudeste, Empresa Brazileira de Pesquisa Agropecuária, São Carlos, Brazil
| | - Adhemar Zerlotini Neto
- Embrapa Informática Agropecuária, Empresa Brazileira de Pesquisa Agropecuária, Campinas, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Gerson B Mourão
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Luciana C A Regitano
- Embrapa Pecuária Sudeste, Empresa Brazileira de Pesquisa Agropecuária, São Carlos, Brazil
| |
Collapse
|
36
|
Mármol-Sánchez E, Ramayo-Caldas Y, Quintanilla R, Cardoso TF, González-Prendes R, Tibau J, Amills M. Co-expression network analysis predicts a key role of microRNAs in the adaptation of the porcine skeletal muscle to nutrient supply. J Anim Sci Biotechnol 2020; 11:10. [PMID: 31969983 PMCID: PMC6966835 DOI: 10.1186/s40104-019-0412-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The role of non-coding RNAs in the porcine muscle metabolism is poorly understood, with few studies investigating their expression patterns in response to nutrient supply. Therefore, we aimed to investigate the changes in microRNAs (miRNAs), long intergenic non-coding RNAs (lincRNAs) and mRNAs muscle expression before and after food intake. RESULTS We measured the miRNA, lincRNA and mRNA expression levels in the gluteus medius muscle of 12 gilts in a fasting condition (AL-T0) and 24 gilts fed ad libitum during either 5 h. (AL-T1, N = 12) or 7 h. (AL-T2, N = 12) prior to slaughter. The small RNA fraction was extracted from muscle samples retrieved from the 36 gilts and sequenced, whereas lincRNA and mRNA expression data were already available. In terms of mean and variance, the expression profiles of miRNAs and lincRNAs in the porcine muscle were quite different than those of mRNAs. Food intake induced the differential expression of 149 (AL-T0/AL-T1) and 435 (AL-T0/AL-T2) mRNAs, 6 (AL-T0/AL-T1) and 28 (AL-T0/AL-T2) miRNAs and none lincRNAs, while the number of differentially dispersed genes was much lower. Among the set of differentially expressed miRNAs, we identified ssc-miR-148a-3p, ssc-miR-22-3p and ssc-miR-1, which play key roles in the regulation of glucose and lipid metabolism. Besides, co-expression network analyses revealed several miRNAs that putatively interact with mRNAs playing key metabolic roles and that also showed differential expression before and after feeding. One case example was represented by seven miRNAs (ssc-miR-148a-3p, ssc-miR-151-3p, ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-421-5p, ssc-miR-493-5p and ssc-miR-503) which putatively interact with the PDK4 mRNA, one of the master regulators of glucose utilization and fatty acid oxidation. CONCLUSIONS As a whole, our results evidence that microRNAs are likely to play an important role in the porcine skeletal muscle metabolic adaptation to nutrient availability.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Tainã Figueiredo Cardoso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Present address: Embrapa Pecuária Sudeste, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), São Carlos, SP 13560-970 Brazil
| | - Rayner González-Prendes
- Department of Animal Science, Universitat de Lleida - Agrotecnio Center, 25198 Lleida, Spain
| | - Joan Tibau
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
37
|
Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism. Int J Mol Sci 2019; 20:ijms20081885. [PMID: 30995792 PMCID: PMC6515121 DOI: 10.3390/ijms20081885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The liver is the central organ of glycolipid metabolism, which regulates the metabolism of lipids and glucose to maintain energy homeostasis upon alterations of physiological conditions. Researchers formerly focused on the phosphorylation of glucagon in controlling liver metabolism. Noteworthily, emerging evidence has shown glucagon could additionally induce acetylation to control hepatic metabolism in response to different physiological states. Through inducing acetylation of complex metabolic networks, glucagon interacts extensively with various energy-sensing factors in shifting from glucose metabolism to lipid metabolism during prolonged fasting. In addition, glucagon-induced acetylation of different energy-sensing factors is involved in the advancement of nonalcoholic fatty liver disease (NAFLD) to liver cancer. Here, we summarize the latest findings on glucagon to control hepatic metabolism by inducing acetylation of energy-sensing factors. Finally, we summarize and discuss the potential impact of glucagon on the treatment of liver diseases.
Collapse
Affiliation(s)
- Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|