1
|
Strauss ME, Ton MLN, Mason S, Bagri J, Harland LT, Imaz-Rosshandler I, Wilson NK, Nichols J, Tyser RC, Göttgens B, Marioni JC, Guibentif C. A single-cell and tissue-scale analysis suite resolves Mixl1's role in heart development. iScience 2025; 28:112397. [PMID: 40330894 PMCID: PMC12051648 DOI: 10.1016/j.isci.2025.112397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/10/2024] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Perturbation studies using gene knockouts have become a key tool for understanding the roles of regulatory genes in development. However, large-scale studies dissecting the molecular role of development master regulators in every cell type throughout the embryo are technically challenging and scarce. Here, we systematically characterize the knockout effects of the key developmental regulators T/Brachyury and Mixl1 in gastrulation and early organogenesis using single-cell profiling of chimeric mouse embryos. For the analysis of these experimental data, we present COSICC, an effective suite of statistical tools to characterize perturbation effects in complex developing cell populations. We gain insights into T's role in lateral plate mesoderm, limb development, and posterior intermediate mesoderm specification. Furthermore, we generate Mixl1 -/- embryonic chimeras and reveal the role of this key transcription factor in discrete mesoderm lineages, in particular concerning developmental dysregulation of the recently identified juxta-cardiac field.
Collapse
Affiliation(s)
- Magdalena E. Strauss
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4PY, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mai-Linh Nu Ton
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Samantha Mason
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jaana Bagri
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Luke T.G. Harland
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - Nicola K. Wilson
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Richard C.V. Tyser
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - John C. Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Carolina Guibentif
- Institute Biomedicine, Department of Microbiology and Immunology, Sahlgrenska Center for Cancer Research, University of Gothenburg, 413 90 Gothenburg, Sweden
| |
Collapse
|
2
|
Okubo C, Nakamura M, Sato M, Shichino Y, Mito M, Takashima Y, Iwasaki S, Takahashi K. EIF3D safeguards the homeostasis of key signaling pathways in human primed pluripotency. SCIENCE ADVANCES 2025; 11:eadq5484. [PMID: 40203091 PMCID: PMC11980838 DOI: 10.1126/sciadv.adq5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Although pluripotent stem cell (PSC) properties, such as differentiation and infinite proliferation, have been well documented within the frameworks of transcription factor networks, epigenomes, and signal transduction, they remain unclear and fragmented. Directing attention toward translational regulation as a bridge between these events can yield additional insights into previously unexplained mechanisms. Our functional CRISPR interference screen-based approach revealed that EIF3D, a translation initiation factor, is crucial for maintaining primed pluripotency. Loss of EIF3D disrupted the balance of pluripotency-associated signaling pathways, thereby compromising primed pluripotency. Moreover, EIF3D ensured robust proliferation by controlling the translation of various p53 regulators, which maintain low p53 activity in the undifferentiated state. In this way, EIF3D-mediated translation contributes to tuning the homeostasis of the primed pluripotency networks, ensuring the maintenance of an undifferentiated state with high proliferative potential. This study provides further insights into the translation network in maintaining pluripotency.
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
3
|
Wang KS, Smeyers J, Eggan K, Budnik B, Mordes DA. C9ORF72 poly-PR disrupts expression of ALS/FTD-implicated STMN2 through SRSF7. Acta Neuropathol Commun 2025; 13:67. [PMID: 40140908 PMCID: PMC11948778 DOI: 10.1186/s40478-025-01977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
A hexanucleotide repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and combined ALS/FTD. The repeat is transcribed in the sense and the antisense directions to produce several dipeptide repeat proteins (DPRs) that have toxic gain-of-function effects; however, the mechanisms by which DPRs lead to neural dysfunction remain unresolved. Here, we observed that poly-proline-arginine (poly-PR) was sufficient to inhibit axonal regeneration of human induced pluripotent stem cell (iPSC)-derived neurons. Global phospho-proteomics revealed that poly-PR selectively perturbs nuclear RNA binding proteins (RBPs). In neurons, we found that depletion of one of these RBPs, SRSF7 (serine/arginine-rich splicing factor 7), resulted in decreased abundance of STMN2 (stathmin-2), though not TDP-43. STMN2 supports axon maintenance and repair and has been recently implicated in the pathogenesis of ALS/FTD. We observed that depletion of SRSF7 impaired axonal regeneration, a phenotype that could be rescued by exogenous STMN2. We propose that antisense repeat-encoded poly-PR perturbs RBPs, particularly SRSF7, resulting in reduced STMN2 and axonal repair defects in neurons. Hence, we provide a potential link between DPRs gain-of-function effects and STMN2 loss-of-function phenotypes in neurodegeneration.
Collapse
Affiliation(s)
- Karen S Wang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Julie Smeyers
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomic Laboratory, FAS Division of Science, Harvard University, Cambridge, MA, USA
- Wyss Institute, Harvard University, Boston, MA, USA
| | - Daniel A Mordes
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, CA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
4
|
Chen X, Zheng M, Lin S, Huang M, Chen S, Chen S. The application of CRISPR/Cas9-based genome-wide screening to disease research. Mol Cell Probes 2025; 79:102004. [PMID: 39709065 DOI: 10.1016/j.mcp.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
High-throughput genetic screening serves as an indispensable approach for deciphering gene functions and the intricate relationships between phenotypes and genotypes. The CRISPR/Cas9 system, with its ability to precisely edit genomes on a large scale, has revolutionized the field by enabling the construction of comprehensive genomic libraries. This technology has become a cornerstone for genome-wide screenings in disease research. This review offers a comprehensive examination of how CRISPR/Cas9-based genetic screening has been leveraged to uncover genes that play a role in disease mechanisms, focusing on areas such as cancer development and viral replication processes. The insights presented in this review hold promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, Fujian, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, Fujian, 350013, China.
| |
Collapse
|
5
|
Nourreddine S, Doctor Y, Dailamy A, Forget A, Lee YH, Chinn B, Khaliq H, Polacco B, Muralidharan M, Pan E, Zhang Y, Sigaeva A, Hansen JN, Gao J, Parker JA, Obernier K, Clark T, Chen JY, Metallo C, Lundberg E, Ideker T, Krogan N, Mali P. A PERTURBATION CELL ATLAS OF HUMAN INDUCED PLURIPOTENT STEM CELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.03.621734. [PMID: 39574586 PMCID: PMC11580897 DOI: 10.1101/2024.11.03.621734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Towards comprehensively investigating the genotype-phenotype relationships governing the human pluripotent stem cell state, we generated an expressed genome-scale CRISPRi Perturbation Cell Atlas in KOLF2.1J human induced pluripotent stem cells (hiPSCs) mapping transcriptional and fitness phenotypes associated with 11,739 targeted genes. Using the transcriptional phenotypes, we created a minimum distortion embedding map of the pluripotent state, demonstrating rich recapitulation of protein complexes, such as strong co-clustering of MRPL, BAF, SAGA, and Ragulator family members. Additionally, we uncovered transcriptional regulators that are uncoupled from cell fitness, discovering potential novel pluripotency (JOSD1, RNF7) and metabolic factors (ZBTB41). We validated these findings via phenotypic, protein-interaction, and metabolic tracing assays. Finally, we propose a contrastive human-cell engineering framework (CHEF), a machine learning architecture that learns from perturbation cell atlases to predict perturbation recipes that achieve desired transcriptional states. Taken together, our study presents a comprehensive resource for interrogating the regulatory networks governing pluripotency.
Collapse
Affiliation(s)
- Sami Nourreddine
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Yesh Doctor
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yi-Hung Lee
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Becky Chinn
- Department of Bioengineering, University of California San Diego, CA, USA
- School of Medicine, University of California San Diego, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Benjamin Polacco
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
| | - Monita Muralidharan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Emily Pan
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Yifan Zhang
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Alina Sigaeva
- Division of Cellular and Clinical Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Jiahao Gao
- School of Medicine, University of California San Diego, CA, USA
| | | | - Kirsten Obernier
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
| | - Timothy Clark
- Department of Medicine, University of Virginia, VA, USA
| | - Jake Y. Chen
- Department of Computer Science, The University of Alabama at Birmingham, VA, USA
| | - Christian Metallo
- Department of Bioengineering, University of California San Diego, CA, USA
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, CA, USA
| | - Emma Lundberg
- Department of Bioengineering, Stanford University, CA, USA
- Department of Pathology, Stanford University, CA, USA
| | - Trey Ideker
- Department of Bioengineering, University of California San Diego, CA, USA
- School of Medicine, University of California San Diego, CA, USA
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, USA
- Department of Bioengineering and Therapeutics Sciences, University of California San Francisco, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, CA, USA
| |
Collapse
|
6
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nat Commun 2024; 15:8966. [PMID: 39419994 PMCID: PMC11487130 DOI: 10.1038/s41467-024-53284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.
Collapse
Affiliation(s)
- Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Samuel J Kaplan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
7
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539283. [PMID: 37205540 PMCID: PMC10187244 DOI: 10.1101/2023.05.03.539283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation. Comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further discovered a core set of factors that control both stem cell fitness and pluripotent identity, including a network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus cell fitness, and offer a valuable model for categorizing gene function in broad biological contexts.
Collapse
|
8
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
9
|
Zhou H, Ye P, Xiong W, Duan X, Jing S, He Y, Zeng Z, Wei Y, Ye Q. Genome-scale CRISPR-Cas9 screening in stem cells: theories, applications and challenges. Stem Cell Res Ther 2024; 15:218. [PMID: 39026343 PMCID: PMC11264826 DOI: 10.1186/s13287-024-03831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the rapid development of stem cell technology, there have been tremendous advances in molecular biological and pathological research, cell therapy as well as organoid technologies over the past decades. Advances in genome editing technology, particularly the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related protein 9 (Cas9), have further facilitated the rapid development of stem cell researches. The CRISPR-Cas9 technology now goes beyond creating single gene editing to enable the inhibition or activation of endogenous gene loci by fusing inhibitory (CRISPRi) or activating (CRISPRa) domains with deactivated Cas9 proteins (dCas9). These tools have been utilized in genome-scale CRISPRi/a screen to recognize hereditary modifiers that are synergistic or opposing to malady mutations in an orderly and fair manner, thereby identifying illness mechanisms and discovering novel restorative targets to accelerate medicinal discovery investigation. However, the application of this technique is still relatively rare in stem cell research. There are numerous specialized challenges in applying large-scale useful genomics approaches to differentiated stem cell populations. Here, we present the first comprehensive review on CRISPR-based functional genomics screening in the field of stem cells, as well as practical considerations implemented in a range of scenarios, and exploration of the insights of CRISPR-based screen into cell fates, disease mechanisms and cell treatments in stem cell models. This review will broadly benefit scientists, engineers and medical practitioners in the areas of stem cell research.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Xiong
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xingxiang Duan
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Shuili Jing
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, Hubei, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Qingsong Ye
- Center of Regenerative Medicine and Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
10
|
Lee CJM, Autio MI, Zheng W, Song Y, Wang SC, Wong DCP, Xiao J, Zhu Y, Yusoff P, Yei X, Chock WK, Low BC, Sudol M, Foo RSY. Genome-Wide CRISPR Screen Identifies an NF2-Adherens Junction Mechanistic Dependency for Cardiac Lineage. Circulation 2024; 149:1960-1979. [PMID: 38752370 DOI: 10.1161/circulationaha.122.061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 04/05/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Cardiomyocyte differentiation involves a stepwise clearance of repressors and fate-restricting regulators through the modulation of BMP (bone morphogenic protein)/Wnt-signaling pathways. However, the mechanisms and how regulatory roadblocks are removed with specific developmental signaling pathways remain unclear. METHODS We conducted a genome-wide CRISPR screen to uncover essential regulators of cardiomyocyte specification in human embryonic stem cells using a myosin heavy chain 6 (MYH6)-GFP (green fluorescence protein) reporter system. After an independent secondary single guide ribonucleic acid validation of 25 candidates, we identified NF2 (neurofibromin 2), a moesin-ezrin-radixin like (MERLIN) tumor suppressor, as an upstream driver of early cardiomyocyte lineage specification. Independent monoclonal NF2 knockouts were generated using CRISPR-Cas9, and cell states were inferred through bulk RNA sequencing and protein expression analysis across differentiation time points. Terminal lineage differentiation was assessed by using an in vitro 2-dimensional-micropatterned gastruloid model, trilineage differentiation, and cardiomyocyte differentiation. Protein interaction and post-translation modification of NF2 with its interacting partners were assessed using site-directed mutagenesis, coimmunoprecipitation, and proximity ligation assays. RESULTS Transcriptional regulation and trajectory inference from NF2-null cells reveal the loss of cardiomyocyte identity and the acquisition of nonmesodermal identity. Sustained elevation of early mesoderm lineage repressor SOX2 and upregulation of late anticardiac regulators CDX2 and MSX1 in NF2 knockout cells reflect a necessary role for NF2 in removing regulatory roadblocks. Furthermore, we found that NF2 and AMOT (angiomotin) cooperatively bind to YAP (yes-associated protein) during mesendoderm formation, thereby preventing YAP activation, independent of canonical MST (mammalian sterile 20-like serine-threonine protein kinase)-LATS (large tumor suppressor serine-threonine protein kinase) signaling. Mechanistically, cardiomyocyte lineage identity was rescued by wild-type and NF2 serine-518 phosphomutants, but not NF2 FERM (ezrin-radixin-meosin homology protein) domain blue-box mutants, demonstrating that the critical FERM domain-dependent formation of the AMOT-NF2-YAP scaffold complex at the adherens junction is required for early cardiomyocyte lineage differentiation. CONCLUSIONS These results provide mechanistic insight into the essential role of NF2 during early epithelial-mesenchymal transition by sequestering the repressive effect of YAP and relieving regulatory roadblocks en route to cardiomyocytes.
Collapse
Affiliation(s)
- Chang Jie Mick Lee
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| | | | - Wenhao Zheng
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | - Yoohyun Song
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore (Y.S., S.C.W.)
| | - Shyi Chyi Wang
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore (Y.S., S.C.W.)
| | - Darren Chen Pei Wong
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Department of Biological Sciences (D.C.P.W., B.C.L.), National University of Singapore
| | - Jingwei Xiao
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
| | - Yike Zhu
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| | - Permeen Yusoff
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | - Xi Yei
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
| | | | - Boon Chuan Low
- Mechanobiology Institute Singapore (Y.S., S.C.W., D.C.P.W., J.X., B.C.L.), National University of Singapore
- Department of Biological Sciences (D.C.P.W., B.C.L.), National University of Singapore
- University Scholars Programme (B.C.L.), National University of Singapore
| | - Marius Sudol
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York (M.S.)
| | - Roger S-Y Foo
- Cardiovascular Metabolic Disease Translational Research Programme, National University Health System, Centre for Translational Medicine, Singapore (C.J.M.L., W.H.Z., Y.Z., P.Y., X.Y., R.S.-Y.F.)
- Institute of Molecular and Cell Biology, Singapore (C.J.M.L., Y.Z., R.S.-Y.F.)
| |
Collapse
|
11
|
Kidder BL. Decoding the universal human chromatin landscape through teratoma-based profiling. Nucleic Acids Res 2024; 52:3589-3606. [PMID: 38281248 PMCID: PMC11039989 DOI: 10.1093/nar/gkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Teratoma formation is key for evaluating differentiation of human pluripotent stem cells into embryonic germ layers and serves as a model for understanding stem cell differentiation and developmental processes. Its potential for insights into epigenome and transcriptome profiling is significant. This study integrates the analysis of the epigenome and transcriptome of hESC-generated teratomas, comparing transcriptomes between hESCs and teratomas. It employs cell type-specific expression patterns from single-cell data to deconvolve RNA-Seq data and identify cell types within teratomas. Our results provide a catalog of activating and repressive histone modifications, while also elucidating distinctive features of chromatin states. Construction of an epigenetic signature matrix enabled the quantification of diverse cell populations in teratomas and enhanced the ability to unravel the epigenetic landscape in heterogeneous tissue contexts. This study also includes a single cell multiome atlas of expression (scRNA-Seq) and chromatin accessibility (scATAC-Seq) of human teratomas, further revealing the complexity of these tissues. A histology-based digital staining tool further complemented the annotation of cell types in teratomas, enhancing our understanding of their cellular composition. This research is a valuable resource for examining teratoma epigenomic and transcriptomic landscapes and serves as a model for epigenetic data comparison.
Collapse
Affiliation(s)
- Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
12
|
Wang X, Su S, Zhu Y, Cheng X, Cheng C, Chen L, Lei A, Zhang L, Xu Y, Ye D, Zhang Y, Li W, Zhang J. Metabolic Reprogramming via ACOD1 depletion enhances function of human induced pluripotent stem cell-derived CAR-macrophages in solid tumors. Nat Commun 2023; 14:5778. [PMID: 37723178 PMCID: PMC10507032 DOI: 10.1038/s41467-023-41470-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
The pro-inflammatory state of macrophages, underpinned by their metabolic condition, is essentially affecting their capacity of combating tumor cells. Here we find, via a pooled metabolic gene knockout CRISPR screen that KEAP1 and ACOD1 are strong regulators of the pro-inflammatory state in macrophages. We show that ACOD1 knockout macrophages, generated in our induced pluripotent stem cell-derived CAR-macrophage (CAR-iMAC) platform, are strongly and persistently polarized toward the pro-inflammatory state, which manifests in increased reactive oxygen species (ROS) production, more potent phagocytosis and enhanced cytotoxic functions against cancer cells in vitro. In ovarian or pancreatic cancer mouse models, ACOD1-depleted CAR-iMACs exhibit enhanced capacity in repressing tumors, leading to increased survival. In addition, combining ACOD1-depleted CAR-iMACs with immune checkpoint inhibitors (ICI), such as anti-CD47 or anti-PD1 antibodies, result in even stronger tumor suppressing effect. Mechanistically, the depletion of ACOD1 reduces levels of the immuno-metabolite itaconate, allowing KEAP1 to prevent NRF2 from entering the nucleus to activate an anti-inflammatory program. This study thus lays down the proof of principle for targeting ACOD1 in myeloid cells for cancer immunotherapy and introduces metabolically engineered human iPSC-derived CAR-iMACs cells with enhanced polarization and anti-tumor functions in adoptive cell transfer therapies.
Collapse
Affiliation(s)
- Xudong Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, 311121, China
| | - Siyu Su
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, 311121, China
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Yuqing Zhu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Chen Cheng
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Leilei Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, Huadong Hospital, and Shanghai Key laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Anhua Lei
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- CellOrigin Inc, Hangzhou, 310000, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuyan Xu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, Huadong Hospital, and Shanghai Key laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yi Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
13
|
Frisch C, Kostes WW, Galyon B, Whitman B, Tekel SJ, Standage-Beier K, Srinivasan G, Wang X, Brafman DA. PINE-TREE enables highly efficient genetic modification of human cell lines. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:483-492. [PMID: 37588683 PMCID: PMC10425837 DOI: 10.1016/j.omtn.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Prime editing technologies enable precise genome editing without the caveats of CRISPR nuclease-based methods. Nonetheless, current approaches to identify and isolate prime-edited cell populations are inefficient. Here, we established a fluorescence-based system, prime-induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), for real-time enrichment of prime-edited cell populations. We demonstrated the broad utility of PINE-TREE for highly efficient introduction of substitutions, insertions, and deletions at various genomic loci. Finally, we employ PINE-TREE to rapidly and efficiently generate clonal isogenic human pluripotent stem cell lines, a cell type recalcitrant to genome editing.
Collapse
Affiliation(s)
- Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - William W. Kostes
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Brooke Galyon
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Brycelyn Whitman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Stefan J. Tekel
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
15
|
Bajpai VK, Swigut T, Mohammed J, Naqvi S, Arreola M, Tycko J, Kim TC, Pritchard JK, Bassik MC, Wysocka J. A genome-wide genetic screen uncovers determinants of human pigmentation. Science 2023; 381:eade6289. [PMID: 37561850 PMCID: PMC10901463 DOI: 10.1126/science.ade6289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.
Collapse
Affiliation(s)
- Vivek K. Bajpai
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Martin Arreola
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Tayne C. Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael C. Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
- Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Usluer S, Hallast P, Crepaldi L, Zhou Y, Urgo K, Dincer C, Su J, Noell G, Alasoo K, El Garwany O, Gerety SS, Newman B, Dovey OM, Parts L. Optimized whole-genome CRISPR interference screens identify ARID1A-dependent growth regulators in human induced pluripotent stem cells. Stem Cell Reports 2023; 18:1061-1074. [PMID: 37028423 PMCID: PMC10202655 DOI: 10.1016/j.stemcr.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Perturbing expression is a powerful way to understand the role of individual genes, but can be challenging in important models. CRISPR-Cas screens in human induced pluripotent stem cells (iPSCs) are of limited efficiency due to DNA break-induced stress, while the less stressful silencing with an inactive Cas9 has been considered less effective so far. Here, we developed the dCas9-KRAB-MeCP2 fusion protein for screening in iPSCs from multiple donors. We found silencing in a 200 bp window around the transcription start site in polyclonal pools to be as effective as using wild-type Cas9 for identifying essential genes, but with much reduced cell numbers. Whole-genome screens to identify ARID1A-dependent dosage sensitivity revealed the PSMB2 gene, and enrichment of proteasome genes among the hits. This selective dependency was replicated with a proteasome inhibitor, indicating a targetable drug-gene interaction. Many more plausible targets in challenging cell models can be efficiently identified with our approach.
Collapse
Affiliation(s)
| | | | | | - Yan Zhou
- Wellcome Sanger Institute, Cambridge, UK
| | - Katie Urgo
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Jing Su
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Kaur Alasoo
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | | | | | - Ben Newman
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Leopold Parts
- Wellcome Sanger Institute, Cambridge, UK; Department of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
17
|
Han JL, Entcheva E. Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Rev Rep 2023; 19:886-905. [PMID: 36656467 PMCID: PMC9851124 DOI: 10.1007/s12015-023-10506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Precise control of gene expression (knock-out, knock-in, knockdown or overexpression) is at the heart of functional genomics - an approach to dissect the contribution of a gene/protein to the system's function. The development of a human in vitro system that can be patient-specific, induced pluripotent stem cells, iPSC, and the ability to obtain various cell types of interest, have empowered human disease modeling and therapeutic development. Scalable tools have been deployed for gene modulation in these cells and derivatives, including pharmacological means, DNA-based RNA interference and standard RNA interference (shRNA/siRNA). The CRISPR/Cas9 gene editing system, borrowed from bacteria and adopted for use in mammalian cells a decade ago, offers cell-specific genetic targeting and versatility. Outside genome editing, more subtle, time-resolved gene modulation is possible by using a catalytically "dead" Cas9 enzyme linked to an effector of gene transcription in combination with a guide RNA. The CRISPRi / CRISPRa (interference/activation) system evolved over the last decade as a scalable technology for performing functional genomics with libraries of gRNAs. Here, we review key developments of these approaches and their deployment in cardiovascular research. We discuss specific use with iPSC-cardiomyocytes and the challenges in further translation of these techniques.
Collapse
Affiliation(s)
- Julie Leann Han
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, 800 22nd St NW, Suite 5000, Washington, DC, 20052, USA.
| |
Collapse
|
18
|
Ahmed M, Muffat J, Li Y. Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Front Cell Dev Biol 2023; 11:1158373. [PMID: 37101616 PMCID: PMC10123288 DOI: 10.3389/fcell.2023.1158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
The brain is arguably the most complex part of the human body in form and function. Much remains unclear about the molecular mechanisms that regulate its normal and pathological physiology. This lack of knowledge largely stems from the inaccessible nature of the human brain, and the limitation of animal models. As a result, brain disorders are difficult to understand and even more difficult to treat. Recent advances in generating human pluripotent stem cells (hPSCs)-derived 2-dimensional (2D) and 3-dimensional (3D) neural cultures have provided an accessible system to model the human brain. Breakthroughs in gene editing technologies such as CRISPR/Cas9 further elevate the hPSCs into a genetically tractable experimental system. Powerful genetic screens, previously reserved for model organisms and transformed cell lines, can now be performed in human neural cells. Combined with the rapidly expanding single-cell genomics toolkit, these technological advances culminate to create an unprecedented opportunity to study the human brain using functional genomics. This review will summarize the current progress of applying CRISPR-based genetic screens in hPSCs-derived 2D neural cultures and 3D brain organoids. We will also evaluate the key technologies involved and discuss their related experimental considerations and future applications.
Collapse
Affiliation(s)
- Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Wells MF, Nemesh J, Ghosh S, Mitchell JM, Salick MR, Mello CJ, Meyer D, Pietilainen O, Piccioni F, Guss EJ, Raghunathan K, Tegtmeyer M, Hawes D, Neumann A, Worringer KA, Ho D, Kommineni S, Chan K, Peterson BK, Raymond JJ, Gold JT, Siekmann MT, Zuccaro E, Nehme R, Kaykas A, Eggan K, McCarroll SA. Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages. Cell Stem Cell 2023; 30:312-332.e13. [PMID: 36796362 PMCID: PMC10581885 DOI: 10.1016/j.stem.2023.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.
Collapse
Affiliation(s)
- Michael F Wells
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jana M Mitchell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Insitro, South San Francisco, CA 94080, USA
| | | | - Curtis J Mello
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olli Pietilainen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Ellen J Guss
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kavya Raghunathan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Derek Hawes
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Kathleen A Worringer
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Daniel Ho
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Sravya Kommineni
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Karrie Chan
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brant K Peterson
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Joseph J Raymond
- Department of Neuroscience, Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - John T Gold
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Biology, Davidson College, Davidson, NC 28035, USA
| | - Marco T Siekmann
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Vezzoli M, de Llobet Cucalon LI, Di Vona C, Morselli M, Montanini B, de la Luna S, Teichmann M, Dieci G, Ferrari R. TFIIIC as a Potential Epigenetic Modulator of Histone Acetylation in Human Stem Cells. Int J Mol Sci 2023; 24:3624. [PMID: 36835038 PMCID: PMC9961906 DOI: 10.3390/ijms24043624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Regulation of histone acetylation dictates patterns of gene expression and hence cell identity. Due to their clinical relevance in cancer biology, understanding how human embryonic stem cells (hESCs) regulate their genomic patterns of histone acetylation is critical, but it remains largely to be investigated. Here, we provide evidence that acetylation of histone H3 lysine-18 (H3K18ac) and lysine-27 (H3K27ac) is only partially established by p300 in stem cells, while it represents the main histone acetyltransferase (HAT) for these marks in somatic cells. Our analysis reveals that whereas p300 marginally associated with H3K18ac and H3K27ac in hESCs, it largely overlapped with these histone marks upon differentiation. Interestingly, we show that H3K18ac is found at "stemness" genes enriched in RNA polymerase III transcription factor C (TFIIIC) in hESCs, whilst lacking p300. Moreover, TFIIIC was also found in the vicinity of genes involved in neuronal biology, although devoid of H3K18ac. Our data suggest a more complex pattern of HATs responsible for histone acetylations in hESCs than previously considered, suggesting a putative role for H3K18ac and TFIIIC in regulating "stemness" genes as well as genes associated with neuronal differentiation of hESCs. The results break ground for possible new paradigms for genome acetylation in hESCs that could lead to new avenues for therapeutic intervention in cancer and developmental diseases.
Collapse
Affiliation(s)
- Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | | | - Chiara Di Vona
- Genome Biology Program, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), 08003 Barcelona, Spain
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Susana de la Luna
- Genome Biology Program, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Martin Teichmann
- Université de Bordeaux INSERM U1312 (Bordeaux Institute of Oncology) 146, rue Léo Saignat, 33076 Bordeaux, France
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
21
|
Dong C, Fu S, Karvas RM, Chew B, Fischer LA, Xing X, Harrison JK, Popli P, Kommagani R, Wang T, Zhang B, Theunissen TW. A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells. Nat Commun 2022; 13:2548. [PMID: 35538076 PMCID: PMC9090837 DOI: 10.1038/s41467-022-30207-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
The recent derivation of human trophoblast stem cells (hTSCs) provides a scalable in vitro model system of human placental development, but the molecular regulators of hTSC identity have not been systematically explored thus far. Here, we utilize a genome-wide CRISPR-Cas9 knockout screen to comprehensively identify essential and growth-restricting genes in hTSCs. By cross-referencing our data to those from similar genetic screens performed in other cell types, as well as gene expression data from early human embryos, we define hTSC-specific and -enriched regulators. These include both well-established and previously uncharacterized trophoblast regulators, such as ARID3A, GATA2, and TEAD1 (essential), and GCM1, PTPN14, and TET2 (growth-restricting). Integrated analysis of chromatin accessibility, gene expression, and genome-wide location data reveals that the transcription factor TEAD1 regulates the expression of many trophoblast regulators in hTSCs. In the absence of TEAD1, hTSCs fail to complete faithful differentiation into extravillous trophoblast (EVT) cells and instead show a bias towards syncytiotrophoblast (STB) differentiation, thus indicating that this transcription factor safeguards the bipotent lineage potential of hTSCs. Overall, our study provides a valuable resource for dissecting the molecular regulation of human placental development and diseases.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shuhua Fu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rowan M Karvas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brian Chew
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jessica K Harrison
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ting Wang
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Wang Y, Jiang B, Wu Y, He X, Liu L. Rapid intraspecies evolution of fitness effects of yeast genes. Genome Biol Evol 2022; 14:6575331. [PMID: 35482054 PMCID: PMC9113246 DOI: 10.1093/gbe/evac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
Organisms within species have numerous genetic and phenotypic variations. Growing evidences show intraspecies variation of mutant phenotypes may be more complicated than expected. Current studies on intraspecies variations of mutant phenotypes are limited to just a few strains. This study investigated the intraspecies variation of fitness effects of 5,630 gene mutants in ten Saccharomyces cerevisiae strains using CRISPR–Cas9 screening. We found that the variability of fitness effects induced by gene disruptions is very large across different strains. Over 75% of genes affected cell fitness in a strain-specific manner to varying degrees. The strain specificity of the fitness effect of a gene is related to its evolutionary and functional properties. Subsequent analysis revealed that younger genes, especially those newly acquired in S. cerevisiae species, are more likely to be strongly strain-specific. Intriguingly, there seems to exist a ceiling of fitness effect size for strong strain-specific genes, and among them, the newly acquired genes are still evolving and have yet to reach this ceiling. Additionally, for a large proportion of protein complexes, the strain specificity profile is inconsistent among genes encoding the same complex. Taken together, these results offer a genome-wide map of intraspecies variation for fitness effect as a mutant phenotype and provide an updated insight on intraspecies phenotypic evolution.
Collapse
Affiliation(s)
- Yayu Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xionglei He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Garipler G, Lu C, Morrissey A, Lopez-Zepeda LS, Pei Y, Vidal SE, Zen Petisco Fiore AP, Aydin B, Stadtfeld M, Ohler U, Mahony S, Sanjana NE, Mazzoni EO. The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing pro-differentiation genes. Cell Rep 2022; 38:110524. [PMID: 35294876 PMCID: PMC8972945 DOI: 10.1016/j.celrep.2022.110524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/21/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
In pluripotent cells, a delicate activation-repression balance maintains pro-differentiation genes ready for rapid activation. The identity of transcription factors (TFs) that specifically repress pro-differentiation genes remains obscure. By targeting ∼1,700 TFs with CRISPR loss-of-function screen, we found that ZBTB11 and ZFP131 are required for embryonic stem cell (ESC) pluripotency. ESCs without ZBTB11 or ZFP131 lose colony morphology, reduce proliferation rate, and upregulate transcription of genes associated with three germ layers. ZBTB11 and ZFP131 bind proximally to pro-differentiation genes. ZBTB11 or ZFP131 loss leads to an increase in H3K4me3, negative elongation factor (NELF) complex release, and concomitant transcription at associated genes. Together, our results suggest that ZBTB11 and ZFP131 maintain pluripotency by preventing premature expression of pro-differentiation genes and present a generalizable framework to maintain cellular potency.
Collapse
Affiliation(s)
- Görkem Garipler
- Department of Biology, New York University, New York, NY 10003, USA
| | - Congyi Lu
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lorena S Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Yingzhen Pei
- Department of Biology, New York University, New York, NY 10003, USA
| | - Simon E Vidal
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Begüm Aydin
- Department of Biology, New York University, New York, NY 10003, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA.
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
24
|
Basundra R, Kapoor S, Hollville E, Kiapour N, Beltran Lopez A, Marie Melchiorre N, Deshmukh M. Constitutive High Expression of NOXA Sensitizes Human Embryonic Stem Cells for Rapid Cell Death. Stem Cells 2022; 40:49-58. [PMID: 35511861 PMCID: PMC9199843 DOI: 10.1093/stmcls/sxab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/02/2021] [Indexed: 01/21/2023]
Abstract
Human embryonic stem (hES) cells are highly sensitive to apoptotic stimuli such as DNA damage, which allows for the rapid elimination of mutated cells during development. However, the mechanisms that maintain hES cells in the primed apoptotic state are not completely known. Key activators of apoptosis, the BH3-only proteins, are present at low levels in most cell types. In contrast, hES cells have constitutive high levels of the BH3-only protein, NOXA. We examined the importance of NOXA for enabling apoptosis in hES cells. hES cells deleted for NOXA showed remarkable protection against multiple apoptotic stimuli. NOXA was constitutively localized to the mitochondria, where it interacted with MCL1. Strikingly, inhibition of MCL1 in NOXA knockout cells was sufficient to sensitize these cells to DNA damage-induced cell death. Our study demonstrates that an essential function of constitutive high levels of NOXA in hES cells is to effectively antagonize MCL1 to permit rapid apoptosis.
Collapse
Affiliation(s)
- Richa Basundra
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahil Kapoor
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nazanin Kiapour
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Adriana Beltran Lopez
- Human Pluripotent Stem Cell Core, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Mohanish Deshmukh
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Zhang Y, Wang J, Ruan Y, Yang Y, Cheng Y, Wang F, Zhang C, Xu Y, Liu L, Yu M, Ren B, Wang J, Zhao B, Yang R, Xiong J, Wang J, Zhang J, Jian R, Liu Y, Tian Y. Genome-wide CRISPR screen identifies Puf60 as a novel stemness gene of mouse Embryonic Stem Cells. Stem Cells Dev 2022; 31:132-142. [PMID: 35019759 DOI: 10.1089/scd.2021.0309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying self-renewal of embryonic stem cells (ESCs) hold great value in the clinical translation of stem cell biology and regenerative medicine research. To study the mechanisms in ESC self-renewal, screening and identification of key genes maintaining ESC self-renewal were performed by a genome-wide CRISPR-Cas9 knockout virus library. The mouse ESC R1 were infected with CRISPR-Cas9 knockout virus library and cultured for 14 days. The variation of sgRNA ratio was analyzed by high-throughput sequencing, followed by bioinformatics analysis to profile the altered genes. Our results showed 1375 genes with increased sgRNA ratio were found to be mainly involved in signal transduction, cell differentiation and cell apoptosis; 2929 genes with decreased sgRNA ratio were mainly involved in cell cycle regulation, RNA splicing, and biological metabolic processes. We further confirmed our screen specificity by confirming Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal. Meanwhile, further analysis showed the relevance between Puf60 expression and tumor. In conclusion, our study screened key genes maintaining ESC self-renewal and successful identified Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal, which provided theoretical basis and research clues for a better understanding of ESC self-renewal regulation.
Collapse
Affiliation(s)
- Yue Zhang
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, 30# Gaotanyan St., Shapingba District, Chongqing 400038, China, Chongqing, China, 400038;
| | - Jiaqi Wang
- Army Medical University, 12525, Institude of Immunulogy PLA & Department of Immunology, Army Medical University, Chongqing 400038, China, Chongqing, China;
| | - Yan Ruan
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yi Yang
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Yuda Cheng
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Fengsheng Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Chen Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yixiao Xu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Lianlian Liu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Meng Yu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Bangqi Ren
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China;
| | - Jiangjun Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Binyu Zhao
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Ran Yang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Jiaxiang Xiong
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Jiali Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Junlei Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Rui Jian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| | - Yong Liu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Yanping Tian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| |
Collapse
|
26
|
Zhou Y, Fu Q, Shi H, Zhou G. CRISPR Guide RNA Library Screens in Human Induced Pluripotent Stem Cells. Methods Mol Biol 2022; 2549:233-257. [PMID: 35347694 DOI: 10.1007/7651_2021_455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-throughput CRISPR guide RNA (gRNA) library screen, that is, CRISPR/Cas9 screen, enables the unbiased identification of gene functions in a variety of biological processes. Typical pooled CRISPR/Cas9 screen couples a gRNA library and a guided Cas9 or dCas9 endonuclease to target specific gene loci, and then systematically uncover the causal link between candidate genes and observed cellular phenotypes via gRNA depletion or enrichment in screens. Here, we describe a detailed method of puromycin (PURO) concentration titration and lentiviral CRISPR gRNA library titration in Cas9 expressing monoclonal human iPSC line (Cas9+MNhiPSC) prior to performing the screens, conducting pooled CRISPR gRNA library screens in Cas9+MNhiPSC, genomic DNA extraction from the selected cell subpopulation and sequencing library preparation as well as next generation sequencing (NGS) to generate gRNA read counts. In CRISPR/Cas9 screen, we aim for 30% transduction efficiency (i.e., multiplicity of infection = 0.3) to ensure most of infected cells receive only one gRNA. The principles in this method can be applied to CRISPR perturbation (knockout, activation, repression or base editing) screens with other CRISPR gRNA libraries across many other cell models and other species.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China.
- Lungene Technologies Co., Ltd, Shenzhen, China.
| | - Qiang Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Huijun Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Advanced genomics and clinical phenotypes in psoriatic arthritis. Semin Immunol 2021; 58:101665. [PMID: 36307312 DOI: 10.1016/j.smim.2022.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psoriatic Arthritis (PsA) is a complex polygenic inflammatory disease showing a variable musculoskeletal involvement in patients with skin psoriasis. PsA coexist in 25-40 % of patients with the dermatological manifestations, but PsA may also predate the appearance of psoriasis. Nonetheless, the immunopathogenesis of psoriasis and PsA manifest significant similarities, with a major role of the individual susceptibility in both cases. Genome wide association studies (GWAS) identified several genes/loci associated with the risk to develop PsA, both dependent and independent of psoriasis. The major challenge is thus represented by the need to translate the identification of functional polymorphisms and other genetics findings into biological mechanisms along with the identification of novel putative drug targets. A functional genomics approach aims to increase GWAS power and recent evidence supports the use of a multilayer process, including eQTL, methylome, chromatin conformation analysis and genome editing to discover novel genes that can be affected by disease-associated variants, such as PsA. The available data have considered PsA as a unique homogeneous clinical entity while the clinical experience supports a wide variability of skin and joint manifestations coexisting in diverse patients with different mechanisms underlying the musculoskeletal and dermatological domains. A better discrimination of the patient features is encouraged by the limited data on functional genomics. We provide herein a review of the latest findings on PsA functional genomics highlighting the exciting developments in the field and how these might lead to a better understanding of gene regulation underpinning disease mechanisms and ultimately refine clinical phenotyping.
Collapse
|
28
|
Naxerova K, Di Stefano B, Makofske JL, Watson EV, de Kort MA, Martin TD, Dezfulian M, Ricken D, Wooten EC, Kuroda MI, Hochedlinger K, Elledge SJ. Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. Genes Dev 2021; 35:1527-1547. [PMID: 34711655 PMCID: PMC8559676 DOI: 10.1101/gad.349048.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
In this Resource/Methodology, Naxerova et al. describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. They identify a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance, and their results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks. Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.
Collapse
Affiliation(s)
- Kamila Naxerova
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jessica L Makofske
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Emma V Watson
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marit A de Kort
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mohammed Dezfulian
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dominik Ricken
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric C Wooten
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Occhipinti A, Hamadi Y, Kugler H, Wintersteiger CM, Yordanov B, Angione C. Discovering Essential Multiple Gene Effects Through Large Scale Optimization: An Application to Human Cancer Metabolism. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2339-2352. [PMID: 32248120 DOI: 10.1109/tcbb.2020.2973386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Computational modelling of metabolic processes has proven to be a useful approach to formulate our knowledge and improve our understanding of core biochemical systems that are crucial to maintaining cellular functions. Towards understanding the broader role of metabolism on cellular decision-making in health and disease conditions, it is important to integrate the study of metabolism with other core regulatory systems and omics within the cell, including gene expression patterns. After quantitatively integrating gene expression profiles with a genome-scale reconstruction of human metabolism, we propose a set of combinatorial methods to reverse engineer gene expression profiles and to find pairs and higher-order combinations of genetic modifications that simultaneously optimize multi-objective cellular goals. This enables us to suggest classes of transcriptomic profiles that are most suitable to achieve given metabolic phenotypes. We demonstrate how our techniques are able to compute beneficial, neutral or "toxic" combinations of gene expression levels. We test our methods on nine tissue-specific cancer models, comparing our outcomes with the corresponding normal cells, identifying genes as targets for potential therapies. Our methods open the way to a broad class of applications that require an understanding of the interplay among genotype, metabolism, and cellular behaviour, at scale.
Collapse
|
30
|
A Method to Map Gene Essentiality of Human Pluripotent Stem Cells by Genome-Scale CRISPR Screens with Inducible Cas9. Methods Mol Biol 2021. [PMID: 34709608 DOI: 10.1007/978-1-0716-1720-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Human pluripotent stem cells (hPSCs) have the capacity for self-renewal and differentiation into most cell types and, in contrast to widely used cell lines, are karyotypically normal and non-transformed. Hence, hPSCs are considered the gold-standard system for modelling diseases, especially in the field of regenerative medicine. Despite widespread research use of hPSCs and induced pluripotent stem cells (iPSCs), the systematic understanding of pluripotency and lineage differentiation mechanisms are still incomplete. Before tackling the complexities of lineage differentiation with genetic screens, it is critical to catalogue the general genetic requirements for cell fitness and proliferation in the pluripotent state and assess their plasticity under commonly used culture conditions.We describe a method to map essential genetic determinants of hPSC fitness and pluripotency, herein defined as cell reproduction, by genome-scale loss-of-function CRISPR screens in an inducible S. pyogenes Cas9 H1 hPSC line. To address questions of context-dependent gene essentiality, we include protocols for screening hPSCs cultured on feeder cells and laminin, two commonly used growth substrates. This method establishes parameters for genome-wide screens in hPSCs, making human stem cells amenable for functional genomics approaches to facilitate investigation of hPSC biology.
Collapse
|
31
|
Engineering digitizer circuits for chemical and genetic screens in human cells. Nat Commun 2021; 12:6150. [PMID: 34686672 PMCID: PMC8536748 DOI: 10.1038/s41467-021-26359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
Cell-based transcriptional reporters are invaluable in high-throughput compound and CRISPR screens for identifying compounds or genes that can impact a pathway of interest. However, many transcriptional reporters have weak activities and transient responses. This can result in overlooking therapeutic targets and compounds that are difficult to detect, necessitating the resource-consuming process of running multiple screens at various timepoints. Here, we present RADAR, a digitizer circuit for amplifying reporter activity and retaining memory of pathway activation. Reporting on the AP-1 pathway, our circuit identifies compounds with known activity against PKC-related pathways and shows an enhanced dynamic range with improved sensitivity compared to a classical reporter in compound screens. In the first genome-wide pooled CRISPR screen for the AP-1 pathway, RADAR identifies canonical genes from the MAPK and PKC pathways, as well as non-canonical regulators. Thus, our scalable system highlights the benefit and versatility of using genetic circuits in large-scale cell-based screening.
Collapse
|
32
|
van Essen M, Riepsaame J, Jacob J. CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR J 2021; 4:634-655. [PMID: 34582693 DOI: 10.1089/crispr.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Directing the fates of human pluripotent stem cells (hPSC) to generate a multitude of differentiated cell types allows the study of the genetic regulation of human development and disease. The translational potential of hPSC is maximized by exploiting CRISPR to silence or activate genes with spatial and temporal precision permanently or reversibly. Here, we summarize the increasingly refined and diverse CRISPR toolkit for the latter forms of gene perturbation in hPSC and their downstream applications. We discuss newer methods to install edits efficiently with single nucleotide resolution and describe pooled CRISPR screens as a powerful means of unbiased discovery of genes associated with a phenotype of interest. Last, we discuss the potential of these combined technologies in the treatment of hitherto intractable human diseases and the challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Max van Essen
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom
| | - Joey Riepsaame
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
34
|
Somepalli G, Sahoo S, Singh A, Hannenhalli S. Prioritizing and characterizing functionally relevant genes across human tissues. PLoS Comput Biol 2021; 17:e1009194. [PMID: 34270548 PMCID: PMC8284802 DOI: 10.1371/journal.pcbi.1009194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Abstract
Knowledge of genes that are critical to a tissue's function remains difficult to ascertain and presents a major bottleneck toward a mechanistic understanding of genotype-phenotype links. Here, we present the first machine learning model-FUGUE-combining transcriptional and network features, to predict tissue-relevant genes across 30 human tissues. FUGUE achieves an average cross-validation auROC of 0.86 and auPRC of 0.50 (expected 0.09). In independent datasets, FUGUE accurately distinguishes tissue or cell type-specific genes, significantly outperforming the conventional metric based on tissue-specific expression alone. Comparison of tissue-relevant transcription factors across tissue recapitulate their developmental relationships. Interestingly, the tissue-relevant genes cluster on the genome within topologically associated domains and furthermore, are highly enriched for differentially expressed genes in the corresponding cancer type. We provide the prioritized gene lists in 30 human tissues and an open-source software to prioritize genes in a novel context given multi-sample transcriptomic data.
Collapse
Affiliation(s)
- Gowthami Somepalli
- Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
| | - Sarthak Sahoo
- Undergraduate program, Indian Institute of Science, Bengaluru, India
| | - Arashdeep Singh
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
35
|
Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Dräger N, Leng K, Nalls MA, Singleton AB, Xu K, Faghri F, Kampmann M. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci 2021; 24:1020-1034. [PMID: 34031600 PMCID: PMC8254803 DOI: 10.1038/s41593-021-00862-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Single-cell transcriptomics provide a systematic map of gene expression in different human cell types. The next challenge is to systematically understand cell-type-specific gene function. The integration of CRISPR-based functional genomics and stem cell technology enables the scalable interrogation of gene function in differentiated human cells. Here we present the first genome-wide CRISPR interference and CRISPR activation screens in human neurons. We uncover pathways controlling neuronal response to chronic oxidative stress, which is implicated in neurodegenerative diseases. Unexpectedly, knockdown of the lysosomal protein prosaposin strongly sensitizes neurons, but not other cell types, to oxidative stress by triggering the formation of lipofuscin, a hallmark of aging, which traps iron, generating reactive oxygen species and triggering ferroptosis. We also determine transcriptomic changes in neurons after perturbation of genes linked to neurodegenerative diseases. To enable the systematic comparison of gene function across different human cell types, we establish a data commons named CRISPRbrain.
Collapse
Affiliation(s)
- Ruilin Tian
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Anthony Abarientos
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Jason Hong
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sayed Hadi Hashemi
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Nina Dräger
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Faraz Faghri
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, LLC, Glen Echo, MD, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
36
|
Genome-wide CRISPR screen identifies protein pathways modulating tau protein levels in neurons. Commun Biol 2021; 4:736. [PMID: 34127790 PMCID: PMC8203616 DOI: 10.1038/s42003-021-02272-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Aggregates of hyperphosphorylated tau protein are a pathological hallmark of more than 20 distinct neurodegenerative diseases, including Alzheimer’s disease, progressive supranuclear palsy, and frontotemporal dementia. While the exact mechanism of tau aggregation is unknown, the accumulation of aggregates correlates with disease progression. Here we report a genome-wide CRISPR screen to identify modulators of endogenous tau protein for the first time. Primary screens performed in SH-SY5Y cells, identified positive and negative regulators of tau protein levels. Hit validation of the top 43 candidate genes was performed using Ngn2-induced human cortical excitatory neurons. Using this approach, genes and pathways involved in modulation of endogenous tau levels were identified, including chromatin modifying enzymes, neddylation and ubiquitin pathway members, and components of the mTOR pathway. TSC1, a critical component of the mTOR pathway, was further validated in vivo, demonstrating the relevance of this screening strategy. These findings may have implications for treating neurodegenerative diseases in the future. Using an unbiased genome-wide CRISPR screen approach, Sanchez et al. identified modulators of endogenous tau protein. This study suggests that chromatin modifiers, neddylation, ubiquitination, and the mTOR pathways regulate overall levels of tau protein in neurons, which could help in future identification of therapeutics for neurodegenerative diseases.
Collapse
|
37
|
Functional annotation of lncRNA in high-throughput screening. Essays Biochem 2021; 65:761-773. [PMID: 33835127 PMCID: PMC8564734 DOI: 10.1042/ebc20200061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Recent efforts on the characterization of long non-coding RNAs (lncRNAs) revealed their functional roles in modulating diverse cellular processes. These include pluripotency maintenance, lineage commitment, carcinogenesis, and pathogenesis of various diseases. By interacting with DNA, RNA and protein, lncRNAs mediate multifaceted mechanisms to regulate transcription, RNA processing, RNA interference and translation. Of more than 173000 discovered lncRNAs, the majority remain functionally unknown. The cell type-specific expression and localization of the lncRNA also suggest potential distinct functions of lncRNAs across different cell types. This highlights the niche of identifying functional lncRNAs in different biological processes and diseases through high-throughput (HTP) screening. This review summarizes the current work performed and perspectives on HTP screening of functional lncRNAs where different technologies, platforms, cellular responses and the downstream analyses are discussed. We hope to provide a better picture in applying different technologies to facilitate functional annotation of lncRNA efficiently.
Collapse
|
38
|
Kosanke M, Osetek K, Haase A, Wiehlmann L, Davenport C, Schwarzer A, Adams F, Kleppa MJ, Schambach A, Merkert S, Wunderlich S, Menke S, Dorda M, Martin U. Reprogramming enriches for somatic cell clones with small-scale mutations in cancer-associated genes. Mol Ther 2021; 29:2535-2553. [PMID: 33831558 DOI: 10.1016/j.ymthe.2021.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.
Collapse
Affiliation(s)
- Maike Kosanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Katarzyna Osetek
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Colin Davenport
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Schwarzer
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Felix Adams
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Department of Hematology, Oncology and Stem Cell Transplantation, Institute of Experimental Hematology, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Sandra Menke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Marie Dorda
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| |
Collapse
|
39
|
Paraskevopoulos M, McGuigan AP. Application of CRISPR screens to investigate mammalian cell competition. Brief Funct Genomics 2021; 20:135-147. [PMID: 33782689 DOI: 10.1093/bfgp/elab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Cell competition is defined as the context-dependent elimination of cells that is mediated by intercellular communication, such as paracrine or contact-dependent cell signaling, and/or mechanical stresses. It is considered to be a quality control mechanism that facilitates the removal of suboptimal cells from both adult and embryonic tissues. Cell competition, however, can also be hijacked by transformed cells to acquire a 'super-competitor' status and outcompete the normal epithelium to establish a precancerous field. To date, many genetic drivers of cell competition have been identified predominately through studies in Drosophila. Especially during the last couple of years, ethylmethanesulfonate-based genetic screens have been instrumental to our understanding of the molecular regulators behind some of the most common competition mechanisms in Drosophila, namely competition due to impaired ribosomal function (or anabolism) and mechanical sensitivity. Despite recent findings in Drosophila and in mammalian models of cell competition, the drivers of mammalian cell competition remain largely elusive. Since the discovery of CRISPR/Cas9, its use in functional genomics has been indispensable to uncover novel cancer vulnerabilities. We envision that CRISPR/Cas9 screens will enable systematic, genome-scale probing of mammalian cell competition to discover novel mutations that not only trigger cell competition but also identify novel molecular components that are essential for the recognition and elimination of less fit cells. In this review, we summarize recent contributions that further our understanding of the molecular mechanisms of cell competition by genetic screening in Drosophila, and provide our perspective on how similar and novel screening strategies made possible by whole-genome CRISPR/Cas9 screening can advance our understanding of mammalian cell competition in the future.
Collapse
|
40
|
Hnatiuk AP, Briganti F, Staudt DW, Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chem Biol 2021; 28:271-282. [PMID: 33740432 PMCID: PMC8054828 DOI: 10.1016/j.chembiol.2021.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a promising platform for pharmacogenomics and drug development. In cardiology, they make it possible to produce unlimited numbers of patient-specific human cells that reproduce hallmark features of heart disease in the culture dish. Their potential applications include the discovery of mechanism-specific therapeutics, the evaluation of safety and efficacy in a human context before a drug candidate reaches patients, and the stratification of patients for clinical trials. Although this new technology has the potential to revolutionize drug discovery, translational hurdles have hindered its widespread adoption for pharmaceutical development. Here we discuss recent progress in overcoming these hurdles that should facilitate the use of hiPSCs to develop new medicines and individualize therapies for heart disease.
Collapse
Affiliation(s)
- Anna P Hnatiuk
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Francesca Briganti
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David W Staudt
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Navarro-Guerrero E, Tay C, Whalley JP, Cowley SA, Davies B, Knight JC, Ebner D. Genome-wide CRISPR/Cas9-knockout in human induced Pluripotent Stem Cell (iPSC)-derived macrophages. Sci Rep 2021; 11:4245. [PMID: 33608581 PMCID: PMC7895961 DOI: 10.1038/s41598-021-82137-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Genome engineering using CRISPR/Cas9 technology enables simple, efficient and precise genomic modifications in human cells. Conventional immortalized cell lines can be easily edited or screened using genome-wide libraries with lentiviral transduction. However, cell types derived from the differentiation of induced Pluripotent Stem Cells (iPSC), which often represent more relevant, patient-derived models for human pathology, are much more difficult to engineer as CRISPR/Cas9 delivery to these differentiated cells can be inefficient and toxic. Here, we present an efficient, lentiviral transduction protocol for delivery of CRISPR/Cas9 to macrophages derived from human iPSC with efficiencies close to 100%. We demonstrate CRISPR/Cas9 knockouts for three nonessential proof-of-concept genes-HPRT1, PPIB and CDK4. We then scale the protocol and validate for a genome-wide pooled CRISPR/Cas9 loss-of-function screen. This methodology enables, for the first time, systematic exploration of macrophage involvement in immune responses, chronic inflammation, neurodegenerative diseases and cancer progression, using efficient genome editing techniques.
Collapse
Affiliation(s)
- Elena Navarro-Guerrero
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Chwen Tay
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Justin P Whalley
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ben Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Xu X, Du Y, Ma L, Zhang S, Shi L, Chen Z, Zhou Z, Hui Y, Liu Y, Fang Y, Fan B, Liu Z, Li N, Zhou S, Jiang C, Liu L, Zhang X. Mapping germ-layer specification preventing genes in hPSCs via genome-scale CRISPR screening. iScience 2021; 24:101926. [PMID: 33385119 PMCID: PMC7772566 DOI: 10.1016/j.isci.2020.101926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the biological processes that determine the entry of three germ layers of human pluripotent stem cells (hPSCs) is a central question in developmental and stem cell biology. Here, we genetically engineered hPSCs with the germ layer reporter and inducible CRISPR/Cas9 knockout system, and a genome-scale screening was performed to define pathways restricting germ layer specification. Genes clustered in the key biological processes, including embryonic development, mRNA processing, metabolism, and epigenetic regulation, were centered in the governance of pluripotency and lineage development. Other than typical pluripotent transcription factors and signaling molecules, loss of function of mesendodermal specifiers resulted in advanced neuroectodermal differentiation, given their inter-germ layer antagonizing effect. Regarding the epigenetic superfamily, microRNAs enriched in hPSCs showed clear germ layer-targeting specificity. The cholesterol synthesis pathway maintained hPSCs via retardation of neuroectoderm specification. Thus, in this study, we identified a full landscape of genetic wiring and biological processes that control hPSC self-renewal and trilineage specification.
Collapse
Affiliation(s)
- Xiangjie Xu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Ma
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Shuwei Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Lei Shi
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhenyu Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhongshu Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yi Hui
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yang Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yujiang Fang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Beibei Fan
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Zhongliang Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Nan Li
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Shanshan Zhou
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Cizhong Jiang
- The School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Liu
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoqing Zhang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China
- Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao 266071, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
43
|
Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron 2020; 107:1000-1013. [PMID: 32970995 DOI: 10.1016/j.neuron.2020.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
Human organoid models of the central nervous system, including the neural retina, are providing unprecedented opportunities to explore human neurodevelopment and neurodegeneration in controlled culture environments. In this Perspective, we discuss how the single-cell multi-omic toolkit has been used to identify features and limitations of brain and retina organoids and how these tools can be deployed to study congenital brain malformations and vision disorders in organoids. We also address how to improve brain and retina organoid protocols to revolutionize in vitro disease modeling.
Collapse
|
44
|
Lin Z, King R, Tang V, Myers G, Balbin-Cuesta G, Friedman A, McGee B, Desch K, Ozel AB, Siemieniak D, Reddy P, Emmer B, Khoriaty R. The Endoplasmic Reticulum Cargo Receptor SURF4 Facilitates Efficient Erythropoietin Secretion. Mol Cell Biol 2020; 40:e00180-20. [PMID: 32989016 PMCID: PMC7652404 DOI: 10.1128/mcb.00180-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Erythropoietin (EPO) stimulates erythroid differentiation and maturation. Though the transcriptional regulation of EPO has been well studied, the molecular determinants of EPO secretion remain unknown. Here, we generated a HEK293T reporter cell line that provides a quantifiable and selectable readout of intracellular EPO levels and performed a genome-scale CRISPR screen that identified SURF4 as an important mediator of EPO secretion. Targeting SURF4 with multiple independent single guide RNAs (sgRNAs) resulted in intracellular accumulation and extracellular depletion of EPO. Both of these phenotypes were rescued by expression of SURF4 cDNA. Additionally, we found that disruption of SURF4 resulted in accumulation of EPO in the endoplasmic reticulum (ER) compartment and that SURF4 and EPO physically interact. Furthermore, SURF4 disruption in Hep3B cells also caused a defect in the secretion of endogenous EPO under conditions mimicking hypoxia, ruling out an artifact of heterologous overexpression. This work demonstrates that SURF4 functions as an ER cargo receptor that mediates the efficient secretion of EPO. Our findings also suggest that modulating SURF4 may be an effective treatment for disorders of erythropoiesis that are driven by aberrant EPO levels. Finally, we show that SURF4 overexpression results in increased secretion of EPO, suggesting a new strategy for more efficient production of recombinant EPO.
Collapse
Affiliation(s)
- Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard King
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vi Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Beth McGee
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Karl Desch
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - David Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Pavan Reddy
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Brian Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rami Khoriaty
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
45
|
Sharma S, Dincer C, Weidemüller P, Wright GJ, Petsalaki E. CEN-tools: an integrative platform to identify the contexts of essential genes. Mol Syst Biol 2020; 16:e9698. [PMID: 33073517 PMCID: PMC7569414 DOI: 10.15252/msb.20209698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
An emerging theme from large-scale genetic screens that identify genes essential for cell fitness is that essentiality of a given gene is highly context-specific. Identification of such contexts could be the key to defining gene function and also to develop novel therapeutic interventions. Here, we present Context-specific Essentiality Network-tools (CEN-tools), a website and python package, in which users can interrogate the essentiality of a gene from large-scale genome-scale CRISPR screens in a number of biological contexts including tissue of origin, mutation profiles, expression levels and drug responses. We show that CEN-tools is suitable for the systematic identification of genetic dependencies and for more targeted queries. The associations between genes and a given context are represented as dependency networks (CENs), and we demonstrate the utility of these networks in elucidating novel gene functions. In addition, we integrate the dependency networks with existing protein-protein interaction networks to reveal context-dependent essential cellular pathways in cancer cells. Together, we demonstrate the applicability of CEN-tools in aiding the current efforts to define the human cellular dependency map.
Collapse
Affiliation(s)
- Sumana Sharma
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
- Cell Surface Signalling LaboratoryWellcome Sanger InstituteCambridgeUK
- Present address:
MRC Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Cansu Dincer
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| | - Paula Weidemüller
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| | - Gavin J Wright
- Cell Surface Signalling LaboratoryWellcome Sanger InstituteCambridgeUK
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome CampusCambridgeUK
| |
Collapse
|
46
|
Kumar A, Mali P. Mapping regulators of cell fate determination: Approaches and challenges. APL Bioeng 2020; 4:031501. [PMID: 32637855 PMCID: PMC7332300 DOI: 10.1063/5.0004611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Given the limited regenerative capacities of most organs, strategies are needed to efficiently generate large numbers of parenchymal cells capable of integration into the diseased organ. Although it was initially thought that terminally differentiated cells lacked the ability to transdifferentiate, it has since been shown that cellular reprogramming of stromal cells to parenchymal cells through direct lineage conversion holds great potential for the replacement of post-mitotic parenchymal cells lost to disease. To this end, an assortment of genetic, chemical, and mechanical cues have been identified to reprogram cells to different lineages both in vitro and in vivo. However, some key challenges persist that limit broader applications of reprogramming technologies. These include: (1) low reprogramming efficiencies; (2) incomplete functional maturation of derived cells; and (3) difficulty in determining the typically multi-factor combinatorial recipes required for successful transdifferentiation. To improve efficiency by comprehensively identifying factors that regulate cell fate, large scale genetic and chemical screening methods have thus been utilized. Here, we provide an overview of the underlying concept of cell reprogramming as well as the rationale, considerations, and limitations of high throughput screening methods. We next follow with a summary of unique hits that have been identified by high throughput screens to induce reprogramming to various parenchymal lineages. Finally, we discuss future directions of applying this technology toward human disease biology via disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
47
|
Abstract
Human pluripotent stem cells harbor the capacity to differentiate into cells from the three embryonic germ layers, and this ability grants them a central role in modeling human disorders and in the field of regenerative medicine. Here, we review pluripotency in human cells with respect to four different aspects: (1) embryonic development, (2) transcriptomes of pluripotent cell stages, (3) genes and pathways that reprogram somatic cells into pluripotent stem cells, and finally (4) the recent identification of the human pluripotent stem cell essentialome. These four aspects of pluripotency collectively culminate in a broader understanding of what makes a cell pluripotent.
Collapse
|
48
|
Yilmaz A, Braverman-Gross C, Bialer-Tsypin A, Peretz M, Benvenisty N. Mapping Gene Circuits Essential for Germ Layer Differentiation via Loss-of-Function Screens in Haploid Human Embryonic Stem Cells. Cell Stem Cell 2020; 27:679-691.e6. [PMID: 32735778 DOI: 10.1016/j.stem.2020.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells can differentiate into all embryonic germ layers, yet the genes essential for these cell fate transitions in human remain elusive. Here, we mapped the essential genes for the differentiation of human pluripotent stem cells (hPSCs) into the three germ layers by using a genome-wide loss-of-function library established in haploid hPSCs. Strikingly, we observed a high fraction of essential genes associated with plasma membrane, highlighting signaling pathways needed for each lineage differentiation. Interestingly, analysis of all hereditary neurological disorders uncovered high essentiality among microcephaly-causing genes. Furthermore, we demonstrated lineage-specific hierarchies among essential transcription factors and a set of Golgi- and endoplasmic reticulum-related genes needed for the differentiation into all germ layers. Our work sheds light on the gene networks regulating early gastrulation events in human by defining essential drivers of specific embryonic germ layer fates and essential genes for the exit from pluripotency.
Collapse
Affiliation(s)
- Atilgan Yilmaz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Carmel Braverman-Gross
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Anna Bialer-Tsypin
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Mordecai Peretz
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
49
|
Lin X, Chemparathy A, La Russa M, Daley T, Qi LS. Computational Methods for Analysis of Large-Scale CRISPR Screens. Annu Rev Biomed Data Sci 2020. [DOI: 10.1146/annurev-biodatasci-020520-113523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large-scale CRISPR-Cas pooled screens have shown great promise to investigate functional links between genotype and phenotype at the genome-wide scale. In addition to technological advancement, there is a need to develop computational methods to analyze the large datasets obtained from high-throughput CRISPR screens. Many computational methods have been developed to identify reliable gene hits from various screens. In this review, we provide an overview of the technology development of CRISPR screening platforms, with a focus on recent advances in computational methods to identify and model gene effects using CRISPR screen datasets. We also discuss existing challenges and opportunities for future computational methods development.
Collapse
Affiliation(s)
- Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Timothy Daley
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology and ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
50
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|