1
|
Yibcharoenporn C, Muanprasat C, Moonwiriyakit A, Satitsri S, Pathomthongtaweechai N. AMPK in Intestinal Health and Disease: A Multifaceted Therapeutic Target for Metabolic and Inflammatory Disorders. Drug Des Devel Ther 2025; 19:3029-3058. [PMID: 40291159 PMCID: PMC12024487 DOI: 10.2147/dddt.s507489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The intestines play essential roles in nutrient absorption and immune function and help maintain a protective barrier. Disruptions to its function can result in various diseases, including metabolic disorders, inflammation, and cancer. As a key regulator of cellular energy levels, 5'-adenosine monophosphate-activated protein kinase (AMPK) is essential for intestinal health. Beyond its established metabolic role, emerging evidence suggests that AMPK exerts profound effects on intestinal cell physiology, influencing cell proliferation and differentiation, inflammation, autophagy, barrier integrity, and smooth muscle contractility. Here, we explore the structure and regulation of AMPK, as well as its diverse roles in intestinal diseases and potential as a therapeutic target. Our findings reveal that AMPK is a multifaceted regulator of intestinal health, modulating various cellular processes and intestinal diseases. It plays a dual role in cancer, acting as both a tumor suppressor and promoter, and it regulates inflammatory pathways, autophagy, tight junction formation, and smooth muscle contractility. Both natural and synthetic AMPK activators offer promise as therapeutic agents. This review of AMPK's mechanisms and activators offers valuable insights for developing novel therapies for intestinal disorders. Further research is needed to fully define AMPK's roles and therapeutic potential.
Collapse
Affiliation(s)
- Chamnan Yibcharoenporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| |
Collapse
|
2
|
Liu B, Lu T, Ding M, Zhou X, Jiang Y, Shang J, Sun W, Hu S, Wang X, Zhou X. Targeting TTK Inhibits Tumorigenesis of T-Cell Lymphoma Through Dephosphorylating p38α and Activating AMPK/mTOR Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413990. [PMID: 39836493 PMCID: PMC11905054 DOI: 10.1002/advs.202413990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
T-cell lymphoma (TCL) is a group of non-Hodgkin's lymphoma with high heterogeneity and unfavorable prognosis. Current standard treatments have demonstrated limited efficacy in improving the outcomes for TCL patients. Therefore, identification of novel drug targets is urgently needed to improve the prognosis of TCL patients. Through multi-omics analysis, aberrant expression of threonine tyrosine kinase (TTK) in TCL is identified. High expression of TTK is closely associated with poor prognosis in TCL patients. Targeting TTK through gene knockdown exerts anti-tumor effects in vitro and in vivo, including inhibiting the cell proliferation, inducing G2/M phase arrest, enhancing DNA damage and cell apoptosis. Mechanically, p38α is identified as the potential phosphorylation substrate of TTK through phosphoproteomic quantification and motif prediction. Furthermore, inhibition of TTK suppresses activation of p38α through dephosphorylating it at Thr180/Tyr182, thereby promoting the activation of AMPK/mTOR pathway. In addition, targeting TTK enhances the autophagy in TCL cells through dephosphorylating p38α. CFI-402257, a specific inhibitor of TTK, is found to exhibit anti-tumor effects and exerted synergistic efficacy with PI3K inhibitor, Duvelisib, in TCL. The study shows that TTK contributes to the development of TCL by regulating p38α-mediated AMPK/mTOR pathway. CFI-402257 is expected to be a promising strategy for TCL treatment.
Collapse
Affiliation(s)
- Bingyu Liu
- Department of HematologyShandong Provincial HospitalCheeloo College of MedicineShandong UniversityJinanShandong250021China
| | - Tiange Lu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| | - Mengfei Ding
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| | - Xiaoli Zhou
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| | - Yujie Jiang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| | - Juanjuan Shang
- Department of HematologyShandong Provincial HospitalCheeloo College of MedicineShandong UniversityJinanShandong250021China
| | - Wenyue Sun
- Department of HematologyShandong Provincial HospitalCheeloo College of MedicineShandong UniversityJinanShandong250021China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| | - Xin Wang
- Department of HematologyShandong Provincial HospitalCheeloo College of MedicineShandong UniversityJinanShandong250021China
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandong250021China
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalCheeloo College of MedicineShandong UniversityJinanShandong250021China
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| |
Collapse
|
3
|
Mohanty SS, Warrier S, Rangarajan A. Rethinking AMPK: A Reversible Switch Fortifying Cancer Cell Stress-Resilience. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2025; 98:33-52. [PMID: 40165808 PMCID: PMC11952127 DOI: 10.59249/jkbb6336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stress adaptation is an evolutionarily conserved mechanism that promotes survival in the face of adverse conditions. AMP-activated protein kinase (AMPK) is a highly conserved energy-sensing kinase found in nearly all eukaryotic cells. It maintains energy homeostasis by promoting catabolism and inhibiting anabolism. In the context of cancer, the role of AMPK is controversial. It was initially touted as a tumor suppressor due to its association with Liver Kinase B1 (LKB1) (an upstream regulator and a known tumor suppressor) and ensuing growth-suppressive actions. However, emerging studies across a variety of cancer types unambiguously reveal AMPK's pro-survival and, thus, tumor-promoting activity, especially under cancer-associated stresses such as hypoxia, nutrient deprivation, oxidative stress, matrix detachment, and chemotherapy. In cancer cells, AMPK is activated in response to stress-induced increases in the levels of adenosine monophosphate (AMP), Ca2+, or reactive oxygen species (ROS). Upon activation, AMPK engages in metabolic rewiring and crosstalk with signaling molecules to mobilize resources toward survival while compromising proliferation. Here, we posit that AMPK is a non-genetic "reversible switch," allowing cancer cells' phenotype to switch to dormant, stem-like, and drug-resistant states, thereby enabling tumor cell survival, pathological progression, and therapy resistance. This review underscores the critical role of AMPK in driving cancer cell stress resilience and survival, advocating for the strategic use of AMPK inhibitors to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Shraddha S. Mohanty
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Shweta Warrier
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Annapoorni Rangarajan
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| |
Collapse
|
4
|
Strang J, Astridge DD, Nguyen VT, Reigan P. Small Molecule Modulators of AMP-Activated Protein Kinase (AMPK) Activity and Their Potential in Cancer Therapy. J Med Chem 2025; 68:2238-2254. [PMID: 39879193 PMCID: PMC11831681 DOI: 10.1021/acs.jmedchem.4c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
AMP-activated protein kinase (AMPK) is a central mediator of cellular metabolism and is activated in direct response to low ATP levels. Activated AMPK inhibits anabolic pathways and promotes catabolic activities that generate ATP through the phosphorylation of multiple target substrates. AMPK is a therapeutic target for activation in several chronic metabolic diseases, and there is increasing interest in targeting AMPK activity in cancer where it can act as a tumor suppressor or conversely it can support cancer cell survival. Small molecule AMPK activators and inhibitors have demonstrated some success in suppressing cancer growth, survival, and drug resistance in preclinical cancer models. In this perspective, we summarize the role of AMPK in cancer and drug resistance, the influence of the tumor microenvironment on AMPK activity, and AMPK activator and inhibitor development. In addition, we discuss the potential importance of isoform-selective targeting of AMPK and approaches for selective AMPK targeting in cancer.
Collapse
Affiliation(s)
- Juliet
E. Strang
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Daniel D. Astridge
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Vu T. Nguyen
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Philip Reigan
- Department
of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical
Sciences, University of Colorado Anschutz
Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| |
Collapse
|
5
|
Liao Z, Su C, Li J, Liu J. Causal association of metformin treatment with diverse immune-mediated inflammatory diseases: A Mendelian randomization analysis. Medicine (Baltimore) 2025; 104:e41400. [PMID: 39928815 PMCID: PMC11813035 DOI: 10.1097/md.0000000000041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/23/2024] [Accepted: 01/12/2025] [Indexed: 02/12/2025] Open
Abstract
Metformin has been shown to possess immune-modulating and anti-inflammatory effects in various animal and clinical studies. It is believed to be effective in treating some immune-mediated inflammatory diseases (IMIDs). However, there remains ongoing debate regarding the extent to which metformin can reduce the risk of developing IMIDs. We used the data from genome-wide association studies to explore the causal relationship between metformin treatment and some IMIDs through the Mendelian randomization (MR) analysis. Additionally, sensitivity analyses were performed using the Cochran Q-test, MR-PRESSO and "leave-one-out" to confirm the robustness of our conclusions. The MR analysis indicated that metformin treatment could reduce the risk of rheumatoid arthritis (RA) (OR = 0.018, 95% CI: 1.33 × 10-3-0.233, P = .002), multiple sclerosis (MS) (OR = 0.966, 95% CI: 0.936-0.997, P = .030) and primary sclerosing cholangitis (PSC) (OR = 6.82 × 10-4, 95% CI: 7.83 × 10-6-5.93 × 10-2, P = .001). But metformin treatment is not significantly associated with the risk of Crohn disease (OR = 0.994, 95% CI: 0.979-1.009, P = .431), ulcerative colitis (UC) (OR = 0.987, 95% CI: 0.965-1.009, P = .234), systemic lupus erythematosus (SLE) (OR = 164.373, 95% CI: 0.158-1.71 × 105, P = .150), autoimmune hepatitis (AIH) (OR = 2.909, 95% CI: 4.58 × 10-3-1.85 × 103, P = .746) and primary biliary cholangitis (PBC) (OR = 0.055, 95% CI: 1.44 × 10-3-2.112, P = .119). Due to the heterogeneity of the data from UC, SLE, MS, and PBC, we adjusted them. After adjustment, there is no change in the results for UC, SLE, MS, and PBC. The findings of this study support metformin treatment may reduce the risk of RA, MS, and PSC.
Collapse
Affiliation(s)
- Zheng Liao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Chenguang Su
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jian Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jinlong Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
6
|
HE CANCAN, ZHANG TINGTING, XIONG WEI, WANG SHENGYU, SUN XIN. Apigenin facilitates apoptosis of acute lymphoblastic leukemia cells via AMP-activated protein kinase-mediated ferroptosis. Oncol Res 2025; 33:421-429. [PMID: 39866226 PMCID: PMC11753985 DOI: 10.32604/or.2024.049757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/07/2024] [Indexed: 01/28/2025] Open
Abstract
Background The outcomes of pediatric patients with acute lymphoblastic leukemia (ALL) remain far less than favorable. While apigenin is an anti-cancer agent, studies on the mechanism by which it regulates ALL cell cycle progression are inadequate. Ferroptosis and AMP-activated protein kinase (AMPK) signaling are important processes for ALL patients. However, it remains unclear whether apigenin works by affecting AMPK and apoptosis. Materials and Methods SUP-B15 and T-cell Jurkat ALL cells were treated with apigenin, and cell viability and apoptosis were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, respectively. The thiobarbituric acid-reactive substances (TBARS) assay was used to evaluate lipid peroxidation. Intracellular Fe2+ levels were measured using a commercial kit. Corresponding proteins were detected by western blotting. Results Results showed that apigenin reduced cell viability and the levels of Ki67 and proliferating cell nuclear antigen (PCNA) expression in a concentration-dependent manner in both types of ALL cells. Apigenin also exerted anti-apoptotic effects on SUP-B15 and Jurkat cells. Apigenin activated AMP-activated protein kinase (AMPK) signaling and induced ferroptosis, and those effects were attenuated by inhibition of AMPK. Eventually, the reduced cell proliferation and increased cell apoptosis caused by apigenin in ALL cells were partly abolished by AMPK inhibition. Conclusion In summary, apigenin exerted anti-leukemia activity in ALL cells, and that effect was partially achieved by activation of AMPK signaling. Our findings suggest apigenin as a potential drug for treatment of ALL.
Collapse
Affiliation(s)
- CANCAN HE
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
- Department of Pediatrics, Guizhou Children’s Hospital, Zunyi, 563003, China
| | - TINGTING ZHANG
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - WEI XIONG
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - SHENGYU WANG
- Key Laboratory of Infectious Disease & Biosafety, College of Preclinical Medicine, Zunyi Medical University, Zunyi, 563003, China
| | - XIN SUN
- Department of Microbiology, College of Preclinical Medicine, Zunyi Medical University, Zunyi, 563003, China
| |
Collapse
|
7
|
Li X, Zhou J, Ling Y, Tan Y, Zhang J, Wang X, Li F, Jiang S, Zhang S, Yu K, Han Y. Matrine induces autophagic cell death by triggering ROS/AMPK/mTOR axis and apoptosis in multiple myeloma. Biomed Pharmacother 2024; 175:116738. [PMID: 38759291 DOI: 10.1016/j.biopha.2024.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Despite significant advancements in multiple myeloma (MM) treatment in recent years, most patients will eventually develop resistance or experience relapse. Matrine, a primary active compound of traditional Chinese medicinal herb Sophora flavescens Ait, has been found to have anti-tumor properties in various types of malignant tumors. Whether autophagy plays a crucial role in the anti-MM effect of matrine remain unknown. Herein, we found that matrine could trigger apoptosis and cell cycle arrest, and meanwhile induce autophagy in MM cells in vitro. We further ascertained the role of autophagy by using ATG5 siRNA or the autophagy inhibitor spautin-1, which partially reversed matrine's inhibitory effect on MM cells. Conversely, the combination of matrine with the autophagy inducer rapamycin enhanced their anti-tumor activity. These findings suggest that autophagy induced by matrine can lead to cell death in MM cells. Further mechanism investigation revealed that matrine treatment increased the levels of reactive oxygen species (ROS) and AMPKα1 phosphorylation and decreased the phosphorylation of mTOR in MM cells. Additionally, co-treatment with AMPKα1 siRNA or the ROS scavenger N-acetyl-1-cysteine weakened the increase in autophagy that was induced by matrine. Finally, we demonstrated a synergistic inhibitory effect of matrine and rapamycin against MM in a xenograft mouse model. Collectively, our findings provided novel insights into the anti-MM efficacy of matrine and suggest that matrine induces autophagy by triggering ROS/AMPK/mTOR axis in MM cells, and combinatorial treatment of matrine and rapamycin may be a promising therapeutic strategy against MM.
Collapse
Affiliation(s)
- Xue Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Jifan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixin Ling
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialing Zhang
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China.
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Feng H, Shang S, Chen K, Sun X, Yue X. Impact of metformin on melanoma: a meta-analysis and systematic review. Front Oncol 2024; 14:1399693. [PMID: 38846983 PMCID: PMC11153730 DOI: 10.3389/fonc.2024.1399693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background There is evidence of a modest reduction in skin cancer risk among metformin users. However, no studies have further examined the effects of metformin on melanoma survival and safety outcomes. This study aimed to quantitatively summarize any influence of metformin on the overall survival (OS) and immune-related adverse effects (irAEs) in melanoma patients. Methods Selection criteria: The inclusion criteria were designed based on the PICOS principles. Information sources: PubMed, EMBASE, Cochrane Library, and Web of Science were searched for relevant literature published from the inception of these databases until November 2023 using 'Melanoma' and 'Metformin' as keywords. Survival outcomes were OS, progression-free survival (PFS), recurrence-free survival (RFS), and mortality; the safety outcome was irAEs. Risk of bias and data Synthesis: The Cochrane tool for assessing the risk of bias in randomized trial 2 (RoB2) and methodological index for non-randomized studies (MINORS) were selected to assess the risk of bias. The Cochrane Q and I 2 statistics based on Stata 15.1 SE were used to test the heterogeneity among all studies. Funnel plot, Egger regression, and Begg tests were used to evaluate publication bias. The leave-one-out method was selected as the sensitivity analysis tool. Results A total of 12 studies were included, involving 111,036 melanoma patients. The pooled HR for OS was 0.64 (95% CI [0.42, 1.00], p = 0.004, I2 = 73.7%), HR for PFS was 0.89 (95% CI [0.70, 1.12], p = 0.163, I2 = 41.4%), HR for RFS was 0.62 (95% CI [0.26, 1.48], p = 0.085, I2 = 66.3%), and HR for mortality was 0.53 (95% CI [0.46, 0.63], p = 0.775, I2 = 0.0%). There was no significant difference in irAEs incidence (OR = 1.01; 95% CI [0.42, 2.41]; p = 0.642) between metformin and no metformin groups. Discussion The improvement in overall survival of melanoma patients with metformin may indirectly result from its diverse biological targets and beneficial effects on multiple systemic diseases. While we could not demonstrate a specific improvement in the survival of melanoma patients, the combined benefits and safety of metformin for patients taking the drug are worthy of recognition. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024518182.
Collapse
Affiliation(s)
- Hua Feng
- Department of Dermatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuxian Shang
- Hospital of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Hospital of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xuan Sun
- Interventional Neuroradiology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueping Yue
- Department of Dermatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
10
|
Hawley SA, Russell FM, Ross FA, Hardie DG. BAY-3827 and SBI-0206965: Potent AMPK Inhibitors That Paradoxically Increase Thr172 Phosphorylation. Int J Mol Sci 2023; 25:453. [PMID: 38203624 PMCID: PMC10778976 DOI: 10.3390/ijms25010453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.
Collapse
Affiliation(s)
| | | | | | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.A.H.); (F.A.R.)
| |
Collapse
|
11
|
Lee B, Lee C, Moon HM, Jo SY, Jang SJ, Suh YA. Repurposing Metabolic Inhibitors in the Treatment of Colon Adenocarcinoma Patient-Derived Models. Cells 2023; 12:2859. [PMID: 38132178 PMCID: PMC10742000 DOI: 10.3390/cells12242859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
The effect of agonists on AMP-activated protein kinase (AMPK), mainly metformin and phenformin, has been appreciated in the treatment of multiple types of tumors. Specifically, the antitumor activity of phenformin has been demonstrated in melanomas containing the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) activating mutation. In this report, we elucidated the synergistic antitumor effects of biguanides with metabolism inhibitors on colon tumors. Phenformin with 2-deoxy-D-glucose (2DG) inhibited tumor cell growth in cancer cell lines, including HT29 cells harboring BRAF- and p53-mutations. Biochemical analyses showed that two chemotherapeutics exerted cooperative effects to reduce tumor growth through cell cycle arrest, apoptosis, and autophagy. The drugs demonstrated activity against phosphorylated ERK and the gain-of-function p53 mutant protein. To demonstrate tumor regressive effects in vivo, we established patient-derived models, including xenograft (PDX) and organoids (PDO). Co-treatment of biguanides with chemotherapeutics efficiently reduced the growth of patient-derived colon models in comparison to treatment with a single agent. These results strongly suggest that significant therapeutic advantages would be achieved by combining AMPK activators such as phenformin and cancer metabolic inhibitors such as 2DG.
Collapse
Affiliation(s)
- Bora Lee
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - ChuHee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 38541, Republic of Korea;
| | - Hae-Min Moon
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - Se-Young Jo
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - Se Jin Jang
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| | - Young-Ah Suh
- Department of Biomedical Sciences, Asan Medical Center, The University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.L.); (H.-M.M.); (S.-Y.J.)
| |
Collapse
|
12
|
Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Biochem J 2023; 480:1951-1968. [PMID: 37962491 PMCID: PMC10754287 DOI: 10.1042/bcj20230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.
Collapse
Affiliation(s)
- Fiona A. Ross
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Simon A. Hawley
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Fiona M. Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Nicola Goodman
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| |
Collapse
|
13
|
Sun G, Leclerc GJ, Chahar S, Barredo JC. AMPK Associates with Chromatin and Phosphorylates the TAF-1 Subunit of the Transcription Initiation Complex to Regulate Histone Gene Expression in ALL Cells. Mol Cancer Res 2023; 21:1261-1273. [PMID: 37682252 PMCID: PMC10690046 DOI: 10.1158/1541-7786.mcr-23-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The survival rates for relapsed/refractory acute lymphoblastic leukemia (ALL) remain poor. We and others have reported that ALL cells are vulnerable to conditions inducing energy/ER-stress mediated by AMP-activated protein kinase (AMPK). To identify the target genes directly regulated by AMPKα2, we performed genome-wide RNA-seq and ChIP-seq in CCRF-CEM (T-ALL) cells expressing HA-AMPKα2 (CN2) under normal and energy/metabolic stress conditions. CN2 cells show significantly altered AMPKα2 genomic binding and transcriptomic profile under metabolic stress conditions, including reduced histone gene expression. Proteomic analysis and in vitro kinase assays identified the TATA-Box-Binding Protein-Associated Factor 1 (TAF1) as a novel AMPKα2 substrate that downregulates histone gene transcription in response to energy/metabolic stress. Knockdown and knockout studies demonstrated that both AMPKα2 and TAF1 are required for histone gene expression. Mechanistically, upon activation, AMPKα2 phosphorylates TAF1 at Ser-1353 which impairs TAF1 interaction with RNA polymerase II (Pol II), leading to a compromised state of p-AMPKα2/p-TAF1/Pol II chromatin association and suppression of transcription. This mechanism was also observed in primary ALL cells and in vivo in NSG mice. Consequently, we uncovered a non-canonical function of AMPK that phosphorylates TAF1, both members of a putative chromatin-associated transcription complex that regulate histone gene expression, among others, in response to energy/metabolic stress. IMPLICATIONS Fully delineating the protein interactome by which AMPK regulates adaptive survival responses to energy/metabolic stress, either via epigenetic gene regulation or other mechanisms, will allow the rational development of strategies to overcome de novo or acquired resistance in ALL and other cancers.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J. Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjay Chahar
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C. Barredo
- Department of Pediatrics, Biochemistry, and Molecular Biology and Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
14
|
Pillai U J, Ray A, Maan M, Dutta M. Repurposing drugs targeting metabolic diseases for cancer therapeutics. Drug Discov Today 2023; 28:103684. [PMID: 37379903 DOI: 10.1016/j.drudis.2023.103684] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hurdles in the identification of new drugs for cancer treatment have made drug repurposing an increasingly appealing alternative. The approach involves the use of old drugs for new therapeutic purposes. It is cost-effective and facilitates rapid clinical translation. Given that cancer is also considered a metabolic disease, drugs for metabolic disorders are being actively repurposed for cancer therapeutics. In this review, we discuss the repurposing of such drugs approved for two major metabolic diseases, diabetes and cardiovascular disease (CVD), which have shown potential as anti-cancer treatment. We also highlight the current understanding of the cancer signaling pathways that these drugs target.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Anindita Ray
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Meenu Maan
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE; New York University-Abu Dhabi, Abu Dhabi, UAE.
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE.
| |
Collapse
|
15
|
Abstract
Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.
Collapse
Affiliation(s)
- Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| |
Collapse
|
16
|
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24:255-272. [PMID: 36316383 DOI: 10.1038/s41580-022-00547-x] [Citation(s) in RCA: 399] [Impact Index Per Article: 199.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
17
|
Correa-Romero BF, Olivares-Marin IK, Regalado-Gonzalez C, Nava GM, Madrigal-Perez LA. The role of the SNF1 signaling pathway in the growth of Saccharomyces cerevisiae in different carbon and nitrogen sources. Braz J Microbiol 2023:10.1007/s42770-023-00954-y. [DOI: 10.1007/s42770-023-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
|
18
|
Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N, Anto RJ. The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol 2023; 14:1114582. [PMID: 36875093 PMCID: PMC9975160 DOI: 10.3389/fimmu.2023.1114582] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a key metabolic sensor that is pivotal for the maintenance of cellular energy homeostasis. AMPK contributes to diverse metabolic and physiological effects besides its fundamental role in glucose and lipid metabolism. Aberrancy in AMPK signaling is one of the determining factors which lead to the development of chronic diseases such as obesity, inflammation, diabetes, and cancer. The activation of AMPK and its downstream signaling cascades orchestrate dynamic changes in the tumor cellular bioenergetics. It is well documented that AMPK possesses a suppressor role in the context of tumor development and progression by modulating the inflammatory and metabolic pathways. In addition, AMPK plays a central role in potentiating the phenotypic and functional reprogramming of various classes of immune cells which reside in the tumor microenvironment (TME). Furthermore, AMPK-mediated inflammatory responses facilitate the recruitment of certain types of immune cells to the TME, which impedes the development, progression, and metastasis of cancer. Thus, AMPK appears to play an important role in the regulation of anti-tumor immune response by regulating the metabolic plasticity of various immune cells. AMPK effectuates the metabolic modulation of anti-tumor immunity via nutrient regulation in the TME and by virtue of its molecular crosstalk with major immune checkpoints. Several studies including that from our lab emphasize on the role of AMPK in regulating the anticancer effects of several phytochemicals, which are potential anticancer drug candidates. The scope of this review encompasses the significance of the AMPK signaling in cancer metabolism and its influence on the key drivers of immune responses within the TME, with a special emphasis on the potential use of phytochemicals to target AMPK and combat cancer by modulating the tumor metabolism.
Collapse
Affiliation(s)
- Chenicheri Kizhakkeveettil Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Tennyson Prakash Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kalishwaralal Kalimuthu
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
19
|
Hardie DG. AMP-activated protein kinase - a journey from 1 to 100 downstream targets. Biochem J 2022; 479:2327-2343. [PMID: 36383046 PMCID: PMC9704532 DOI: 10.1042/bcj20220255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
A casual decision made one evening in 1976, in a bar near the Biochemistry Department at the University of Dundee, led me to start my personal research journey by following up a paper that suggested that acetyl-CoA carboxylase (ACC) (believed to be a key regulatory enzyme of fatty acid synthesis) was inactivated by phosphorylation by what appeared to be a novel, cyclic AMP-independent protein kinase. This led me to define and name the AMP-activated protein kinase (AMPK) signalling pathway, on which I am still working 46 years later. ACC was the first known downstream target for AMPK, but at least 100 others have now been identified. This article contains some personal reminiscences of that research journey, focussing on: (i) the early days when we were defining the kinase and developing the key tools required to study it; (ii) the late 1990s and early 2000s, an exciting time when we and others were identifying the upstream kinases; (iii) recent times when we have been studying the complex role of AMPK in cancer. The article is published in conjunction with the Sir Philip Randle Lecture of the Biochemical Society, which I gave in September 2022 at the European Workshop on AMPK and AMPK-related kinases in Clydebank, Scotland. During the early years of my research career, Sir Philip acted as a role model, due to his pioneering work on insulin signalling and the regulation of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
20
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
21
|
Faraj JA, Al-Athari AJH, Mohie SED, Kadhim IK, Jawad NM, Abbas WJ, Jalil AT. Reprogramming the tumor microenvironment to improve the efficacy of cancer immunotherapies. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:239. [PMID: 36175691 DOI: 10.1007/s12032-022-01842-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
The immunotherapeutic approaches based on checkpoint inhibitors, tumor vaccination, immune cell-based therapy, and cytokines were developed to engage the patient's immune system against cancer and better survival of them. While potent, however, preclinical and clinical data have identified that abnormalities in the tumor microenvironment (TME) can affect the efficacy of immunotherapies in some cancers. It is therefore imperative to develop new therapeutic interventions that will enable to overcome tumor-supportive TME and restrain anti-tumor immunity in patients that acquire resistance to current immunotherapies. Therefore, recognition of the essential nature of the tolerogenic TME may lead to a shift from the immune-suppressive TME to an immune-stimulating phenotype. Here, we review the composition of the TME and its effect on tumor immunoediting and then present how targeted monotherapy or combination therapies can be employed for reprogramming educated TME to improve current immunotherapies outcomes or elucidate potential therapeutic targets.
Collapse
Affiliation(s)
- Jabar A Faraj
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | | | - Sharaf El Din Mohie
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Iman Kareem Kadhim
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Noor Muhsen Jawad
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Weaam J Abbas
- Department of Pharmacy, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001, Iraq.
| |
Collapse
|
22
|
Penugurti V, Mishra YG, Manavathi B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188785. [PMID: 36031088 DOI: 10.1016/j.bbcan.2022.188785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yasaswi Gayatri Mishra
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
23
|
Callender LA, Carroll EC, Garrod-Ketchley C, Schroth J, Bystrom J, Berryman V, Pattrick M, Campbell-Richards D, Hood GA, Hitman GA, Finer S, Henson SM. Altered Nutrient Uptake Causes Mitochondrial Dysfunction in Senescent CD8 + EMRA T Cells During Type 2 Diabetes. FRONTIERS IN AGING 2022; 2:681428. [PMID: 35821991 PMCID: PMC9261431 DOI: 10.3389/fragi.2021.681428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023]
Abstract
Mitochondrial health and cellular metabolism can heavily influence the onset of senescence in T cells. CD8+ EMRA T cells exhibit mitochondrial dysfunction and alterations to oxidative phosphorylation, however, the metabolic properties of senescent CD8+ T cells from people living with type 2 diabetes (T2D) are not known. We show here that mitochondria from T2D CD8+ T cells had a higher oxidative capacity together with increased levels of mitochondrial reactive oxgen species (mtROS), compared to age-matched control cells. While fatty acid uptake was increased, fatty acid oxidation was impaired in T2D CD8+ EMRA T cells, which also showed an accumulation of lipid droplets and decreased AMPK activity. Increasing glucose and fatty acids in healthy CD8+ T cells resulted in increased p-p53 expression and a fragmented mitochondrial morphology, similar to that observed in T2D CD8+ EMRA T cells. The resulting mitochondrial changes are likely to have a profound effect on T cell function. Consequently, a better understanding of these metabolic abnormalities is crucial as metabolic manipulation of these cells may restore correct T cell function and help reduce the impact of T cell dysfunction in T2D.
Collapse
Affiliation(s)
- Lauren A Callender
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Elizabeth C Carroll
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Conor Garrod-Ketchley
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Johannes Schroth
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jonas Bystrom
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | - Gillian A Hood
- Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Graham A Hitman
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sarah Finer
- Barts Health NHS Trust, London, United Kingdom.,Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sian M Henson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
25
|
Chen J, Zou L, Lu G, Grinchuk O, Fang L, Ong DST, Taneja R, Ong CN, Shen HM. PFKP alleviates glucose starvation-induced metabolic stress in lung cancer cells via AMPK-ACC2 dependent fatty acid oxidation. Cell Discov 2022; 8:52. [PMID: 35641476 PMCID: PMC9156709 DOI: 10.1038/s41421-022-00406-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer cells adopt metabolic reprogramming to promote cell survival under metabolic stress. A key regulator of cell metabolism is AMP-activated protein kinase (AMPK) which promotes catabolism while suppresses anabolism. However, the underlying mechanism of AMPK in handling metabolic stress in cancer remains to be fully understood. In this study, by performing a proteomics screening of AMPK-interacting proteins in non-small-cell lung cancer (NSCLC) cells, we discovered the platelet isoform of phosphofructokinase 1 (PFKP), a rate-limiting enzyme in glycolysis. Moreover, PFKP was found to be highly expressed in NSCLC patients associated with poor survival. We demonstrated that the interaction of PFKP and AMPK was greatly enhanced upon glucose starvation, a process regulated by PFKP-associated metabolites. Notably, the PFKP-AMPK interaction promoted mitochondrial recruitment of AMPK which subsequently phosphorylated acetyl-CoA carboxylase 2 (ACC2) to enhance long-chain fatty acid oxidation, a process helping maintenance of the energy and redox homeostasis and eventually promoting cancer cell survival under glucose starvation. Collectively, we revealed a critical non-glycolysis-related function of PFKP in regulating long-chain fatty acid oxidation via AMPK to alleviate glucose starvation-induced metabolic stress in NSCLC cells.
Collapse
Affiliation(s)
- Jiaqing Chen
- NUS Graduate School Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Zou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Oleg Grinchuk
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- NUS Graduate School Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon-Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Han-Ming Shen
- NUS Graduate School Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China.
| |
Collapse
|
26
|
Xia T, Chen D, Liu X, Qi H, Wang W, Chen H, Ling T, Otkur W, Zhang CS, Kim J, Lin SC, Piao HL. Midkine noncanonically suppresses AMPK activation through disrupting the LKB1-STRAD-Mo25 complex. Cell Death Dis 2022; 13:414. [PMID: 35487917 PMCID: PMC9054788 DOI: 10.1038/s41419-022-04801-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Midkine (MDK), a secreted growth factor, regulates signal transduction and cancer progression by interacting with receptors, and it can be internalized into the cytoplasm by endocytosis. However, its intracellular function and signaling regulation remain unclear. Here, we show that intracellular MDK interacts with LKB1 and STRAD to disrupt the LKB1-STRAD-Mo25 complex. Consequently, MDK decreases the activity of LKB1 to dampen both the basal and stress-induced activation of AMPK by glucose starvation or treatment of 2-DG. We also found that MDK accelerates cancer cell proliferation by inhibiting the activation of the LKB1-AMPK axis. In human cancers, compared to other well-known growth factors, MDK expression is most significantly upregulated in cancers, especially in liver, kidney and breast cancers, correlating with clinical outcomes and inversely correlating with phosphorylated AMPK levels. Our study elucidates an inhibitory mechanism for AMPK activation, which is mediated by the intracellular MDK through disrupting the LKB1-STRAD-Mo25 complex.
Collapse
|
27
|
Cao Y, Xu S, Xu C, Xiao D, Chen Z, Wang W, Wang Z, Yang X. Synthesis, Anticancer Activity and Mechanism of Phenformin Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yufang Cao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education Department of Pharmacy School of Medicine Hunan Normal University Changsha, Hunan China
| | - Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education Department of Pharmacy School of Medicine Hunan Normal University Changsha, Hunan China
| | - Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education Department of Pharmacy School of Medicine Hunan Normal University Changsha, Hunan China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education Department of Pharmacy School of Medicine Hunan Normal University Changsha, Hunan China
| | - Zhuliang Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory Innovative Material Medical Research Institute School of Pharmacy Hunan University of Chinese Medicine, Changsha Hunan China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory Innovative Material Medical Research Institute School of Pharmacy Hunan University of Chinese Medicine, Changsha Hunan China
| | - Zhiren Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education Department of Pharmacy School of Medicine Hunan Normal University Changsha, Hunan China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education Department of Pharmacy School of Medicine Hunan Normal University Changsha, Hunan China
| |
Collapse
|
28
|
Phenformin increases early hematopoietic progenitors in the Jak2 V617F murine model. Invest New Drugs 2022; 40:576-585. [PMID: 35015172 DOI: 10.1007/s10637-022-01212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Myeloproliferative neoplasms (MPN) are disorders characterized by an alteration at the hematopoietic stem cell (HSC) level, where the JAK2 mutation is the most common genetic alteration found in classic MPN (polycythemia vera, essential thrombocythemia, and primary myelofibrosis). We and others previously demonstrated that metformin reduced splenomegaly and platelets counts in peripheral blood in JAK2V617F pre-clinical MPN models, which highlighted the antineoplastic potential of biguanides for MPN treatment. Phenformin is a biguanide that has been used to treat diabetes, but was withdrawn due to its potential to cause lactic acidosis in patients. AIMS We herein aimed to investigate the effects of phenformin in MPN disease burden and stem cell function in Jak2V617F-knockin MPN mice. RESULTS In vitro phenformin treatment reduced cell viability and increased apoptosis in SET2 JAK2V67F cells. Long-term treatment with 40 mg/kg phenformin in Jak2V617F knockin mice increased the frequency of LSK, myeloid progenitors (MP), and multipotent progenitors (MPP) in the bone marrow. Phenformin treatment did not affect peripheral blood counts, spleen weight, megakaryocyte count, erythroid precursors frequency, or ex vivo clonogenic capacity. Ex vivo treatment of bone marrow cells from Jak2V617F knockin mice with phenformin did not affect hematologic parameters or engraftment in recipient mice. CONCLUSIONS Phenformin increased the percentages of LSK, MP, and MPP populations, but did not reduce disease burden in Jak2V617F-knockin mice. Additional studies are necessary to further understand the effects of phenformin on early hematopoietic progenitors.
Collapse
|
29
|
AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia. Cell Rep 2022; 38:110197. [PMID: 34986346 DOI: 10.1016/j.celrep.2021.110197] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) regulates the balance between cellular anabolism and catabolism dependent on energy resources to maintain proliferation and survival. Small-compound AMPK activators show anti-cancer activity in preclinical models. Using the direct AMPK activator GSK621, we show that the unfolded protein response (UPR) is activated by AMPK in acute myeloid leukemia (AML) cells. Mechanistically, the UPR effector protein kinase RNA-like ER kinase (PERK) represses oxidative phosphorylation, tricarboxylic acid (TCA) cycle, and pyrimidine biosynthesis and primes the mitochondrial membrane to apoptotic signals in an AMPK-dependent manner. Accordingly, in vitro and in vivo studies reveal synergy between the direct AMPK activator GSK621 and the Bcl-2 inhibitor venetoclax. Thus, selective AMPK-activating compounds kill AML cells by rewiring mitochondrial metabolism that primes mitochondria to apoptosis by BH3 mimetics, holding therapeutic promise in AML.
Collapse
|
30
|
Janku F, Beom SH, Moon YW, Kim TW, Shin YG, Yim DS, Kim GM, Kim HS, Kim SY, Cheong JH, Lee YW, Geiger B, Yoo S, Thurston A, Welsch D, Rudoltz MS, Rha SY. First-in-human study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors. Invest New Drugs 2022; 40:1001-1010. [PMID: 35802288 PMCID: PMC9395488 DOI: 10.1007/s10637-022-01277-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
Preclinical models suggest anticancer activity of IM156, a novel biguanide mitochondrial protein complex 1 inhibitor of oxidative phosphorylation (OXPHOS). This first-in-human dose-escalation study enrolled patients with refractory advanced solid tumors to determine the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D). Eligible patients received oral IM156 every other day (QOD) or daily (QD) and were assessed for safety, dose-limiting toxicities (DLTs), pharmacokinetics, and preliminary signals of efficacy. 22 patients with advanced cancers (gastric, n = 8; colorectal, n = 3; ovarian, n = 3; other, n = 8) received IM156 100 to 1,200 mg either QOD or QD. There were no DLTs. However, 1,200 mg QD was not well tolerated due to nausea; 800 mg QD was determined as the RP2D. The most frequent treatment-related AEs (TRAEs) were nausea (n = 15; 68%), diarrhea (n = 10; 46%), emesis (n = 9; 41%), fatigue (n = 4; 18%) and abdominal pain, constipation, and blood lactate increased (n = 2 each; 9%). Grade 3 nausea (n = 3; 14%) was the only grade ≥ 3 TRAE. Plasma exposures increased dose proportionally; mean Day 27 area under the curve (AUC<sub>0-24</sub>) values were higher following QD administration compared to the respective QOD regimen. Stable disease (SD), observed in 7 (32%) patients (confirmed in 2 [9%]), was the best response. To our knowledge, this is the first phase 1 study of an OXPHOS inhibitor that established a RP2D for further clinical development in cancer. Observed AEs of IM156 were manageable and SD was the best response.
Collapse
Affiliation(s)
- Filip Janku
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Seung-Hoon Beom
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wha Moon
- grid.452398.10000 0004 0570 1076Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, South Korea
| | - Tae Won Kim
- grid.267370.70000 0004 0533 4667Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young G. Shin
- grid.254230.20000 0001 0722 6377Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Dong-Seok Yim
- grid.411947.e0000 0004 0470 4224Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gun Min Kim
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Song Kim
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Young Kim
- grid.267370.70000 0004 0533 4667Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Barb Geiger
- ImmunoMet Therapeutics, Inc, Houston, TX USA
| | - Sanghee Yoo
- ImmunoMet Therapeutics, Inc, Houston, TX USA
| | | | - Dean Welsch
- ImmunoMet Therapeutics, Inc, Houston, TX USA
| | | | - Sun Young Rha
- grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea ,grid.15444.300000 0004 0470 5454Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
31
|
Peng ML, Fu Y, Wu CW, Zhang Y, Ren H, Zhou SS. Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2022; 13:907757. [PMID: 35784531 PMCID: PMC9240190 DOI: 10.3389/fendo.2022.907757] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disease that is increasing in prevalence and causes many complications. Diabetic cardiomyopathy (DCM) is a complication of diabetes that is associated with high mortality, but it is not well defined. Nevertheless, it is generally accepted that DCM refers to a clinical disease that occurs in patients with diabetes and involves ventricular dysfunction, in the absence of other cardiovascular diseases, such as coronary atherosclerotic heart disease, hypertension, or valvular heart disease. However, it is currently uncertain whether the pathogenesis of DCM is directly attributable to metabolic dysfunction or secondary to diabetic microangiopathy. Oxidative stress (OS) is considered to be a key component of its pathogenesis. The production of reactive oxygen species (ROS) in cardiomyocytes is a vicious circle, resulting in further production of ROS, mitochondrial DNA damage, lipid peroxidation, and the post-translational modification of proteins, as well as inflammation, cardiac hypertrophy and fibrosis, ultimately leading to cell death and cardiac dysfunction. ROS have been shown to affect various signaling pathways involved in the development of DCM. For instance, OS causes metabolic disorders by affecting the regulation of PPARα, AMPK/mTOR, and SIRT3/FOXO3a. Furthermore, OS participates in inflammation mediated by the NF-κB pathway, NLRP3 inflammasome, and the TLR4 pathway. OS also promotes TGF-β-, Rho-ROCK-, and Notch-mediated cardiac remodeling, and is involved in the regulation of calcium homeostasis, which impairs ATP production and causes ROS overproduction. In this review, we summarize the signaling pathways that link OS to DCM, with the intention of identifying appropriate targets and new antioxidant therapies for DCM.
Collapse
Affiliation(s)
- Meng-ling Peng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chu-wen Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Hang Ren
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Shan-shan Zhou
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Shan-shan Zhou,
| |
Collapse
|
32
|
Hu Z, Li M, Cao Y, Akan OD, Guo T, Luo F. Targeting AMPK Signaling by Dietary Polyphenols in Cancer Prevention. Mol Nutr Food Res 2021; 66:e2100732. [PMID: 34802178 DOI: 10.1002/mnfr.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Cancer is a serious public health problem in the world and a major disease affecting human health. Dietary polyphenols have shown good potential in the treatment of various cancers. It is worth noting that cancer cells usually exhibit metabolic abnormalities of high glucose intake and inefficient utilization. AMPK is the key molecule in the regulation of energy metabolism and is closely related with obesity and diabetes. Recent studies indicate that AMPK also plays an important role in cancer prevention and regulating cancer-related genes and pathways, and dietary polyphenols can significantly regulate AMPK activity. In this review, the progress of dietary polyphenols preventing carcinogenesis via AMPK pathway is systemically summarized. From the viewpoint of interfering energy metabolism, the anti-cancer effects of dietary polyphenols are explained. AMPK pathway modulated by different dietary polyphenols affects pathways and target genes are summarized. Dietary polyphenols exert anti-cancer effect through the target molecules regulated by AMPK, which broadens the understanding of polyphenols anti-cancer mechanisms and provides value reference for the investigators of the novel field.
Collapse
Affiliation(s)
- Zuomin Hu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Mengyuan Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yunyun Cao
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Otobong Donald Akan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| |
Collapse
|
33
|
Chomanicova N, Gazova A, Adamickova A, Valaskova S, Kyselovic J. The role of AMPK/mTOR signaling pathway in anticancer activity of metformin. Physiol Res 2021; 70:501-508. [PMID: 34062070 DOI: 10.33549/physiolres.934618] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Metformin (MTF) is a widely used drug for the treatment of diabetes mellitus type 2 (DM2) and frequently used as an adjuvant therapy for polycystic ovarian syndrome, metabolic syndrome, and in some cases also tuberculosis. Its protective effect on the cardiovascular system has also been described. Recently, MTF was subjected to various analyzes and studies that showed its beneficial effects in cancer treatment such as reducing cancer cell proliferation, reducing tumor growth, inducing apoptosis, reducing cancer risk in diabetic patients, or reducing likelihood of relapse. One of the MTF's mechanisms of action is the activation of adenosine-monophosphate-activated protein kinase (AMPK). Several studies have shown that AMPK/mammalian target of rapamycin (mTOR) pathway has anticancer effect in vivo and in vitro. The aim of this review is to present the anticancer activity of MTF highlighting the importance of the AMPK/mTOR pathway in the cancer process.
Collapse
Affiliation(s)
- N Chomanicova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
34
|
Huang L, Xiao D, Wu T, Hu X, Deng J, Yan X, Wu J, Xu S, Yang X, Li G. Phenformin synergistically sensitizes liver cancer cells to sorafenib by downregulating CRAF/ERK and PI3K/AKT/mTOR pathways. Am J Transl Res 2021; 13:7508-7523. [PMID: 34377232 PMCID: PMC8340162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Sorafenib is a first-line drug to treat advanced hepatocellular carcinoma (HCC), which can prolong the median overall survival of patients by approximately 3 months. Phenformin is a biguanide derivative that has been shown to exhibit antitumor activity superior to that of metformin. We herein explored the ability of phenformin to enhance the anti-cancer activity of sorafenib against HCC and the mechanisms underlying such synergy. The Hep-G2 and SMMC-7721 HCC cell lines were treated with sorafenib and/or phenformin, after which the proliferation of these cells was evaluated via MTT and colony formation assays, while invasion and apoptotic cell death were evaluated via Transwell and flow cytometry assays, respectively. In addition, protein levels were assessed by Western blotting, drug synergy was assessed with the CompuSyn software, and xenograft models were established by implanting Hep-G2 cells into nude mice and then assessing drug antitumor efficacy. Sorafenib and phenformin exhibited a synergistic ability to suppress HCC cell proliferation, migration, and survival. Phenformin further bolstered the ability of sorafenib to inhibit the CRAF/ERK and PI3K/AKT/mTOR pathways. Strikingly, the combination of these two drugs achieved better in vivo efficacy in a murine model system, without causing significant weight loss or hepatorenal toxicity. Sorafenib and phenformin can synergistically suppress CRAF/ERK and PI3K/AKT/mTOR pathway activation in HCC cells, and may thus represent a promising approach to treating this deadly cancer.
Collapse
Affiliation(s)
- Lingli Huang
- Department of Oncology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South UniversityZhuzhou 412000, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha 410013, Hunan, China
| | - Tianyu Wu
- Department of Oncology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South UniversityZhuzhou 412000, Hunan, China
| | - Xin Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha 410013, Hunan, China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha 410013, Hunan, China
| | - Xinjian Yan
- Department of Oncology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South UniversityZhuzhou 412000, Hunan, China
| | - Jingtao Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha 410013, Hunan, China
| | - Simeng Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha 410013, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal UniversityChangsha 410013, Hunan, China
| | - Gaofeng Li
- Department of Oncology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South UniversityZhuzhou 412000, Hunan, China
| |
Collapse
|
35
|
STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nat Commun 2021; 12:3299. [PMID: 34083537 PMCID: PMC8175605 DOI: 10.1038/s41467-021-23396-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using β-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer. Complex I inhibition induces oxidative stress leading to cancer cell cytotoxicity. Here, the authors show, in breast cancer models, that inflammatory mediators can potentiate complex I inhibitor phenformin cytotoxicity through STAT1-mediated downregulation of the reactive oxygen species scavenger NQO1.
Collapse
|
36
|
George A, Sahin I, Carneiro BA, Dizon DS, Safran HP, El-Deiry WS. Strategies to sensitize cancer cells to immunotherapy. Hum Vaccin Immunother 2021; 17:2595-2601. [PMID: 34019474 PMCID: PMC8475577 DOI: 10.1080/21645515.2021.1891817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent years have seen the emergence of immunotherapy as a promising modality for treating a variety of cancers. However, the initial data have led to the ultimate reality that such a treatment does not work effectively in all cancers, nor does it universally result in long-lasting benefits, which can be partly attributed to the development of drug resistance- itself a major challenge. Worse, in some cases, immunotherapy can lead to accelerated tumor growth known as hyperprogression. Tumor sensitization is being pursued as a means to circumvent resistance to immunotherapy, and perhaps as a means to prevent hyperprogression. Such approaches aim to counteract features of immune resistance demonstrated by refractory tumors, paving the way for improved treatment effectiveness when standard immunotherapies such as immune checkpoint inhibitors are utilized. Sensitizing agents can be categorized by whether their target is a tumor-intrinsic or a tumor cell-extrinsic factor. Tumor-intrinsic sensitization strategies act directly on cancer cells, suppressing their anti-immune tendencies, whereas tumor cell-extrinsic sensitization strategies target the tumor microenvironment to more effectively mediate the desired therapeutic effects of immunotherapy.
Collapse
Affiliation(s)
- Andrew George
- Department of Chemistry, Brown University, Providence, RI, USA.,Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ilyas Sahin
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Benedito A Carneiro
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA
| | - Don S Dizon
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA
| | - Howard P Safran
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA
| | - Wafik S El-Deiry
- Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA.,Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA.,The Warren Alpert Medical School, Cancer Center at Brown University, Brown University, Providence, RI, USA.,Department of Pathology & Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
37
|
A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia. Blood 2021; 138:1317-1330. [PMID: 33876224 DOI: 10.1182/blood.2020008955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and metabolite depletion, which severely impaired nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted AMPK activation and downregulation of mTOR signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring either murine NOTCH1-induced primary leukemias or human T-ALL PDXs led to potent antileukemic effects with a significant extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.
Collapse
|
38
|
Zhao H, Swanson KD, Zheng B. Therapeutic Repurposing of Biguanides in Cancer. Trends Cancer 2021; 7:714-730. [PMID: 33865798 DOI: 10.1016/j.trecan.2021.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Biguanides are a class of antidiabetic drugs that includes phenformin and metformin; however, the former was withdrawn from approval in many countries due to its toxicity. Findings from retrospective epidemiological studies in diabetic populations and preclinical laboratory models have demonstrated that biguanides possess antitumor activities that suggest their repurposing for cancer prevention and treatment. However, a better understanding of how these biguanides behave as antitumor agents is needed to guide their improved applications in cancer therapy, spurring increased interest in their pharmacology. Here, we present evidence for proposed mechanisms of action related to their antitumor activity, including their effects on central carbon metabolism in cancer cells and immune-modulating activity, and then review progress on biguanide repurposing in cancer therapeutics and the possible re-evaluation of phenformin as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Hongyun Zhao
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kenneth D Swanson
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
39
|
Russell FM, Hardie DG. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Int J Mol Sci 2020; 22:E186. [PMID: 33375416 PMCID: PMC7795930 DOI: 10.3390/ijms22010186] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance. In response to metabolic stress, it acts to redress energy imbalance through promotion of ATP-generating catabolic processes and inhibition of ATP-consuming processes, including cell growth and proliferation. While findings that AMPK was a downstream effector of the tumour suppressor LKB1 indicated that it might act to repress tumourigenesis, more recent evidence suggests that AMPK can either suppress or promote cancer, depending on the context. Prior to tumourigenesis AMPK may indeed restrain aberrant growth, but once a cancer has arisen, AMPK may instead support survival of the cancer cells by adjusting their rate of growth to match their energy supply, as well as promoting genome stability. The two isoforms of the AMPK catalytic subunit may have distinct functions in human cancers, with the AMPK-α1 gene often being amplified, while the AMPK-α2 gene is more often mutated. The prevalence of metabolic disorders, such as obesity and Type 2 diabetes, has led to the development of a wide range of AMPK-activating drugs. While these might be useful as preventative therapeutics in individuals predisposed to cancer, it seems more likely that AMPK inhibitors, whose development has lagged behind that of activators, would be efficacious for the treatment of pre-existing cancers.
Collapse
Affiliation(s)
| | - David Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland DD1 5EH, UK;
| |
Collapse
|
40
|
Tseng CH. Metformin Use and Leukemia Risk in Patients With Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:541090. [PMID: 33193076 PMCID: PMC7642096 DOI: 10.3389/fendo.2020.541090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The effect of metformin on leukemia risk remains unknown. METHODS The Taiwan's National Health Insurance database was used to enroll 610,089 newly diagnosed type 2 diabetes patients on at least 2 anti-diabetic prescriptions during 1999-2009. We followed-up these patients until 31 December 2011, in order to determine the incidence of leukemia. We used Cox regression model (incorporated with the inverse probability of treatment-weighting using propensity scores) to estimate hazard ratios in both intention-to-treat and per-protocol analyses. RESULTS We enrolled 414,783 metformin initiators and 195,306 non-metformin initiators. Among them, 598 and 372 patients developed new-onset leukemia after a median follow-up period of 5.08 years and 6.79 years, respectively. The respective incidence rates were 26.52 and 28.40 per 100,000 person-years. The hazard ratio for metformin initiators versus non-metformin initiators was 0.943 (95% confidence interval 0.828-1.074) in the intention-to-treat analysis and 0.852 (95% confidence interval 0.705-1.031) in the per-protocol analysis. Sensitivity analyses after excluding patients using the exclusion criteria (a follow-up duration < 24 and < 36 months, respectively, patients with incretin-based therapies during follow-up, and patients enrolled during 2 different periods of 1999-2003 and 2004-2009) consistently showed a neutral effect. However, metformin initiators had a significantly higher risk of leukemia in the per-protocol analyses when censoring patients at a time without regular follow-up. CONCLUSION Metformin use has an overall neutral effect on leukemia but we cannot exclude a significantly higher risk in patients who persistently use the drug.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
41
|
Ferreira LM, Li AM, Serafim TL, Sobral MC, Alpoim MC, Urbano AM. Intermediary metabolism: An intricate network at the crossroads of cell fate and function. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165887. [DOI: 10.1016/j.bbadis.2020.165887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
|
42
|
Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020; 8:biomedicines8080270. [PMID: 32756381 PMCID: PMC7460249 DOI: 10.3390/biomedicines8080270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Correspondence: ; Tel.: +33-491828829; Fax: +33-491826083
| |
Collapse
|
43
|
Gong D, Li Y, Wang Y, Chi B, Zhang J, Gu J, Yang J, Xu X, Hu S, Min L. AMPK α1 Downregulates ROS Levels Through Regulating Trx Leading to Dysfunction of Apoptosis in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:5967-5977. [PMID: 32606805 PMCID: PMC7320905 DOI: 10.2147/ott.s236235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/17/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose AMP-activated protein kinase α1 (AMPK α1) associates closely with cancers. However, the relationship between AMPK α1 and non-small cell lung cancer (NSCLC) is not fully understood. In this study, we aim to explore the role and mechanism of AMPK α1 in NSCLC initiation and progression. Materials and Methods A total of 165 clinical NSCLC specimens were included in the formalin-fixed and paraffin-embedded (FFPE) lung cancer tissue arrays. The expression levels of AMPK α1 and thioredoxin (Trx) in NSCLC cancer tissues and adjacent non-tumor lung tissues were measured through using immunohistochemistry. MTT assay was used to detect cell proliferation. Intracellular ROS levels were measured by using H2DCFDA reagent. Lentiviruses including LV-PRKAA1-RNAi, LV-PRKAA1 and a negative LV-control were used to infect A549 cells to modulate AMPK α1 expression in vitro. Immunoblotting was used to determine the modulation relationship between AMPK α1 and Trx. Log rank test and Kaplan–Meier survival analysis were performed to evaluate the significances of AMPK α1 and Trx expression levels on NSCLC patients’ prognoses. Results AMPK α1 was highly expressed in NSCLC cancer tissues and correlated with poor prognosis in patients with NSCLC. In A549 cells, overexpression of AMPK α1 promoted proliferation, suppressed ROS levels and inhibited apoptosis. Moreover, inhibition of AMPK α1 expression achieved the opposite effects. Trx was significantly overexpressed in NSCLC cancer tissues; furthermore, Trx expressed much more in cytoplasm when compared with cell nucleus. Trx expression levels were positively correlated with AMPK α1 expression levels in NSCLC tissues. AMPK α1 could regulate Trx in A549 cells. No significant correlations were observed between Trx expression variances and prognoses in NSCLC patients. Combination of AMPK α1 and Trx had no advantage in predicting prognoses of NSCLC patients. Conclusion These results suggest that AMPK α1 serves a carcinogenic role at least in part through the regulation of Trx expression, and thus represents a potential treatment target in patients with NSCLC.
Collapse
Affiliation(s)
- Daohui Gong
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Ying Li
- Department of Medical Oncology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yuxiu Wang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Beiyuan Chi
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jun Zhang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jianjun Gu
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - JunJun Yang
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Xingxiang Xu
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Suwei Hu
- Medical Genetic Center, Yangzhou Maternal and Child Health Care Service Centre, The Affiliated Hospital of Yangzhou University Medical College, Yangzhou, Jiangsu, People's Republic of China
| | - Lingfeng Min
- Department of Respiratory Medicine, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
44
|
Battram AM, Bachiller M, Martín-Antonio B. Senescence in the Development and Response to Cancer with Immunotherapy: A Double-Edged Sword. Int J Mol Sci 2020; 21:ijms21124346. [PMID: 32570952 PMCID: PMC7352478 DOI: 10.3390/ijms21124346] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence was first described as a physiological tumor cell suppressor mechanism that leads to cell growth arrest with production of the senescence-associated secretory phenotype known as SASP. The main role of SASP in physiological conditions is to attract immune cells to clear senescent cells avoiding tumor development. However, senescence can be damage-associated and, depending on the nature of these stimuli, additional types of senescence have been described. In the context of cancer, damage-associated senescence has been described as a consequence of chemotherapy treatments that were initially thought of as a tumor suppressor mechanism. However, in certain contexts, senescence after chemotherapy can promote cancer progression, especially when immune cells become senescent and cannot clear senescent tumor cells. Moreover, aging itself leads to continuous inflammaging and immunosenescence which are responsible for rewiring immune cells to become defective in their functionality. Here, we define different types of senescence, pathways that activate them, and functions of SASP in these events. Additionally, we describe the role of senescence in cancer and its treatments, including how aging and chemotherapy contribute to senescence in tumor cells, before focusing on immune cell senescence and its role in cancer. Finally, we discuss potential therapeutic interventions to reverse cell senescence.
Collapse
Affiliation(s)
- Anthony M. Battram
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
| | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (A.M.B.); (M.B.)
- Department of Hematology, Hospital Clinic, IDIBAPS/Josep Carreras Leukaemia Research Institute, Carrer Rosselló 149-153, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-45-28; Fax: +34-93-312-94-07
| |
Collapse
|
45
|
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res 2020; 30:507-519. [PMID: 32467593 PMCID: PMC7264181 DOI: 10.1038/s41422-020-0337-2] [Citation(s) in RCA: 490] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy holds the potential to induce durable responses, but only a minority of patients currently respond. The etiologies of primary and secondary resistance to immunotherapy are multifaceted, deriving not only from tumor intrinsic factors, but also from the complex interplay between cancer and its microenvironment. In addressing frontiers in clinical immunotherapy, we describe two categories of approaches to the design of novel drugs and combination therapies: the first involves direct modification of the tumor, while the second indirectly enhances immunogenicity through alteration of the microenvironment. By systematically addressing the factors that mediate resistance, we are able to identify mechanistically-driven novel approaches to improve immunotherapy outcomes.
Collapse
Affiliation(s)
| | - Allison Betof Warner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medicine, New York, NY, 10065, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
46
|
Izreig S, Gariepy A, Kaymak I, Bridges HR, Donayo AO, Bridon G, DeCamp LM, Kitchen-Goosen SM, Avizonis D, Sheldon RD, Laister RC, Minden MD, Johnson NA, Duchaine TF, Rudoltz MS, Yoo S, Pollak MN, Williams KS, Jones RG. Repression of LKB1 by miR-17∼92 Sensitizes MYC-Dependent Lymphoma to Biguanide Treatment. Cell Rep Med 2020; 1:100014. [PMID: 32478334 PMCID: PMC7249503 DOI: 10.1016/j.xcrm.2020.100014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
Abstract
Cancer cells display metabolic plasticity to survive stresses in the tumor microenvironment. Cellular adaptation to energetic stress is coordinated in part by signaling through the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Here, we demonstrate that miRNA-mediated silencing of LKB1 confers sensitivity of lymphoma cells to mitochondrial inhibition by biguanides. Using both classic (phenformin) and newly developed (IM156) biguanides, we demonstrate that elevated miR-17∼92 expression in Myc+ lymphoma cells promotes increased apoptosis to biguanide treatment in vitro and in vivo. This effect is driven by the miR-17-dependent silencing of LKB1, which reduces AMPK activation in response to complex I inhibition. Mechanistically, biguanide treatment induces metabolic stress in Myc+ lymphoma cells by inhibiting TCA cycle metabolism and mitochondrial respiration, exposing metabolic vulnerability. Finally, we demonstrate a direct correlation between miR-17∼92 expression and biguanide sensitivity in human cancer cells. Our results identify miR-17∼92 expression as a potential biomarker for biguanide sensitivity in malignancies.
Collapse
Affiliation(s)
- Said Izreig
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Alexandra Gariepy
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Irem Kaymak
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hannah R. Bridges
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ariel O. Donayo
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Gaëlle Bridon
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Metabolomics Core Facility, McGill University, Montreal, QC H3A 1A3, Canada
| | - Lisa M. DeCamp
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Susan M. Kitchen-Goosen
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Daina Avizonis
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Metabolomics Core Facility, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ryan D. Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rob C. Laister
- Princess Margaret Cancer Centre, Department of Medical Oncology and Hematology, Toronto, ON M5G 2M9, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Nathalie A. Johnson
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Sanghee Yoo
- ImmunoMet Therapeutics, Houston, TX 77021, USA
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Kelsey S. Williams
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Russell G. Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
47
|
Vara-Ciruelos D, Dandapani M, Hardie DG. AMP-Activated Protein Kinase: Friend or Foe in Cancer? ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The AMP-activated protein kinase (AMPK) is activated by energy stress and restores homeostasis by switching on catabolism, while switching off cell growth and proliferation. Findings that AMPK acts downstream of the tumor suppressor LKB1 have suggested that AMPK might also suppress tumorigenesis. In mouse models of B and T cell lymphoma in which genetic loss of AMPK occurred before tumor initiation, tumorigenesis was accelerated, confirming that AMPK has tumor-suppressor functions. However, when loss of AMPK in a T cell lymphoma model occurred after tumor initiation, or simultaneously with tumor initiation in a lung cancer model, the disease was ameliorated. Thus, once tumorigenesis has occurred, AMPK switches from tumor suppression to tumor promotion. Analysis of alterations in AMPK genes in human cancers suggests similar dichotomies, with some genes being frequently amplified while others are mutated. Overall, while AMPK-activating drugs might be effective in preventing cancer, in some cases AMPK inhibitors might be required to treat it.
Collapse
Affiliation(s)
- Diana Vara-Ciruelos
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Madhumita Dandapani
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
48
|
Bort A, Sánchez BG, de Miguel I, Mateos-Gómez PA, Diaz-Laviada I. Dysregulated lipid metabolism in hepatocellular carcinoma cancer stem cells. Mol Biol Rep 2020; 47:2635-2647. [DOI: 10.1007/s11033-020-05352-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
|
49
|
González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab 2020; 31:472-492. [PMID: 32130880 DOI: 10.1016/j.cmet.2020.01.015] [Citation(s) in RCA: 495] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.
Collapse
Affiliation(s)
- Asier González
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | - Sheng-Cai Lin
- School of Life Sciences, Xiamen University, Xiamen, 361102 Fujian, China
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK.
| |
Collapse
|
50
|
Aikawa A, Kozako T, Uchida Y, Yoshimitsu M, Ishitsuka K, Ohsugi T, Honda SI. Cell death induced by dorsomorphin in adult T-cell leukemia/lymphoma is AMPK-independent. FEBS J 2020; 287:4005-4015. [PMID: 32027454 DOI: 10.1111/febs.15239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T-cell neoplasm with poor prognosis that develops after chronic infection with human T-cell leukemia virus type 1 (HTLV-1). Although AMP-activated protein kinase (AMPK) is a critical cellular energy sensor, it has recently become clear that AMPK can act as a tumor regulator. Here, we assessed the expression of AMPK in primary ATL cells and the effects of dorsomorphin, an AMPK inhibitor, on primary ATL cells and HTLV-1-infected T-cell lines. AMPK expression in acute and chronic ATL patients was significantly higher than in asymptomatic HTLV-1 carriers and healthy donors. Dorsomorphin induced apoptosis in peripheral blood mononuclear cells from ATL patients. Dorsomorphin also induced dose- and time-dependent apoptosis in HTLV-1-infected T-cell lines. Dorsomorphin increased the production of intracellular reactive oxygen species (ROS) and induced ataxia telangiectasia-mutated Ser1981 phosphorylation and p53 accumulation. These results indicated that dorsomorphin induces apoptosis via ROS-mediated DNA damage in HTLV-1-infected T-cell lines. Furthermore, dorsomorphin suppressed the growth of human ATL tumor xenografts in NOD/SCID mice. Together, these data suggest that AMPK could be a candidate therapeutic target for ATL and that dorsomorphin could be a therapeutic agent for ATL.
Collapse
Affiliation(s)
- Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| | - Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| | - Yuichiro Uchida
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan.,Department of Hematology and Immunology, Kagoshima University Hospital, Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan.,Department of Hematology and Immunology, Kagoshima University Hospital, Japan
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| |
Collapse
|